A note on the Kahn-Priddy map

Dedicated to Professor Hirosi Toda on his 60th birthday

By Juno MUKAI

(Received June 12, 1986)

§ 0. Introduction.

 L_p denotes the infinite dimensional lens space mod a prime p. L_p^k stands for its k-skeleton with the usual cellular decomposition $L_p = S^1 \cup e^2 \cup \cdots \cup e^{2n-1} \cup e^{2n} \cup \cdots$. In particular L_k^k is the real projective space P^k . Let $\lambda_k : E^{2m+1} L_p^k \to S^{2m+1}$ for $m \ge 1$ be a mapping. Then we adopt the following definition ([7], [11], [14]): λ_k for $2p-3 \le k \le 2(m+1)(p-1)-2$ is called a Kahn-Priddy map if the functional $\mathfrak{P}^1(Sq^2)$ -operation of λ_k is nontrivial (resp.). From the definition, the t-fold suspension $E^t\lambda_k$ for $t \ge 0$ is also a Kahn-Priddy map. By abuse of notation, a mapping $E^t\lambda_k$ is regarded as an element of the cohomotopy group $\pi^c(E^cL_p^k)$ for c=t+2m+1. λ_k' stands for the restriction $\lambda_k \mid E^{2m+1}L_p^{k-1}$. A stable map $E^\infty\lambda_k$ is often written $\lambda_k : L_p^k \to S^0$.

The main purpose of the present note is to determine the orders $\#(E^t\lambda_{2n})$ and $\#(E^t\lambda_{2n}')$ completely. The problem determining the order of the Kahn-Priddy map was first posed by Nishida who obtained $\#(E^{\infty}\lambda_{2n}) = \#(E^{\infty}\lambda_{2n}') = p^{\lfloor n/(p-1)\rfloor}$ for an odd prime p [15]. Here $\lfloor x \rfloor$ denotes the integral part of x. In the case p=2, the author [12] obtained $\#(E^t\lambda_{2n}) = 2^{\phi(2n)}$. Here $\phi(n)$ is the number of integers in the interval $\lceil 1, n \rceil$ congruent to 0, 1, 2 or $4 \mod 8$.

Nishida's method is to use the algebraic K-group of L_p^k . Our method is to follow that of [12] of which the classical KO-group of P^k [1] is used. In the case of an odd prime p, it suffices to use the K-group of L_p^k [8]. To determine the infimum of the order of a Kahn-Priddy map, we shall use the d- or e-invariant [2]. To determine the supremum, we shall use the suspension order of the stunted space L_p^{2n}/L_p^{2p-4} [4].

Let $\rho: L_p^{2n-1} \to L_p^{2n-1}/L_p^{2n-2} = S^{2n-1}$ be the canonical map. Let $\alpha_s \in \pi_{2s(p-1)-1}(S^0)$ for an odd prime p be Adams-Toda's element such that $\#\alpha_s = p$ and $e_C(\alpha_s) \equiv -1/p \mod 1$ [2]. Then we have the following

THEOREM 1. Let p be an odd prime, $m \ge 1$ and $p-1 \le n \le (m+1)(p-1)-1$.

This research was partially supported by Grant-in-Aid for Scientific Research (No. 61540026), Ministry of Education, Science and Culture.

Let $\lambda_{2n}: E^{2m+1}L_p^{2n} \to S^{2m+1}$ be a Kahn-Priddy map and $\lambda'_{2n} = \lambda_{2n}|E^{2m+1}L_p^{2n-1}$. Then, for $t \ge 0$,

$$\#(E^t\lambda_{2n}) = \#(E^t\lambda'_{2n}) = p^{\lfloor n/(p-1)\rfloor}.$$

In particular the following relation holds if n=s(p-1):

$$p^{s-1}\lambda'_{2n} \equiv x\alpha_s \rho \mod \text{Ker}e_c$$

for some $x \not\equiv 0 \mod p$.

Let $\mu_s \in \pi_{8s+1}(S^0)$ be an element such that $\#\mu_s = 2$ and $d_R(\mu_s) \equiv 1 \mod 2$ [2]. μ_0 is the Hopf map η . Notice that the suffix of μ_s is different from Adams' one. Let $\alpha_s \in \pi_{ss-1}(S^0)$ be an element such that $\#\alpha_s = 2$ and $e'_R(\alpha_s) \equiv 1/2 \mod 1$ [2]. Then we have the following

THEOREM 2. Let $\lambda_{2n}: E^{2n+1}P^{2n} \rightarrow S^{2n+1}$ be a Kahn-Priddy map and $\lambda'_{2n} =$ $\lambda_{2n} | E^{2n+1} P^{2n-1}$. Then

- i) $\#\lambda_{2n} = \#(E\lambda_{2n}) = 2^{\phi(2n)}$. ii) $\#\lambda'_{2n} = \begin{cases} 2^{\phi(2n-1)} & \text{if } n \text{ is odd,} \\ 2^{\phi(2n)} & \text{if } n \text{ is even.} \end{cases}$

In particular the following relations hold:

- a) $2^{\phi(2n-2)}\lambda'_{2n} \equiv \mu_s \rho \mod \operatorname{Ker} d_R$ if $n=4s+1 \ge 1$. b) $2^{\phi(2n-1)}\lambda'_{2n} \equiv \mu_s \eta^2 \rho \mod \operatorname{Ker} e'_R$ if $n=4s+2 \ge 2$.
- if $n=4s\geq 4$. c) $2^{\phi(2n-1)}\lambda'_{2n} \equiv \alpha_s \rho \mod \operatorname{Ker} e'_{R}$

We remark that the periodic family of elements of $\pi_{2n-1}(S^0)$ are recovered as a byproduct of our proof of the theorems.

This note consists of four sections and one appendix. § 1-§ 3 are devoted to proving the theorems. In §4 we shall characterize a Kahn-Priddy map as a mapping of mod p Hopf invariant one. In the appendix we shall give a short proof of Toda's result about the stable order of P^{2n} [16].

§ 1. A K-theoretic characterization of the Kahn-Priddy map.

Let $i: L_p^{2n} \to L_p^{2n+1}$ be the inclusion. Let $\sigma \in \widetilde{K}(L_p^{2n+1})$ be an element induced from the canonical complex line bundle over the complex projective space $\mathbb{C}P^n$. Then, by Theorem 1, Lemmas 2.4 and 2.5 of [8], we have the following

PROPOSITION 1.1. Let n=s(p-1)+r, $0 \le r < p-1$. Then

- i) $\widetilde{K}^{-1}(L_{p}^{2n})=0.$
- ii) $i^*: \widetilde{K}(L_p^{2n+1}) \to \widetilde{K}(L_p^{2n})$ is an isomorphism.
- iii) $\widetilde{K}(L_p^{2n+1}) \approx (Z_p^{s+1})^r + (Z_p^s)^{p-r-1}$

where the first r summands are generated by $\sigma^1, \dots, \sigma^r$ and the rest are generated by σ^{r+1} , ..., σ^{p-1} . The ring structure is given by $\sigma^p = -\sum_{i=1}^{p-1} {p \choose i} \sigma^i$, $\sigma^{n+1} = 0$.

We denote by $M_p^n = S^{n-1} \bigcup_p e^n$ a \mathbb{Z}_p -Moore space and by $\rho': L_p^{2n} \to L_p^{2n}/L_p^{2n-2} = M_p^{2n}$ the canonical map. Then, by Proposition 1.1, we have the following

LEMMA 1.2. Let n=s(p-1) for $s \ge 1$. Then

$$\operatorname{Im}\{\rho'^*: \widetilde{K}(M_p^{2n}) \longrightarrow \widetilde{K}(L_p^{2n})\} = \{p^{s-1}\sigma^{p-1}\} \approx \mathbf{Z}_p.$$

The p-component of $\pi_i(X)$ is written ${}^p\pi_i(X)$. If $p\alpha=0$ for $\alpha \in \pi_{n-1}(S^k)$, we denote by $\bar{\alpha} \in \pi^k(M_p^n)$ an extension of α .

Hereafter we assume that p is an odd prime, unless otherwise stated. The following is well known: For $n \ge 3$, ${}^p\pi_{i+n}(S^n)$ is 0 if $1 \le i < 2p-3$ or i=2p-2 and ${}^p\pi_{n+2p-3}(S^n) = \{E^{n-3}\alpha_1\} \approx \mathbb{Z}_p$. So we have the following

LEMMA 1.3. Let $n \ge 3$. Then

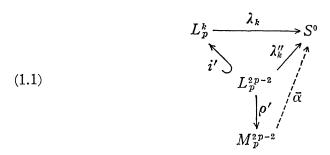
- i) $\pi^n(E^nL_p^{2p-4})=0$.
- ii) $\pi^n(M_p^{n+2p-2}) = \{E^{n-3}\bar{\alpha}_1\} \approx Z_p.$

If $p\alpha=0$ for $\alpha \in \pi_i(S^0)$, $d_c(\bar{\alpha}) \equiv -pe_c(\alpha) \mod p$ by Proposition 12.3 of [2]. Then the following is well known.

LEMMA 1.4. The following are equivalent if $x \not\equiv 0 \mod p$:

- i) $\alpha = x\alpha_1$,
- ii) The functional \mathfrak{P}^1 -operation of α is nontrivial,
- iii) $d_c(\bar{\alpha}) \equiv x \mod p$, namely, $\bar{\alpha}^* : \tilde{K}(S^0) \to \tilde{K}(M_p^{2p-2}) \approx \mathbb{Z}_p$ is onto.

Let $\lambda_k: L_p^k \to S^0$ for $k \ge 2p-2$ be a mapping and $\lambda_k'' = \lambda_k | L_p^{2p-2}$. Then, by Lemma 1.3, there exists an element $\alpha \in {}^p\pi_{2p-3}(S^0)$ such that the following diagram commutes:



By Lemma 1.4 and (1.1), λ_k is a Kahn-Priddy map if and only if $\alpha = x\alpha_1$. The following is a key to our approach.

LEMMA 1.5. Let n=s(p-1)+r, $0 \le r < p-1$ and $s \ge 1$. Let k=2n or 2n+1. Then $\lambda_k: L_p^k \to S^0$ is a Kahn-Priddy map if and only if

$$\operatorname{Im}\{\lambda_k^*\colon \widetilde{K}(S^0) \longrightarrow \widetilde{K}(L_p^k)\} = \{\sigma^{p-1} \bmod p\widetilde{K}(L_p^k)\} \approx \mathbf{Z}_{p^k}.$$

PROOF. Suppose that λ_k is a Kahn-Priddy map. Then, by (1.1), Lemmas

1.2 and 1.4, $\operatorname{Im} \lambda_k''^* = \operatorname{Im} \rho'^* = \{\sigma^{p-1}\} \approx \mathbb{Z}_p$. By Proposition 1.1, $i'^* : \widetilde{K}(L_p^k) \to \widetilde{K}(L_p^{2p-2})$ is onto. So we have $\operatorname{Im} \lambda_k^* = (i'^*)^{-1}(\operatorname{Im} \lambda_k''^*) = \{\sigma^{p-1} \bmod p\widetilde{K}(L_p^k)\}$. Obviously the converse is true. This completes the proof.

§ 2. Proof of Theorem 1.

 ι_X stands for the identity class of a space X. $\#\iota_{EX}$ is called the suspension order of X [16] and denoted by |EX|. The stable order of X is written $||X|| = |E^{\infty}X|$.

By Proposition 4.2 of [19] and Lemma 2.7 of [4], we have the following LEMMA 2.1. $|E(L_p^{2n}/L_p^{2k})| = |EL_p^{2(n-k)}| = p^{1+\lfloor (n-k-1)/(p-1)\rfloor}$.

By Lemma 2.10 of [8] and by Theorem 3.1 of [9], we have the following Lemma 2.2. $\tilde{K}(L_p^{2n}/L_p^{2k}) \approx \tilde{K}(L_p^{2(n-k)})$.

By Proposition 1.1, Lemmas 2.1 and 2.2, we have the following Lemma 2.3.

$$|E^{t+1}(L_p^{2n}/L_p^{2k})| = |E^{t+1}L_p^{2(n-k)}| = p^{1+\lfloor (n-k-1)/(p-1)\rfloor}$$
 for $t \ge 0$.

REMARK. The 2-primary version of Lemma 2.3 is not valid. By use of Proposition 5.1 and Theorem 5.6 of [13], we have $||P^8/P^2||=16$. In general, by Corollary 2.2 of [10] and by Corollary 3 to Theorem 4.3 of [16], we have $||P^{2n}/P^{2k}|| |2||P^{2(n-k)}||$.

Now we shall prove Theorem 1. Let n=s(p-1)+r, $0 \le r < p-1$ and $s \ge 1$. Let c=2m+1 for $m \ge 1$ and $\rho'': L_p^{2n} \to L_p^{2n}/L_p^{2p-4}$ be the canonical map. Then, by Lemma 1.3, there exists a mapping $\tilde{\lambda}_{2n}: E^c(L_p^{2n}/L_p^{2p-4}) \to S^c$ such that the following diagram commutes:

$$E^{c}L_{p}^{2n} \xrightarrow{\lambda_{2n}} S^{c}$$

$$E^{c}\rho'' \qquad \qquad \tilde{\lambda}_{2n}$$

$$E^{c}(L_{p}^{2n}/L_{p}^{2p-4}).$$

So, by Lemma 2.3,

$$\#(E^t \lambda_{2n}) \Big| \#(E^t \tilde{\lambda}_{2n}) \Big| \, |E^{t+c}(L_p^{2n}/L_p^{2p-4})| = p^{1+\lceil (n-p+1)/(p-1)\rceil} = p^s.$$

By Lemma 1.5, $p^s | \#(E^{\infty} \lambda_{2n}) | \#(E^t \lambda_{2n})$. Hence $\#(E^t \lambda_{2n}) = p^s$.

Next we shall determine the order of $E^t \lambda'_{2n}$. By Lemma 1.5 and the above

result,

$$p^{\lceil (n-1)/(p-1)\rceil} \Big| \#(E^{\infty} \lambda'_{2n}) \Big| \#(E^{t} \lambda'_{2n}) \Big| \#(E^{t} \lambda_{2n}) = p^{s}.$$

Therefore $\#(E^t\lambda'_{2n})=p^s$ if r>0 and $\#(E^t\lambda'_{2n})=p^{s-1}$ or p^s if r=0.

It remains to prove $\#\lambda'_{2n}=p^s$ for $\lambda'_{2n}=\lambda_{2n}\left|L_p^{2n-1}\right|$ with n=s(p-1). We consider the natural map between the cofibre sequences

$$(2.1) L_p^{2n-2} \xrightarrow{i_0} L_p^{2n-1} \xrightarrow{\rho} S^{2n-1}$$

$$\parallel \qquad \qquad \downarrow i \qquad \qquad \downarrow i_1 \qquad \qquad \downarrow i_1 \qquad \qquad \downarrow i_1 \qquad \qquad \downarrow i_1 \qquad \qquad \downarrow i_2^{2n-2} \xrightarrow{\rho'} L_p^{2n} \xrightarrow{\rho'} M_p^{2n}.$$

LEMMA 2.4. Let n=s(p-1) for $s \ge 1$. Then there exists an element $\bar{\alpha}'_s \in \pi^0(M_p^{2n})$ such that $p^{s-1}\lambda_{2n} = \bar{\alpha}'_s \rho'$, $d_C(\bar{\alpha}'_s) \equiv x \not\equiv 0 \mod p$ and $\#\bar{\alpha}'_s = p$.

PROOF. Let $\lambda_{2n}''=\lambda_{2n}|L_p^{2n-2}$. Then $\#\lambda_{2n}=p^s$ and $\#\lambda_{2n}''=p^{s-1}$. So, by the lower sequence of (2.1), there exists an element $\bar{\alpha}_s'$ satisfying the first relation. By Lemmas 1.2 and 1.5, $\operatorname{Im} \rho'^*=\operatorname{Im}(p^{s-1}\lambda_{2n})^*\approx \mathbb{Z}_p$. Therefore we have the second. The third is obvious. This completes the proof.

We define an element $\alpha'_s \in \pi_{2n-1}(S^0)$ by $\alpha'_s = \bar{\alpha}'_s \circ i_1$. Then, by Proposition 12.3 of [2], $e_c(\alpha'_s) \equiv -(1/p) d_c(\bar{\alpha}'_s) \equiv -x/p \mod 1$, and so $\#\alpha'_s = p$.

Proposition 2.5. Let n=s(p-1) for $s \ge 1$. Then

$$p^{s-1}\lambda'_{2n} = \alpha'_s \rho$$
 and $\#\lambda'_{2n} = p^s$.

PROOF. By (2.1) and Lemma 2.4, $p^{s-1}\lambda'_{2n} = (\bar{\alpha}'_s \rho') \circ i = \alpha'_s \rho$. $e_c(p^{s-1}\lambda'_{2n})$ is well-defined, and by Proposition 3.2. (c) of [2],

$$e_C(p^{s-1}\lambda'_{2n}) = e_C(\alpha'_s\rho) = d_C(E\rho)e_C(\alpha'_s) \equiv \pm x/p \mod 1$$
.

For $(E\rho)^*: \widetilde{K}^{-1}(S^{2n-1}) \to \widetilde{K}^{-1}(L_p^{2n-1}) \approx \mathbb{Z}$ is an isomorphism by Proposition 1.1. This completes the proof.

From the definition, α'_s coincides with $x\alpha_s$ up to Kere_c. This completes the proof of Theorem 1.

§ 3. Proof of Theorem 2.

The argument in this section is based on the following theorems owing to Adams [1] and Toda [16] respectively.

THEOREM A. $\widetilde{KO}(P^n) \approx \mathbb{Z}_{2^{\phi(n)}}$ and it is generated by the stable canonical line bundle ξ over P^n .

Theorem B. $||P^{2n}|| = 2^{\phi(2n)}$.

A 2-primary version of Lemma 1.5 is the following (Lemma 2.1 of [12])

LEMMA 3.1. $\lambda_n: P^n \to S^0$ is a Kahn-Priddy map if and only if $\lambda_n^*: \widetilde{KO}(S^0) \to \widetilde{KO}(P^n)$ is onto.

By Lemma 3.1, $\#\lambda_{2n}=2^{\phi(2n)}$ and $\#\lambda'_{2n}=2^{\phi(2n-1)}$ or $2^{\phi(2n)}$. If $n\equiv 3 \mod 4$, $\phi(2n)=\phi(2n-1)$. So we have $\#\lambda'_{2n}=2^{\phi(2n-1)}$ in this case. If $n\equiv 0$, 1 or 2 mod 4, $\phi(2n)=\phi(2n-1)+1$. Furthermore, $\phi(2n-1)=\phi(2n-2)+1$ if $n\equiv 1 \mod 4$ and $\phi(2n-1)=\phi(2n-2)$ if n is even. Therefore, by use of (2.1) for p=2, we have the following

LEMMA 3.2. i) Let $n \equiv 1 \mod 4$. Then

$$\operatorname{Im}\{\rho'^*: \widetilde{KO}(M_2^{2n}) \longrightarrow \widetilde{KO}(P^{2n})\} = \{2^{\phi(2n-2)}\xi\} \approx \mathbf{Z}_4$$

and

$$\operatorname{Im}\{\rho^*\colon \widetilde{KO}(S^{2n-1}) \longrightarrow \widetilde{KO}(P^{2n-1})\} = \{2^{\phi(2n-2)}\xi\} \approx \mathbf{Z}_2.$$

ii) Let n be even. Then

$$\operatorname{Im}\{\rho'^*: \widetilde{KO}(M_2^{2n}) \longrightarrow \widetilde{KO}(P^{2n})\} = \{2^{\phi(2n-2)}\xi\} \approx \mathbb{Z}_2.$$

By Lemmas 3.1, 3.2 and by the parallel argument to the one in the proof of Lemma 2.4, we have the following lemmas.

LEMMA 3.3. Let n=4s+1 for $s\geq 0$. Then there exists an element $\bar{\mu}_s' \in \pi^0(M_2^{2n})$ such that $2^{\phi(2n-2)}\lambda_{2n} = \bar{\mu}_s'\rho'$, $d_R(\bar{\mu}_s') \equiv \pm 1 \mod 4$ and $\#\bar{\mu}_s' = 4$.

LEMMA 3.4. Let n=4s (n=4s-2, resp.) for $s\geq 1$. Then there exists an element $\bar{\alpha}_s'$ $(\bar{\beta}_s')$ of $\pi^0(M_2^{2n})$ such that $2^{\phi(2n-2)}\lambda_{2n}=\bar{\alpha}_s'\rho'$ $(2^{\phi(2n-2)}\lambda_{2n}=\bar{\beta}_s'\rho')$ and $d_R(\bar{\alpha}_s')\equiv 1 \mod 2$ $(d_R(\bar{\beta}_s')\equiv 1 \mod 2, resp.)$.

REMARK 1. Lemma 3.4 for s=1 is obtained from Proposition 2.1 and Theorem 4.6 of [13].

We define an element $\mu'_s \in \pi_{2n-1}(S^0)$ by $\mu'_s = \bar{\mu}'_s \circ i_1$. Then $\#\mu'_s = 2$ and $2^{\phi(2n-2)}\lambda'_{2n} = \mu'_s \rho$. By Lemmas 3.1 and 3.2, $d_R(\mu'_s) \equiv 1 \mod 2$. This leads us to the following

Proposition 3.5. Let n=4s+1 for $s \ge 0$. Then

$$2^{\phi(2n-2)}\lambda'_{2n} = \mu'_{s}\rho$$
 and $\#\lambda'_{2n} = 2^{\phi(2n-1)}$.

We define an element α_s' (β_s') by $\alpha_s' = \bar{\alpha}_s' \circ i_1$ ($\beta_s' = \bar{\beta}_s' \circ i_1$, resp.). Then $e_R'(\alpha_s') \equiv e_R'(\beta_s') \equiv 1/2 \mod 1$ and $\#\alpha_s' = \#\beta_s' = 2$.

Proposition 3.6. Let n=4s (n=4s-2, resp.) for $s\ge 1$. Then

and

$$2^{\phi(2n-2)}\lambda'_{2n} = \alpha'_{s}\rho$$
 $(2^{\phi(2n-2)}\lambda'_{2n} = \beta'_{s}\rho, resp.)$ $\#\lambda'_{2n} = 2^{\phi(2n)}.$

PROOF. The first is a direct consequence of Lemma 3.4.

By the proof of Theorem 1. i) of [3], we have a split monomorphism:

$$\widetilde{KO}^{-1}(S^{2n-1}) \xrightarrow{(E\rho)^*} \widetilde{KO}^{-1}(P^{2n-1}).$$

$$\emptyset$$

$$\mathbf{Z}$$

$$\mathbf{Z} + \mathbf{Z}_2$$

Therefore $d_R(E\rho) = \pm 1$ and $e'_R(\alpha'_s\rho) = d_R(E\rho)e'_R(\alpha'_s) \equiv 1/2 \mod 1$ ($e'_R(\beta'_s\rho) \equiv 1/2 \mod 1$, resp.). This completes the proof.

From the definition, $\mu'_s \equiv \mu_s \mod \operatorname{Ker} d_R$, $\alpha'_s \equiv \alpha_s \mod \operatorname{Ker} e'_R$ and $\beta'_s \equiv \mu_{s-1} \eta^2 \mod \operatorname{Ker} e'_R$ (cf. Proposition 12.17 of [2]). This completes the proof of Theorem 2.

REMARK 2. Let n=4s-2 or 4s for $s\geq 1$. Then, by Theorems 1.5 and 1.6 of [2] and by the Adams conjecture, $\operatorname{Im} J=J\pi_{2n-1}(SO)=\{j_{2n-1}\}\approx \mathbf{Z}_{m(n)}$ and $e'_R:\pi_{2n-1}(S^0)\to \mathbf{Z}_{m(n)}$ is a split epimorphism such that $\operatorname{Im}(e'_RJ)\approx \mathbf{Z}_{m(n)}$. So β'_s and α'_s can be chosen as $(m(n)/2)j_{2n-1}$ respectively.

EXAMPLE. i) Define a mapping $g_n: E^n P^{n-1} \to S^n$ as the adjoint of a composition of natural maps ([7], [12])

$$P^{n-1} \longrightarrow SO(n) \longrightarrow \Omega^n S^n$$
.

Then $g'_n = g_n | E^n P^{n-2} = Eg_{n-1}$. So, by Theorem 2, $\#(Eg_{2n}) = 2^{\phi(2n-1)}$ or $2^{\phi(2n)}$ according as n is odd or even. This improves the result of the last example of [12].

- ii) Let $f_n: E^n P^{n-1} \to S^n$ be an attaching map in the symmetric square of S^n ([6], [12]). Then we have $f'_n = f_n | E^n P^{n-2} \simeq \pm E f_{n-1} \circ E^2 \varepsilon$, where ε denotes a self homotopy equivalence of $E^{n-2} P^{n-2}$. So, by i), $\#(Ef_{2n}) = \#(Eg_{2n})$.
- iii) Let $h_m: E^c L_p^{c(p-1)-2} \to S^c$ for $c=2m+1 \ge 3$ be the mapping in Lemma 8.2 of [18]. Then it is a Kahn-Priddy map, and by Theorem 1, $\#h_m = p^m$.

§ 4. The mod p Hopf invariant of the Kahn-Priddy map.

In this section we shall consider an odd primary version of Theorem 1.2 of [12]. For a cohomology operation θ , we denote by θ_{λ} the functional θ -operation of a mapping λ . By the ring structure of $H^*(L_p^{2n}; \mathbb{Z}_p)$, by the properties of the reduced power operation \mathfrak{P}^i and the Bockstein operation Δ and by the Adem relation, we have the following (cf. Proof of Theorem 3 of [11]).

LEMMA 4.1. Let $\lambda: E^{2m+1}L_p^{2n} \to S^{2m+1}$ for $p-1 \le n \le (m+1)(p-1)-1$ be a mapping and i a positive integer with $i(p-1) \le n$. Then the nontriviality of $\mathfrak{P}_{\lambda}^i(Sq_{\lambda}^{2i})$ or $(\Delta\mathfrak{P}^i)_{\lambda}(Sq_{\lambda}^{2i+1})$ for some i implies that for all i (resp.).

From the definition and Lemma 4.1, $\lambda: E^{2m+1}L_p^{2n} \to S^{2m+1}$ is a Kahn-Priddy map if and only if $\mathfrak{P}_{\lambda}^m \neq 0$.

We denote by $Q_2^{2m-1} = \Omega(\Omega^2 S^{2m+1}, S^{2m-1})$ the homotopy fiber of the inclusion $S^{2m-1} \to \Omega^2 S^{2m+1}$. For a finite CW-complex K, we consider the following exact sequence [17]:

$$(4.1) \cdots \longrightarrow \pi^{2m-1}(EK) \xrightarrow{E^2} \pi^{2m+1}(E^3K) \xrightarrow{H^{(2)}} [K, Q_2^{2m-1}] \longrightarrow \cdots.$$

LEMMA 4.2. Suppose $\mathfrak{P}_{\lambda}^{m} \neq 0$ for $\lambda \in \pi^{2m+1}(E^{3}K)$. Then

$$H^{(2)}(\lambda) \neq 0$$
.

PROOF. We assume $H^{(2)}(\lambda)=0$. Then, by (4.1), there exists an element $\theta \in \pi^{2m-1}(EK)$ such that $\lambda = E^2\theta$. \mathfrak{P}^m commutes with the cohomology suspension isomorphism and $\mathfrak{P}^mH^{2m-1}(\ ; \mathbf{Z}_p)=0$. Therefore we have $\mathfrak{P}^m_{\lambda}=0$. This completes the proof.

LEMMA 4.3. Let $K = E^{2m-2} L_p^{2m(p-1)}$. Suppose $H^{(2)}(\lambda) \neq 0$ for $\lambda \in \pi^{2m+1}(E^3K)$. Then $\mathfrak{P}_{\lambda}^m \neq 0$.

PROOF. Let $\lambda': E^3K \to S^{2m+1}$ be a Kahn-Priddy map. Then, by Lemmas 4.1 and 4.2, $H^{(2)}(\lambda') \neq 0$. Since Q_2^{2m-1} is p-equivalent to M_p^{2mp-2} in dim $\leq 4mp-6$ [17], $[K, Q_2^{2m-1}] \approx [M_p^{2mp-2}, M_p^{2mp-2}] \approx \mathbb{Z}_p$. So there exists an integer $a \neq 0 \mod p$ such that $H^{(2)}(\lambda) = aH^{(2)}(\lambda')$. By (4.1), there exists an element $\theta \in \pi^{2m-1}(EK)$ such that $\lambda = a\lambda' + E^2\theta$. Therefore $\mathfrak{P}_{\lambda}^m = a\mathfrak{P}_{\lambda'}^m + \mathfrak{P}_{E^2\theta}^m = a\mathfrak{P}_{\lambda'}^m \neq 0$. This completes the proof.

A mod p Hopf homomorphism $H_p: {}^p\pi^{2m+1}(E^3K) \to {}^p\pi^{2m\,p+1}(E^3K)$ is defined as a composition [17]

$${}^{p}\pi^{2m+1}(E^{3}K) \xrightarrow{H^{(2)}} {}^{p}[K, Q_{2}^{2m-1}] \xrightarrow{I} {}^{p}\pi^{2m\,p+1}(E^{3}K).$$

If $K=E^{2m-2}L_p^{2m(p-1)}$, $\pi^{2mp+1}(E^3K)\approx \mathbb{Z}_p$ and I is an isomorphism by (2.5) and (2.7) of [17]. Hence, by Lemmas 4.2 and 4.3, we have the following

PROPOSITION 4.4. $\lambda: E^{2m+1}L_p^{2m(p-1)} \to S^{2m+1}$ for $m \ge 1$ is a Kahn-Priddy map if and only if $H_p(\lambda) \ne 0$.

REMARK. By the parallel argument, precisely, by use of the *EHP*-sequence and Sq_{λ}^{2m+1} for $\lambda: E^{2m+1}P^{2m} \to S^{2m+1}$, we can directly prove Theorem 1.2 of [12].

Appendix.

In this appendix we shall give a short proof of Theorem B in §3. For a CW-pair (Y, B), we consider the canonical cofibre sequence

(A1)
$$B \xrightarrow{i} Y \xrightarrow{p} Y/B \xrightarrow{\gamma} EB \xrightarrow{Ei} \cdots$$

By Theorem 1.2 of [16] and its proof, we have the following

Lemma A1. i)
$$|EY| |\#(Ei)\#(Ep)| |EB|\#(Ep)| |EB||E(Y/B)|$$
.

ii)
$$||Y|| = ||H|| + ||B|| +$$

We denote by $\iota'_n = \iota_X$ for $X = P^n$. Let $i: S^1 \to P^2$ and $p: P^2 \to S^2$ be the canonical maps. Then the following is Theorem 2.3 of [16].

LEMMA A2. $||P^2||=4$ and $2\epsilon_2'=i\eta p$.

We consider (A1) for a pair (P^{2n+2}, P^{2n}) :

$$(A1)' P^{2n} \xrightarrow{i'} P^{2n+2} \xrightarrow{p'} E^{2n} P^2 \xrightarrow{\gamma'} EP^{2n} \longrightarrow \cdots$$

Let $p_{2n+2} = E^{2n} p \circ p' : P^{2n+2} \to S^{2n+2}$. Then it is easy to show the following: $\pi^{2n+2}(P^{2n+2}) = \{p_{2n+2}\} \approx \mathbb{Z}_2$ and $\pi^{2n+1}(P^{2n+2}) = \{\eta p_{2n+2}\} \approx 0$ or \mathbb{Z}_2 according as n is odd or even. So, by (A1)' and Lemma A2, we have the following

LEMMA A3. i) If n is odd, #p'=2.

ii) If n is even, #p'=4 and $2p'=i\eta p_{2n+2}$.

By Lemmas A1, A2, A3, we have

(A2)
$$||P^4|| |8.$$

By Theorem 2.5 of [16], we have

$$||P^6|| |8.$$

REMARK 1. By inspecting the computations of § 2, 3 of [13], we can also show that $||P^e||=8$.

The following is Corollary to Theorem 2.8 of [16].

Theorem A4.
$$||P^{2n}|| |2^{\phi(2n)}$$
.

PROOF. By Lemma A2, (A2) and (A3), the assertion is true for $n \le 3$. We inductively assume that the assertion is true for $n \ge 3$.

i) The case $n \equiv 1 \mod 2$ or $n \equiv 0 \mod 4$. Let a = 0 or 1 according as n is

odd or even. Then, by Lemmas A1 and A3, $||P^{2n+2}|| ||P^{2n}|| \# p' = 2^{\phi(2n)} 2^{1+a} = 2^{\phi(2n+2)}$

ii) The case $n \equiv 2 \mod 4$. We consider (A1) for a pair (P^{2n+2}, P^{2n-4}) :

$$P^{2n-4} \xrightarrow{i''} P^{2n+2} \xrightarrow{p''} P^{2n+2}/P^{2n-4}.$$

By the James periodicity [5], $P^{2n+2}/P^{2n-5}=E^{2n-4}(P^6\vee S^0)$ if $n\equiv 2 \mod 4$. So we have $P^{2n+2}/P^{2n-4}=E^{2n-4}P^6$. Therefore, by Lemma A1 and (A3), $\|P^{2n+2}\| \|P^{2n-4}\| \|P^6\| = 2^{\phi(2n-4)+3}=2^{\phi(2n+2)}$. Consequently the induction is complete.

By Theorem A of § 3, $2^{\phi(2n)} | \|P^{2n}\|$. So, by Theorem A4, $\|P^{2n}\| = 2^{\phi(2n)}$. This completes the proof of Theorem B.

REMARK 2. i) By the similar method to the above, we can prove Lemma 2.3 for $t=\infty$.

ii) The argument in this appendix still holds in the unstable case. We have $|EP^2| \left| 4 \text{ and } |EP^4| \right| 8$. So we have $|E^kP^{2n}| \left| 2^{\phi(2n)} \right|$ for all n if $|E^kP^6| \left| 8 \right|$ for some $k \ge 1$. Since $|E^6P^6| \left| 8 \right|$ by (A3), we have $|E^6P^{2n}| \left| 2^{\phi(2n)} \right|$.

Conjecture. $|EP^{2n}| = 2^{\phi(2n)}$ for all n.

References

- [1] J.F. Adams, Vector fields on spheres, Ann. of Math., 75 (1962), 603-632.
- [2] —, On the groups J(X) IV, Topology, 5 (1966), 21-71.
- [3] M. Fujii, K₀-groups of projective spaces, Osaka J. Math., 4 (1967), 141-149.
- [4] K. Iriye, On the James number of cyclic maps of spheres, Japan. J. Math., 10 (1984), 1-8.
- [5] I.M. James, The topology of Stiefel manifolds, London Math. Soc., Lecture Note, 24, Cambridge Univ., 1976.
- [6] I.M. James, E. Thomas, H. Toda and G. W. Whitehead, On the symmetric square of a sphere, J. Math. Mech., 12 (1963), 771-776.
- [7] D.S. Kahn and S.B. Priddy, Applications of the transfer to stable homotopy theory, Bull. Amer. Math. Soc., 78 (1972), 981-987.
- [8] T. Kambe, The structure of K_A -rings of the lens space and their applications, J. Math. Soc. Japan, 18 (1966), 135-146.
- [9] T. Kobayashi, Non-immersion theorems for lens spaces. II, J. Sci. Hiroshima Univ., Ser. A-I, 32 (1968), 285-292.
- [10] K. Y. Lam, KO-equivalences and existence of nonsingular bilinear maps, Pacific J. Math., 82 (1979), 145-154.
- [11] M. Mimura, J. Mukai and G. Nishida, Representing elements of stable homotopy groups by symmetric maps, Osaka J. Math., 11 (1974), 105-111.
- [12] J. Mukai, A characterization of the Kahn-Priddy map, Advanced Studies in Pure Math., 9 (1986), 287-291.
- [13] ——, On the stable homotopy of the real projective space of even low dimension, Publ. RIMS, Kyoto Univ., 22 (1986), 81-95.

- [14] G. Nishida, The nilpotency of elements of the stable homotopy groups of spheres, J. Math. Soc. Japan, 25 (1973), 707-732.
- [15] ——, On the algebraic K-group of lens spaces and its applications, J. Math. Kyoto Univ., 23 (1983), 211-217.
- [16] H. Toda, Order of the identity class of a suspension space, Ann. of Math., 78 (1963), 300-325.
- [17] ——, On iterated suspensions I, J. Math. Kyoto Univ., 5 (1965), 87-142.
- [18] —, On iterated suspensions II, J. Math. Kyoto Univ., 5 (1966), 209-250.
- [19] J. Ucci, On cyclic and iterated cyclic products of spheres, Osaka J. Math., 8 (1971), 393-404.

Juno MUKAI
Department of Mathematics
Faculty of Liberal Arts
Shinshu University
Matsumoto 390
Japan