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Introduction.

On strongly pseudoconvex manifolds one can know the finiteness or the
vanishing of the J-cohomology groups by the method of a priori estimate ([1,
5, 97).

In the case of the d-problem on weakly pseudoconvex manifolds, the method
of a priori estimate seems to be less powerful (for instance, see [6, 7,10, 13,14]).

Let T™ be a complex n-dimensional torus and Pic®(T*) the Picard group,
that is, the group of holomorphic line bundles on T™ with Chern class zero.
Let E<Pic(T"). In Grauert showed that there exists a C= weakly pluri-
subharmonic exhaustion function on E. So we can regard Pic®(T") as a family
of weakly pseudoconvex manifolds.

In this paper we obtain a criterion for the g-cohomology in this family
Pic(T™"), using the theory of Diophantine approximation.

It was known that Pic7T") is again a complex n-dimensional torus. Con-
cretely we give an isomorphism 7: C*/A=Pic®(T") in Lemma 1, where A is a
discrete lattice of rank 27 in C*. We define on Pic’(T™) the invariant distance

d(E, F) :=min{lla—b+c|; i(a+A)=E, i(b+A)=F, ce A},

where |(zy, -, z,)| :(=max|z;|. The unit element of the group Pic%7T™") is
denoted by 1. We put

Q = {E<PicT"); E'=1 for some [=>1}.

Using Diophantine approximation on {d(1, EY); [=1}, we define the following
subsets of Pic%(T®).

P = {E<Pic(T™); 1};{ exp(al)d(1, EY)>0 for any a>0}.

R = {E€Pic(T")\Q; gf exp(al)dd, EY)=0 for some a>0}.
P* 1= {E=Pic(T™); llI>1;f explal)d(1, EY)>0 for some a>0}.
R* ;= {E€Pic(T™")\Q; %r>11f explal)d(1, EY=0 for any a>0}.

* This author was partially supported by Grant-in-Aid for Scientific Research (No
62302003), Ministry of Education, Science and Culture.
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Then
Pic%(T™) = @ UQ\UR (disjoint),
Pic(T") = @*UJQU R* (disjoint), S P* and R*C R.

The purpose of this paper is to prove the following theorems (the result of
is announced without details in [7]).

THEOREM 1. Let E<Pic(T™) and O the structure sheaf of E. Then
(i) if E€Q, H?(E, Og) is an infinite-dimensional Hausdorff space (1< p<n),

(ii) if Ec@*, dim H?(E, 0E>=(’;) (1<p<n),
(ili) if EeR*, H?(E, Og) is not Hausdorff (1< p<n).

For every E=Pic®(T") we get a C> plurisubharmonic exhaustion function
@ : E-[0, o) (see Lemma 3). We put

E; ={xcE; O(x)<c} 0<cL).

Since the zero section 0 of E is biholomorphic onto 77", we write also T"CE
for the zero section of E. Let

H?(T", Og) = ind lim H?(U, Of),

where U runs through the set of open neighborhoods of T" in E. Hence we
can give H?(T™, Og) the inductive limit topology.

THEOREM 2. If E<@, then
(i) dim H?(Eq, 0E>=("

b
(ii) dim H?(T*, ©g)=dim H?(T™, 0Tn)=(

) for 0<cLo and 1£p<n,

7;) for 1=p<n,

(iii) the restriction mapping: HP(Ec,, Og)—HP(Ec,, Og) is bijective for
0<e;<ey<o0 and 1< p<n.
THEOREM 3. If E€ R, then H?(T", Og) is not Hausdorff for 1<p<n.

REMARK. For a weakly pseudoconvex manifold E€® and its zero section
T*CE, the assertions of [Theorem 1 and are similar to the case of
strongly pseudoconvex manifolds and their exceptional sets. On the other hand,
for the class ® the statement of is in marked contrast to the case
of strongly pseudoconvex manifolds.

We can find an analogous phenomenon with the above in the theory of
complex structures of neighborhoods of elliptic curves imbedded in complex
surfaces with topologically trivial normal bundles ([2, 12]). For this analogy
we propose a problem in §4.
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§1. Preliminaries and lemmata.
For a complex n-dimensional torus 7" there exists a discrete lattice
I'=Z{e;, vi=y, -, vin); 1£i<n}
such that T*=C"/I', where e¢; denotes the 7-th unit vector of C*. We take

V" = (Vyp41, 0 Unnen) ECP.
We put

vE = (g, Vins)EC™H,
I'*@m+Y) = Z{e¥, v¥; 1<i<n+1, 1<;<n}CC™**,

where ¢* denotes the ;-th unit vector of C**'. The projection = : (2, ***, Zn+1)
~>(z,, -+, 2,) induces the principal line bundle = : C***/I"*(v™**)—T™ with Chern
class zero. FE("*') denotes the line bundle on T™ associated with the above
principal bundle. We get the map

Z‘ : Cn 5vn+1 —_ E(vn+1)EPiC0(Tn)
and put
= Z{e;, v =y, -, Une); 1SiZn}.

If "= icalmie;+ma ')A, we get the elliptic function g(z)=exp(2zr+/—1
SicisnMpsizy) on T™  g(z) is regarded as a nowhere vanishing section of
E@™*). Hence {(A)={1}.

LEMMA 1. The map i induces an isomorphism of C™/A onto Pic(T™).

Proor. To avoid confusion we only prove the lemma in the case of n=1.
Then A=Z{e,, v'}. Let ({U;}, {fi;}) be a defining l-cocycle of E&PicT?).

We can find {g;: U; 5 C*} satisfying f,;=g,/g:in U;N\U;. We put ¢:=1/(2z+/—1)
olog g; and ¢:=3dp. There exists an fe C=(T*) such that ¢=3af ([I1]). Since
1/(2z+/—1)dlog g;—af is a holomorphic (1, 0)-form on 7! and HYT?, 2)=Cdz,
we have
1 B
W gry—i 0881} = aida,
for some a;C. We identify {U;} with an open covering of the fundamental

region of T! in z,-plane. Let z{®:=z,|U,. We set

e > 1
hi = alzl(”’—alzlu)—f—’"éﬁ‘:fl()g gi,

fij 1= exp{2n+/—L(h;—h;)+log fi;},

Vig o= —24/—1 @ lmvy, vf 1= (v, vie).
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Then ({U;}, {fij}) is also a defining l-cocycle of E and E=E(v,,). Q.E.D.

We get on Pic’(T™) the invariant distance d(E, F) defined in the introduction
Let v =V n41, 'y Vnns1)=C™ and E=i(*"**+A)ePic(T?).

LEMMA 2. Let m=0ny, -, M) €L and [€Z{:={leZ; [=0}. Then

d(1, EY) = min{max | {v; p41—Mpsi+ 2 viym;l; meZ®}.
1sisn 1<js7n

1

ProOF. Let a=A. Then there exists a multi-integer me Z?"* such that

a= 2 {WL]‘(UU: Tty vnj>—mn+jej} .

1s7En
Since E'=i(lv*+*'+A) and 1=i(A),
la+iv™*]| = }nax llvz’n+1'—mn+i+l > vgmyl,
si=n £j=n
dd, EY = min{|la+""|; a= A}. Q.E.D.

Let v*»**eC™ and E=i(v"**+A)ePic®(T*). Then the principal line bundle
E*=FE\0 is identified with z: C**/["*(v**)—T"* We put v¥,,:=+v—1 e¥,,.
Then C**'=R{e*, v¥; 1<i<n+1}. Let zeC"*'. There exists a real vector
(ti, -+, tans2) € R***% such that

z= 2 (Lie¥ i, ) ttansi@hi i loneslhs.

1=isn

Then

C""'3z—(t;, -, tanss) ER*'?
induces a bireal-analytic isomorphism
Cn+1/[">|<(vn+1) ~ (R/Z)2n+1XR. ( 1 )

Since e;, v;=(vyy, -*+, v;,) are linearly independent over R, the matrix [Imuv;;;
1<, 7<n] is invertible. We put

[7:] :==[Imv;;]°Y x :=Rez;, y;:=Imz. (2)
We obtain
t; = X, _Ek Virie Re vy (1=i=n),
=j, ksn

lnsi = lgjgnyjrji 1=isn),

bons1 = Xpe1— 2 Yi¥ir Re vy n41,
1sj, ksn
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lonse = yn+1—‘1§j§;§nyﬁ'jk Imvg s (3)
We put
D,(ty, -+, tanse) 1= eXp{Zﬂ:\/-—_I (tensr+v—1 tans2)} -

From (1) and the identification E*=C™*'/I'*(w"*!), it follows that @, is a real
analytic function on E*. By (3) we can show

Q, = eXp{ZR\/:T (zn+1—1§j22§nymkvk nr)} -

We put Cp4q:=exp27v/—1 z,4;) on E* and &,.;:=0 on the zero section 0.
Then {,.,; is a many-valued holomorphic function on E and each branch of ..,
is a holomorphic fiber coordinate of E.

LEMMA 3. Let
|D.(p)|?  pEE*=EN0,
D(p) := {
pe0.

Then @ is a C= plurisubharmonic exhausion function on E.

PROOF. Since
Op) = |Cnna(PPexpldn 3 3,(p)rse I vy nasl
@ is a C= exhausion function on E and

log @(p) = IOglCnﬂ(ﬁ)12+47f1§j%3§n3’.1(1>)71k Im v, p4q

for pe E*. This shows that log @ is plurisubharmonic on E* and @=exp(log @)
is also plurisubharmonic on E*. If p<0, then {,.,(»)=0 and the Levi form of
@ at p is given by

eXp{4”1SJ§Snijjk Imuv, n+1}an+1d@: .

So @ is plurisubharmonic on E. Q.E.D.

For an open set U in E we put

FU) ;= {feC=U); filz Y a)NU is holomorphic in =~ a)NU
for any a=T™},

where = is the projection of E onto 7" Let & be the sheaf on E defined by
the presheaf {F(U)}. Let {V;} be a finite open covering of 77" such that
E|z XV ),) is holomorphically trivial and V; is simply connected and let D be
an open set in E. We take the open covering Up:={n"*(V;)N\D} of D.
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LEMMA 4. H*(Wp, F)=0 (p=1).

PrROOF. Let {W;} be a refinement covering of {V,;} with W,cV, and

{p:: V4 C—cro[O, 1]} a partition of unity satisfying supp p;CW,. We put g; :=
piersC=(m"*(V;)). We prove the lemma only in the case p=2. Let {fi;}€
Z*Wp, F). Then fipel (x'(V.NV,NV)ND, F) and [~ fir+Fiji—fi72=0.
We put

81D 1x(D) pex-(Wy)ND,
giin(P) i=

pe{n VNV )N\DINa-\(W,).
ik = Z‘:gijk'
Then g;,€l'(z7*V;N\V)ND, F) and fi;i=gjr—&gir+&ij Q.E.D.
Let @ be the weakly plurisubharmonic C* exhaustion function obtained in

Let Eq:={peE; D(p)<c}. We take the open covering Bp,:=
{W_I(Vi)mEc} of EU.

LEMMA 5. HP(E¢, F) = H?(Bg,, F) for p=0 and 0<c=L o0,

PrOOF. We prove that 8B, is a Leray covering for the sheaf F|E(, that
is, H(x-{(V)NE¢, )=0 (p=1). We can assume that {,., is holomorphic and
univalent on # YV ;)NE,. We get the resolution

5
0—>F—>C—>C—>0 on - (V)NEg,

where C is the sheaf of germs of C* functions on E and §,:=(0/0C,.:). We
may regard (zy, ---, zz) and (z;, -+, Zn, {r+1) @s holomorphic coordinate systems
in V; and %V ,)N\E¢, respectively. Putting

a(Zh 2y §n+l) = (Zl, *tty Ry CTL+1 eXp{*Zﬁ\/“—l1sJ§snyjrjkvk n+1})7

we get the map a: # ' (V)NE—»V;X{welC; |lw|<+/¢}. Then a is diffeo-
morphic on n(V;)NE; and holomorphic in {,.;. Let f(zy, -, z5, Cus1)E
C(zm YV, NE¢). Putting

1

- déNdéE
gk(zh » Zny w) L 271"\/::

fea Xz, -, za, S)—E:U—

on V;x{|lw|<@k—1)/c/2k} for k=N, it follows from the Cauchy-Green
formula that dg,/dw=f-a™'. From the Taylor expansion of g,.;—g, with
respect to w, g.+1—&: can be approximated by C*= functions on V;XC which
are holomorphic in we C. Using this approximation and the standard argument
for the Dolbeault lemma, we find a C* function g such that dg/0w=f-a"! on

Vix{lw|<+/c}. We put

SSI&K(Zk—l)JE}zk
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h = (gea)exp {22V —1(— §12k§nyjr;kvk n+1)}

1

on # (V) )NE¢;. Then 6,h=f. This means H?(x "XV ,)N\E;, F)=0 (p=1).
Q.E.D.

Let &€2;2 be the sheaf of germs of C> forms of type (p, ¢) on T". We put
GP = FRR*ERL.

The following lemma is an immediate consequence of Lemmas 4 and 5 (Vogt
[14] proved this lemma for c¢=oo implicitly).

LEMMA 6. The sequence

J i@
0 —> Op —> G40 —> GO —> . —> GOT —> ()

is exact on E and
H?(Ec, Og) = {p€ H(E¢, $°7); dp=0}/0H%Ec, F°77%)
(p=1, 0<c=L00).

For any open set D in E, we can define the natural locally convex topology
of HYD, ¢) which makes HYD, &) an (F, S)-space. This topology makes
HY%E;, F*?)and its closed subspace {o= HE¢, $%7); op=0} into (F, S)-spaces.
Hence we can give H?(E., Og) the quotient locally convex topology by Lemma 6.

Using the matrix [7;;] in (2), we put

(Cl: Tty Cn) = (Zly '”yzn)[rij]‘ (4)
Then ({,, -+, {,) is regarded as a local coordinate system at each point of T'".
We have the global (0, 1)-forms

n*d; = rkiﬂ*dgk— (1<i<n)

1sksn

on E. We put {¥:=C;er and z*¥:=z;.n(1<i<n). Then 4/6C¥=3;Imv,;(0/0z%)
is a global vector field on E. Henceforth we write simply dZ; and 8/8C; instead
of z*dl; and 8/0C%, respectively. From the bireal-analytic isomorphism (1) it
follows that

log ¢
4r
Let o H(E¢, 9%7). We have the Fourier expansion of ¢ on Ef=(R/Z)***'X
(—log c¢/4r, o) in terms of dy, -+, dln:

Et = EN0=(R/Z )" X {t2n+2 y <Z‘2n+1<00} .

1 ) o B
SD:—pTlg' 2 il"'ip(t2n+2)e‘r(t )dcil/\.../\dcip’

i1, ipSn, rez2ntl
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where

log ¢
4z

bzl---ip(tznw) € Cm((— ) OO>>, t'=(ty, =+, tans1) € R*™H1,

. 2n+1
F = (ry, e, Pans) EZEL o) = eXp{zm/—l > riti}.
P

Since ¢|m'(a) is holomorphic in #~'(a)NE; for any acT?",

dp 1, 8 — 0\ _
Zner 2<at2n+1 V-l at2n+2)90—0‘

Then b7,.i,(tin+s)=a%,..i, €XP (—277snsitanss) fOr some constant aj,.i,. ¢ is of
class C= in a neighborhood of the zero section 0 of E, so ¢ converges to ¢|0
as fan4e— +o0 and then ail...ipzo for 7,,4:<0. Hence, for any o€ HY(E;, 7?),
we obtain the Fourier expansion :

o= -51— Z a’{i:,.lipem(t”)

Do1sig,ipsn, meZ2n, 120

Xexp{sz/——T Z(t2n+1+'\/j1 t2n+z)}d§1/\'"/\d@;, (5)

where t"=(t, -+, ty) ER?", t1ns ER, —(log ¢)/4n <lpnie =00, m=(my, -+, Mgn) E
Z°>" and e, (t")=exp{27v —1 ¥2mt;}.

LEMMA 7. Let {a?;:}ip; meZ*™, =20, 1=7,, .-, i,<n} be a sequence of
complex numbers, where a%’;:..’ip are skew-symmetric in all indices i, ---,1,, and
let ¢ be the formal Fourier series defined by the right hand side in (5). Suppose
0<c<Zco. Then ¢ converges to a form in H"(E¢, °7?) if and only if, for any
R0, o/ ¢) and any k>0,

C(k, R) :=sup{|a®:l |Iml|*R"; meZ*™*, =0, 1</ < <ip<n}<co.

iy

PrOOF. We can assume without loss of generality p=0. We put @,:=
Sa™le,(t")E for (7, &) e R*™ X {£=C; |&]<+/¢}. From the well-known result
for Fourier coefficients of C> functions, @, is of C* in R**X{|&|<+/¢} and
holomorphic in é={|&|<+/¢} if and only if C(k, R)<<co for any Re(0, v/¢)
and any k=0. Q.E.D.

§2. Proof of Theorem 1.

We will accomplish the proof in the four steps (a), (b), (¢) and (d).
(a) Let E<Pic™T™ and let I, v;=Wi, -+, Vin), V"' =W@ins1, ** » Un ns1),
T*@™+Y), v¥=(v;, Vs041) and 4 be as in §1. We put

Kpt = Vi ne1— Myt E Vigm; (6)
1sjsn
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for m=(my, ---, men)=Z?", lcZ¢ and 1<i<n. Then, by Lemma 2,
aa, El):min{lngagxllﬂﬂ"l; meZ*}. (7)

If follows from (3), (4) and (6) that

%[em(t”) exp {27V T Utsnss bV T fynss)}]

=K le,(t”) exp {275\/:—1_ l<t2n+1+\/jf tanso)} - (8%
We put

jm, ) :=min{j; 1=j<n, [K7'|=max | K[}
1si=n

for (m, HeZ**xZ{. We take a form

1
= — all en(t”
¢ p! Jgil,---,ipsgmezm,@o frtp n (")

X exp{2a8/ =1 Utsnis+V =T tonr)}dlo A AdCs (9)
in HYE, g%?) and a form

p— l m,l ”
¢= (p—1)! 1gi1,---,ip_1§,mezm,Zzobil'"ii"lem(t )

><exp{27r\/——l l(tznﬂ‘{"\/_—l t2n+2>}d5_i1/\"'/\0zip_1
in H(E, $"?-') satisfying ¢=d¢. Then, by (8 we obtain
amli = 2 (__1>k+1TEK%1;,lbm,l/\ ) (10)

ilmlp—_lgkgp il"'ik"""p'
The equation implies that ¢ is d-closed if and only if
> (—D*rKTtaig,,, = 0. (11)

1gk=p+1

Applying to the p-+I1-tuple (j(m, ), 7, ---,7,) of indices in place of
(¢3, -+, 1p+1), We see that

m,l m,l —_
Kj(m,l)ail---i =

» lgkgp(*l)HlﬂKﬁ,laﬁ’Wf,z)il...{;,..ip. (12)

It follows from and that
a 1 m,l t”
[ B=D1 1gi1,-~-,2ip_1gnaj(m’mr"ip'lem( )

XeXp{Zn‘\/——l l(t2n+1+’\/j t2n+2)}d€_—il/\ "o /\dm]
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T ”
— ?!—K;nz'm'l)lgjl,gjpsnaﬁ:“ljpem(t )
Xexp{erx/?l l(t2n+1+ \/j]. tzn+2)}dc_h/\ /\d@; (13)

(b) We suppose E€Q. We put
M = {im, DeZ**xZ; KP'=0 for 1<i<n}.
Then, by (7) there exists a positive constant ¢ such that

| KJik, iy = max | KP!| 2 d(1, EY Z o (14)

for any (m, )eZ**X Z{M. Suppose that

1
=—— all e, (t”
¢ p! 1si1,---,ip§§mez2n,zzo ‘rtp n (")

Xexp{2aV =1 Ultsnss+ V=1 tonsn)tdls, Ao ANdCe,
belongs the closure of dH(E, F%?-') in HYE, ¥%?). It follows from (8) that

5[9m(tll) eXp{Zﬂ-'\/:"—l l(t2n+1+\/_:1— tan+2)} 1 =0
for all (m, )eM. Then a;’}:.,l,-pzo for any (m, [)e M. Putting
1

- ml "
hpt = =11 1§i1,~-§p_1§na“l“"p'le"‘(t )

Xexp{2aV =1 U{tsnsrt V=1 tans)}dls, Ao NdG;

and using (8) and [13), we obtain
= 1
m,l — m,1 m,l. V.
ahj h P' EK] 1§i1»§ip§nazlmllpe’m'(t/)
Xexp{2aV/—1 Utsnsst v =1 tyne)}dl A NdG
We set
&y 1= 2 {hTer v/aK Jem 1}

(m, DEZERZIM

From we can show that ¢, HA(E, ¥>?') and ¢=d¢,. This means that
oH(E, %7-1) is closed in H'E, ¥%?). Since

{en(t”) exp{22V =1 lltsnrit v =1 tonsa)}dli, A NdG 5
(77’1, Z)EM’ I_S_Z'1<---<z'p§n}

is a set of linearly independent forms in HZ?(E, Op)={pcH'E, F*?); dp=0}/
oH(E, %71, dim H?(E, Og)=co. Q.E.D.
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() Let Ee€@*. Suppose that o= HY(E, $*?) is as in (9) and that dp=0.
Since ¢;, v* are linearly independent over R (1</<n), there exists a positive
constant b<(0, 1) such that

min{max | K™ ; meZ*\{0}, [=0}
1sisn

= min{Ills;gn(miv"Jr?nmei)H ; meZ*N\{0}}

v

b.
And since E=@*, there exists a positive constant a such that
[ KT, 151 = d(1, EY) = bexp(—al)

for any (m, N)eZ*» X Z{\{(0, 0)}. We put
1

o (p—D) 1 151y, ip 150, ¢, DeZ2Px 20, 0)

A LaTin. vig-iy-@n(”)/ T K in, 1]
Xexp{2aV =T Utonsi+v =1 tonso)}dCeA - AdTT .
shows that
C(k, R) := Sup{la?;:..lilemllle; meZ*™, (20, 1=54,<<ip=n} < oo
for 0O<R<oo and £>0. Then
0Tk it/ T K b o [ R
< | a;'n(h%,ml-.-tp-li [m]*R* exp (al)
< C(k, Rexpa) < o0

for 0<CR< o0, >0, (m, )e Z** X Z$~{(0,0)}. Hence by A€ HYE, %P1,
It follows from that

1 — .
= E!—lsil,;ipsnagig'ipdc"l/\“'/\dc"?+52'
This shows H?(E, Og)=C{dl; A Adli 5 1<i<-<ip=n}.
(d) Finally suppose E= ®*. Let [eN. We take m(\)=(m,({), -+, mea(I))E
Z® satisfying

max | K7 = d(1, EY).

1sisn
We put
U= lv”“—i—l > AmUv—maejt,

sjsEn

then u=(K W1, ..., K70, Since

lul £ max{d(F, Fy); Fi, F,ePic®(T")} < oo,
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>Sm() Im v =Im u—7Im o™,

J

imuyj(l)e; = Re u—23my(l) Re v/ +/ Re v™*!
J J

and [Imv;;] is invertible, there exists a positive constant K such that |m()]<
Kl for any /[eN. From this fact and the assumption E< R*, there exist {[,eN
such that

exp (—kly—k|m)l)/d(1, E'*) = k

for all ke N. We put
exp (—kl,—kmU) D/ K708

Jm(lp),lp)
o™t = it (m, D=(m(l;), {x) (REN)
0 otherwise.
Then |p™¢e>tr| >k, We take 7, satisfying 1=<7/,<n and sup{%; f,=70m(ly), ()}
=co, We can assume without loss of generality that 7,=n. We put

b= b™le,(t") exp {22V =1 tsnii+V =1 toni)}dG A AdE, ;.
It follows from (8) that
Pyt = n K 0™ len(t”) exp{2av =1 ltzner+ V=1 tyui) AL A - NAE, 5

Since
| K tapmcto e | < exp (—kly— klm(L,)])

for any #= N, we can prove, in virtue of [Lemma 7}, that
> agpte HYE, 907).

(m,1DEZ2nx N

We write ¢,= > d¢y-t. Then ¢, belongs to the closure of dH(E, % 2°1).

(m,l)EZ2"x N
We assume, to reach a contradiction, that ¢,=dA for some

A=2 Zﬁ:..l,-p_lem(t”) exp{2x vV —1 l(tonsy+v—1 t2n+2)}d§_il/\"'/\dm .
We compare the term of 3 d¢7" with that of 4 imvolving only the exterior

differential form d€, AdZ;A---AdC,-;. Then
aKp ™t = g K7l A0+ 2 (—DPH g KAt i

1sisp-1

And then
bt = st B (SDPHER KR DA i

Since sup{k; n=j0n(l,), [,)}=c0, we can choose a subsequence {/}¥} of {/,} so
that
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lK?L(z;),LZ/KZL(l;),L;l <1
for 1<7/<n and

. m (), . - * * «
lim{2,..,%; k+15i§p_l(—1)p“(K§"“k)’lk/Kﬁ(lk)’lk)ll...g...p_ln} =0.

k-

This contradicts that [p™¢#>!x| >k, Hence ¢, belongs not to dHE, F?°1)
but to the closure of dHE, F%?-1),

§3. Proofs of Theorem 2 and Theorem 3.

First we prove [Theorem 2(i). We suppose E=®. Since @LC@*, the
statement (i) of in the case of ¢=co follows from [Theorem 1. Then
we can assume 0<c<oco. We recall the proof of in §2. Let

1 ~
— m,l, ”
= P! léi;,---,ipé%meZZ",lzo @¥yipem(t")

X eXp{Z”\/‘—l 1(t2n+1+\/—‘—1 tzn+2>}dc—i1/\ "'/\dC—i;

lo
SHYEc, #7) (== <tmn=co).
We put
1
A LaTn, vigip-,ent”)/mK Tin, )]

T D) 15ty ip_ s, A bezExZE (0, 0)
xexp{22V =1 lltsnsrtV =T taneo)} A Ndi

Since E=®, for any ¢>0 we can find a positive constant C(a) satisfying
1/d(1, E¥) < C(a)exp (al’) (I’>0),
11K | = Cla) (meZ®™\{0}, 1"=0).

Let 0<r<+/¢ and 0<a,<log{~/ ¢ /r). We obtain

| QT gty o/ K Jek o Il

< Clag)lafer, viy-iy-, | Im]*(r expa,)’.

Since g€ HE¢, %) and 0<r expa,<+/¢, Lemma 7 shows that 2 converges
to a form in H%E;, >?°!), Similarly to the step (¢) in §2, we can show

dim H?(Eq, 05)=( Z)

The assertion (ii) is an immediate consequence of (i).
Let 0<¢;<cy=co and 1Zp<n. (i) shows that

Hp(EC'iy @E> = C{dc_z:/\"/\dCTp—; 1§Z‘1<"'<l.p§n} (Zzl) 2)'
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Then the restriction mapping H?(E.,, Og)— H?(E,, Og) is given by Z}a,—l...,;pd&_l
/\---/\dCT-pHZail...ipdC_il/\~--/\dz—i;IEcl. This proves the statement (iii).

Now we begin to prove Let E€®. We put
a* :=sup{a>0; 111;£ exp (al)d(, EY)=0},
¢o :=exp(2a®).

Then inf,s, exp(a’)d(1, EY)=0 for 0<a’<a*. Let 0<c<cy,, a:=logs/ €, ¢1:=
(c+¢o)/2, a;:=log+/c; and a,:=(a,+a,)/2. We use the notation m()sZ*"
which is defined in §2. Then we can find a positive number K so that ||m()|
<Kl for any /[eN. There exists a sequence {/;; [,>0} such that exp(a.l)
xXd(1, E'®)<1/k for any k=N. Then we obtain

exp(aili+ 2 m@] )L, B S 1/k (kN).
We put
exp(—allk—-a—zf_-f-gillm(lk)ll)/K?(,‘,if},;}ﬁk)
bt = it (m, D=0n(y), ;)  (kEN)

0 otherwise.

Replacing {b™*!} by the above {b3''} in the argument of the step (d) in § 2, we
can show that the form

&% 1= DIbP len(t”) expl227/ =1 ltnss+~ =1 tans)} dGA - AdTpi]

belongs not to dH%E., F*?-1) but to the closure of dHE,, *?°!). Observing
the argument in the step (d) in §2, we can prove that ¢%|E. doesn’t belong
to dHE .., F%?-1) for any c*<(0, ¢]. Since H?(T™", ©z) is endowed with the
inductive limit topology, the above fact proves that H?(T", @) is not Hausdorff.

§4. Problem concerning complex structures of neighborhoods of elliptic
curves.

Let C be an elliptic curve and E a holomorphic line bundle over C. E is
said to be rigid if, for every imbedding with the normal bundle E of the base
C into a complex analytic surface S, a sufficiently small neighborhood of the
imbedded base is biholomorphically equivalent to a neighborhood of the zero
section of the bundle E (see [2]).

Grauert showed that if E is negative, then E is rigid.

Henceforth we assume that E is of Chern class zero, that is, E&Pic%C).
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Since C is biholomorphic onto a complex l-dimensional torus, we obtain the
classification Pic’(C)=2UQ\UR in the introduction. [Theorem 2 and [Theorem 3
show that

(i) if Ee®, then dim HY(C, 0g)=1,
(ii) if Ee€ R, then HYC, Op) is not Hausdorff.
We put
& = {Ee€Pic’(C); there exists a positive constant
a=a(E) such that d@, E)=(Q[)-* for any [eN}.
Arnold and Ueda proved the following theorem.

THEOREM A. Every element belonging to the class € is rigid.
Ueda gave the following

THEOREM B. There exists a subset B of Pic’(C) satisfying the following
properties (i) and (ii).
(i) If E€ B, then there exist A=A(E)>1 and k=Fk(E)=2 such that

litln inf A'[d@, EY]Ueri-D=0,
(ii) Every element belonging to the class B is not rigid.

It follows from the statement (i) of Theorem B that S ®. Moreover we
can show, by the definition of the subset &, that €S .
Here, with respect to the above theorems, we propose the following

PROBLEM. Is every element of the class @ rigid? And is every element
of the class ® not rigid?
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