
J. Math. Soc. Japan
Vol. 39, No. 3, 1987

Minimal 2-spheres with constant curvature in $P_{n}(C)$

By Shigetoshi BANDO and Yoshihiro OHNITA

(Received Dec. 16, 1985)

Introduction.

Minimal surfaces with constant curvature in real space forms have been
classified completely (cf. [5], [9], [2]). A next interesting problem is to classify
minimal surfaces with constant curvature in complex space forms. The pur-
pose of this peper is to classify minimal 2-spheres with constant curvature in
complex projective spaces.

Now let $S^{2}(c)$ be a 2-dimensional sphere with constant curvature $c$ and $P_{n}(C)$

an n-dimensional complex projective space with the Fubini-Study metric of con-
stant holomorphic sectional curvature 1. There are two typical classes of min-
imal isometric immersions of $S^{2}(c)$ into $P_{n}(C)$ .

One is a class of holomorphic isometric imbeddings of $P_{1}(C)$ into $P_{n}(C)$

given by Calabi [4];

$\psi_{n}$ : $P_{1}(C)=S^{2}(1/n)arrow P_{n}(C)$

$(z_{0}, z_{1})arrow(\sqrt{n!}/(l!(n-l)!)z_{0}^{l}z_{1}^{n- l})_{l=0\ldots..n}$ ,

where $(z_{0}, z_{1})$ is the homogeneous coordinate system of $P_{1}(C)$ . $\psi_{n}$ is called the
n-th Veronese imbedding of $P_{1}(C)$ .

The other is a class of totally real minimal isometric immersions obtained
by composing a Boruvka sphere $S^{2}(1/2k(k+1))arrow S^{2k}(1/4)$ (cf. [1]), a natural
covering $S^{2k}(1/4)arrow P_{2k}(R)$ and a totally real totally geodesic imbedding $P_{2k}(R)$

$arrow P_{2k}(C)$ ;
$\mu_{k}$ : $S^{2}(1/2k(k+1))arrow P_{2k}(C)$ .

In this Paper we give a family of minimal isometric immersions of 2-spheres
with constant curvature into $P_{n}(C)$ which are not always holomorphic or totally
real, using the theory of unitary representations of $SU(2)$ . For $n\geqq 3$ , we get
examples of minimal 2-spheres with constant curvature in $P_{n}(C)$ which are
neither holomorphic nor totally real. We will get the following:

THEOREM 1. For any nonnegative integers $n$ and $k$ with $0\leqq k\leqq n$ , there exists
an $SU(2)$-equivariant minimal isometric immerston
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$\psi_{n.k}$ : $S^{2}(c)arrow P_{n}(C)$ ,

where $c=1/(2k(n-k)+n)$ and $\psi_{n,k}(S^{2}(c))$ is not contained in any totally geodesic
complex submanifold of $P_{n}(C)$ . Furthermore $\{\psi_{n.k}\}$ satisfy the following state-
ments:
(1) If $k=0$ or $k=n$ , then $\psi_{n.k}$ is holomorphec (wzth respect to a suitable fixed
complex structure of $S^{2}(c))$ and $\psi_{n.k}$ is congruent to $\psi_{n}$ .
(2) If $n$ is even and $k=n/2$ , then $\psi_{n,k}$ is totally real and $\psi_{n.k}$ is congruent to $\mu_{k}$ .
(3) If $n$ and $k$ are otherwise (necessarily, $n\geqq 3$), then $\psi_{n,k}$ is neither holomorphic
nor totally real.

Moreover we will show the following rigidity theorem, using the twistor
construction of harmonic maps of a 2-sphere into $P_{n}(C)$ (cf. [3], [6], [8], [7],
[11]).

THEOREM 2. Let $\psi$ : $S^{2}(c)arrow P_{n}(C)$ be a minimal isometric immersion and as-
sume that $\psi(S^{2}(c))$ is not contained in any totally geodestc complex submamfold in
$P_{n}(C)$ . Then there exzsts an integer $k$ with $0\leqq k\leqq n$ such that $c$ is equal to
$1/(2k(n-k)+n)$ , and $\psi$ is congruent to $\psi_{n.k}$ .

Recently Professor Kenmotsu showed that a minimal surface with constant
curvature in $P_{2}(C)$ is holomorphic or totally real. Dr. N. Ejiri (Tokyo Metro-
politan Univ.) also found independently examples in Theorem 1 in a manner
different from ours.

The authors wish to thank Professor Kenmotsu and Professor Urakawa for
their valuable suggestions and constant encouragement.

1. Preliminaries.

We begin by giving a description of the geometry of $P_{n}(C)$ . For $X,$ $Y\in$

$C^{n+1}$ the usual Hermitian inner pruduct is defined by

(1.1) (X, $Y$ ) $=\Sigma_{\alpha}x_{a}\overline{y}_{\alpha}$ , $X=(x_{0}, \cdots, x_{n})$ , $Y=(y_{0}, \cdots, y_{n})$ ,

where we employ the index ranges $0\leqq\alpha,$ $\beta,$ $\leqq n,$ $1\leqq i,$ $j,$ $\cdots\leqq n$ . The unitary
group $U(n+1)$ is the group of all linear transformations on $C^{n+1}$ leaving the
Hermitian product (1.1) invariant. $P_{n}(C)$ is the orbit space of $C^{n+1}-\{0\}$ under
the action of the group $C^{*}=C-\{0\};Zarrow\lambda Z(\lambda\in C^{*})$ . Let $\pi;C^{n+1}-\{0\}arrow P_{n}(C)$

be the natural projection. For a point $x\in P_{n}(C)$ a vector $Z\in\pi^{-1}(x)$ is called a
homogeneous coordinate vector of $x$ . We put $Z_{0}=Z/(Z, Z)^{1/2}$ so that $(Z_{0}, Z_{0})$

$=1$ . The Fubini-Study metric on $P_{n}(C)$ with constant holomorphic sectional
curvature $c$ is defined by

(1.2) $ds^{2}=(4/c)((dZ_{0}, dZ_{0})-(dZ_{0}, Z_{0})(Z_{0}, dZ_{0}))$ .
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The Kaehler form of the Fubini-Study metric (1.2) is given by

$\omega=-(4/c)\sqrt{-1}\partial\partial\log|Z|^{2}$ .
Now let $Z_{\alpha}$ be a unitary frame in $C^{n+1}$ so that $(Z_{\alpha}, Z_{\beta})=\delta_{\alpha\beta}$ . In the

bundle of all unitary frames on $C^{n+1}$ we have

(1.3) $dZ_{\alpha}=\Sigma_{\beta}\theta_{\alpha}^{\beta}Z_{\beta}$ ,

where $\theta_{\alpha}^{\beta}=-\overline{\theta}_{\beta}^{\alpha}=(dZ_{a}, Z_{\beta})$ is a l-form. The $\theta_{\alpha}^{\beta}$ are the Maurer-Cartan forms
of the group $U(n+1)$ and so satisfy the Maurer-Cartan structure equations

(1.4) $d\theta\beta=-\Sigma_{\gamma}\theta_{\gamma}^{\alpha}\wedge\theta_{\beta}^{\gamma}$ .
By (1.2) and (1.3) the Fubini-Study metric can be written as

$ds^{2}=(4/c)\Sigma_{i}\theta_{0}^{i}\overline{\theta}_{0}^{t}$ .
If we set $\phi^{i}=(2/\sqrt{c})\theta_{0}^{i}$ and $\psi_{j}^{i}=\theta_{j}^{i}-\delta_{j}^{i}\theta_{0}^{0}$ , then these forms satisfy the structure
equations

$d\phi^{i}=-\Sigma_{j}\psi_{j}^{i}\Lambda\phi^{j}$ , $\psi_{j}^{i}+\overline{\psi}_{i}^{j}=0$

and
$d\psi_{j}^{i}=-\Sigma_{k}\psi_{k}^{i}\wedge\psi_{j}^{k}+\Psi_{j}^{i}$ ,

where $\Psi_{j}^{i}=\theta_{0}^{i}\wedge\overline{\theta}_{0}^{j}+\delta_{j}^{i}\sum_{k}\theta_{0}^{k}\wedge\overline{\theta}_{0}^{k}$ . Therefore $\psi_{j}^{i}$ are the connection forms of the
Fubini-Study metric and $\Psi_{j}^{i}$ are its curvature forms.

Let $M$ be a Riemann surface. A full map of $M$ into $P_{n}(C)$ is one whose
image lies in no proper totally geodesic complex submanifold of $P_{n}(C)$ . We
should note that a map of a compact Riemann surface of genus zero into a
Riemannian manifold is harmonic if and only if it is a branched minimal im-
mersion.

Next we review results on irreducible unitary representations of the 3-
dimensional special unitary group $SU(2)$ .

$SU(2)$ is defined by

$SU(2)= \{g=(-\frac{a}{b}$ $\frac{b}{a})$ ; $a,$ $b\in C,$ $|a|^{2}+|b|^{2}=1\}$ .

The Lie algebra $\mathfrak{s}\iota\downarrow(2)$ of $SU(2)$ is given by

$\mathfrak{s}\mathfrak{u}(2)=\{X=(\sqrt{-1}xy);x,$ $y’,$ $y’\in R,$ $y=y’+\sqrt{-1}y’\}$ .

We define a basis $\{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\}$ of $\mathfrak{s}\mathfrak{u}(2)$ by

$\epsilon_{1}=(^{\sqrt{-1}0}0-\sqrt{-1})$ , $\epsilon_{2}=(\begin{array}{ll}0 1-1 0\end{array})$ and $\epsilon_{3}=(_{\sqrt{-1}}0$ $\sqrt{-1}0)$ .

Let $V_{n}$ be an $(n+1)$ -dimensional complex vector space of all complex homo-
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geneous polynomials of degree $n$ with respect to $z_{0},$ $z_{1}$ . We define a Hermitian
inner product $(, )$ on $V_{n}$ such that

$\{u_{k}^{(n)}=z_{0}^{k}z_{1}^{n-k}/\sqrt{k!(n-k)!} ; 0\leqq k\leqq n\}$

is a unitary basis for $V_{n}$ . We define a real inner product by $\langle, \rangle={\rm Re}(, )$ . A
unitary representation $\rho_{n}$ of $SU(2)$ on $V_{n}$ is defined by

$p_{n}(g)f(z_{0}, z_{1})=f(az_{0}-\overline{b}z_{1}, bz_{0}+\overline{a}z_{1})$

for $g\in SU(2)$ and $f\in V_{n}$ . Then the action of $\mathfrak{s}\mathfrak{u}(2)$ on $V_{n}$ is described as fol-
lows;

(1.5) $\rho_{n}(X)(u_{i}^{(n)})=(i-(n-i))x\sqrt{-1}u_{i}^{(n)}$

$-\sqrt{i(n-i+1)}\overline{y}ui_{-1}^{n)}+\sqrt{(i+1)(n-i)}yu1_{+1}^{n)}$

for $0\leqq i\leqq n$ and any element $X$ of $8\mathfrak{u}(2)$ .
Let $D(SU(2))$ be the set of all inequivalent irreducible unitary representa-

tions of $SU(2)$ . Then it is well known that $D(SU(2))=\{(V_{n}, \rho_{n});n=0,1,2, \cdots\}$ .
We denote by $(_{R}V_{n}, R\rho_{n})$ an orthogonal representation of $SU(2)$ induced by

the scalar restriction of $V_{n}$ . Then the following proposition is well known:

PROPOSITION 1.1. (1) If $n$ is odd, then $(_{R}V_{n}, R\rho_{n})$ is irreduczble.
(2) If $n$ is even, then we have an orthogonal direct sum $RV_{n}=W_{l}+\sqrt{-1}W_{\iota}$ ,

where $n=2l$ and $W_{l}$ is the $R\rho_{2l}(SU(2))$-invariant irreduczble real subspace of $RV_{2l}$

spanned by

$\{ui^{2l)}, (\sqrt{-1})^{j}(u\}_{+}^{2l}J+u\}_{-}^{2l}j),$ $(\sqrt{-1})^{j+1}(u\}_{+}^{2l}J-u\}_{-}^{2l}J)$ ; $1\leqq j\leqq l$ }.

Put $T=\{\exp(t\epsilon_{1})\in SU(2) ; t\in R\}$ and we have $S^{2}=SU(2)/T$ . We identify
the tangent space at $\{T\}\in S^{2}=SU(2)/T$ with a subspace $span_{R}\{\epsilon_{2}, \epsilon_{3}\}$ of Bu(2).

We fix a complex structure on $S^{2}$ so that $\epsilon_{2}+\sqrt{-1}\epsilon_{3}$ is a vector of type $(1, 0)$ .
Note that for any $SU(2)$-invariant Riemannian metric $g$ on $S^{2}$ there is a posi-
tive real number $a$ such that $\{a\epsilon_{2}, a\epsilon_{3}\}$ is an orthonormal basis with respect to
$g$ and $(S^{2}, g)$ has the constant curvature $4a^{2}$ .

2. Construction of homogeneous minimal 2-spheres in $P_{n}(C)$ .
Let $(V_{n}, p_{n})$ be an irreducible unitary representation of $SU(2)$ . We define

the usual complex structure of $V_{n}$ by $J(v)=\sqrt{-1}v$ , for $v\in V_{n}$ . Put $S^{2n+1}=$

$\{v\in V_{n} ; \langle v, v\rangle=4\}$ and define the usual $S^{1}$-action on $S^{2n+1}$ by $\exp(\sqrt{-1}\theta)v$ , for
$\exp(\sqrt{-1}\theta)\in S^{1}$ and $v\in S^{2m+1}$ . Let $\pi:S^{2n+1}arrow P_{n}(C)$ be the natural Riemannian
submersion. We also denote by $J$ the complex structure of $P_{n}(C)$ . The action
of $\rho_{n}(SU(2))$ on $S^{2n+1}$ induces the action on $P_{n}(C)$ through $\pi$ .



Minimal 2-spheres 481

First we determine all orbits of $SU(2)$ on $P_{n}(C)$ which are 2-dimensional
spheres immersed in $P_{n}(C)$ .

LEMMA 2.1. An orbit $M$ of $SU(2)$ on $P_{n}(C)$ is a 2-dimensional sphere im-
mersed in $P_{n}(C)$ if and only if $M=\pi(\rho_{n}(SU(2))2u_{k}^{(n)})$ for some integer $k$ with
$0\leqq k\leqq n$ .

PROOF Assume that $M=\pi(\rho_{n}(SU(2))w)$ for some $w\in S^{2m+1}$ and $M$ is a 2-
dimensional sphere immersed in $P_{n}(C)$ . Put $N=\rho_{n}(SU(2))w$ . Then the dimen-
sion of $N$ is 2 or 3. Suppose that the dimension of $N$ is 3. Since $\pi^{-1}(M)$ is a
3-dimensional compact submanifold of $S^{2m+1}$ , we have $N=\pi^{-1}(M)$ . Hence $N$ is
invariant by the $S^{1}$-action. Thus there is an element $X$ of $5\mathfrak{u}(2)$ such that
$\rho_{n}(X)w=\sqrt{-1}w$ . Since we can write $X=Ad(g)(x\epsilon_{1})$ for some element $g\in SU(2)$

and a nonzero real number $x$ , we have $p_{n}(x\epsilon_{1})v=\sqrt{-1}v$, where $v=\rho_{n}(g^{-1})w$ .
We put $v= 2\sum_{i=0}^{n}v^{i}u_{i}^{(n)}$ , where $v^{i}\in C$ and $\sum_{i=0}^{n}|v^{i}|^{2}=1$ . By (1.5) we get

$\rho_{n}(x\epsilon_{1})v=2x\Sigma_{i=0}^{n}v^{i}(i-(n-i))\sqrt{-1}u_{i}^{(n)}=\sqrt{-1}v$ .
Hence we have $v^{l}\{(2i-n)x-1\}=0$ for $i=0,1,$ $\cdots$ , $n$ . Since some $v^{k}$ with $k\neq n/2$

is nonzero, we have $x=1/(2k-n)$ and $v^{i}=0$ for $i\neq k$ . Hence $v=2v^{k}u_{k}^{(n)}$ , where
$|v^{k}|=1$ . Thus we obtain $M=\pi(\rho_{n}(SU(2))2u_{k}^{(n)})$ . Next suppose that the dimen-
sion of $N$ is 2. Then there is an element $X$ of $\mathfrak{s}\mathfrak{u}(2)$ such that $\rho_{n}(X)w=0$. By
the argument similar to the former case we may put $X=x\epsilon_{1}$ for some nonzero
real number $x$ . Write $w=2 \sum_{i=0}^{n}w^{i}u_{i}^{(n)}$ , where $w^{i}\in C$ and $\sum_{i=1}^{n}|w^{i}|^{2}=1$ . By
(1.5) we get

$\rho_{n}(X)w=2x\Sigma_{i=0}^{n}w^{i}(i-(n-i))\sqrt{-1}u_{i}^{(n)}=0$ .
Hence $w^{i}(2i-n)=0$ for $i=0,1,$ $\cdots$ , $n$ . Thus $n$ is even. Put $k=n/2$ , and we
have $w=2w^{k}u_{k}^{(2k)}$ . Hence $|w^{k}|=1$ . So we obtain $M=\pi(p_{n}(SU(2))2u_{k}^{(2k)})$ .

Conversely suppose that $v=2w^{k}u_{k}^{(n)}\in S^{2n+1}$ and $M=\pi(p_{n}(SU(2))v)$ . (1.5)

gives that

(2.1) $p_{n}(X)v=(2k-n)x\sqrt{-1}v$

$+2y’(-\sqrt{k(n-k+1)}u_{k-1}^{(n)}+\sqrt{(k+1)(n-k})u_{k+1}^{(n)})$

$+2y’(\sqrt{k(n-k+1)}\sqrt{-1}u_{k-1}^{(n)}+\sqrt{(k+1)(n-k)}\sqrt{-1}u_{k+1}^{(n)})$ ,

for any element $X\in 5\mathfrak{u}(2)$ . This implies immediately that $M$ is a 2-dimensional
sphere immersed in $P_{n}(C)$ . $q.e.d$ .

Now for any nonnegative integers $n$ and $k$ with $0\leqq k\leqq n$ we denote by
$\psi_{n,k}$ the $SU(2)$-equivariant isometric immersion of a Riemann sphere $S^{2}(c)$ with
constant curvature $c$ into $P_{n}(C)$ given by the orbit $\pi(\rho_{n}(SU(2))2u_{k}^{(n)})$ ;
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$\psi_{n.k}$ : $S^{2}(c)=SU(2)/Tarrow P_{n}(C)$

u) $(\cup$

$gT-\pi(\rho_{n}(g)2u_{k}^{(n)})$ .
Here $c$ depends on $n$ and $k$ . We show the following.

PROPOSITION 2.2. (1) $\psi_{n.k}$ is full.
(2) $c$ is equal to $1/(2k(n-k)+n)$ .
(3) $\psi_{n.k}$ is a minimal immersion.
(4) (a) If $k=0$ (resp. $k=n$ ), then $\psi_{n.k}$ is holomorphic (resp. anti-holomorphic).

(b) If $n$ is even and $k=n/2$ , then $\psi_{2k.k}$ is totally real and $\psi_{2k.k}(S^{2}(c))$ is contained
in a totally geodestc totally real submamfold $P_{2k}(R)$ of $P_{2k}(C)$ . (c) If $n$ and $k$ are
otherwise, then $\psi_{n,k}$ is neither holomorphjc, anti-holomorphic nor totally real.

(5) $\psi_{n.k}(S^{2}(c))=\psi_{n,n-k}(S^{2}(c))$ .
PROOF. From the irreducibility of $(V_{n}, p_{n}),$ (1) is clear. We put $v=2u_{k}^{(n)}$ .

By (2.1) we have

(2.2) $\langle p_{n}(X)v, \rho_{n}(X)v\rangle=(2k-n)^{2}x^{2}+4\{2k(n-k)+n\}(y^{\prime 2}+y^{x2})$ ,

for any element $X$ of $5\mathfrak{u}(2)$ . We define two elements $e_{2}$ and $e_{3}$ of $\mathfrak{s}\mathfrak{u}(2)$ by

(2.3) $e_{i}=(1/(2\sqrt{2k(n-k)+n}))\epsilon_{i}$ , for $i=2,3$ .
Then by (2.2) $\{\pi_{*}(p_{n}(e_{2})v), \pi_{*}(\rho_{n}(e_{3})v)\}$ is an orthonormal basis at $\pi(v)$ on
$\psi_{n.k}(S^{2}(c))=\pi(p_{n}(SU(2))v)$ . Hence we get (2). By (1.5) and (2.3) simple com-
putations give

(2.4) $4p_{n}(e_{2})p_{n}(e_{2})v=-v+2/(2k(n-k)+n)$

and

(2.5) $4p_{n}(e_{3})p_{n}(e_{3})v=-v-2/(2k(n-k)+n)$

$\cross\{\sqrt{(k-1)k(n-k+1)(n-k+2)}u_{k-2}^{(n)}+\sqrt{(k+1)(k+2)(n-k+1)(n-k)}uL_{2}^{n)}\}$ .
From (2.4) and (2.5) we get

$\rho_{n}(e_{2})\rho_{n}(e_{2})v+p_{n}(e_{3})\rho_{n}(e_{3})v=(-1/2)v$ .
Hence the mean curvature vector of $\pi(\rho_{n}(SU(2))2u_{k}^{(n)})$ in $P_{n}(C)$ vanishes. Thus
we get (3). (4) is easily showed from (2.1). When $m$ is even and $k=n/2$, by
(2) of Proposition 1.1 the orbit $p_{2k}(SU(2))v$ is contained in $W_{k}$ . Hence $\psi_{2k.k}(S^{2}(c))$

is contained in a totally geodesic totally real submanifold $P_{2k}(R)$ of $P_{2k}(C)$ . But
$\psi_{2k,k}(S^{2}(c))$ is not contained in any totally geodesic submanifold of $P_{2k}(R)$ be-
cause of the irreducibility of $W_{k}$ . By simple computations we have
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$\rho_{n}((-\frac{a}{b}$
$\overline{a}b$)) $u2^{n)}=(-\sqrt{-1})^{n}p_{n}((\begin{array}{ll}\sqrt{-1}b \sqrt{-1}a\sqrt{-1}\overline{a} -\sqrt{b}\end{array}))u_{n-k}^{(n)}$ .

This implies (5). $q$ . $e$ . $d$ .

By the rigidity theorems of Calabi [4], [5], we have $\psi_{n,0}=\psi_{n}$ and $\psi_{2k.k}=\mu_{k}$ .
Thus we obtain Theorem 1.

REMARK 2.3. By simple computations the Brouwer degree and the square
length $\sigma$ of the second fundamental form of $\psi_{n.k}$ are given as follows:

(i) deg $\psi_{n.k}=n-2k$ ,
(ii) $\sigma=1/2+\{n(3n-4)-20k(n-k)\}/\{2(2k(n-k)+n)\}$ .

REMARK 2.4. In [10] Kenmotsu showed the following:
Let $\psi:M^{2}arrow P_{n}(C)$ be a minimal isometric immersion of a 2-dimensional compact

Riemannian manifold $M^{2}$ into $P_{n}(C)$ . If the square length $\sigma$ of the second
fundamental form of $\psi$ satisfies $\sigma\leqq 1/2$ , then (1) $M^{2}$ is homeomorphic to a 2-
sphere and $\psi$ is superminimal, or (2) $M^{2}$ is a flat torus and is totally real.

For any $(n, k)$ with $(5n-\sqrt{10n(n+2)})/10\leqq k\leqq(5n+\sqrt{10n(n+2)})/10,$ $\psi_{n,k}$

satisPes $\sigma\leqq 1/2$ .

3. Twistor construction of harmonic maps into $P_{n}(C)$ .
In this section we review the classification theorem of harmonic maps of a

Riemann sphere $M_{0}$ into $P_{n}(C)$ .
THEOREM 3.1 (Burns [3], Din-Zakrzewski [6], Glaser-Stora [8]). There is

a bijective corresp0ndence between full harmonic maps $\psi;M_{0}arrow P_{n}(C)$ and pairs
$(f, r)$ , where $f$ : $M_{0}arrow P_{n}(C)$ is a full holomorphic map and $r$ is an integer with
$0\leqq r\leqq n$ .

$(f, r)$ is called the directrix of $\psi$.
We outline the construction of harmonic maps from holomorphic maps, fol-

lowing the papers of Eells-Wood [7] and Wolfson [11].
Let $f$ : $M_{0}arrow P_{n}(C)$ be a full holomorphic map. Choose a coordinate neigh-

borhood $(U, \zeta)$ in $M_{0}$ . In terms of homogeneous coordinates on $P_{n}(C),$ $f$ is
given locally by a holomorphic vector valued function $Z(\zeta)=(z_{0}(\zeta), \cdots , z_{n}(\zeta))$ .
The fullness of $f$ means that

(3.1) $Z\wedge(\partial Z/\partial\zeta)\wedge\cdots\wedge(\partial^{n}Z/\partial\zeta^{n})\neq 0$

except perhaps at isolated points. As $Z$ and its derivatives are all holomorphic
functions of $\zeta$ , any zeros of (3.1) are removable. This enables us to define a
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field of unitary frames along $f$ which is intimately related to the osculating
spaces of $f$.

Set $Z_{0}=Z/(Z, Z)^{1/2}$ and choose $Z_{l}$ : $U\subset M_{0}arrow C^{n+1}-\{0\}$ such that { $Z_{0}(x),$ $\cdots$

$Z_{l}(x)\}$ forms a unitary basis for the vector space spanned by $Z(x),$ $(\partial Z/\partial\zeta)(x)$ ,
... , $(\partial^{l}Z/\partial\zeta^{l})(x)$ (the l-th osculating space of $f$ at x) for each $l=1,$ $\cdots$ , $n$ and
$x\in U$ . $\{Z_{0}, \cdots , Z_{n}\}$ is a field of unitary frames along $f$ which satisfies

$dZ_{0}=\theta_{0}^{0}Z_{0}+\theta_{0}^{1}Z_{1}$ ,

(3.2) $dZ_{i}=\theta_{i}^{i-1}Z_{i-1}+\theta_{l}^{i}Z_{i}+\theta_{i}^{i+1}Z_{i+1}$ , $1\leqq i\leqq n-1$ ,

$dZ_{n}=\theta_{n}^{n-1}Z_{n-1}+\theta_{n}^{n}Z_{n}$ ,

where $\theta_{i}^{i+1}$ is a form of type $(1, 0)$ for $0\leqq i\leqq n-1$ and $\theta_{i}^{i- 1}$ is a form of type
$(0,1)$ for $1\leqq i\leqq n$ .

For an integer $r$ with $0\leqq r\leqq n$ , let $G_{r+1}(C^{n+1})$ be the Grassmann manifold
of all $(r+1)$-dimensional complex subspaces of $C^{n+1}$ . By the Pl\"ucker imbedding
$G_{r+1}(C^{n+1})$ is realized as a complex submanifold in the complex projective space
$P(\Lambda^{r+1}C^{n+1})$ . We define $f_{r}$ : $Uarrow G_{r+1}(C^{n+1})$ by $f_{r}(x)=[Z_{0}\wedge\cdots\Lambda Z_{\tau}]$ for $x\in U$ ,
where $[Z_{0}\wedge\cdots\wedge Z_{r}]$ denotes an $(r+1)$-dimensional complex subspace of $C^{n+1}$

spanned by $Z_{0},$ $\cdots$ , $Z_{\tau}$. $f_{r}$ extends uniquely to a holomorphic map of $M_{0}$ into
$G_{r+1}(C^{n+1})$ and is called the r-th associated curve of $f$. We put

$\mathcal{H}_{r.n-r}=\{(V, W)\in G_{r}(C^{n+1})\cross G_{r+1}(C^{n+1}) ; V\subset W\}$ .
Here $G_{r}(C^{n+1})\cross G_{r+1}(C^{n+1})$ has the Kaehler structure induced by $P(\Lambda^{r}C^{n+1})\cross$

$P(\Lambda^{r+1}C^{n+1})$ , and $P(\Lambda^{\tau}C^{n+1})$ and $P(\Lambda^{r+1}C^{n+1})$ are equipped with the Fubini-Study
metrics of the same constant holomorphic sectional curvature. $\mathcal{H}_{r.n-r}$ is a flag
manifold $U(n+1)/U(r)\cross U(1)\cross U(n-r)$ and we have a Riemannian submersion
$\pi_{r}$ ; $\mathcal{H}_{r.n-r}arrow P_{n}(C)=U(n+1)/U(n)\cross U(1)$ .

Now we fix an integer $r$ with $0\leqq r\leqq n$ . We define a map $\Phi_{r}$ : $M_{0}arrow \mathcal{H}_{r.n-r}$

by $\Phi_{r}(x)=(f_{r-1}(x), f_{r}(x))$ for $x\in M_{0}$ . Then $\Phi_{r}$ is holomorphic with respect to
the Kaehler structure on $\mathcal{H}_{r.n-r}$ induced from $G_{\tau}(C^{n+1})\cross G_{r+1}(C^{n+1})$ , and $\Phi_{r}$ is
horizontal with respect to the Riemannian submersion $\pi_{r}$ ; $\mathcal{H}_{r.n-r}arrow P_{n}(C)$ . Thus
$\phi_{r}=\pi_{r^{Q}}\Phi_{r}$ is a full harmonic map. $\phi_{r}$ is an extension of a map $\pi\circ Z_{r}$ : $Uarrow P_{n}(C)$ .

Conversely every full harmonic map of $M_{0}$ into $P_{n}(C)$ is manufactured in
the above manner from a unique pair $(f, r)$ .

Let $\{\psi_{n.k}\}$ be a family of full minimal immersions of $S^{2}$ into $P_{n}(C)$ con-
structed in Section 2. Then we have the following:

PROPOSITION 3.2. The directrix of $\psi_{n,k}$ is $(\psi_{n}, k)$ .

PROOF. By (1.5) we have

(3.3) $\rho_{n}(\epsilon_{2}-\sqrt{-1}\epsilon_{3})^{k}v\in C\cdot u_{k}^{(n)}$
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for each integer $k$ with $0\leqq k\leqq n$ . Since $\pi_{*}(p_{n}(\epsilon_{2}-\sqrt{-1}\epsilon_{8})v)$ is a vector of type
$(1, 0)$ with respect to the complex structure defined on $S^{2}(c)$ , from (3.3) it is
easy to see that $\phi_{\tau}=\psi_{n.r}$ for $f=\psi_{n}$ . $q$ . $e.d$ .

4. Rigidity.

In this section we show that the minimal 2-spheres $\{\psi_{n.k}\}$ constructed in
Section 2 exhaust all minimal 2-spheres with constant curvature in $P_{n}(C)$ , using
the twistor construction of harmonic maps explained in Section 3.

From (3.2) it follows that

(4.1) $d\theta_{i}^{i-1}=-(\theta_{i-1}^{i-1}-\theta_{i}^{i})\wedge\theta_{i}^{i-1}$ ,

(4.2) $d\theta$ } $=-\theta_{i}^{i-1}\wedge\theta_{i}^{i-1}-\theta_{i}^{i+1}\wedge\theta_{i}^{i+1}$ ,

for $0\leqq i\leqq n$ , where $\theta_{0}^{-1}=\theta_{0}^{n+1}=0$.
PROPOSITION 4.1. Let $\psi$ be a full minimal isometric immersion of a 2-sphere

with constant curvature into $P_{n}(C)$ and $(f, r)$ the directrix of $\psi$ . Then $f$ is con-
gruent to $\psi_{n}$ .

Combining Theorem 3.1, Propositions 3.2 and 4.1, we obtain Theorem 2.
We use the following lemma to prove Proposition 4.1.

LEMMA 4.2. Let $f:P_{n}(C)arrow P_{\iota}(C)$ and $h:P_{n}(C)arrow P_{m}(C)$ be two holomorphjc
maps, where $P_{l}(C)$ and $P_{m}(C)$ are equipped with the Fubini-Study metrics of the
same cmstant holomorphic sectional curvature $c$, and define a holomorphjc map
$F=(f, h):P_{n}(C)arrow P_{l}(C)\cross P_{m}(C)$ by $F(x)=(f(x), h(x))$ . If the metric on $P_{n}(C)$

induced by $F$ is a Kaehler metric of constant holomorphic sectional curvature, then
the metrics induced by $f$ and $h$ are Kaehler metrics of constant holomorphic sec-
tional curvature, and they are homothetic.

PROOF OF PROPOSITION 4.1. We use the same notation as in Section 3.
Suppose that $\psi=\phi_{r}$ is a full minimal isometric immersion of a 2-sphere $S^{2}$ with
constant curvature into $P_{n}(C)$ . We note that the metric induced by $\phi_{r}$ is con-
gruent to the metric induced by $\Phi_{\tau}$ . By (1.2) and (3.2), the metric on $S^{2}$ induced
by $f_{l}$ : $S^{2}arrow G_{l+1}(C^{n+1})\subset P(\Lambda^{l+1}C^{n+1})$ is given by

(4.3) $(4/c)\theta_{l}^{l+1}\theta|^{+1}$ .
Hence the metric induced by $\psi$ is given by

(4.4) $(4/c)(\theta_{r-1}^{r}\overline{\theta}_{r-1}^{r}+\theta_{\tau}^{r+1}\overline{\theta}_{r}^{r+1})$ .
By virtue of Lemma 4.2, $\theta_{r-1}^{r}\overline{\theta}_{r-1}^{\tau}$ and $\theta_{r}^{\tau+1}\overline{\theta}_{r}^{r+1}$ are metrics of constant curvature
and are homothetic. From (4.1) the connection form of the Kaehler metric
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$\theta_{r-1}^{r}\overline{\theta}_{r-1}^{r}$ is $\theta_{r-1}^{r-1}-\theta_{r}^{r}$. By (4.2) the curvature form of the Kaehler metric $\theta_{r-1}^{r}\overline{\theta}_{r-1}^{r}$

becomes

(4.5) $d(\theta_{\tau-1}^{r-1}-\theta_{r}^{r})=\theta_{r-2}^{r-1}\wedge\overline{\theta}_{r-2}^{r-1}-2\theta_{\tau- 1}^{r}\wedge\theta_{r-1}^{r}+\theta_{r}^{r+1}\wedge\theta_{r}^{r+1}$ .

Since the Kaehler metric $\theta_{r-1}^{r}\overline{\theta}_{\tau-1}^{r}$ has constant curvature, (4.5) is a constant
multiple of $\theta_{r-1}^{r}\wedge\overline{\theta}_{r-1}^{r}$ . Hence $\theta_{r-2}^{r-1}\Lambda\overline{\theta}_{r-2}^{r-1}$ is homothetic to $\theta_{r-1}^{r}\wedge\overline{\theta}_{r-1}^{r}$ . Since the
metric on $S^{2}$ induced by $\phi_{\tau-1}$ is $(4/c)(\theta_{r-2}^{r-1}\overline{\theta}_{\tau-2}^{r-1}+\theta_{\tau-1}^{r}\overline{\theta}_{\tau-1}^{r})$ , it is a metric of con-
stant curvature. By the induction we conclude that the metric induced by
$f=\phi_{0}$ is a metric of constant curvature. By the rigidity theorem of Calabi for
holomorphic isometric imbeddings, $f$ is congruent to the n-th Veronese imbed-
ding $\psi_{n}$ . $q.e.d$ .

PROOF OF LEMMA 4.2. In terms of homogeneous coordinates, we express $f$

and $h$ as $f(z)=(f_{0}(z), f_{l}(z))$ and $h(z)=(h_{0}(z), \cdots , h_{m}(z))$ , where $f_{l}(i=0, \cdots, l)$

(resp. $h_{j}$ ($]^{=0},$ $\cdots$ , $m$)) are homogeneous polynomials of degree $d_{1}$ (resp. $d_{2}$)

with respect to $z=(z_{0}, \cdots , z_{n})$ , which have no common zeros. The Kaehler
form induced by $f$ (resp. h) is given by

$-(4/c)\sqrt{-1}\partial\partial$ log $|f|^{2}$ (resp. $-(4/c)\sqrt{-1}\partial\partial$ log $|h|^{2}$).

Let $\hat{F}$ be the composite of $F=(f, h):P_{n}(C)arrow P_{l}(C)\cross P_{m}(C)$ and the Segre im-
bedding $P_{l}(C)\cross P_{m}(C)arrow P_{lm+l+m}(C)$ ;

$\tilde{F}:P_{n}(C)arrow P_{lm+l+m}(C)$

$zarrow(f_{i}(z)h_{j}(z))_{i,j}$ .
Then by the assumption we have $\partial\partial$ log $|\hat{F}|^{2}=ac\partial\partial$ logl $z|^{2}$ for some $a>0$ . On
the other hand, let $\tilde{\omega}$ and $\omega$ be the generators of $H^{2}(P_{lm+l+m}(C);Z)$ and
$H^{2}(P_{n}(C);Z)$ , respectively. Then we have $\hat{F}_{\tilde{\omega}}^{*}=(d_{1}+d_{2})\omega$ . Hence we have
$ac=d_{1}+d_{2}$ . Thus we get $\partial\partial\log(|P|^{2}/|z|^{2ac})=0$ . Since $\log(|\tilde{F}|^{2}/|z|^{2ac})$ is a
harmonic function on $P_{n}(C)$ , it is constant. Hence we have fi $|^{2}=b|z|^{2ac}$ for
some $b>0$. Thus we have $|f|^{2}|h|^{2}=b|z|^{2ac}$. Put $z_{i}=x_{i}+\sqrt{-1}y_{i}$ $(i=0,1, \cdots , n)$ .
Since $|z|^{2}$ is a real irreducible polynomial with respect to $x_{i}$ and $y_{i}$ we have
$|f|^{2}=a_{1}|z|^{2a_{1}}$ and $|h|^{2}=a_{2}|z|^{2d_{2}}$ for some $a_{1},$ $a_{2}>0$. Therefore we get

$\partial\partial$ log $|f|^{2}=\partial\partial$ log $a_{1}|z|^{2d_{1}}=d_{1}\partial\partial$ log $|z|^{2}$ and $\partial\partial$ logl $h|^{2}=d_{2}\partial\partial$ log $|z|^{2}$ . $q$ . $e$ . $d$ .

References

[1] O. Bor\uu vka, Sur les surfaces repr\’esent\’ees par les fonctions sph\’eriques de premi\‘ere
esp\‘ece, J. Math. Pures Appl. (9), 12 (1933), 337-383.

[2] R. L. Bryant, Minimal surfaces of constant curvature in $S^{n}$ , Trans. Amer. Math.
Soc., 290 (1985), 259-271.

[3] D. Burns, Harmonic maps from $CP^{1}$ to $CP^{n}$ , Harmonic Maps, Proceedings, New



Minimal 2-spheres 487

Orleans 1980, Lecture Notes in Math., 949, Springer 1982, pp. 48-56.
[4] E. Calabi, Isometric imbeddings of complex manifolds, Ann. of Math., 58 (1958),

1-23.
[5] E. Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential

Geometry, 1 (1967), 111-125.
[6] A. M. Din and W. J. Zakrzewski, General classical solutions in the $CP^{n-1}$ model,

Nuclear Phys., B174 (1980), 397-407.
[7] J. Eells and J. C. Wood, Harmonic maps from surfaces to complex projective spaces,

Adv. in Math., 49 (1983), 217-263.
[8] V. Glaser and R. Stora, Regular solutions of the $CP^{n}$ models and further generali-

zations, preprint, 1980.
[9] K. Kenmotsu, On minimal immersions of $R^{2}$ into $S^{n}$ , J. Math. Soc. Japan, 28

(1976), 182-191
[10] K. Kenmotsu, On minimal immersions of $R^{2}$ into $P^{n}$ (C), J. Math. Soc. Japan, 37

(1985), 665-682.
[11] J. G. Wolfson, On minimal surfaces in a K\"ahler manifold of constant holomorphic

sectional curvature, Trans. Amer. Math. Soc., 290 (1985), 627-646.

Shigetoshi BANDO Yoshihiro OHNITA
Mathematical Institute Department of Mathematics
Tohoku University Tokyo Metropolitan University
Sendai 980 Fukasawa, Setagaya-ku
Japan Tokyo 158

Japan


	Introduction.
	THEOREM 1. ...
	THEOREM 2. ...

	1. Preliminaries.
	2. Construction of homogeneous ...
	3. Twistor construction ...
	THEOREM 3.1 ...

	4. Rigidity.
	References

