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Introduction.

Minimal surfaces with constant curvature in real space forms have been
classified completely (cf. [5], [9], [2]). A next interesting problem is to classify
minimal surfaces with constant curvature in complex space forms. The pur-
pose of this peper is to classify minimal 2-spheres with constant curvature in
complex projective spaces.

Now let S%*c) be a 2-dimensional sphere with constant curvature ¢ and P,(C)
an n-dimensional complex projective space with the Fubini-Study metric of con-
stant holomorphic sectional curvature 1. There are two typical classes of min-
imal isometric immersions of S%¢) into P,{C).

One is a class of holomorphic isometric imbeddings of P,(C) into P,(C)

given by Calabi [4];
Gn : PA(C) = S*(1/n) ———> P,(C)
(20, 2;) — > (VW /(U n—0) DzlzT im0,

where (z,, z;) is the homogeneous coordinate system of Py (C). ¢, is called the
n-th Veronese imbedding of P,(C).

The other is a class of totally real minimal isometric immersions obtained
by composing a Borivka sphere S*1/2k(k-+1))—S%*#(1/4) (cf. [1]), a natural
covering S?¥(1/4)—P,,(R) and a totally real totally geodesic imbedding P,,(R)
— P (C);

tr 2 SAL/2k(R+1)) —> Ppu(C).

In this paper we give a family of minimal isometric immersions of 2-spheres
with constant curvature into P,(C) which are not always holomorphic or totally
real, using the theory of unitary representations of SU(2). For n=3, we get
examples of minimal 2-spheres with constant curvature in P,(C) which are
neither holomorphic nor totally real. We will get the following :

THEOREM 1. For any nonnegative integers n and k with 0=<k=n, there exists
an SUQR)-equivariant minimal isometric immersion
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Gnp 2 SHe) —> Pu(C),

where ¢=1/2k(n—Fk)+n) and ¢y, +(S¥c)) is not contained in any totally geodesic
complex submanifold of P,(C). Furthermore {(n, r} satisfy the following state-
ments:

(1) If k=0 or k=n, then ¢y, is holomorphic (with respect to a suitable fixed
complex structure of S*c)) and ¢, 1S congruent to ¢n.

(2) If nis even and k=n/2, then ¢y, , is totally real and ¢, is congruent to py.
() If n and k are otherwise (necessarily, n=3), then ¢, is neither holomorphic
nor totally real.

Moreover we will show the following rigidity theorem, using the twistor

construction of harmonic maps of a 2-sphere into P,(C) (cf. [3], [6], [8], [7]
[117].

THEOREM 2. Let ¢ : S¥c)—P,(C) be a minimal isometric immersion and as-
sume that ¢(S*(c)) is not contained in any totally geodesic complex submanifold in
P,(C). Then there exists an integer k with 0=k=<n such that c is equal to
1/Qk(n—Fk)+n), and ¢ is congruent to ¢, s.

Recently Professor Kenmotsu showed that a minimal surface with constant
curvature in P,(C) is holomorphic or totally real. Dr. N. Ejiri (Tokyo Metro-

politan Univ.) also found independently examples in in a manner
different from ours.

The authors wish to thank Professor Kenmotsu and Professor Urakawa for
their valuable suggestions and constant encouragement.

1. Preliminaries.

We begin by giving a description of the geometry of P,(C). For X, Y&
C"*! the usual Hermitian inner pruduct is defined by

(1-1) (X; Y):Eaxaya; X:(xO’ "';xn); YZ(yO) "',yn),

where we employ the index ranges 0=a, 8, --=n, 1=7, j, ---=n. The unitary
group U(n-+1) is the group of all linear transformations on C™*! leaving the
Hermitian product invariant. P,(C) is the orbit space of C™*'—{0} under
the action of the group C*=C—{0}; Z—2AZ (A=C*). Let n:C""'—{0}—P,(C)
be the natural projection. For a point x&P,(C) a vector Zx~*(x) is called a
homogeneous coordinate vector of x. We put Z,=Z/(Z, Z)* so that (Z,, Z,)
=1. The Fubini-Study metric on P,(C) with constant holomorphic sectional
curvature ¢ is defined by

(1.2) ds* = (4/¢)(dZ,, dZ,)—(dZy, Z,)(Z,, dZ,)) .
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The Kaehler form of the Fubini-Study metric is given by
w=—@/c)v—=10d5log|Z|®.

Now let Z, be a unitary frame in C™*' so that (Z,, Zg)=0d,5. In the
bundle of all unitary frames on C"*' we have

(1.3) dZ, = X087,

where 08=—05=(dZ,, Zp) is a 1-form. The 05 are the Maurer-Cartan forms
of the group U(n-+1) and so satisfy the Maurer-Cartan structure equations

(L.4) 405 = —3,08 A6
By and the Fubini-Study metric can be written as
ds? = (4/¢)3,0% .

If we set ¢*=(2/4/¢)0% and ¢i=0:—0%0}, then these forms satisfy the structure
equations
dp' = —SHing’ Pi+ai=0
and
dgi = —ZiNg5+T5,

where Ui=0iA0+0:2,05A05k Therefore ¢% are the connection forms of the
Fubini-Study metric and ¥} are its curvature forms.

Let M be a Riemann surface. A fu/l map of M into P,(C) is one whose
image lies in no proper totally geodesic complex submanifold of P,(C). We
should note that a map of a compact Riemann surface of genus zero into a
Riemannian manifold is harmonic if and only if it is a branched minimal im-
mersion.

Next we review results on irreducible unitary representations of the 3-
dimensional special unitary group SU(2).

SU(2) is defined by

su@={e=(_; 2) a,beC, |al*+]b*=1}.

The Lie algebra su(2) of SU(2) is given by
V=1x y
-y —+/—1x
We define a basis {e;, &, &5} of 8u(2) by
V=1 0 0 1 0 V=1
el—< 0 _\/_1), 82_(—1 0) and 83—( — )

Let V, be an (n-+1)-dimensional complex vector space of all complex homo-

8u(2) = {X:( ); x,y, v ER, y=y’+\/——1y”}-
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geneous polynomials of degree n with respect to z,, z;,. We define a Hermitian
inner product (,) on V, such that

{ugw = 21/ VR (n—k)1 ; 0=<k=n}

is a unitary basis for V,. We define a real inner product by {,>=Re(,). A
unitary representation p, of SU(2) on V, is defined by

Pn(g)f(zo; z) = f(azo—BZh bzy+az,)

for geSU2) and f=V,. Then the action of 8u(2) on V, is described as fol-
lows ;

(L.5) 0a(X)(u™) = (i—(n—i))xv/—1 uf®
—Viln—=i+D) Ju+V G D =) yui

for 0=Z/=<7 and any element X of 3u(2).
Let D(SU(2)) be the set of all inequivalent irreducible unitary representa-
tions of SU(2). Then it is well known that D(SU(2))={(V,, p.); n=0,1,2, -+-}.
We denote by (rV,, ro») an orthogonal representation of SU(2) induced by
the scalar restriction of V,. Then the following proposition is well known:

PrOPOSITION 1.1. (1) If n is odd, then (rVa, rPn) is irreducible.

(2) If n is even, then we have an orthogonal direct sum pVa,=W,++~—1W,,
where n=2/ and W, is the gp.(SU(2))-invariant irreducible real subspace of rVy,
spanned by

(uf, (V=D i+ uf), (VDR —ul) 5 1551,

Put T=/{exp(te;)SU(2) ; te R} and we have S*=SU(2)/T. We identify
the tangent space at {T}<S*=SU(2)/T with a subspace spang{e,, &¢;} of su(2).
We fix a complex structure on S? so that e,-++/—1e; is a vector of type (1, 0).
Note that for any SU(2)-invariant Riemannian metric g on S? there is a posi-
tive real number a such that {ae., aes} is an orthonormal basis with respect to
g and (S?%, g) has the constant curvature 4aZ

2. Construction of homogeneous minimal 2-spheres in P,(C).

Let (Va, pn) be an irreducible unitary representation of SU(2). We define
the usual complex structure of V, by Jw)=+~'—1v, for veV,. Put Sr+i=
{veV, ; {v, v»)=4} and define the usual S'-action on S?**! by exp(~/—18)v, for
exp(vV—16)eS* and veS*™+'. Let m:S***'-P,(C) be the natural Riemannian
submersion. We also denote by J the complex structure of P,(C). The action
of p,(SU2)) on S***! induces the action on P,(C) through =.
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First we determine all orbits of SU(2) on P,(C) which are 2-dimensional
spheres immersed in P,(C).

LEMMA 2.1. An orbit M of SU@2) on P,(C) is a 2-dimensional sphere im-

mersed in P,(C) if and only if M=n(p,.(SU2))2ui™) for some integer k with
0=k=n.

PROOF Assume that M==(p,(SU@2))w) for some weS*™*! and M is a 2-
dimensional sphere immersed in P,(C). Put N=p,(SU(2))w. Then the dimen-
sion of N is 2 or 3. Suppose that the dimension of N is 3. Since z~ (M) is a
3-dimensional compact submanifold of S?*™+!, we have N=="%M). Hence N is
invariant by the S®-action. Thus there is an element X of 3u(2) such that
pa(X)w=+—1w. Since we can write X=Ad(g)(xe,) for some element g SU(2)
and a nonzero real number x, we have p,(xe,)v=+'—1v, where v=p,(g"")w.
We put v=23"w'u{®, where v'eC and X7,|v¢|?=1. By we get

pn(xe)y = 2x i —(n—i)V—1uf™ =+/=1v.

Hence we have v*{(2i—n)x—1}=0 for /=0, 1, -+, n. Since some v* with k+#n/2
is nonzero, we have x=1/(2k—n) and v*=0 for 7+ k. Hence v=2v*uf{™, where
[v¥|=1. Thus we obtain M=n(p,(SU2))2ui™). Next suppose that the dimen-
sion of N is 2. Then there is an element X of 8u(2) such that p,(X)w=0. By
the argument similar to the former case we may put X=xe; for some nonzero
real number x. Write w=23"~,wiu{™, where w'eC and X7, w?|*=1. By

we get
pr(X)w = 28 B i—(n—i))vV'—Tuf® = 0.

Hence wi(2i—n)=0 for 7=0,1, ---, n. Thus n is even. Put k=n/2, and we
have w=2w*u**. Hence |w*|=1. So we obtain M=nr(p,(SU(2))2uf**).

Conversely suppose that v=2w*u{eS*"*' and M=r(p.(SU2)Ww).
gives that

2.1) (X)W = 2k—n)xv/—1v
+2y" (—VR(n—k+DufM+~(k+1)n—k)uin
+2y"(V k(n— E+DV—=1um+vV+1Dn—EBv—1u®

k+1/

for any element Xe8u(2). This implies immediately that M is a 2-dimensional
sphere immersed in P,(C). g.e.d.

Now for any nonnegative integers n and k2 with 0<k=<n we denote by
&, » the SU(2)-equivariant isometric immersion of a Riemann sphere S*(¢) with
constant curvature ¢ into P,(C) given by the orbit w(0.(SU(2))2ui™);
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¢n,x  S*c) = SUQ2)/T — P,(C)
W W
gT —— m(0p.(2)2ui™).

Here ¢ depends on n and 2. We show the following.

PROPOSITION 2.2. (1) ¢n, 5 25 full.

(2) ¢ s equal to 1/2k(n—Fk)+n).

(3) a.r ts a minimal immersion.

(4) (a) If k=0 (resp. k=n), then ¢, is holomorphic (vesp. anti-holomorphic).
(b) If n is even and k=n/2, then s, s is totally real and sy, x(S*(c)) is contained
in a totally geodesic totally real submanifold P,,(R) of Py(C). (c) If n and k are
otherwise, then ¢, is neither holomorphic, anti-holomorphic nor totally real.

(5) </’n k(SZ(C>):¢n, n—k(SZ(c))-

ProOOF. From the irreducibility of (V,, p,), (1) is clear. We put v=2u™.
By we have

(2.2) (X, po(X W) = Rk—n)x*+4{2k(n—Fk)+n}(y"?+3"%),
for any element X of gu(2). We define two elements e, and ¢, of 3u(2) by
(2.3) e; = (1/@2V2k(n—Ek)+n)e;, for i=2, 3.

Then by (2.2) {zm«(on(e2)v), wx(pn(es)v)} is an orthonormal basis at zx(v) on
G, 1(S¥e))=n(0.(SU2))v). Hence we get (2). By and (2.3) simple com-
putations give

(2.4)  4pale)pnlev = —v+2/2k(n—k)+n)
XAV (k—=Dk(n—k+D)(n—k+2)ui®+~(k+1)(k+2)(n—k—D)(n—k)uil},

and

(2.5)  4pales)pnlesv = —v—2/2k(n—k)+n)
X{V(k—Dk(n—k+1D(n—k+2)ui2}+~/(k+1)(k+2)(n—k+1)(n—E)uin}.

From (2.4) and (2.5) we get

0n(€2)pr(e)v+ pr(es)pnles)v = (—1/2)v.

Hence the mean curvature vector of #(p,(SU(2))2u{™) in P,(C) vanishes. Thus
we get (3). (4) is easily showed from [2.I) When m is even and k=n/2, by
(2) of Proposition 1.1 the orbit p,,(SU(2))v is contained in W,. Hence Dar, 1 (S%(c))
is contained in a totally geodesic totally real submanifold P,,(R) of P,,(C). But
P21, 1(S*(c)) is not contained in any totally geodesic submanifold of P,,(R) be-
cause of the irreducibility of W,. By simple computations we have
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i (C R

This implies (5). qg.e.d.

By the rigidity theorems of Calabi[4], [5], we have ¢, o=¢» and ¢y, »=pts.
Thus we obtain [Theorem 1l

REMARK 2.3. By simple computations the Brouwer degree and the square
length ¢ of the second fundamental form of ¢, , are given as follows:

(i) deg ¢, r=n—2k,

(i) o=1/24+{n(Bn—4)—20k(n—FR)}/{22k(n—Fk)+n)}.

REMARK 2.4. In Kenmotsu showed the following :
Let ¢: M*—P,(C) be a minimal isometric immersion of a 2-dimensional compact
Riemannian manifold M? into P,(C). If the square length ¢ of the second
fundamental form of ¢ satisfies ¢=<1/2, then (1) M?* is homeomorphic to a 2-
sphere and ¢ is superminimal, or (2) M* is a flat torus and is totally real.

For any (n, k) with (5n—+/10n(n+2))/10=<k=(5n++/10n(n+2))/10, ¢, &
satisfies ¢=<1/2.

3. Twistor construction of harmonic maps into P,(C).

In this section we review the classification theorem of harmonic maps of a
Riemann sphere M, into P,(C).

THEOREM 3.1 (Burns [3], Din-Zakrzewski [6], Glaser-Stora [8]). There is
a bijective correspondence between full harmonic maps ¢ : My—P,(C) and pairs
(f, v), where f: M,—P,(C) is a full holomorphic map and r is an integer with
0=r=n.

(f, r) is called the directrix of ¢.

We outline the construction of harmonic maps from holomorphic maps, fol-
lowing the papers of Eells-Wood and Wolfson [1I].

Let f: My—P,(C) be a full holomorphic map. Choose a coordinate neigh-
borhood (U, {) in M, In terms of homogeneous coordinates on P,(C), f is
given locally by a holomorphic vector valued function Z({)=(z,({), -+, z(Q).
The fullness of f means that

3.1) ZNOZ QN - N(O"Z/3L™) + 0

except perhaps at isolated points. As Z and its derivatives are all holomorphic
functions of {, any zeros of [3.I)] are removable. This enables us to define a
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field of unitary frames along f which is intimately related to the osculating
spaces of f.

Set Z,=Z/(Z, Z)"* and choose Z,: UCM,—C"**— {0} such that {Z,(x), -,
Z,(x)} forms a unitary basis for the vector space spanned by Z(x), (0Z/0)(x),
-+, (00 Z /0% (x) (the [-th osculating space of f at x) for each /=1, ---, n and
xeU. {Z,, -, Z,} is a field of unitary frames along f which satisfies

dZ,= 0820+0(1)ZI s
(3.2) dZ,=0iZ,\+0:Z,+0"Z,,,, 1sisn—1,
dZn = 677:_127;—1’*‘0?»211 ’

where 6! is a form of type (1, 0) for 0=/<n—1 and @i ! is a form of type
0, 1) for 1=<i<n.

For an integer » with 0=r=n, let G,+,(C™*") be the Grassmann manifold
of all (»+1)-dimensional complex subspaces of C**!. By the Pliicker imbedding
G,+,(C™?Y) is realized as a complex submanifold in the complex projective space
P(A™C™*?Y)., We define f,:U—G,+(C™Y) by fAx)=[Z,A - NZ,] for x€U,
where [Z,A -+ AZ.] denotes an (r+1)-dimensional complex subspace of C™*!
spanned by Z,, ---, Z,. f. extends uniquely to a holomorphic map of A, into
G.+(C™*1) and is called the r-th associated curve of f. We put

Hopn-r = {(V, W)EGA(C™ )X G11s(C™Y) ; VCEW .

Here G.(C*"*)X G, (C™*') has the Kaehler structure induced by P(ATC™*!) %
P(A™C™?), and P(A™C™**) and P(A™C™*') are equipped with the Fubini-Study
metrics of the same constant holomorphic sectional curvature. 4, ,., is a flag
manifold U(n+1)/Ur)xU(1)xU(n—r) and we have a Riemannian submersion
Trt Iy oy Pr(C)=Un+1)/U(n)x U(1).

Now we fix an integer » with 0=r=<n. We define a map @,: M-, n-r
by @(x)=(fr-1(x), f(x)) for x€M, Then @, is holomorphic with respect to
the Kaehler structure on %, ,-, induced from G, (C**)X G, (C™Y), and @, is
horizontal with respect to the Riemannian submersion z,: %, ,-—P,(C). Thus
¢»=m.@, is a full harmonic map. ¢, is an extension of a map nZ,: U—P,(C).

Conversely every full harmonic map of M, into P,(C) is manufactured in
the above manner from a unique pair (f, 7).

Let {¢,,x} be a family of full minimal immersions of S* into P,(C) con-
structed in Section 2. Then we have the following:

PROPOSITION 3.2. The directrix of ¢n, 5 is (Pn, k).
PROOF. By we have
(3.3) Pnles—V —1e)*v € C-uf®
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for each integer £ with 0<k=<n. Since m4(o.(e.—+ —1es)v) is a vector of type
(1, 0) with respect to the complex structure defined on S%*c¢), from [3.3) it is
easy to see that ¢,=¢, , for f=¢,. g.e.d.

4. Rigidity.

In this section we show that the minimal 2-spheres {¢,,;} constructed in
Section 2 exhaust all minimal 2-spheres with constant curvature in P,(C), using
the twistor construction of harmonic maps explained in Section 3.

From (3.2) it follows that

@D doit = —(0i—0HA0FT,
(4.2) d0f = — i NG — I AGI,
for 0=:/<n, where 03;'=607=0.

PROPOSITION 4.1. Let ¢ be a full minimal isometric immersion of a 2-sphere
with constant curvature into Pn(C) and (f, r) the directrix of ¢. Then f is con-
gruent to ¢n.

Combining [Theorem 3.1, Propositions and 41, we obtain
We use the following lemma to prove [Proposition 4.1l

LEMMA 4.2. Let f: P,(C)—P,(C) and h: P,(C)—P,(C) be two holomorphic
maps, where P,(C) and P,(C) are equipped with the Fubini-Study metrics of the
same constant holomorphic sectional curvature ¢, and define a holomorphic map
F=(f, h): P,(C)—>P(C)X Pn(C) by F(x)=(f(x), h{x)). If the metric on P,(C)
induced by F is a Kaehler metric of constant holomorphic sectional curvature, then
the metrics induced by f and h are Kaehler metrics of constant holomorphic sec-
tional curvature, and they are homothetic.

PROOF OF PROPOSITION 4.1. We use the same notation as in Section 3.
Suppose that ¢=¢, is a full minimal isometric immersion of a 2-sphere S* with
constant curvature into P,(C). We note that the metric induced by ¢, is con-
gruent to the metric induced by @,. By and (3.2), the metric on S* induced
by fi:S*> G (C*HCTP (A C™?Y) is given by

4.3) (4/¢)0t+6t+,
Hence the metric induced by ¢ is given by
(4.4) (4/c)(05-107-14077107+1) .

By virtue of 07_.07_, and 07+47*! are metrics of constant curvature
and are homothetic. From the connection form of the Kaehler metric
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0r_.07_, is 7-1—@7. By (4.2) the curvature form of the Kaehler metric 67_,65_;
becomes

4.5) d(07=1—07) = OTANG 3 —207 NG+ 07 NGFH .

Since the Kaehler metric 67_,07_, has constant curvature, is a constant
multiple of 87_;A07_,. Hence 8Z}A67=% is homothetic to 87_;A67_,. Since the
metric on S* induced by ¢,_, is (4/c)(07=30r=3+65-.07-,), it is a metric of con-
stant curvature. By the induction we conclude that the metric induced by
f=¢, is a metric of constant curvature. By the rigidity theorem of Calabi for
holomorphic isometric imbeddings, f is congruent to the n-th Veronese imbed-
ding ¢,. g.e.d.

PrROOF oF LEMMA 4.2. In terms of homogeneous coordinates, we express f
and h as f(2)=(fo(2), -, fu(2)) and h(z)=(h(2), ---, hn(2)), Where f; (=0, -, )
(resp. h; (=0, ---, m)) are homogeneous polynomials of degree d, (resp. d,)
with respect to z=(z,, -+, z,), which have no common zeros. The Kaehler
form induced by f (resp. h) is given by

—(4/c)v/—105log| f|1*?  (resp. —(4/c)v/—10d log|h|?).

Let £ be the composite of F=( f, h): P,(C)»P,(C) X P,(C) and the Segre im-
bedding P,(C)X Pn(C)—=Pim+1+m(C) ;

F P, (C)—> Pins1sm(C)

z —> (fi(2)h(2))s, ;-

Then by the assumption we have 93 log| F|2=acdd log|z|* for some ¢>0. On
the other hand, let @ and o be the generators of H*(P,m+1+m(C);Z) and
H¥P,(C); Z), respectively. Then we have F *p=(d,+d,)w. Hence we have
ac=d,+d,. Thus we get 93 log(|F|2/|z|2%9)=0. Since log(|F|2/|z|?*) is a
harmonic function on P,(C), it is constant. Hence we have lﬁ [2=b|z|%*¢ for
some b>0. Thus we have | f|?| h|2=b|z|?*°. Put z;=x;++—1y; (=0,1, ---, n).
Since |z|? is a real irreducible polynomial with respect to x; and y; we have
|fl2=a,]z|?% and |h|*=a,|z|*¢ for some a,;, a,>0. Therefore we get
00 log| f|*=00 loga,|z|?%1=d,0d log|z|? and dd log|h|*=d,0d log|z|* g.e.d.
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