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§0. Introduction.

L, denotes the infinite dimensional lens space mod a prime p. L% stands
for its k-skeleton with the usual cellular decomposition L,=S"Ue*U - Ue*"™*
\Ue*™U ---. In particular L% is the real projective space P*. Let 1,:E*™*L%
—S2m+1 for m=1 be a mapping. Then we adopt the following definition ([7],
[11], [14]): 2: for 2p—3<k=<2(m+1)(p—1)—2 is called a Kahn-Priddy map if
the functional P*(Sg*-operation of 2, is nontrivial (resp.). From the definition,
the ¢-fold suspension E‘1, for t=0 is also a Kahn-Priddy map. By abuse of
notation, a mapping E’1, is regarded as an element of the cohomotopy group
n(E°L%) for c=t+2m+1. 2} stands for the restriction A,|E*™*' L%, A stable
map E>J, is often written A,: L%—S".

The main purpose of the present note is to determine the orders #(E‘4,n)
and #(E‘A;,) completely. The problem determining the order of the Kahn-
Priddy map was first posed by Nishida who obtained #(E*A:,)=#(E®5n)=
pt/®=11 for an odd prime p [15]. Here [x] denotes the integral part of x.
In the case p=2, the author obtained #(E‘Ay,)=2¢¢®™. Here ¢(n) is the
number of integers in the interval [1, n] congruent to 0, 1, 2 or 4 mod8.

Nishida’s method is to use the algebraic K-group of L%. Our method is to
follow that of of which the classical KO-group of P* [1] is used. In the
case of an odd prime p, it suffices to use the K-group of L% [8]. To determine
the infimum of the order of a Kahn-Priddy map, we shall use the d- or e-
invariant [2]. To determine the supremum, we shall use the suspension order
of the stunted space L3%*/L%P~* [4].

Let p: L3~'— L2+-1/L%+-2=5%""1 be the canonical map. Let a,E7xy5p-15-1(S?)
for an odd prime p be Adams-Toda’s element such that #a,=p and ecla,)=
—1/p modl [2]. Then we have the following

THEOREM 1. Let p be an odd prime, m=1 and p—1<n<(m-+1)(p—1)—1.
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Let Zun: E™Li—S*"" be o Kahn-Priddy map and 2y=2es| E™ L3 Then,
for t=0,
#(E'2y,) = #(Et2y,) = ptr/P-1I,

In particular the following relation holds if n=s(p—1):

P 2%, = xa;p mod Keree
for some x%£0 mod p.

Let p,&me.1(S® be an element such that #p¢,=2 and dg(p,)=1 mod2 [2].
2o is the Hopf map 7. Notice that the suffix of g, is different from Adams’
one. Let a,Ems-.(S? be an element such that #a,=2 and eg(a;)=1/2 modl
[2]. Then we have the following

THEOREM 2. Let 25,: E*4'P*—S*"*! be a Kahn-Priddy map and Az,=
Aen | EF"*1P22=1 Then

1) #2sn = #(E2pa) = 290™,

. , 29¢en-1 4f n s odd,

) #2n= {2¢<2"> z'}( n is even.
In particular the following relations hold:

a) 29¢n-22 = pu,p mod Kerdp if n=4s+1=1.

b) 2f¢r-ba = un?o mod Kerep  if n=4s+2=2.

c) 2fem-LA = a,0 mod Kerep if n=4s=4.

We remark that the periodic family of elements of =,,_,(S°) are recovered
as a byproduct of our proof of the theorems.

This note consists of four sections and one appendix. §1-§ 3 are devoted to
proving the theorems. In §4 we shall characterize a Kahn-Priddy map as a

mapping of mod p Hopf invariant one. In the appendix we shall give a short
proof of Toda’s result about the stable order of P** [16].

§1. A K-theoretic characterization of the Kahn-Priddy map.

Let 7: L2*— L%+ be the inclusion. Let aeﬁ(Lij‘“) be an element induced

from the canonical complex line bundle over the complex projective space CP™,
Then, by [Theorem 1, Lemmas and 2.5 of [8], we have the following

PROPOSITION 1.1. Let n=s(p—1)+r, 0<r<p—1. Then
i) K-y L =o.
ii) o*: K(L2+) — K(L2) is an isomorphism.
i) K(LE ) = (Zp+1) +(Z0)P 7,
where the first r summands are generated by d', -+, a7 and the rest are generated

by o™, .-, a?'. The ring structure is given by 0”=—Z$’;‘<p)0i, g"+1=0.
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We denote by Mz=S"""_,e"* a Z,-Moore space and by p’: L¥—L%/L%*
=M}" the canonical map. Then, by [Proposition 1.1, we have the following

LEMMA 1.2. Let n=s(p—1) for s=1. Then
Im{p™*: KM3") —> KLY} = (107} = Zy.

The p-component of w;(X) is written ?xy(X). If pa=0 for acsr,_(S*), we
denote by aexn*(M3) an extension of a.

Hereafter we assume that p is an odd prime, unless otherwise stated. The
following is well known: For n=3, Pm;.,(S") is 0 if 1=/<2p—3 or 1=2p—2
and Pmp40,-5(S™)={E"?a;}=Z,. So we have the following

LEMMA 1.3. Let n=3. Then
i) #"(E*L%*) =0.
iy a*(Mp+e*) ={E™*q,} = Z,.

If pa=0 for acni(S°, dc(@)=—pec(@) modp by Proposition12.3 of [2].
Then the following is well known.

LEMMA 1.4, The following are equivalent if x=0 mod p:

1) a=xay,

ii) The functional R -operation of « is nontrivial,

iii) de(@)=x mod p, namely, a*: I?(SO)-—JN((Mgp‘z)zZp s onto.

Let 4;: L%—S® for k=2p—2 be a mapping and Ay=2A,|L% % Then, by
there exists an element a €”x,,_,(S°) such that the following diagram
commutes :

Ax

Lh—2 L

. %/
i’ /

(1.1) Lzp-2 /I
/0
lp’
M%}"Z’

By Lemma 1.4 and [I.I), 2, is a Kahn-Priddy map if and only if a=xa,.
The following is a key to our approach.

LEMMA 1.5, Let n=s(p—1)+r, 0<r<p—1 and s=1. Let k=2n or 2n+1.
Then 2, : L%—S° is a Kahn-Priddy map if and only if

Im {2} : K(S®) —> K(L%)} = {67! mod pR(LY)} = Z 5.
PROOF. Suppose that 1, is a Kahn-Priddy map. Then, by [1.I), Lemmas



56 J. Mukat

1.2 and 1.4, Im 2/*=Im p’*={0?"'} = Z,. By Proposition 1.1, :/*: I?(L’;,)—»K'(L%,P'z)
is onto. So we have ImAf=(@"*)"'(ImA/*)={¢?-! mod ;bff(L‘;, }.  Obviously the
converse is true. This completes the proof.

§2. Proof of Theorem 1.

tx stands for the identity class of a space X. #:zy is called the suspension
order of X [16] and denoted by |EX|. The stable order of X is written || X]||
=|E=X].

By Proposition 4.2 of and Lemma 2.7 of [4], we have the following

LEMMA 2.1. |E(L%/L%)| = |EL:Y®-B)| = pl+ir=k-D/p-D1
By Lemma 2.10 of and by Theorem 3.1 of [9], we have the following
LEMMA 2.2. K(Li/L%) = K(Li™»).

By Proposition 1.1, Lemmas 2.1l and .2, we have the following

LEMMA 2.3.
IEHl(L%,"/L%,k)l — [EL+1L2p(n—k)l — p1+[(n—k—1)/(p—1>] fOI’ tgo

REMARK. The 2-primary version of Lemma 2.3 is not valid. By use of
Proposition 5.1 and Theorem 5.6 of [13], we have |P%/P%|=16. In general, by
Corollary 2.2 of and by Corollary 3 to Theorem 4.3 of [16], we have

| P2/ o2 Prenem,

Now we shall prove [Theorem 1. Let n=s(p—1)+r, 0<r<p—1 and s=1.
Let c¢=2m+1 for m=1 and p”:L%'—L% /L% * be the canonical map. Then,

by Lemma 1.3, there exists a mapping As,: E(L%/L%P~*)—S° such that the
following diagram commutes :

EcLzr 2n N

A
Ec‘o\ ,’/ZZn
Ee(L3 /L"),
So, by Lemma 2.3,

#(E 2s0) | #(E A2n)

lEz+c(L2pn/L2pp—4)! — p1+[(n—p+1)/(1)—1>1 — ps_

By Lemma L5, p*|#(E*Asm) #(E‘Asy). Hence #(E'Zyn)=1".
Next we shall determine the order of Efi},. By and the above




Kahn-Priddy map 57
result,

p[(n—l)/(p—l)]

#(E*Azn)

#(E*25n)

#(E'2s) =P
Therefore #(EtA;,)=7p° if »>0 and #(E‘A;,)=p*"* or p* if r=0.

It remains to prove #A;,=p° for At,=Asm

Lz with n=s(p—1). We con-
sider the natural map between the cofibre sequences
2n-2 Z.O 2n-1 p 2n-1
Ly? —s L2 — S
2.1 “ i l 1 p/ l 131
Ly —— L% M.

LEMMA 2.4. Let n=s(p—1) for s=1.

Then there exists an element a;<
' (M2™) such that p*~'2A=asp’, de(@)=x7%0 mod p and #a;=p.

PrROOF. Let A),=2,,]1 L3*%. Then #24,,=p° and #AJ,=p*'. So, by the
lower sequence of [(2.1), there exists an element a; satisfying the first relation.
By Lemmas 1.2 and 1.5, Im p"*=Im(p*~'2,,)*=Z,. Therefore we have the second.
The third is obvious. This completes the proof.

We define an element a;=m,,_,(S% by as=da;i,.

of [2], eclal)=—(1/p)dc(@)=

Then, by Proposition 12.3
—x/p modl, and so #a;=p.

PROPOSITION 2.5. Let n=s(p—1) for s=1. Then

P =asp and #HAy, = p°.

Proor. By and Lemma 2.4, p* 'A;,=(&:p")ci=aip. ec(p*~'2},) is well-
defined, and by Proposition 3.2. (¢) of [2],

ec(P*~12sn) = eclasp) = de(Eplec(as) = £x/p modl.

This completes the proof.

For (Ep)*:IN(’](SZ"‘I)—»IZ'"I(L%”*)%Z is an isomorphism by [Proposition 1.1l

From the definition, a; coincides with xa; up to Kerec. This completes the
proof of [Theorem 1.

§3. Proof of Theorem 2.

The argument in this section is based on the following theorems owing to
Adams [1] and Toda respectively.

THEOREM A. @(P")zZ2¢<n> and it is generated by the stable canonical line
bundle & over P™.



58 J. Mukar

THEOREM B. |P?"| = 2¢¢m,
A 2-primary version of is the following (Cemma 2.1 of [12])

LEMMA 3.1. 2,:P"—>S° is a Kahn-Priddy map if and only if A%: IFO(S”)—>
I’(VO(P”) is onto.

By Lemma 3.1, #2,,=2%¢™ and #1;,=2%¢"" or 2™, If n=3 mod4,
é2n)=¢(2n—1). So we have #2},=2#¢""V in this case. If n=0, 1 or 2 mod4,
o(2n)=¢(2n—1)+1. Furthermore, ¢(2n—1)=¢@2n—2)+1 if n=1mod4 and
¢2n—1)=¢@2n—2) if n is even. Therefore, by use of [2.1) for p=2, we have
the following

LEMMA 3.2. 1) Let n=1 mod4. Then
» Im{p* : KO(M3™) —> KO(P*™)} = {2¢¢"-2¢} = Z,
Im{p*: KO(S*™) —> KO(P*™~")} = {26¢n2¢} = Z,.
ii) Let n be even. Then

Im{p’* : KO(M3™) —> KO(P*™)} = {200"9¢} = Z,.

By Lemmas 8.1, 8.2 and by the parallel argument to the one in the proof
of we have the following lemmas.

LEMMA 3.3. Let n=4s+1 for s=0. Then there exists an element fis<n®(M3")
such that 29" 22, =0/, dr(fit)==+1 mod4 and #pg;=4.

LEMMA 3.4. Let n=4s (n=4s—2, resp.) for s=1. Then there exists an
element @&, (By) of = (M3™) such that 29" 22,,=daip’ (24" P2, =fsp0") and
dp(@)=1 mod2 (dg(B5)=1 mod2, resp.).

REMARK 1. [Lemma 3.4 for s=1 is obtained from Proposition2.1 and
Theorem 4.6 of [13].

We define an element g;Emy,.4(S°) by pi=giei;,. Then #p;=2 and 2¢¢"-22;,
=pip. By LemmasB.]and B.2, dg(g})=1 mod2. This leads us to the following

PROPOSITION 3.5. Let n=4s+4+1 for s=0. Then

20en-020 = pip and  #HA}, = 29¢"D,

We define an element a; (8;) by ai=daii, (Bi=p:°i;, resp.). Then er(ag)=
er(Bs)=1/2 mod1l and #a;=#p;=2.

PROPOSITION 3.6. Let n=4s (n=4s—2, resp.) for s=1. Then
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20Cn B = ajp  (29¢"D2L, = Bip, resp.)
and
H#A}, = 2002,
ProoF. The first is a direct consequence of Lemma 3.4l
By the proof of [Theorem 1. i) of [3], we have a split monomorphism :
~ (Ep)*
KOS —— > KO-l(Pzn—l)_
ll Q
Z Z+Z,

Therefore dp(Ep)==+1and epla;p)=dr(Ep)er(as)=1/2 modl (er(fip)=1/2 modl,
resp.). This completes the proof.

From the definition, g;j=pg; mod Kerdg, a;=a;, mod Kerer and Bi=pg,-17n*
mod Kere% (cf. Proposition 12.17 of [2]). This completes the proof of [Theorem 2.

REMARK 2. Let n=4s—2 or 4s for s=1. Then, by Theorems 1.5 and 1.6
of [2] and by the Adams conjecture, Im J=J7s,-1(SO)={j2n-1}=Z > and
er: Tan-1(SD—Zpnny is a split epimorphism such that Im(er/)=Znny. So B and
a; can be chosen as (m(n)/2)j.,-, respectively.

ExaMPLE. i) Define a mapping g.: E"P"'—>S™ as the adjoint of a com-

position of natural maps ([7], [12]
P15 SO(n) —> 2"S™ .

Then gp=g.|E"P"*=Eg,.,. So, by [Theorem 2, #(Eg.,)=2¢¢""" or 2¢¢™
according as n is odd or even. This improves the result of the last example
of [12].

ii) Let f,:E™P"!'-S™ be an attaching map in the symmetric square of S™
([6], [12]). Then we have fr=f,|E"P"*~+FEf, ,°E®, where ¢ denotes a
self homotopy equivalence of E*2P""2, So, by i), #(Ef:n)=#(Egsn).

iii) Let hn:E°Ly®-D-2—S¢ for ¢c=2m+1=3 be the mapping in Lemma 8.2
of [18]. Then it is a Kahn-Priddy map, and by [Theorem 1, #h,=p™.

§4. The mod p Hopf invariant of the Kahn-Priddy map.

In this section we shall consider an odd primary version of Theorem 1.2 of
[12]. For a cohomology operation 8, we denote by @, the functional f-opera-
tion of a mapping A. By the ring structure of H*(L%*; Z,), by the properties
of the reduced power operation P and the Bockstein operation 4 and by the
Adem relation, we have the following (cf. Proof of Theorem 3 of [1I]).
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LEMMA 4.1. Let A: E*™HLy—S*™* for p—1<n<(m+1)(p—1)—1 be a
mapping and i a positive integer with i(p—1)<n. Then the nontriviality of
PBi(Sq¥) or (APB?); (Sq¥t*+*) for some i implies that for all i (resp.).

From the definition and Lemma 4.1, A: E*™*'L%"—S*™+! is a Kahn-Priddy
map if and only if BF=-0.

We denote by Q3™ '=0(L%S*™+!, S*™-1) the homotopy fiber of the inclusion
Srm-1, 025%™+ For a finite CW-complex K, we consider the following exact

sequence :
E? He

4.1) o —> 7" HEK) —> o' (EPK) —> [K, QF" T ] —> e

LEMMA 4.2. Suppose BT +0 for Acn*™+(E*K). Then
H®Q) =+ 0.

PrOOF. We assume H®(1)=0. Then, by [4.I}, there exists an element
6= n®™YEK) such that 1=FE%0. P™ commutes with the cohomology suspension
isomorphism and B"H*™-( ; Z,)=0. Therefore we have PI'=0. This com-
pletes the proof.

LEMMA 4.3. Let K=E®™-2L[2n@-D_ Syppose HPQ)£0 for A€m™+(EK).
Then B 0. |

PROOF. Let A’: E*K—S?™*+ be a Kahn-Priddy map. Then, by Lemmas 4.1
and .2, H®(2")+#0. Since Q™' is p-equivalent to M2™?-% in dim=<4mp—6 [17],
[K, Q5™ ]=[MimPp=2 M2™P-*]=Z,. So there exists an integer a0 mod p such
that H®(Q)=aH*(4"). By [4.1}, there exists an element #<=x?™ " (EK) such that
A=ad’+E*0. Therefore BT =aPr +Bzes=aPy #0. This completes the proof.

A mod p Hopf homomorphism Hj:?x*™* E*K)—-?z*"P+*(E3K) is defined as
a composition :
H(2)

I
pﬂ2m+1(E3[<) _— p[K, ngq] - s pn.Qmp+l(E3K)?

If K=Eg?m-2Lane-b g?netl(F3K)~ 7, and [ is an isomorphism by (2.5) and (2.7)
of [17]. Hence, by Lemmas 4.2 and .3, we have the following

PROPOSITION 4.4. A: E*m+1LEn-DG2m+t for m>1 is a Kahn-Priddy map
if and only if Hp(A)#0.

REMARK. By the parallel argument, precisely, by use of the EHP-sequence
and Sgi™** for A: E*"+*'P?™—S*"+1 we can directly prove Theorem 1.2 of [12].
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Appendix.

In this appendix we shall give a short proof of Bin §3. For a
CW-pair (Y, B), we consider the canonical cofibre sequence

i b 7 E;
(A1) B—Y—Y/B—>EB—> .

By Theorem 1.2 of and its proof, we have the following
LEMMA Al. i) |EY] I#(Ez')#(Ep)l IEBI#(Ep)I |EB| | E(Y/B)|.

i) Y1 |#2p|1B2p| 1BINY /B

We denote by ¢p=¢x for X=P™ Let 7:S'->P? and p:P?—>S? be the
canonical maps. Then the following is Theorem 2.3 of [16].

LEMMA A2. |[|P?*|=4 and 2;=inp.

We consider for a pair (P2"+% P2"):

] ’ ’
?

p
(A1)’ Pin s pontz __  peape __7_‘_> EP™ 5 ...,

Let popre=E*"pep’: PP"+*—S%"+*2 Then it is easy to show the following:
TP = {popiot = Z, and mP (PR ={9Pyn4e} =0 or Z, according as n is
odd or even. So, by (Al)’ and A2, we have the following

LEMMA A3. 1) If nis odd, #p'=2.
i) If nis even, #p'=4 and 2p'=inpsnss-

By Lemmas Al, A2, A3, we have

(A2) 1P |8
By Theorem 2.5 of [16], we have
(A3 1Pl 8.

REMARK 1. By inspecting the computations of §2, 3 of [13], we can also
show that | P°|=8.

The following is Corollary to Theorem 2.8 of [16].

THEOREM Ad4. || Pem || 29¢2m

PROOF. By A2, and [A3), the assertion is true for n<3. We
inductively assume that the assertion is true for n=3.
i) The case n=1 mod2 or n=0 mod4. Let a=0 or 1 according as = is
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odd or even. Then, by Lemmas Al and A3, ||P?"+2||||P?"|#p/=20@m2+a=_
2¢(2n+2).

ii) The case n=2 mod4. We consider for a pair (P?"+2, pP2r-4);

o ”
7

pin-t 5 peniz ", pins2)pin-d
By the James periodicity [5], P?"+?/P*"-5=E*"~4(P*\/S°) if n=2 mod4. So we have

pirizypin-s—pEn-4ps . Therefore, by Al and [(A3), ||Pm*2]}| | P2 4[| P¢|
=29¢@n-0+3_94r+2)  Copsequently the induction is complete.

By Mheoreml A of §3, 26¢™||P™"|. So, by [Theoreml Ad, [P*|=2¢¢".
This completes the proof of B.

REMARK 2. i) By the similar method to the above, we can prove
2.3 for t=oo.
ii) The argument in this appendix still holds in the unstable case. We have

|EP?| |4 and |EP*||8. So we have |E*P2?"||2¢¢™ for all n if | E*P¢||8 for some
k=1. Since |E®P?||8 by [A3), we have | ESP*"|

CONJECTURE. |EP?™| = 29 for all n.

gpcm,
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