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Introduction.

The notion of Anosov maps given in Definition 4 is a strict generalization
of expanding maps and expansive homeomorphisms with pseudo-orbit tracing
property (abbrev. POTP). If in particular an Anosov map is bijective, then it
has expansivity and POTP (see Remark 2 $(i)$). But we remark that the notion
of expanding maps is not defined for homeomorphisms of compact connected
metric spaces which are not one point (see Remark 2 (ii) $(b)$ ). It is known (cf.

A. Morimoto [10]) that every homeomorphism with expansivity and POTP is
topologically stable in the class of homeomorphisms. However it is impossible
that a homeomorphism is topologically stable in the class of continuous surjective
maps (see Remark 1). By using the same technique in [10] we can see that
every expanding map satisfies topological stability in the class of continuous
surjective maps. Thus it is natural to ask whether every Anosov map which is
not bijective satisfies it in the class of continuous surjective maps.

We prove the following

THEOREM 1. Let $M$ be a closed toPological mamfold and $f:Marrow M$ be a local
homeomorPhsm but not bijective. If $f$ is an Anosov map wh2ch satisfies toPological
stability in the class of continuous surjective maps, then $f$ must be expan&ng.

Let (X, d) be a compact metric space and $f:Xarrow X$ be a continuous surjec-
tive map. Denote by $\Omega$ the non-wandering set of $f$ ( $\Omega\neq\emptyset$ since $X$ is compact).

We obtain Smale-Bowen’s decomposition theorem for an Anosov map of $X$ as
follows.

THEOREM 2. Every Anosov map $f$ of $X$ has the following properties.
(i) $f(\Omega)=\Omega$ and $f:\Omegaarrow\Omega$ is an Anosov map,
(ii) $\Omega$ contains a finite sequence $B_{i}(1\leqq i\leqq l)$ of f-invariant $(i.e. f(B_{i})=B_{i})$

closed subsets such that $\Omega=U_{i=1}^{l}B_{i}$ and $f:B_{i}arrow B_{i}$ is toPologically transitive,
(iii) for $1\leqq i\leqq l$, there exisis $a>0$, and $B_{i}$ contains a finite sequence $C_{i_{j}}$

$(0\leqq j\leqq a-1)$ such that $f^{a}(C_{\iota_{j}})=C_{c_{j}},$ $C_{i_{j}}\cap C_{i_{j}},=\emptyset,$ $f(C_{i_{j}})=C_{i_{j+1}}$ for $0\leqq j\neq j’\leqq a-1$

$(C_{i_{a}}=C_{i_{0}}),$ $f^{a}$ : $C_{i_{j}}arrow C_{t_{j}}$ is topologically mixing and $B_{i}=U_{J=0}^{a-1}C_{i_{f}}$ .



506 K. SAKAI

Theorem 2 was described in [1] for an expansive homeomorphism with
POTP of $X$.

The following is obtained in proving Theorem 1.

COROLLARY. (i) If $X$ is connected and $f$ is an expanding map, then $X=\Omega$ .
(ii) Let $M$ be a closed topOlogical manifold and $f:Marrow M$ be a local homeo-

morphsm. If $f$ is an Anosov map, then $\Omega$ is an infinite set.

First of all we show in \S 1 that the definition of an Anosov endomorphism
given by Man\’e and Pugh is equivalent to that of Przytycki (see Proposition 1).

After that we introduce, in topological setting, the notions of an Anosov map
and a special Anosov map of $X$. In \S 2 we show that every Anosov map has
POTP (see Lemma 3), and by using this property, we give the proof of Theo-
rem 1. In \S 3 we give the proof of Theorem 2.

The author wishes to thank Koichi Hiraide for many helpful conversations,
and also the referee for many useful suggestions.

\S 1. Anosov maps.

Let $M$ be a closed $C^{\infty}$-manifold and $f:Marrow M$ be a $C^{r}$-map $(r\geqq 1)$ . Denote
by $S_{f}(M)$ the set of all $f$-orbits $\{x_{i}\}$ ($f(x_{i})=x_{i+1}$ for all $i\in Z$ ) of $M$.

DEFINITION 1 (Man\’e-Pugh [9]). Let $f:Marrow M$ be an immersion. Then we
say that $f$ is a weakly Anosov endomorphism if there is a continuous subbundle
$E^{S}=Df(E^{S})\subset TM$ and if there are constants $C$ , $C’>0,0<\mu<1<\lambda$ and a Rieman-
nian metric $\Vert\cdot\Vert$ on $TM$ such that for all $n>0$ ,

$\Vert Df^{n}(v)\Vert\leqq C\mu^{n}\Vert v\Vert$ for $v\in E^{s}$ ,

$(*)$ $\Vert|\overline{Df}^{n}(v+E^{s})\Vert|\geqq C’\lambda^{n}\Vert|v+E^{s}\Vert|$ for $v+E^{s}\in TM/E^{s}$

where $\overline{Df}$ is the induced map on $TM/E^{S}$ and $\Vert|\cdot\Vert|$ is the induced metric on
$TM/E^{s}$.

DEFINITION 2 (Przytycki [12]). Let $f:Marrow M$ be an immersion. Then we
say that $f$ is an Anosov endomorphism if there exist constants $C>0,0<\nu<1$

and a Riemannian metric $\Vert\cdot\Vert$ on $TM$ such that for all $\{x_{i}\}\in S_{f}(M)$ , there is a
splitting

$T_{tx_{i^{1}}}M=_{2} \bigcup_{--\infty}^{\infty}\{E_{x_{i}}^{s}\oplus E_{x}^{u_{i}}\}$

which is preserved by $Df$ and for all $n>0$ ,

$\Vert Df_{x_{i}}^{n}(v)\Vert\leqq C\nu^{n}\Vert v\Vert$ for $v\in E_{x_{i}}^{\epsilon}$ ,

$\Vert Df_{x_{i}}^{n}(v)\Vert\geqq C^{-1}\nu^{-n}\Vert v\Vert$ for $v\in E_{x_{i}}^{u}$ .
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We remark that $E_{x_{0}}^{u}$ depends on $f$-orbit $\{x_{i}\}$ when $f$ is not bijective. It is
known (see [12, Theorem 2.15]) that $E_{x_{0}}^{u}\neq E_{y_{0}}^{u}$ when $x_{0}=y_{0}$ but $\{x_{i}\}\neq\{y_{i}\}$ .
But such a phenomenon does not happen for $E_{x_{0}}^{s}$ (see [12, p. 250]).

For a special type of Anosov endomorphisms the following is defined.

DEFINITION 3 (Przytycki [12]). Let $f:Marrow M$ be a $C^{r}$-map. We say that
$f$ is a special Anosov endomorphism if $f$ is an Anosov endomorphism and if
$E_{x_{0}}^{u}=E_{y_{0}}^{u}$ for every $\{x_{i}\},$ $\{y_{i}\}\in S_{f}(M)$ with $x_{0}=y_{0}$ .

In order to give the notion of Anosov maps of compact metric spaces, we
first check the following

PROPOSITION 1. Definitions 1 and 2 are equivalent.

PROOF. Let $f:Marrow M$ be a weakly Anosov endomorphism and put

$T_{S_{f}(M)}M=UT_{tx_{i}1}M\{x\iota\}\in S_{f}(M)$

Then we see that $T_{S_{f}(M)}M$ is a bundle over $S_{f}(M)$ . Let $Df^{\#}$ : $T_{S_{f}(M)}Marrow T_{S_{f}(M)}M$

be an automorphism defined by

$Dff_{x_{i}\}}(\{v_{i}\}_{i=-\infty}^{\infty})=\{Df_{x_{i}}(v_{i})\}_{i=-\infty}^{\infty}\in T_{tf(x_{i})\}}M$

for every $\{v_{i}\}_{i\Rightarrow-\infty}^{\infty}\in T_{tx_{i}\}}M$ and every $\{x_{i}\}\in S_{f}(M)$ . Define the norm of $Df^{\#}$ by

$\Vert Df^{\#}\Vert=\sup_{tx_{i\}\in S_{f}(M)}}tv_{i\}\in\tau_{tx_{i}I^{M}}}i\in Z$
sup $sup\Vert Df_{x_{i}}(v_{i})\Vert/\Vert v_{i}\Vert$

and put

$F^{s}= U(\bigcup_{i\{x_{i}\}\in S_{f}(M)=-\infty}^{\infty}E_{x_{i}}^{s})$ ,

$F^{s\perp}=U(UE_{x_{i}}^{s^{1}})\{x_{iI\in S_{f}(M)i=-\infty}\infty$

where $E_{x}^{s^{1}}$ is the orthogonal subspace to $E_{x}^{s}$ in $T_{x}M$. Then as in the proof of
Proposition 5 of [9], there exists a splitting

$T_{S_{f}(M)}M=F^{s}\oplus F^{u}$

and $0<\nu<1$ such that $Df^{\#}(F^{\sigma})=F^{\sigma}(\sigma=s, u)$ and max $\{\Vert Df_{1F^{s}}^{\#}\Vert, \Vert Df_{1F^{u}}^{\#-1}\Vert\}<\nu$ .
Therefore the fiber

$T_{1x\}}i_{i=-\infty t\Rightarrow-\infty}M=(UE_{x_{i}}^{s})\oplus(UE_{x_{i}}^{u})\infty\infty$

at $\{x_{i}\}\in S_{f}(M)$ of $T_{s_{J^{(M)}}}M=F^{s}\oplus F^{u}$ satisfies the condition of an Anosov endo-
morphism.

Conversely, let $f$ : $Marrow M$ be an Anosov endomorphism. In Definition 2 we
can omit the constant $C$ (by [12, Proposition 1.4]). Thus it follows from Pro-
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position 1.7 of [12] that there is an $\alpha>0$ such that for every $x\in M$,

$sup\{\Vert w_{1}\Vert/\Vert w_{2}\Vert : w_{1}\in E_{x}^{s}, w_{2}\in E_{x}^{s\perp}, w_{1}+w_{2}\in E_{x}^{u}-\{0\}\}<\alpha$ .
By an easy calculation we have that for every $x\in M$ and every subspace $E_{x}^{u}$ ,

$\frac{1}{\sqrt{1+\alpha^{2}}}\Vert v_{u}\Vert\leqq\Vert|v_{u}+E_{x}^{s}\Vert|\leqq\Vert v_{u}\Vert$ $(v_{u}\in E_{x}^{s})$ .
From this it is easily checked that $\overline{Df}:TM/E^{s}arrow TM/E^{\iota}$ satisfies $(*)$ of Defini-
tion 1. Put $E^{s}=\{E_{x}^{s} : x\in M\}$ . Since $E^{s}$ is a continuous subbundle of $TM,$ $f$ is
a weakly Anosov endomorphism.

As before let (X, d) be a compact metric space and $f:Xarrow X$ be a con-
tinuous surjective map. Denote $S_{f}^{-}(X)$ by the set of all backward $f$-orbits of $X$.
Let $\epsilon>0$. We define the local stable set $W_{\epsilon}^{s}(x)$ for $x\in X$ by

$W_{\text{\’{e}}}^{s}(x)=$ { $z\in X$ : $d(f^{n}(z),$ $f^{n}(x))\leqq\epsilon$ for $n\geqq 0$ }

and the local unstable set $W_{\epsilon}^{u}(\{y_{i}\})$ for $\{y_{i}\}\in S_{f}^{-}(X)$ by

$W_{\epsilon}^{u}(\{y_{i}\})=\{z\in X$ such that there is $\{z_{i}\}\in S_{f}^{-}(X)$ with

$z_{0}=z,$ $d(y_{i}, z_{i})\leqq\epsilon$ for $i\leqq 0$ }.

DEFINITION 4. We say that $f:Xarrow X$ is an Anosov map with constant $c>0$

if there exists $c$ with the property that for every $0<\epsilon\leqq c$ there is a $\delta>0$ such
that for every $x\in X$ and every $\{y_{i}\}\in S_{f}^{-}(X),$ $d(x, y_{0})<\delta$ implies that

$W_{\epsilon}^{s}(x)\cap W_{\epsilon}^{u}(\{y_{i}\})=$ {exactly one point}.

If an Anosov map $f$ is not bijective, then there is a case such that $W_{\epsilon}^{u}(\{x_{i}\})$

$\neq W_{\epsilon}^{u}(\{y_{i}\})$ if $x_{0}=y_{0}$ but $\{x_{i}\}\neq\{y_{i}\}$ . As mentioned in Definition 2, this follows
easily when $X$ and $f$ are replaced by $M$ and an Anosov endomorphism respec-
tively. We generalize the type of Definition 3 as follows.

DEFINITION 5. We say that $f:Xarrow X$ is a sPecial Anosov map if $f$ is an
Anosov map and if $W_{\epsilon}^{u}(\{x_{i}\})=W_{\epsilon}^{u}(\{y_{i}\})$ for every $\{x_{i}\},$ $\{y_{i}\}\in S_{f}^{-}(X)$ with $x_{0}=y_{0}$ .

We remark that Definitions 4 and 5 coincide whenever $f$ is bijective, and
that these new notions are independent of metrics for $X$. We can easily check
that $f$ is an (special) Anosov map if and only if $f^{n}$ is an (special) Anosov map
for $n\geqq 2$ .

An example of special Anosov maps which is not bijective is easily con-
structed on a solenoidal group which is not a torus. For instance, let $\Theta$ be
the canonical base of $R^{n}(n>0)$ and, let $\gamma$ be an $nXn$ matrix with entries in
$Q$ such that det $\gamma\neq 0$, the eigenvalues of $\gamma$ are off the unit circle and $Z^{n}=$

gp $\Theta\subsetneqq G’=gpU_{j=0}^{\infty}\gamma^{j}\Theta$ (the notation gp $E$ means the subgroup generated by a
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set $E$ ). The algebraic subgroup $G=gpU_{J\Rightarrow-\infty}^{\infty}\gamma^{j}G’\subsetneqq R^{n}$ is $\gamma$-invariant. We as-
sume that $G$ is endowed with the discrete topology. Then the dual group $X$

of $G$ is a solenoidal group with dimX$=n$ . Let $\sigma$ denote the dual automorphism
of $\gamma_{G}$ . Then (X, $\sigma$ ) is expansive (see [2, Theorem 1]). Hence by [2, pp. 88-
90] there are a translation invariant metric $d$ for $X$ and constants $\alpha_{0}>0,0<\lambda<1$

such that for $0<\epsilon<\alpha_{0}$ , $W_{\epsilon}(O)=\{x\in X:d(x, 0)\leqq\epsilon\}$ is expressed as $W_{\epsilon}(O)=$

$W_{\epsilon}^{*}(0)\oplus W_{\epsilon}^{u}(0)$ since $\sigma$ is expansive and $G=gpU_{J=-\infty}^{\infty}\gamma^{j}\Theta$ (see [2, P. 4]). Here
$W_{\epsilon}^{\tau}(O)(\tau=s, u)$ are subsets of $W_{\epsilon}(O)$ with the property:

$d(\sigma^{n}(x), 0)\leqq\{\lambda^{-n}d(x,0)\lambda^{n}d(x,0)$

$(x\in W_{\text{\’{e}}}^{s}(0), n\geqq 0)$ ,
$(x\in W_{\epsilon}^{u}(0), n\leqq 0)$ .

Let $F$ be the annihilator of gp $\Theta$ in $X$ and put $F^{+}= \bigcap_{J\Leftarrow 0}^{\infty}\sigma^{-j}F$. Then it is easily
obtained that the factor group $X/F^{+}$ is the dual group of $G’$ , a solenoidal group
and not a torus. Denote by $\tilde{\sigma}$ the dual homomorphism of $\gamma_{G’}$ . Then $\tilde{\sigma}$ : $X/F^{+}$

$arrow X/F^{+}$ is finite-to-one since $\gamma:G’arrow G’$ is injective and $F^{+}/\sigma F^{+}$ is finite (see [2,

p. 3]). Finally, it is not hard to show that $\tilde{\sigma}$ is a special Anosov map.
A sequence of points $\{x_{i}\}_{i=a}^{b}(-\infty\leqq a<b\leqq\infty)$ is called a $\delta$-Pseudo-orbit of $f$

if $d(f(x_{i}), x_{i+1})<\delta$ for $a\leqq i\leqq b-1$ . A sequence of points $\{x_{i}\}_{i=a}^{b}(a\leqq i\leqq b)$ is
called to be $\epsilon$ -traced by a $f$-orbit $\{y_{l}\}_{i=a}^{b}$ if $d(x_{i}, y_{i})<\epsilon$ holds for $a\leqq i\leqq b$ . We
say that $f$ has Pseudo-orbit tracing Property (POTP) if for every $\epsilon>0$ there is a
$\delta>0$ such that every $\delta$-pseudo-orbit of $f$ can be $\epsilon$ -traced by some $f$-orbit of $X$.
It is easy to check that $f^{n}$ has POTP $(n\geqq 2)$ if and only if $f$ has POTP (cf.

[10]).

The following is used in the proof of Theorem 2.

PROPOSITION 2. Let (X, d) and $f$ : $Xarrow X$ be as before. If $f$ has POTP, then
$f(\Omega)=\Omega$ and $f:\Omegaarrow\Omega$ has POTP.

PROOF. When $f$ is bijective, the proposition is proved in [1, Theorem 1].

Thus we prove the proposition to the case when $f$ is not bijective. It is clear
that $f(\Omega)\subset\Omega$ . By POTP we have $f(\Omega)=\Omega$ . For, assume that $\Omega\backslash f(\Omega)\neq\emptyset$ .
Then there are $x\in\Omega\backslash f(\Omega)$ and $\epsilon>0$ such that $U_{\epsilon}(x)=\{y\in\Omega:d(x, y)<\epsilon\}\subset$

$\Omega\backslash f(\Omega)$ . Let $\delta=\delta(\epsilon/2)>0$ be as in the definition of POTP of $f$. Since $x$ is in
$\Omega$, there are $n>0$ and an n-cyclic $\delta$-pseudo-orbit $\{x_{i}\}_{i=0}^{\infty}$ such that $x_{nj}=x$ for
all $j\geqq 0$. Since $f$ has POTP, there is $y\in X$ such that $d(f^{i}(y), x_{i})<\epsilon/2$ for all
$i\geqq 0$. Thus $\{f^{nj}(y)\}_{j=0}^{\infty}\subset U_{\epsilon/2}(x)=\{y\in X:d(x, y)<\epsilon/2\}$ . If there is a subsequence
$\{f^{nj’}(y)\}\subset\{f^{nj}(y)\}$ such that $f^{nj’}(y)arrow y’\in X$ as $j’arrow\infty$ , then we have $y’,$ $f^{n}(y’)$

$\in U_{\epsilon}(x)$ since $y’\in\omega(y)$ , where $\omega(y)$ denotes the $\omega$-limit set of $y\in X$. This is a
contradiction. The second statement is proved by the same method of [1,

Theorem 1] and so we omit the proof.

DEFINITION 6. Let $\mathfrak{C}(X)$ and $\mathfrak{H}(X)$ denote the set of all continuous maps
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and all homeomorphisms of $X$ onto itself respectively. For $f\in \mathfrak{C}(X)$ we say
that $f$ is topologically stable in $\mathfrak{C}(X)$ if for every $\epsilon>0$ there is a $\delta>0$ with the
property that for every $g\in \mathfrak{C}(X)$ with $d(f(x), g(x))<\delta(x\in X)$ , there is a con-
tinuous map $h:Xarrow X$ such that

(i) $h\circ g=f\circ h$ , (ii) $d(h(x), x)<\epsilon$ $(x\in X)$ .
Especially for $f\in \mathfrak{H}(X)$ , if for every $g\in \mathfrak{H}(X)$ with $d(f(x), g(x))<\delta(x\in X)$ , there
is a continuous map $h:Xarrow X$ such that the above (i) and (ii) hold, then the
homeomorphism $f$ is said to be topologically stable in $\mathfrak{H}(X)$ .

REMARK 1. For $f\in \mathfrak{H}(X)$ it is impossible that $f$ is topologically stable in
$\mathfrak{C}(X)$ . Indeed, consider $S^{1}$ as $R/Z$ and denote by $d$ the standard metric on $S^{1}$ .
Let $f$ : $S^{1}arrow S^{1}$ be a Morse-Smale diffeomorphism which has a sink and a source
fixed points $p,$ $q\in S^{1}$ respectively. It is well known that $f$ is topologically
stable in $\mathfrak{H}(S^{1})$ (see [11]). But $f$ is not topologically stable in $\mathfrak{C}(S^{1})$ . To see
this, let $P$ and $q$ be as above and fix $0<\epsilon<d(p, q)/4$ . Denote by $U$ an interval
$[p-\epsilon, p+\epsilon]$ and let $\delta$ be a number of topological stability. Then we obtain
$g\in \mathfrak{C}(S^{1})$ (see the graph).

Clearly $g_{|S1\backslash U}=f,$ $d(f(x), g(x))<\delta(x\in S^{1})$ and there are $p’\neq q’\in U\backslash \{P\}$ such
that $g(p’)=p’=g(q’)$ . Put $q_{-1}’=q’$ and define $S_{g}^{-}(S^{1})$ as in Definition 4. Then
we can find $\{q_{-i}\}\in S_{g}^{-}(S^{1})$ with $q_{-i}’arrow q$ as $iarrow\infty$ . If there is $h\in \mathfrak{C}(S^{1})$ which holds
(i) and (ii) of Definition 6, then we have $h(q_{-i}’)=h(p’)$ for $i\geqq 1$ . Hence $d(q_{-i}’, p’)$

$<2\epsilon$ for $i\geqq 1$ . Since $q_{-i}’arrow q(iarrow\infty)$ , we have $2 \epsilon<\lim_{i}d(q_{-i}’, P’)\leqq 2\epsilon$ , thus contra-
diction.

A homeomorphism $f:Xarrow X$ is called to be expamjve if there exists an $\alpha>0$

such that $d(f^{n}(x), f^{n}(y))\leqq\alpha$ for every $n\in Z$ implies $x=y$ . We say that $\alpha$ is
an expansivity constant of $f$.
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REMARK 2. Let $f:Xarrow X$ be an Anosov map with expansivity constant
$c>0$ .

(i) If in particular $f$ is bijective, then $f$ is expansive and has POTP (see

Definition 4 and Lemma 3).

(ii) (a) If there exists $0<e<c$ such that $W_{e}^{s}(x)=\{x\}$ for every $x\in X$, then
$f$ is an exPanding map, that is, $f$ is an open map and there are
metric $\rho$ for $X$ with constants $\epsilon>0$ and $\lambda>1$ such that $\rho(x, y)<\epsilon$

implies $\rho(f(x), f(y))\geqq\lambda\rho(x, y)$ .
(b) If in particular an expanding map is bijective, then $X$ is a finite

set.
(ii) are checked as follows. To see (a), it is enough to prove that $f$ is

open for the case when $f$ is not bijective since $f$ is positively expansive with
an expansivity constant $e$ (see [13, Theorem 1]). Fix $0<\epsilon\leqq e$ and let $\delta>0$ be as
in Definition 4. Take $y\in X$. Then for every $x\in U_{\delta}(f(y))$ and every $\{y_{i}\}\in S_{f}^{-}(X)$

with $y_{0}=f(y)$ and $y_{-1}=y$ , we have $W_{\text{\’{e}}}^{u}(\{y_{i}\})\cap W_{\epsilon}^{s}(x)=\{x\}$ . Hence there is
$x_{-1}\in X$ such that $d(x_{-1}, y)<\epsilon$ and $f(x_{-1})=x$ , and so $U_{\delta}(f(y))\subset f(U_{\epsilon}(y))$ . Since
$\epsilon$ is arbitrary, $f$ is open.

Following the proof of [5, Theorem 10. 30] we obtain (b). In fact let $f$ be a
bijective expanding map and put $\Phi^{-}=\{f^{-i} : i\geqq 0\}$ and $\Phi^{+}=\{f^{i} : i\geqq 0\}\subset \mathfrak{H}(X)$ ,
where $\mathfrak{H}(X)$ is endowed with metric $d(f, g)= \max\{d(f(x), g(x)):x\in X\}(f,$ $g\in$

$\mathfrak{H}(X))$ . Since $f$ is expanding, $\Phi^{-}$ is uniformly equicontinuous. Define a map
$G:\Phi^{-}arrow\Phi^{+}$ by $G(f^{-i})=f^{i}$ for $f^{-i}\in\Phi^{-}$ . Then it is easy to see that for $\alpha>0$

there is $\beta>0$ such that for every $f^{-i}\in\Phi^{-}$ we have $G(U_{\beta}(f^{-i})\cap\Phi^{-})\subset U_{a}(f^{i})\cap\Phi^{+}$

since $\Phi^{-}$ is uniformly equicontinuous. Here $U_{\delta}(f)=\{g\in \mathfrak{H}(X):d(f, g)<\delta\}$ . Since
$\Phi^{-}$ is totally bounded (by Ascoli’s theorem), there is an integer $k>0$ such that
$\Phi^{-}=U_{n=1}^{k}(U_{\beta}(f^{-i_{n}})\cap\Phi^{-})$ . Thus we have $\Phi^{+}=U_{n=1}^{k}(U_{\alpha}(f^{i_{n}})\cap\Phi^{+})$ , and so $\Phi^{+}$ is
uniformly equicontinuous. Thus for an expansivity constant $e$ of $f$, there is a
$\nu>0$ such that $d(x, y)<\nu(x, y\in X)$ implies $d(f^{i}(x), f^{i}(y))\leqq e$ for all $i\geqq 0$ .
Therefore $U_{\nu}(x)=\{x\}$ for $x\in X$.

\S 2. Proof of Theorem 1.

Let (X, d) be a compact metric space and $f:Xarrow X$ be an Anosov map with
constant $c>0$.

LEMMA 1. Let $\{x_{i}\},$ $\{y_{i}\}\in S_{f}(X)$ . If $d(x_{i}, y_{i})\leqq c$ for every $i\in Z$, then
$x_{0}=y_{0}$ .

PROOF. This follows from Definition 4.

The following is a slight extension of a result of Man\’e [8].
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LEMMA 2. For all $r>0$, there is some $N_{r}>0$ such that
(i) $f^{n}(W_{c}^{s}(x))\subset W_{r}^{s}(f^{n}(x))$ for all $x\in X$ and $n\geqq N_{r}$ ,
(ii) if $d(x_{i}, y_{i})\leqq c(\{x_{i}\}, \{y_{i}\}\in S_{f}^{-}(X))$ for all $i\leqq 0$ , then $d(x_{-n}, y_{-n})\leqq r$ for

all $n\geqq N_{r}$ .
PROOF. If (i) is false, then we can find sequences $x^{n},$ $y^{n}\in X$ and $m_{n}\geqq n$

such that $y^{n}\in W_{c}^{s}(x^{n})$ and $d(f^{m_{n}}(x^{n}), f^{m_{n}}(y^{n}))\geqq r$. If $f^{m_{n}}(x^{n})arrow x_{0}$ and $f^{m_{n}}(y^{n})$

$arrow y_{0}$ when $narrow\infty$ , then $d(x_{0}, y_{0})\geqq r$ . If $f^{m_{n}-1}(x^{n})arrow x_{-1}$ and $f^{m_{n}-1}(y^{n})arrow y_{-1}$ when
$narrow\infty$ , then $d(x_{-1}, y_{-1})\leqq c$ since $d(f^{j}(x^{n}), f^{j}(y^{n}))\leqq c$ for $0\leqq j\leqq m_{n}$ . Clearly $f(x_{-1})$

$=x_{0}$ and $f(y_{-1})=y_{0}$ . By induction we get $\{x_{i}\},$ $\{y_{i}\}\in S_{f}^{-}(X)$ such that $d(x_{i}, y_{i})$

$\leqq c$ for all $i\leqq 0$. Therefore $y_{0}\in W_{c}^{u}(\{x_{i}\})$ . On the other hand, since $y^{n}\in W_{\iota}^{s}(x^{n})$ ,

we have $d(f^{j}(f^{m_{n}}(x^{n})), f^{j}(f^{m_{n}}(y^{n}))\leqq c$ for all $j\geqq-m_{n}$ . Thus $y_{0}\in W_{c}^{s}(x_{0})$ as
$narrow\infty$ . By Lemma 1 we have $x_{0}=y_{0}$ . This is a contradiction.

Assume that (ii) is false. Then we can find sequences $\{x_{i}^{n}\}_{n\Rightarrow 0}^{\infty},$ $\{y_{i}^{n}\}_{n=0}^{\infty}\in$

$S_{f}^{-}(X)$ and $m_{n}\geqq n$ such that $d(x_{-m_{n}}^{n}, y_{-m_{n}}^{n})\geqq r$ and $d(x_{i}^{n}, y_{i}^{n})\leqq c$ for all $i\leqq 0$. As
above we can derive a contradiction.

LEMMA 3. $f$ has POTP.

PROOF. For $0<\mu\leqq c/2$ , let $0<\nu<\mu$ be as in Definition 4. Take and fix
$N_{\nu/2}>0$ as in Lemma 2 corresponding to $\nu/2$ . To simplify the proof, we put
$g=f^{N_{\nu/2}}$. To get the conclusion, it is enough to see that every $\nu/2$-pseudo-orbit
of $g$ is $2\mu$-traced by some g-orbit. Denote by $W_{\epsilon.g}^{l}(x)$ the local stable set for
$g$ at $x\in X$ and by $W_{\epsilon,g}^{u}(\{x_{l}\})$ the local unstable set for $\{x_{i}\}\in S_{g}^{-}(X)$ . Fix $l>0$

and choose a $\nu/2$-pseudo-orbit $\{x^{j}\}_{j=0}^{l}$ of $g$ . Since $d(g(x^{1}), x^{2})<\nu$ , there is a

$z_{0}^{2}=W_{\mu.g}^{u}(g(x^{1})\cup\{x_{i}^{1}\})\cap W_{\mu,g}^{s}(x^{2})$ ,

where $\{x_{i}^{1}\}$ is a g-orbit with $x_{0}=x^{1}$ fixed at your will. By Lemma 2 (i) $g(z_{0}^{2})$

$\in W_{\nu/2.g}^{s}(g(x^{2}))$ , and so $d(g(z_{0}^{2}), x^{3})<\nu$ . Thus there is a
$z_{0}^{3}=W_{\mu.g}^{u}(g(z_{0}^{2})\cup\{z_{i}^{2}\})\cap W_{\mu.g}^{s}(x^{3})$ ,

where $\{z_{\ell}^{2}\}$ is a g-orbit such that $d(z_{i-1}^{2}, x_{i})<\mu$ for $i\leqq 0$ . Since $d(g(z_{0}^{j- 1}), x^{j})<\nu$

for $4\leqq j\leqq l$, there is a

$z_{0}^{j}=W_{\mu.g}^{u}(g(z_{0}^{j- 1})\cup\{z_{i}^{j-1}\})\cap W_{\mu,\epsilon}^{s}(x^{j})$ ,

where $\{z_{i}^{j-1}\}$ is a g-orbit such that $d(z_{i-1}^{j-1}, z_{i}^{j- 2})<\mu$ for $i\leqq 0$ . Clearly $d(z_{0}^{l}, x^{l})$

$<2\mu$ By the choice of $z_{0}^{l}$ there is a g-orbit $\{z_{i}^{l}\}$ such that $d(z_{-1+k}^{l}, z_{k}^{l-1})<\mu$ for
all $k\leqq 0$. Hence $d(z_{-1}^{l}, g(z_{0}^{l-2}))\leqq 2\mu$ and $d(z_{-2+k}^{l}, z_{k}^{l-2})\leqq 2\mu$ for all $k\leqq 0$ since
$z_{0}^{l-1}\in W_{\mu.g}^{u}(g(z_{0}^{l-2})\cup\{z_{i}^{l-2}\})$ . By Lemma 2 (ii) it follows that $d(z_{-2+k}^{l}, z_{k}^{l-2})\leqq\nu/2$

for all $k\leqq 0$, and so $d(z_{-2}^{l}, x^{l- 2})<2\mu$ . In this manner we see that $\{g^{j}(y_{l})\}_{j=0}^{l}$

$2\mu$-traces $\{x^{j}\}_{j=0}^{l}$ , where $y_{l}=z_{-(l-1)}^{l}$ . Thus for an arbitrary large $l>0$, every
$\nu/2$-pseudo-orbit $\{x^{j}\}_{j\Rightarrow-l}^{l}$ is $2\mu$-traced by some g-orbit. Since $X$ is compact, it
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is easy to see that $g$ has POTP.

LEMMA 4. The set of all periodic points of $f,$ $per(f)$ , is dense in $\Omega$ .
PROOF. Recall that $\Omega=\{x\in X$ : for every neighborhood $U$ of $x,$ $f^{-n}(U)\cap U$

$\neq\emptyset$ for some $n\geqq 1$}. For $0<\mu\leqq c/2$ , let $0<\nu<\mu$ be as in the definition of
POTP of $f$ (see Lemma 3). Take and fix $x\in\Omega$ . Then there are $1>0$ and
$y\in X$ such that $\{x=x_{0}, x_{i}=f^{i}(y)(1\leqq i\leqq l-1), x_{\iota}=x\}$ is a $\nu$-pseudo-orbit of $f$.
Put $y_{nl+i}=x_{i}(n\geqq 0,0\leqq i\leqq l-1)$ and $y_{nl-i}=x_{l-i}(n\leqq 0,0\leqq i\leqq l-1)$ . Then $\{y_{j}\}_{j=-\infty}^{\infty}$

$(y_{0}=x)$ is a cyclic $\nu$-pseudo-orbit of $f$. By Lemma 3 there is $\{z_{j}\}\in S_{f}(X)$ such
that $d(y_{i+j}, f^{i}(z_{j}))<\mu$ for all $i\geqq 0$ and $j\in Z$. Hence $d(z_{l+i}, z_{i})\leqq c$ for all $i\in Z$

and so by Lemma 1, $f^{l}(z_{0})=z_{0}\in U_{\mu}(x)$ .
Let $(Y, \rho)$ be a metric space and $g$ be a homeomorphism from $Y$ onto itself.

For $\epsilon>0$ and $x\in Y$ , define the local stable and unstable sets $W_{\epsilon}^{s}(x),$ $W_{\text{\’{e}}}^{u}(x)$ by

$W_{\epsilon}^{s}(x)=\{y\in Y : \rho(g^{n}(x), g^{n}(y))\leqq\epsilon, n\geqq 0\}$ ,

$W_{\epsilon}^{u}(x)=\{y\in Y : \rho(g^{n}(x), g^{n}(y))\leqq\epsilon, n\leqq 0\}$ .
We say that $g$ has the canonical coordinates if there exists a constant $c’>0$ with
the property that for each $0<\epsilon\leqq c’$ there is a $\delta>0$ such that $\rho(x, y)<\delta(x, y\in Y)$

implies
$W_{\epsilon}^{l}(x)\cap W_{\text{\’{e}}}^{u}(y)=$ {exactly one point}.

In this case $g$ is expansive and c’ is an expansivity constant of $g$ .
Let $M$ be a closed topological manifold with metric $d$ . Denote by $(\tilde{M}, \pi)$

the universal covering space of $M$. By Theorem 1 of [4] there are a complete
metric $\rho$ and an $\alpha_{0}>0$ such that for every $0<\alpha\leqq\alpha_{0}$ and every $x\in M$ an open
ball $U_{a}(x)$ is evenly covered by $\pi$ and for every $u\in\tilde{M}$ the restriction to $B_{\alpha_{0}}(u)$

of $\pi$ is an isometry, where $B_{\delta}(u)=\{v\in\tilde{M} : \rho(u, v)<\delta\}$ . We note that there is
an $\alpha_{1}>0(\alpha_{1}<\alpha_{0})$ such that $u\neq v(u, v\in\tilde{M})$ and $\pi(u)=\pi(v)$ implies $\rho(u, v)<\alpha_{1}$

(cf. [10, Lemma 14]). If $f:Marrow M$ is a local homeomorphism, then a lift
$g:\tilde{M}arrow\tilde{M}$ of $f$ under $\pi$ is bijective and biuniformly continuous (cf. [10, Lemma
14]).

LEMMA 5. If $f$ is an Anosov map zvzth constant $c$ and a local homeomorphsm,
then its lift $g:\tilde{M}arrow\tilde{M}$ has the canonical coordinates.

PROOF. Since $M$ is compact and $f:Marrow M$ is a local homeomorphism, there
is a $\beta>0$ such that if $x\neq y(x, y\in M)$ and $f(x)=f(y)$ , then $d(x, y)\geqq\beta$ . Let $\alpha_{1}$

be as above and put $\alpha_{2}=\min\{\alpha_{1}, \beta\}$ . Choose $0<c’ \leqq\min\{c, \alpha_{2}/2\}$ such that
$\rho(u, v)<c’(u, v\in\tilde{M})$ implies max $\{\rho(g(u), g(v)), \rho(g^{-1}(u), g^{-1}(v))\}<\alpha_{2}/2$ . For
$0<\epsilon\leqq c’$, let $0<\delta<\epsilon$ be as in Definition 4. If $\rho(u, v)<\delta(u, v\in\tilde{M})$ , then there
is $z=W_{\epsilon}^{s}(\pi(u))\cap W_{\epsilon}^{u}(\{\pi g^{i}(v)\})$ (since $d(\pi(u),$ $\pi(v))<\delta$ and $\{\pi g^{i}(v)\}\in S_{f}^{-}(M)$ ). So
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we take $w\in\tilde{M}$ such that $\pi(w)=z,$ $p(w, u)\leqq\epsilon$ and $\rho(w, v)\leqq\epsilon$ . Then $p(w, u)\leqq\epsilon$

implies $\rho(g(w), g(u))\leqq\epsilon$ (since $\rho(g(w), g(u))<\alpha_{2}/2$ and the restriction to $B_{\alpha_{1}}(g(w))$

of $\pi$ is an isometry). Since $\rho(g(w), g(u))\leqq\epsilon$ , in the above manner we have
$\rho(g^{2}(w), g^{2}(u))\leqq\epsilon$ and by induction $\rho(g^{n}(w), g^{n}(u))\leqq\epsilon$ for $n\geqq 0$. Therefore $w\in$

$W_{\epsilon}^{s}(u)$ . We next show that $w\in W_{\epsilon}^{u}(v)$ . Since $\rho(w, u)\leqq\epsilon$ , we have $\rho(g^{-1}(w)$ ,
$g^{-1}(u))<\alpha_{2}/2$ . On the other hand, since there is $z_{-1}\in M$ such that $f(z_{-1})=z$ and
$d(z_{-1}, \pi g^{-1}(v))\leqq\epsilon$ , we have $\pi(w_{-1})=z_{-1}$ and $\rho(w_{-1}, g^{-1}(v))\leqq\epsilon$ for some $w_{-1}\in\tilde{M}$.
Since $d(\pi(w_{-1}), \pi g^{-1}(w))<\beta$ and $f\pi(w_{-1})=f\pi(g^{-1}(w))$ , we have $\pi(w_{-1})=\pi g^{-1}(w)$

and so $w_{-1}=g^{-1}(w)$ . Hence $\rho(g^{-1}(w), g^{-1}(v))\leqq\epsilon$ . By induction we see that
$\rho(g^{-n}(w), g^{-n}(v))\leqq\epsilon$ for all $n\geqq 0$. Therefore $w\in W_{\epsilon}^{u}(v)$ .

REMARK 3. Let $g,$ $\epsilon$ and $\delta$ be as in Lemma 5. Since $\tilde{M}$ is the universal
covering space of $M$ and $\pi$ is a local isometry, it is easily checked that for all
$r>0$ there is an $N>0$ such that $g^{n}(W_{\epsilon}^{s}(v))\subset W_{r}^{s}(g^{n}(v))$ and $g^{-n}(W_{\text{\’{e}}}^{u}(v))\subset W_{r}^{u}(g^{-n}(v))$

for all $v\in\tilde{M}$ and $n\geqq N$. Since $\tilde{M}$ is relatively compact, by using the proof of
Lemma 3 we can see that $g$ has POTP.

Hereafter we assume that $f:Marrow M$ is an Anosov map and a local homeo-
morphism, and $g:\tilde{M}arrow\tilde{M}$ is a lift of $f$. Since $g$ has the canonical coordinates
(by Lemma 5), there is a $c’$ such that for $\epsilon_{0}=c’/3$ there is $0<\delta_{0}<\epsilon_{0}$ such that
$\rho(u, v)<\delta_{0}(u, v\in\tilde{M})$ implies $W_{\text{\’{e}}}^{s_{0}}(u)\cap W_{\epsilon}^{u_{0}}(v)=$ {$one$ point}. Put

$\Delta(\delta_{0})=\{(u, v)\in\tilde{M}\cross\tilde{M} : \rho(u, v)<\delta_{0}\}$

and define a map $[, ]$ : $\Delta(\delta_{0})arrow\tilde{M}$ by

$[u, v]=W_{\epsilon_{0}}^{s}(u)\cap W_{\epsilon_{0}}^{u}(v)$ to $(u, v)\in\Delta(\delta_{0})$ .

LEMMA 6. The map $[, ]$ : $\Delta(\delta_{0})arrow\tilde{M}$ is continuous and satisfies $[[u, v],$ $w$ ] $=$

$[u, w]$ and $[u, [v, w]]=[u, w]$ whenever the two sides of the relations are
defined.

PROOF. This follows easily from the proof of Lemma 2 of [6] since every
bounded subset of $\tilde{M}$ is relatively compact.

LEMMA 7. There is $0<\delta_{1}<\delta_{0}/2$ such that for all $u\in\tilde{M}$, putting

$W_{1oc}^{a}(u)=W_{\epsilon_{0}}^{\sigma}(u)\cap B_{\delta_{1}}(u)$ $(\sigma=s, u)$ ,

$N_{u}=[W_{1oc}^{u}(u), W_{1oc}^{s}(u)]$ ,

(i) $N_{u}$ is an open subset of $\tilde{M}$ and
(i1) $[, ]$ : $W_{1oc}^{u}(u)\cross W_{1oc}^{s}(u)arrow N_{u}$ is a homeomorPhsm.
PROOF. The conclusion is easily obtained by Proposition 3 of [6] and

Lemma 6.
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Let $\delta_{1}$ be the number as in Lemma 7. For all $u\in\tilde{M}$ we denote by $W_{com}^{\sigma}(u)$

the connected component of $u$ in $W_{1oc}^{\sigma}(u)(\sigma=s, u)$ .
LEMMA 8. Both sets $\tilde{M}^{\sigma}=\{u\in\tilde{M} : W_{com}^{\sigma}(u)=\{u\}\}$ $(\sigma=s, u)$ are open and

closed in $\tilde{M}$.
PROOF. We prove only the case $\sigma=s$ of the lemma. The case $\sigma=u$ follows

in a similar way. Let $\delta_{1}>0$ be as in Lemma 7. For $\delta_{1}/2>0$ , choose $\delta_{2}>0$

$(2\delta_{2}<\delta_{0})$ as in the definition of the canonical coordinates of $g$ . Take and fix
$u\in\tilde{M}$. Then we have $[u, B_{\delta_{2}}(u)]\subset W_{com}^{s}(u)=\{u\}$ . If there is $v\in B_{\delta_{2}}(u)$ such
that $W_{com}^{s}(v)\neq\{v\}$ , then we choose $w\in W_{com}^{s}(v)\cap B_{\delta_{2}}(u)\backslash \{v\}$ . It is easy to see
that $[u, w]=u=[u, v]$ and so $w\in W_{\epsilon_{0}}^{u}(v)$ . This is a contradiction because $w\in$

$W_{\epsilon}^{s_{0}}(v)$ and $w\neq v$. Therefore $\tilde{M}^{s}$ is open in $\tilde{M}$.
Next we show that $\tilde{M}^{s}$ is closed in $\tilde{M}$. Let $\{u_{n}\}_{n=0}^{\infty}$ be a sequence of $\tilde{M}^{s}$

such that $u_{n}arrow u\in\tilde{M}$ as $narrow\infty$ . Since $u_{n}\in\tilde{M}^{s}$ , we have $\{u_{n}\}=W_{com}^{s}(u_{n})\supset$

$[u_{n}, B_{\delta_{2}}(u_{n})]$ for $n\geqq 0$ . To prove $u\in\tilde{M}^{s}$ , if $W_{com}^{s}(u)\neq\{u\}$ , then for a sufficiently
large $n>0$ such that $u_{n}\in B_{\delta_{2}}(u)$ there is a $w\in W_{com}^{s}(u)\cap B_{\delta_{2}}(u_{n})\backslash \{u\}$ . Thus
$w\in W_{\epsilon_{0}}^{s}(u)$ . On the other hand, $[u_{n}, w]=u_{n}=[u_{n}, u]$ (since $w,$ $u\in B_{\delta_{2}}(u_{n})$ ) and
so $w\in W_{\epsilon_{0}}^{u}(u)$ . This is a contradiction.

We denote by $W_{com}^{s}(\pi(u))$ the subset $\pi(W_{com}^{s}(u))$ of $M$ for $u\in\tilde{M}$.

LEMMA 9. If $f$ is not expanding, then $W_{\infty m}^{s}(x)\neq\{x\}$ for all $x\in M$.
PROOF. Let $\tilde{M}^{s}$ be as in Lemma 8. Then $\tilde{M}^{s}$ is open and closed in $\tilde{M}$.

$\ulcorner$ Thus if $\tilde{M}\neq\tilde{M}^{s}$ , then $\tilde{M}^{s}=\emptyset s^{}.nce\tilde{M}$ is connected. Therefore the conclusion
of the lemma is obtained. From now on we prove that $\tilde{M}^{s}=\tilde{M}$ can not happen.
To do this, assume that $\tilde{M}^{s}=\tilde{M}$. For $u\in\tilde{M},$ $N_{u}$ is open in $\tilde{M}$ by Lemma 7 and
so locally connected. Denote by $N_{u.com}$ the connected component of $u$ in $N_{u}$ .
$ThenwehaveU_{ll}^{l}=\pi(N_{u_{i}.com}).BytheassumptionwenotethatN_{u.com}=W_{com}^{u}(u)foru\in\tilde{M}thatN_{u.com}isopenin\tilde{M}.Thusthereisl>0suchthatM=$

Let $0<\nu’<c$ be a Lebesgue number for $\{\pi(N_{u_{i}.com})\}_{i=1}^{l}$ . Since $f$ is not expand-
ing, $W_{\nu’}^{s}(x)\neq\{x\}$ for some $x\in M$. So we choose $y\in W_{\nu’}^{s}(x)\backslash \{x\}$ . Then there
are $v,$ $w\in N_{u_{i},com}$ such that $\pi(v)=x$ and $\pi(w)=y$ . Therefore $y\in W_{c}^{u}(\{\pi g^{i}(v)\})$

$\cap W_{c}^{s}(x)=\{x\}$ , thus contradiction.

PROOF OF THEOREM 1. Let $f$ and $M$ be as in Theorem 1. For the proof
we assume that an Anosov map $f$ with constant $c$ is topologically stable but
not expanding. By Lemma 4 there is a periodic point $p_{0}\in M$ with period $n>0$.
As before let $\beta$ be a number such that $x\neq y$ and $f(x)=f(y)$ implies $d(x, y)\geqq\beta$ ,

and take $0< \epsilon<\min\{\beta/2, c\}$ such that $d(x, y)<\epsilon(x, y\in M)$ implies $d(f^{i}(x), f^{i}(y))$

$<c$ for $0\leqq i\leqq n$ . Let $\delta=\delta(\epsilon)>0$ be a number with property of topological
stability. For an n-cyclic $f$-orbit $\{p_{i}\}_{i=-\infty}^{\infty}$ , there are $p_{-1}\in f^{-1}(p_{0})\backslash \{p_{-1}\}$ and a
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neighborhood $U$ of $p_{-1}’$ such that diam $U<\beta/2$ , diam $f(U)<\delta,$ $\{p_{i}\}_{i=-\infty}^{\infty}\cap U=\emptyset$

and $f_{1U}$ is a homeomorphism. By Lemma 9 there is $q_{-1}\in W_{c}^{s}(p_{-1}’)\cap U\backslash \{p_{-1}’\}$ .
We consider a perturbation $g$ of $f$ such that $f=g$ on $M\backslash U$ and $g(q_{-1})=p_{0}$ .

It is clear that $d(f(x), g(x))<\delta(x\in M)$ . Thus there is a continuous map
$h:Marrow M$ which holds (i) and (ii) of Definition 6. Since $\{p_{l}\}_{i=-\infty}^{\infty}\cap U=\emptyset$ , it
follows that $f^{n}(h(p_{0}))=h(g^{n}(p_{0}))=h(p_{0})$ and so $\epsilon>d(p_{0}, h(p_{0}))=d(f^{nj}(p_{0})$ ,
$f^{nj}(h(p_{0})))$ for all $j\geqq 0$. Thus $h(p_{0})=p_{0}$ by Lemma 1, and so $h(q_{-1})=p_{-1}’$ (since

$f(h(q_{-1}))=h(g(q_{-1}))=h(p_{0}),$ $f(p_{-1}’)=p_{0}$ and $d(h(q_{-1}), p_{-1}’)<\beta)$ . Next take $q_{-2}\in$

$f^{-1}(q_{-1})\cap(M\backslash U)$ and put $p_{-2}=h(q_{-2})$ . Then $f(p_{-2}’)=h(q_{-1})=p_{-1}$ and $d(p_{-2}’, q_{-2})$

$<\epsilon$ . We can construct inductively $\{q_{-i}\}_{i=1}^{\infty},$ $\{p_{-i}’\}_{i\Rightarrow 1}^{\infty}\in S_{f}^{-}(M)$ such that $d(p_{-i}’, q_{-i})$

$<\epsilon$ for all $i\geqq 1$ . Since $q_{-1}\in W_{c}^{s}(p_{-1}’)$ , we must have $p_{-1}^{J}=q_{-1}$ by Lemma 1. This
is a contradiction.

It remains to check Corollary. Let $f$ : $Xarrow X$ be an expanding map of a
compact connected metric space $X$. Then by Lemma 2 of [14] we have $X=\Omega$ ,
and so (i) was proved.

Let $f$ and $M$ be as before. To see (ii), let $f$ be an Anosov map with con-
stant $c>0$. If $f$ is expanding, then $M=\Omega$ (by $(i)$ ). When $f$ is not expanding,
assume that card $\Omega$ is finite. To simplify the proof, let us put $\Omega=\{x, y\}(i.e$.
card $\Omega=2$ ) and $g=f^{2}$ . Thus $g(x)=x$ and $g(y)=y$ . Take and fix $0<\epsilon<$

min $\{c/2, d(x, y)/2\}$ . Let $\delta>0(\delta<\epsilon)$ be as in the definition of POTP of $g$ . By
Lemma 9 there is $x’\in W_{c}^{s}(x)\cap U_{\delta/2}(x)\backslash \{x\}$ . Fix $\{x_{i}’\}\in S_{g}^{-}(M)$ with $x_{0}’=x’$. Then
by Lemma 1, it is easy to see that there is an integer $I>0$ such that $d(x_{-I}’, x)$

$>c$ . Since $M$ is compact, there is a subsequence $\{x_{i_{j}}’\}_{f=0}^{\infty}\subset\{x_{i}’\}$ such that $x_{i_{j}}’arrow$

$x_{\infty}’\in\Omega(jarrow\infty)$ . If $x_{\infty}’=x$ , then there is a $k>I$ such that $d(x_{-k}’, x)<\delta/2$. Hence

$\{\cdots, x_{-1}’, x, x_{-k}’, x_{-k+1}’, \cdots x_{-1}, x, x_{-k}’, \}$

is a cyclic $\delta$-pseudo-orbit of $g$ . Since $g$ has POTP, there is $z\in U_{\text{\’{e}}}(x)$ such that
$g^{k+1}(z)=z$ and $d(g^{m}(z), x_{-k-1+m}’)<\epsilon$ for $1\leqq m\leqq k$ . Obviously $z=x$ . Since
$d(g^{k+1-I}(z), x_{-I})<c/2$ and $d(x_{-I}’, x)>c$ , we have $x\neq z$. But this can not happen
and so $x_{\infty}’=y$ . By the same reason, there are $y’\in W_{c}^{s}(y)\cap U_{\delta/2}(y)\backslash \{y\},$ $\{y_{l}’\}\in$

$S_{g}^{-}(M)$ with $y_{0}’=y’$ and $l>0$ such that $d(y_{-l}’, x)<\delta/2$ . Therefore

$\{\cdots, x_{-1}’, x, y_{-l}’, y_{-l+1}’, \cdots y_{-1}’, y, x_{-k}’, \cdots x_{-1}’, x, y_{-l}’, y_{-l+1}’, \}$

is a cyclic $\delta$-pseudo-orbit of $g$ . By using POTP of $g$ there is $w\in U_{\text{\’{e}}}(x)$ such
that $g^{l+k+2}(w)=w$ and $d(g^{l+1}(w), y)<\epsilon$ . Hence $d(x, w)<\epsilon$ implies $w=x$ and so
$g^{l+1}(w)=x$ . On the other hand, by the choice of $\epsilon>0$ we have $d(x, y)>\epsilon$ .
This is a contradiction, and so (ii) was proved.
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\S 3. Proof of Theorem 2.

As before let (X, d) be a compact metric space and $f:Xarrow X$ be a continuous
surjective map. Let $x,$ $y\in X$. For $a>0$ , we say that $x$ is a-related to $y$

(written $x^{a}\sim y$ ) if there are $\alpha$-pseudo-orbits of $f$ such that $x_{0}=x,$ $x_{1},$
$\cdots$ , $x_{k}=y$

and $y_{0}=y,$ $y_{1},$ $\cdots$ , $y_{l}=x(k, l\geqq 1)$ . If $x^{a}\sim y$ for every $a>0$ , then we say that $x$

is related to $y$ (written $x\sim y$ ). If $x$ is in $\Omega$ , then $x\sim f(x)$ (see [1, L. 1]). The
chain recurrent set of $f,$ $R$ , is $\{x\in X:x\sim x\}$ . Obviously $\Omega\subset R$ . If $f$ has POTP,
then $\Omega=R$.

Hereafter let $f$ be an Anosov map with constant $c$ . When $f$ is bijective,
the theorem is proved in [1]. Thus we prove the theorem to the case when
$f$ is not bijective. Note that $\overline{per(f)}=\Omega$ (by Lemma 4) and $f_{I\Omega}$ is Anosov (by

Lemma 3 and Proposition 2). Thus (i) was proved. The statements (ii) and
(iii) are proved by replacing the homeomorphism in the proof of [3, pp. 72-74]

and [1, Theorems 2 and 3] with our map. More precisely we state the proof
as follows.

Since $\Omega=R$ , we split $\Omega$ into the equivalence classes $B_{\lambda}$ under the relation
$\sim(i.e. \Omega=\bigcup_{\lambda}B_{\lambda})$ . Then each $B_{\lambda}$ is closed and $f(B_{\lambda})=B_{\lambda}$ (see [1, p. 330]).

LEMMA 10. Each $B_{\lambda}$ is open in $\Omega$.
PROOF. For $0<\epsilon<c$ , let $\delta>0$ be as in the definition of POTP of $f_{1\Omega}$. Then

for $p\in U_{\delta}’(B_{\lambda})\cap per(f)$ , there is $y\in B_{\lambda}$ such that $d(y, p)<\delta$ , where $U_{\delta}’(B_{\lambda})=$

$\{y\in\Omega:d(y, B_{\lambda})<\delta\}$ . Since $f_{1\Omega}$ has POTP, we have $W_{\epsilon}^{u}(\{p_{i}\})\cap W_{\epsilon}^{s}(y)\cap\Omega\neq\emptyset$

for a cyclic $f$-orbit $\{p_{i}\}_{i=0}^{\infty}$ with $p=p_{0}$ . Thus $p\in B_{\lambda}$ (since $x\sim f(x)$ for all
$x\in\Omega)$ , and so $B_{\lambda}$ is open in $\Omega$ (see [1, L. 4]).

Since $\Omega$ is compact and each $B_{\lambda}$ is open in $\Omega$ , there is a $k>0$ such that
$\Omega=\bigcup_{i=1}^{k}B_{i}$ . It is easily checked that $f(B_{i})=B_{i}$ and $f_{1B_{i}}$ : $B_{i}arrow B_{i}$ is topologically
transitive (see [1, L. 5]). We remark that $f_{1B_{i}}$ has POTP since $B_{i}$ is open and
closed in $\Omega$. Fix $B_{i}$ and put

$V^{s}(x)=$ { $y\in B_{i}$ : $d(f^{n}(x),$ $f^{n}(y))arrow 0$ as $narrow\infty$ }

for $x\in B_{i}$ . Notice that $f(V^{s}(x))=V^{s}(f(x))$ .
LEMMA 11. Put $C_{p}=\overline{V^{s}(p}$) for $P\in per(f)\cap B_{i}$ , then $C_{p}$ is $oPen$ in $B_{i}$ .
PROOF. Let $\epsilon>0$ and $\delta>0$ be as in Lemma 10. We assume that $f^{m}(p)=p$

for some $m>0$. Take and fix $q\in U_{\delta}’(\overline{V^{s}(p)})\cap B_{i}\cap per(f)$ with $f^{n}(q)=q$ for some
$n>0$ . Then there is $x\in V^{S}(p)$ such that $d(x, q)<\delta$ . Hence for an n-cyclic f-
orbit $\{q_{i}\}_{i=0}^{-\infty}(q_{0}=q)$ we have $W_{\epsilon}^{u}(\{q_{i}\})\cap W_{\text{\’{e}}}^{s}(x)\neq\emptyset$ . Since $\{q_{i}\}$ is cyclic, $q\in\overline{V^{s}(p).}$

Therefore $C_{p}$ is open in $B_{i}$ .
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LEMMA 12. If $q\in C_{p}\cap per(f)$ , then $C_{p}=C_{q}$ .
PROOF. We assume that $f(p)=p$ and $f(q)=q$. For $r>0$ , let $N_{r}>0$ be as

in Lemma 2. Fix $0<\epsilon\leqq c$ and let $\delta>0$ be as in the definition of POTP of $f_{1B_{i}}$ .
For every $x\in V^{s}(q)$ there is $J_{r}\geqq N_{r}$ such that $d(q, f^{J_{r}}(x))<\delta/2$ . Then for $y\in$

$U_{\delta/2}’(q)\cap V^{s}(p)\cap B_{i}$ we have

$W_{\epsilon}^{u}(\{\cdots, x, f(x), \cdots f^{J_{r}}(x)\})\cap W_{\epsilon}^{s}(y)\cap B_{i}\neq\emptyset$ .
Since $r>0$ is arbitrary, $x\in\overline{V^{s}(p)};i$ . $e$ . $C_{p}\subset C_{q}$. On the other hand, by [1, L. 7]

we have $p\in C_{q}$ . Therefore $C_{p}=C_{q}$.

Let $C_{p}$ be as in Lemma 11. Since $f^{m}(p)=p$ for some $m>0$, we have $C_{fm(p)}$

$=C_{p}$ . If $a>0$ is the smallest integer such that $C_{f^{a}(p)}=C_{p}$ , then $f^{i}(C_{p})\cap f^{j}(C_{p})$

$=\emptyset$ for $0\leqq i\neq j\leqq a-1$ . For, if $f^{i^{r}}(C_{p})\cap f^{j’}(C_{p})\neq\emptyset$ for some $0\leqq i’<j’\leqq a-1$ ,

then $f^{a-j^{r}}(f^{i’}(C_{p})\cap f^{j’}(C_{p}))\subset f^{a-j^{r}+i’}(C_{p})\cap C_{p}\subset C_{f^{a-j’+i’}(p)}\cap C_{p}$ and have $C_{p}=$

$C_{J^{a-j’+i’}c_{p})}$ (by Lemmas 11 and 12). This is inconsistent with the choice of $a$ .
Thus we have $B_{i}=C_{p}\cup f(C_{p})\cup\cdots\cup f^{a-1}(C_{p})$ .

LEMMA 13. A map $f^{a}$ : $C_{p}arrow C_{p}$ is topologically mixing.

PROOF. Let $U,$ $V$ be nonempty open subsets of $C_{p}$ . Then by Lemma 11
there is $q\in V\cap per(f)$ with $f^{n}(q)=q$ . For $\epsilon>0$ with $U_{\epsilon}’(q)\subset V$ , let $0<\delta<\epsilon$ be a
number such that $d(f^{aj}(x), f^{aj}(y))<\epsilon$ for $1\leqq$ ] $\leqq n-1$ whenever $d(x, y)<\delta$

$(x, y\in C_{p})$ . According to Lemma 11, for every $1\leqq j\leqq n-1$ there are $z_{j}\in$

$U\cap V^{s}(f^{aj}(q))$ and $N_{j}>0$ such that $t\geqq N_{j}$ implies $d(f^{ant}(z_{j}), f^{ant}(q))<\delta$ . Hence
$f^{a(nt+n-j)}(U)\cap V\neq\emptyset$ for every $t\geqq N_{j}$ and $0\leqq j\leqq n-1$ . Put $N= \max\{N_{j}$ : $0\leqq$ ]

$\leqq n-1\}$ . Then $s\geqq nN$ implies $f^{as}(U)\cap V\neq\emptyset$ .
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