Existence of a non-inductive linear form on certain solvable Lie algebras

By Takaaki NomURA

(Received April 23, 1986)

Introduction.

Let \mathfrak{g} be a solvable Lie algebra and \mathfrak{g}^{*} its dual vector space. Given $f \in \mathfrak{g}^{*}$, we set

$$
\mathfrak{g}(f)=\{x \in \mathfrak{g} ; f([x, y])=0 \text { for all } y \in \mathfrak{g}\} .
$$

Then, $g(f)$ acts naturally on $g / g(f)$. We say that f is inductive if for every $x \in g(f)$, the operator $\operatorname{ad}_{g / g(f)} x$ is nilpotent. So, if f is inductive, the linear Lie algebra $\operatorname{ad}_{g / 8(f)} g(f)$ is nilpotent by Engel's theorem. We refer the reader to the papers Poguntke [6, Lemma 2] and Tauvel [10, Lemme 3.1] for various equivalent conditions for the inductivity of linear forms (we note that although the base field k is assumed to be algebraically closed throughout [10], the proof of Lemme 3.1 in that paper still works for $k=\boldsymbol{R}$).

Now let \mathfrak{g} be exponential and $G=\operatorname{expg}$ the corresponding connected and simply connected Lie group. Denote by \hat{G} the equivalence classes of irreducible unitary representations of G with the Fell topology. We equip the finite dimensional vector space g^{*} with the natural topology and the coadjoint orbit space g^{*} / G with the quotient topology. Then, one knows that the Kirillov-Bernat mapping $\rho: \mathrm{g}^{*} / G \rightarrow \hat{G}$ is a continuous bijection and it is a long-standing conjecture that ρ is a homeomorphism. Among several works toward this conjecture (cf. Fujiwara [2] and its Introduction), Boidol [1] made inductive linear forms play a significant role as follows.

Theorem (Boidol). Let $G=\operatorname{expg}$ be an exponential Lie group. If every linear form on g is inductive, ρ is a homeomorphism.

Thus there arises a natural question: to what extent does the above Boidol's theorem cover the exponential Lie groups? This motivated the present work and the purpose of this note is to provide a class of completely solvable (hence exponential) Lie algebras $马$ on which there is always a non-inductive linear form. So, the Boidol's theorem is not applicable for the solvable Lie groups $S=\exp$ §. Furthermore, by a theorem of Poguntke [6, Theorem 10] (for our S, Theorem 3 in [5] suffices), the involutory Banach algebra $L^{1}(S)$ is not sym-
metric (we refer the reader to e.g. [5] for the definition of the symmetry of L^{1} algebras).

We organize this note as follows. In $\S 1$ are given sufficient conditions for the existence of a non-inductive linear form on certain completely solvable Lie algebras. $\S 2$ is devoted to the study of the case of Iwasawa subalgebras of semisimple Lie algebras. Our result Theorem 2.7) says that there is a noninductive linear form on an Iwasawa subalgebra $\mathfrak{\rho}$ of a semisimple Lie algebra \mathfrak{g} if and only if the real rank of some simple component of g is at least two. A similar result for normal j-algebras introduced by Pyatetskii-Shapiro [7] will be established in $\S 3$. In $\S 4$, we give an example common to $\S \S 2$ and 3 .

This work grew out of discussions with Professor Hidénori Fujiwara, to whom I wish to express my thanks for evoking an interest in the present topic. I also thank Professors Pierre Eymard, Michel Duflo and Michihiko Hashizume for instructive conversations.

§ 1. Sufficient conditions for the existence of a non-inductive linear form.

Let \mathfrak{z} be a completely solvable Lie algebra. We assume that \mathfrak{z} can be decomposed as a semidirect product $\mathfrak{\xi}=\mathfrak{n} \rtimes \mathfrak{a}$, where \mathfrak{n} is a nilpotent ideal of $\mathfrak{\xi}, \mathfrak{a}$ an abelian subalgebra of \mathfrak{z} and \mathfrak{a} acts on \mathfrak{n} by diagonalizable derivations. For $\alpha \in \mathfrak{a}^{*}$, we set

$$
\begin{equation*}
\mathfrak{n}_{\alpha}=\{x \in \mathfrak{n} ;[a, x]=\alpha(a) x \quad \text { for all } a \in \mathfrak{a}\} . \tag{1.1}
\end{equation*}
$$

Then, there is a finite subset Δ in \mathfrak{a}^{*} such that $\mathfrak{n}_{\alpha} \neq\{0\}$ for $\alpha \in \Delta$ and $\mathfrak{n}=\Sigma_{\alpha \in \Delta \mathfrak{n}_{\alpha}}$. By the decomposition $\mathfrak{\beta}=\mathfrak{a}+\Sigma_{\alpha \in \mathfrak{A}_{\alpha}} \mathfrak{n}_{\alpha}$, $\mathfrak{\Omega}^{*}$ is naturally identified with $\mathfrak{a}^{*}+\Sigma_{\alpha \in \mathfrak{A}^{2}} \mathfrak{n}_{\alpha}^{*}$.

Theorem 1.1. Suppose that there exist $\alpha, \beta \in \Delta$ such that the following three conditions are satisfied:
(i) $\alpha+\beta \in \Delta$.
(ii) $\left[\mathfrak{n}_{\alpha}, \mathfrak{n}_{\beta}\right]=\mathfrak{n}_{\alpha+\beta}$.
(iii) There is $a_{0} \in \mathfrak{a}$ such that $\alpha\left(a_{0}\right) \neq 0,(\alpha+\beta)\left(a_{0}\right)=0$.

Then, any non-zero linear form $f \in \mathfrak{n}_{\alpha+\beta}^{*} \hookrightarrow \mathfrak{\beta}^{*}$ is non-inductive.
Example 1.2. Let $\mathfrak{\beta}_{4}$ denote the four dimensional Lie algebra usually called the split oscillator. z_{4} has the basis a, x, y, z such that

$$
[a, x]=-x, \quad[a, y]=y, \quad[x, y]=z,
$$

other brackets being zero or deduced by skew-symmetry. Then, with $\mathfrak{a}=\boldsymbol{R} a$ and $\mathfrak{n}=\boldsymbol{R} x+\boldsymbol{R} y+\boldsymbol{R} z$, we obtain $\mathfrak{\beta}_{4}=\mathfrak{n} \rtimes \mathfrak{a}$. Define $\alpha \in \mathfrak{a}^{*}$ by $\alpha(a)=1$. Clearly we have $\Delta=\{-\alpha, \alpha, 0\}$. The three conditions (i)~(iii) in Theorem 1.1 are satisfied with $\beta=-\alpha$. So, denoting by $a^{*}, x^{*}, y^{*}, z^{*}$ the dual basis, we see that z^{*} is
non-inductive.
Corollary 1.3. Suppose that there exist linearly independent $\alpha, \beta \in \Delta$ such that the conditions (i), (ii) in Theorem 1.1 are satisfied. Then, any non-zero linear form $f \in \mathfrak{n}_{\alpha+\beta}^{*}$ is non-inductive.

Proof of Theorem 1.1. Let $y \in \mathcal{Z}$ be arbitrary and express y as $y=$ $a+\sum_{r \in \Delta} y_{r}$, where $a \in \mathfrak{a}$ and $y_{r} \in \mathfrak{n}_{r}$. Let $a_{0} \in \mathfrak{a}$ be as in (iii) of the statement of the theorem. Then, $\left[a_{0}, y\right]=\Sigma \gamma\left(a_{0}\right) y_{r}$, so that

$$
f\left(\left[a_{0}, y\right]\right)=(\alpha+\beta)\left(a_{0}\right) f\left(y_{\alpha+\beta}\right)=0 .
$$

This implies $a_{0} \in 弓(f)$. Furthermore, if $\mathfrak{n}_{\alpha} \subset \mathfrak{\zeta}(f)$, then we would have $f([x, z])$ $=0$ for all $x \in \mathfrak{n}_{\alpha}$ and $z \in \mathfrak{n}_{\beta}$. By (ii), this contradicts the assumption that $f \neq 0$ on $\mathfrak{n}_{\alpha+\beta}$. Hence $\mathfrak{n}_{\alpha} \not \subset \mathfrak{Z}(f)$. Therefore, the operator $\operatorname{ad}_{\beta / \beta(f)} a_{0}$ is not nilpotent, because $\alpha\left(a_{0}\right) \neq 0$. Q.E.D.

§ 2. The case of Iwasawa subalgebras of semisimple Lie algebras.

Let \mathfrak{g} be a semisimple Lie algebra and $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ a Cartan decomposition with the associated Cartan involution θ. Here \ddagger (resp. p) is the +1 (resp. -1)eigenspace of θ. Let \mathfrak{a} be a maximal abelian subspace of \mathfrak{p}. We denote by Λ the restricted root system of ($\mathfrak{g}, \mathfrak{a}$). For every $\alpha \in \Lambda$, the restricted root subspace corresponding to α is written as \mathfrak{g}_{α}. Fix an order in Λ and let Λ^{+}be the positive system. Let $\mathfrak{n}=\sum_{\alpha \in \Lambda^{+}} \mathfrak{g}_{\alpha}$. Then, we have an Iwasawa decomposition $\mathfrak{g}=\mathfrak{f}+\mathfrak{a}+\mathfrak{n}$. Put $\mathfrak{\beta}=\mathfrak{a}+\mathfrak{n}$. By an Iwasawa subalgebra of \mathfrak{g}, we mean this subalgebra \mathfrak{z}, which is completely solvable. In the case of Iwasawa subalgebras, the condition for the existence of a non-inductive linear form is simplified by the following lemma.

Lemma 2.1. Let $\alpha, \beta \in \Lambda^{+}$be linearly independent. Suppose $\alpha+\beta \in \Lambda^{+}$. Then, one has $\left[\mathrm{g}_{\alpha}, \mathrm{g}_{\beta}\right]=\mathrm{g}_{\alpha+\beta}$.

For a proof, see Keene [3, Theorem 2]. Thus we have the following proposition by virtue of Corollary 1.3,

Proposition 2.2. Let $\mathfrak{3}$ be an Iwasawa subalgebra of a semisimple Lie algebra g. If there are linearly independent $\alpha, \beta \in \Lambda^{+}$such that $\alpha+\beta \in \Lambda^{+}$, then one can find a non-inductive linear form on \mathfrak{s}.

Corollary 2.3. Suppose that \mathfrak{g} is a real simple Lie algebra of real rank strictly greater than one. Then, there is a non-inductive linear form on $\mathfrak{3}$.

Proof. A glance at the table given in the book [11, p. 30~p. 32] convinces us that if \mathfrak{g} is real simple and of real rank strictly greater than one, there are
always two simple restricted roots α, β such that $\alpha+\beta \in \Lambda^{+}$. Q.E.D.
On the other hand, if the real rank of a semisimple Lie algebra g is equal to one, the matters are quite different. Let us begin with the following wellknown lemma.

LEMMA 2.4. Let g be a semisimple Lie algebra. Let $\alpha \in \Lambda^{+}$and assume that $\alpha / 2 \in \Lambda^{+}$. Then, for any non-zero $u \in \mathrm{~g}_{\alpha / 2}$, ad u maps $\mathrm{g}_{\alpha / 2}$ onto g_{α}.

Proof. We include here a proof for reader's convenience. Let $H_{\alpha} \in \mathfrak{a}$ be the element such that $\alpha(H)=B\left(H_{\alpha}, H\right)$ holds for any $H \in \mathfrak{a}$, where B is the Killing form of g. Put $y=\theta u$. Then, $y \in g_{-\alpha / 2}$. Let $h=[u, y]$. Then, h belongs to the centralizer of \mathfrak{a} as well as to \mathfrak{p}. Hence $h \in \mathfrak{a}$. Now, for any $H \in \mathfrak{a}$, we have

$$
\begin{aligned}
B(h, H) & =B([u, y], H)=B(y,[H, u]) \\
& =\frac{1}{2} \alpha(H) B(\theta u, u)=\frac{1}{2} B\left(B(u, \theta u) H_{\alpha}, H\right)
\end{aligned}
$$

Hence we get $h=B(u, \theta u) H_{\alpha} / 2$, so that for any $z \in g_{\alpha}$,

$$
\begin{aligned}
{[u,[z, y]] } & =[z,[u, y]] \quad \text { (because }[u, z]=0) \\
& =-\alpha(h) z=-\frac{1}{2} B(u, \theta u) \alpha\left(H_{\alpha}\right) z .
\end{aligned}
$$

Since $B(u, \theta u) \neq 0$ and $\alpha\left(H_{\alpha}\right) \neq 0$, we conclude that $z \in(\operatorname{ad} u)\left(g_{\alpha / 2}\right)$, because $[z, y] \in g_{\alpha / 2} \quad$ Q.E.D.

COROLLARY 2.5. Under the same assumption as Lemma 2.4, $\operatorname{dim}_{\alpha / 2}$ is even.
Proof. Let $f \in \mathfrak{g}_{\alpha}^{*}$ be non-zero. Then, $x, y \rightarrow f([x, y])$ is a non-degenerate skew-symmetric bilinear form on $g_{\alpha / 2} \times g_{\alpha / 2}$ by virtue of Lemma 2.4. Hence $\operatorname{dim} g_{\alpha / 2}$ is even. Q.E.D.

Proposition 2.6. Let g be a semisimple Lie algebra of real rank one and $\mathfrak{B}=\mathfrak{a}+\mathfrak{n}$ an Iwasawa subalgebra of \mathfrak{g}. Then, every linear form on \mathfrak{z} is inductive.

Proof. First of all, we note that $f \in \mathfrak{Z}^{*}$ is inductive if and only if so is $\left(\mathrm{ad}^{*} s\right) f$ for any $s \in S:=\exp$. Therefore, it suffices to show that each representative of the coadjoint orbits in $\mathfrak{\Omega}^{*}$ is inductive.

Since \mathfrak{g} is of real rank one, \mathfrak{n} is written as $\mathfrak{n}=g_{\alpha / 2}+g_{\alpha}$ for some positive restricted root α, where $g_{\alpha / 2}=\{0\}$ possibly. Let us see the coadjoint action of S on $\mathfrak{\Omega}^{*}$. Express every element $s \in S$ as $s=\exp H \exp u \exp x$ with $H \in \mathfrak{a}, u \in g_{\alpha / 2}$ and $x \in g_{\alpha}$, then a simple computation yields

$$
\begin{aligned}
(\operatorname{ads})^{-1}(a+b+c)= & a+\left(e^{-\alpha(H) / 2} b+\frac{1}{2} \alpha(a) u\right) \\
& +\left(e^{-\alpha(H)} c-e^{-\alpha(H) / 2}[u, b]+\alpha(a) x\right),
\end{aligned}
$$

where $a \in \mathfrak{a}, b \in \mathfrak{g}_{\alpha / 2}$ and $c \in \mathfrak{g}_{\alpha}$ ．Let $f \in \mathfrak{Q}^{*}$ and set $f=f_{0}+f_{1 / 2}+f_{1},\left(\operatorname{ad}^{*} s\right) f=$ $g_{0}+g_{1 / 2}+g_{1}$ with $f_{k}, g_{k} \in g_{k \alpha}^{*}$（understanding $g_{0 \alpha}=\mathfrak{a}$ ）．Then，we get from the above

$$
\begin{align*}
g_{0}(a) & =f_{0}(a)+\frac{1}{2} f_{1 / 2}(u) \alpha(a)+f_{1}(x) \alpha(a), \\
g_{1 / 2}(b) & =e^{-\alpha(H) / 2} f_{1 / 2}(b)-e^{-\alpha(H) / 2} f_{1}([u, b]), \tag{2.1}\\
g_{1}(c) & =e^{-\alpha(H)} f_{1}(c)
\end{align*}
$$

When $\mathfrak{g}_{\alpha / 2}=\{0\}$ ，it should be understood that the middle formula in（2．1）is missing and that $f_{1 / 2}=0$ in the first of（2．1）．Fixing a norm on \mathfrak{B}^{*} ，we let Θ_{k} （ $k=1 / 2,1$ ）be the unit sphere in $\mathrm{g}_{k k \alpha}^{*}$ ．The coadjoint orbits in $\mathfrak{马}^{*}$ are described as follows：

Case 1， $\mathfrak{g}_{\alpha / 2}=\{0\}$ ．
（i） $\mathfrak{a}^{*}+\{r \sigma ; r>0\} \quad\left(\sigma \in \mathbb{S}_{1}\right)$ ，
（ii）singleton $\{\gamma\} \quad\left(\gamma \in \mathfrak{a}^{*}\right)$ ，
Case 2， $\mathrm{g}_{\alpha / 2} \neq\{0\}$ ．
（iii） $\mathfrak{a}^{*}+\mathfrak{g}_{\alpha / 2}^{*}+\{r \sigma ; r>0\} \quad\left(\sigma \in \mathbb{S}_{1}\right)$ ，
（iv） $\mathfrak{a}^{*}+\{r \tau ; r>0\} \quad\left(\tau \in \mathbb{S}_{1 / 2}\right)$ ，
（v）singleton $\{\gamma\} \quad\left(\gamma \in \mathfrak{a}^{*}\right)$ ，
where we have used Lemma 2.4 to derive（iii）．We pick，as representatives， $\sigma \in \mathbb{S}_{1}$ in（i），$\gamma \in \mathfrak{a}^{*}$ in（ii），$\sigma \in \mathfrak{S}_{1}$ in（iii），$\tau \in \mathbb{S}_{1 / 2}$ in（iv）and $\gamma \in \mathfrak{a}^{*}$ in（v）．If $f=\gamma$（cases（ii）and（v）），then $\mathfrak{B}(f)=\mathfrak{B}$ ．Hence f is inductive．If $f=\sigma \in \mathfrak{S}_{1}$ （cases（i）and（iii）），then $弓(f)=\operatorname{Ker} \sigma \subset \mathfrak{g}_{\alpha}$ ，which says that f is inductive．For the case（iv），$f=\tau$ ，we have $\mathfrak{ß}(f)=\operatorname{Ker} \tau+g_{\alpha}$ ．Hence f is inductive．Con－ sequently，any linear form on $弓$ is inductive．Q．E．D．

Theorem 2．7．Let g be a semisimple Lie algebra and an Iwasawa sub－ algebra of g ．Then，there is a non－inductive linear form on \mathfrak{B} if and only if some simple component of \mathfrak{g} is of real rank at least two．

Proof．The if part is clear from the proof of Corollary 2.3 combined with Proposition 2．2．So，suppose that every simple component $\mathfrak{g}_{k}(1 \leqq k \leqq l)$ of \mathfrak{g} is of real rank one．Let \mathfrak{g}_{k} be an Iwasawa subalgebra of \mathfrak{g}_{k} ．Then， $\mathfrak{g}=\mathfrak{g}_{1} \times \cdots \times \mathfrak{g}_{l}$ （direct product of Lie algebras）is an Iwasawa subalgebra of \mathfrak{g} ．By Proposition 2．5，every linear form on $\mathfrak{弓}_{k}(1 \leqq k \leqq l)$ is inductive．From this it is easy to see that every linear form on \mathfrak{z} is inductive．Q．E．D．

§ 3. The case of normal j-algebras.

For normal j-algebras, we have a similar result as in the case of Iwasawa subalgebras of semisimple Lie algebras. Let us start with the definition of normal j-algebras.

Let \mathfrak{j} be a Lie algebra, j a linear operator on $\mathfrak{\beta}$ such that $j^{2}=-1_{\mathfrak{z}}$ and $\omega \in \mathfrak{I}^{*}$. Then, the triplet $(\mathfrak{z}, j, \omega)$ is termed a normal j-algebra if the following (i) \sim (iii) are satisfied:
(i) is completely solvable.
(ii) Extend j to \mathfrak{Z}_{C} by complex linearity and let \mathfrak{j}^{-}be the $-i$-eigenspace of j in \mathfrak{a}_{C}. Then, $\mathfrak{弓}^{-}$is a complex subalgebra of \mathfrak{a}_{c}.
(iii) (a) $\omega([x, j x])>0$ for all non-zero $x \in ふ$.
(b) $\omega([j x, j y])=\omega([x, y])$ for all $x, y \in$.

We summarize here a requisite fundamental structure of Ω following Rossi and Vergne [9, Theorem 4.3]. For proofs, we refer the reader to PyatetskiiShapiro [7, Theorem 2, p. 61] or Rossi [8, Theorem 5.13]. Given a normal j algebra $(\mathfrak{Z}, j, \omega)$, we define a real inner product $\langle\cdot, \cdot\rangle$ on $\mathfrak{\xi}$ by $\langle x, y\rangle=\omega([x, j y])$. Let $\mathfrak{n}=[\mathfrak{\beta}, \mathfrak{\Omega}]$. Denote by \mathfrak{a} the orthogonal complement to \mathfrak{n}. Then, $\mathfrak{\beta}=\mathfrak{a}+\mathfrak{n}$. We know that \mathfrak{a} is an abelian subalgebra of \mathfrak{s} and the representation of \mathfrak{a} on \mathfrak{n} by the adjoint action is diagonalizable. Define \mathfrak{n}_{α} as in (1.1) and take all $\alpha \in \mathfrak{a}^{*}$ such that $\mathfrak{n}_{\alpha} \neq\{0\}$ and $j \mathfrak{n}_{\alpha} \subset \mathfrak{a}$. Number these α as $\alpha_{1}, \cdots, \alpha_{l}$. We have $l=\operatorname{dima}$ and $\operatorname{dimn}_{\alpha_{k}}=1 \quad(1 \leqq k \leqq l)$. The number l is called the rank of the normal j algebra $(\mathfrak{Z}, j, \boldsymbol{\omega})$. If we order $\alpha_{1}, \cdots, \alpha_{l}$ in a suitable way, then all $\alpha \in \mathfrak{a}^{*}$ such that $\mathfrak{n}_{\alpha} \neq\{0\}$ are of the following form (not all possibilities need occur):

$$
\begin{gather*}
\frac{1}{2}\left(\alpha_{m}+\alpha_{k}\right) \quad(1 \leqq k<m \leqq l), \quad \frac{1}{2}\left(\alpha_{m}-\alpha_{k}\right) \quad(1 \leqq k<m \leqq l), \\
\frac{1}{2} \alpha_{k} \quad(1 \leqq k \leqq l), \quad \alpha_{k} \quad(1 \leqq k \leqq l) . \tag{3.1}
\end{gather*}
$$

Moreover, we have

$$
\begin{array}{ll}
j \mathfrak{n}_{\left(\alpha_{m}-\alpha_{k} / 2\right.}=\mathfrak{n}_{\left(\alpha_{m}+\alpha_{k}\right) / 2} & (m>k), \\
j \mathfrak{n}_{\alpha_{m} / 2}=\mathfrak{n}_{\alpha_{m} / 2} & (1 \leqq m \leqq l) . \tag{3.3}
\end{array}
$$

Finally, we can choose non-zero $u_{i} \in \mathfrak{n}_{\alpha_{i}}$ such that $\left[j u_{i}, u_{i}\right]=u_{i}$. Then we have $\alpha_{k}\left(j u_{m}\right)=\boldsymbol{\delta}_{k m}$ (the Kronecker's symbol). The following lemma is a counterpart of Lemma 2.1 in the case of normal j-algebras.

Lemma 3.1. If $\mathfrak{n}_{\left(\alpha_{m}-\alpha_{k}\right) / 2} \neq\{0\}(m>k)$, then one has

$$
\left[\mathfrak{n}_{\left(\alpha_{m}-\alpha_{k}\right) / 2}, \mathfrak{n}_{\left(\alpha_{m}+\alpha_{k}\right) / 2}\right]=\mathfrak{n}_{\alpha_{m}} .
$$

Proof. Clearly it suffices to prove $\mathfrak{n}_{\alpha_{m}} \subset\left[\mathfrak{n}_{\left(\alpha_{m}-\alpha_{k}\right) / 2}, \mathfrak{n}_{\left(\alpha_{m}+\alpha_{k}\right) / 2}\right]$. We fix a
non－zero $x \in \mathfrak{n}_{\left(\alpha_{m}-\alpha_{k}\right) / 2}$ ．Then，by（3．2），we have $j x \in \mathfrak{n}_{\left(\alpha_{m}+\alpha_{k}\right) / 2}$ and $[x, j x] \in \mathfrak{n}_{\alpha_{m}}$ ． Since $\operatorname{dimn}_{\alpha_{m}}=1$ ，we have only to prove $[x, j x] \neq 0$ ．Suppose then $[x, j x]=0$ ． This implies $\omega([x, j x])=0$ ，so that $x=0$ ，because (ξ, j, ω) is a normal j－algebra． Thus we arrive at a contradiction．Q．E．D．

If the normal j－algebra $(\mathfrak{Z}, j, \omega)$ is of rank one，then \mathfrak{Z} is of the form $\mathfrak{B}=\mathfrak{a}+\mathfrak{n}_{\alpha / 2}+\mathfrak{n}_{\alpha}$ for some non－zero $\alpha \in \mathfrak{a}^{*}$ with $\mathfrak{n}_{\alpha / 2}=\{0\}$ possibly．Note that（3．3） implies that $\operatorname{dimn}_{\alpha / 2}$ is even．We put $2 n=\operatorname{dimn}_{\alpha / 2}$ ．Then，since $\operatorname{dimn}_{\alpha}=1$ ，it is easy to see that $弓$ is isomorphic to an Iwasawa subalgebra of $\mathfrak{b u}(n+1,1)$ （ $n=0,1,2, \cdots$ ）．So，Proposition 2.6 leads us to the following proposition．

Proposition 3．2．Let $(\mathfrak{a}, j, \omega)$ be a normal j－algebra of rank one．Then， every linear form on $弓$ is inductive．

Theorem 3．3．Let $(\mathfrak{Z}, j, \boldsymbol{\omega})$ be a normal j－algebra．Then，there is a non－ inductive linear form on $\mathfrak{3}$ if and only if $\mathfrak{n}_{\left(\alpha_{m}-\alpha_{k}\right) / 2} \neq\{0\}$ for some $m, k(m>k)$ ．

Proof．Suppose first that $\mathfrak{n}_{\left(\alpha_{m}-\alpha_{k}\right) / 2} \neq\{0\}$ for some $m, k(m>k)$ ．We note that（3．2）implies $\mathfrak{n}_{\left(\alpha_{m}+\alpha_{k}\right) / 2} \neq\{0\}$ ．Put $\alpha=\left(\alpha_{m}-\alpha_{k}\right) / 2$ and $\beta=\left(\alpha_{m}+\alpha_{k}\right) / 2$ ．Clearly α, β are linearly independent and the condition（i）in Theorem 1.1 is satisfied． Condition（ii）is guaranteed by Lemma 3．1，so there is a non－inductive linear form on \mathfrak{z} by Corollary 1．3，

Conversely，suppose $\mathfrak{n}_{\left(\alpha_{m}-\alpha_{k}\right) / 2}=\{0\}$ for all $m, k(m>k)$ ．By（3．2），we have also $\mathfrak{n}_{\left(\alpha_{m}+\alpha_{k}\right) / 2}=\{0\}$ for all $m, k(m>k)$ ．Therefore（3．1）implies that $马$ is de－ composed as $\mathfrak{\xi}=\sum_{1 \leq k \leq l} \mathfrak{F}_{k}$ ，where $\mathfrak{弓}_{k}=\boldsymbol{R} j u_{k}+\mathfrak{n}_{\alpha_{k} / 2}+\mathfrak{n}_{\alpha_{k}}$ with $\mathfrak{n}_{\alpha_{k} / 2}=\{0\}$ possibly． Thus \mathfrak{B} is a direct product（as Lie algebra）of $\mathfrak{\zeta}_{k}$＇s．By Proposition 3．2，every linear form on $弓_{k}$ is inductive．From this，we can conclude easily that each linear form on $\mathfrak{马}$ is inductive．Q．E．D．

§4．An example．

A typical example of solvable Lie algebra treated in this note is supplied by an Iwasawa subalgebra $\mathfrak{\xi}$ of $(2, \boldsymbol{R})$ ．We realize $弓$ by a Lie algebra of 4×4 real matrices（with the usual bracket operation of matrices）as follows：

$$
\mathfrak{j}=\left\{[a, b, c ; x, y, z]:=\left(\begin{array}{rrrr}
a & c & x & z \\
0 & b & z & y \\
0 & 0 & -a & 0 \\
0 & 0 & -c & -b
\end{array}\right) ; \quad \begin{array}{l}
a, b, c \in \boldsymbol{R} \\
x, y, z \in \boldsymbol{R}
\end{array}\right\} .
$$

$S p(2, \boldsymbol{R})$ has a maximal compact subgroup K isomorphic to the unitary group $U(2)$ ．Since $S p(2, \boldsymbol{R}) / K$ is a hermitian symmetric space，one can introduce in β_{3} a structure of normal j－algebra（cf．Rossi and Vergne［9，p．372］）．Let $\mathfrak{n}_{1}=$
$\boldsymbol{R}[0,0,1 ; 0,0,0]$ and $\mathfrak{n}_{2}=\boldsymbol{R}[0,0,0 ; 0,0,1]$. We see easily that $\left[\mathfrak{n}_{1}, \mathfrak{n}_{2}\right]=\mathfrak{n}_{3}:=$ $\boldsymbol{R}[0,0,0 ; 1,0,0]$. Then, by Theorem 2.7 or Theorem 3.3, there is a noninductive linear form on 3 .

On the other hand, we say after Poguntke [4] that a Lie algebra g is symmetric if the involutory Banach algebra $L^{1}(G)$, where G is the corresponding connected and simply connected Lie group, is symmetric. Poguntke gave a list [4, p. 162] of non-symmetric solvable Lie algebras of dimension at most six. By Satz 2 of that paper, if \mathfrak{g} is a six dimensional non-symmetric Lie algebra, then either \mathfrak{g} is contained in that list or some proper quotient of \mathfrak{g} is isomorphic to one of the Lie algebras in the list.

Let us return to our example β above. We have seen that there is a noninductive linear form on $\mathfrak{3}$. Then, by [6, Theorem 10] or [5, Theorem 3], \mathfrak{B} is not symmetric. Clearly the dimension of $弓$ is six, but it is not isomorphic to any six dimensional Lie algebra in the Poguntke's list. So, some proper quotient of \mathfrak{s} should be isomorphic to one of four or five dimensional Lie algebras in that list. Let us identify it. First, we note that \mathfrak{n}_{3} is an ideal of $\mathfrak{\Omega}$. Then the quotient $\mathfrak{B} / \mathfrak{n}_{3}$ is isomorphic to \mathfrak{b}_{5} in the Poguntke's list, where \mathfrak{b}_{5} is the five dimensional Lie algebra with the basis $e_{k}(0 \leqq k \leqq 4)$ such that

$$
\begin{gathered}
{\left[e_{2}, e_{3}\right]=e_{4}, \quad\left[e_{1}, e_{2}\right]=-e_{2}, \quad\left[e_{1}, e_{3}\right]=e_{3}} \\
{\left[e_{0}, e_{2}\right]=e_{2}, \quad\left[e_{0}, e_{4}\right]=e_{4}}
\end{gathered}
$$

other brackets being zero or deduced by skew-symmetry. The isomorphism of $\mathfrak{B} / \mathfrak{n}_{3}$ onto \mathfrak{b}_{5} is given by

$$
\begin{array}{ll}
{[1,0,0 ; 0,0,0]+\mathfrak{n}_{3} \longleftrightarrow e_{0},} & {[-1 / 2,1 / 2,0 ; 0,0,0]+\mathfrak{n}_{3} \longleftrightarrow e_{1},} \\
{[0,0,1 ; 0,0,0]+\mathfrak{n}_{3} \longleftrightarrow e_{2},} & {[0,0,0 ; 0,1,0]+\mathfrak{n}_{3} \longleftrightarrow e_{3},} \\
{[0,0,0 ; 0,0,1]+\mathfrak{n}_{3} \longleftrightarrow e_{4} .} &
\end{array}
$$

References

[1] J. Boidol, *-regularity of exponential Lie groups, Invent. Math., 56 (1980), 231-238.
[2] H. Fujiwara, Sur le dual d'un groupe de Lie résoluble exponentiel, J. Math. Soc. Japan, 36 (1984), 629-636.
[3] F.W. Keene, Square integrable representations and a Plancherel theorem for parabolic subgroups, Trans. Amer. Math. Soc., 243 (1978), 61-73.
[4] D. Poguntke, Nichtsymmetrische sechsdimensionale Liesche Gruppen, J. Reine Angew. Math., 306 (1979), 154-176.
[5] D. Poguntke, Symmetry and nonsymmetry for a class of exponential Lie groups, Ibid., 315 (1980), 127-138.
[6] D. Poguntke, Algebraically irreducible representations of L^{1}-algebras of exponential Lie groups, Duke Math. J., 50 (1983), 1077-1106.
[7] I.I. Pyatetskii-Shapiro, Automorphic functions and the geometry of classical do-
mains, Gordon and Breach, New York, 1969.
[8] H. Rossi, Lectures on representations of groups of holomorphic transformations of Siegel domains, Lecture Note, Brandeis Univ., 1972.
[9] H. Rossi and M. Vergne, Representations of certain solvable Lie groups on Hilbert spaces of holomorphic functions and the application to the holomorphic discrete series of a semisimple Lie group, J. Functional Analysis, 13 (1973), 324-389.
[10] P. Tauvel, Sur la bicontinuité de l'application de Dixmier pour les algèbres de Lie résolubles, Ann. Fac. Sci. Toulouse, 4 (1982), 291-308.
[11] G. Warner, Harmonic analysis on semi-simple Lie groups, I, Springer, Berlin, 1972.

Takaaki NomURA

Department of Mathematics
Faculty of Science
Kyoto University
Kyoto 606
Japan

