The maximal ideal space of the bounded analytic functions on a Riemann surface

Dedicated to Professor Yukio Kusunoki on his 60th birthday

By Mikihiro HAYASHI

(Received Oct. 28, 1985)

Introduction.

We denote by $H^{\infty}(R)$ the algebra of all bounded analytic functions on a Riemann surface R, by $\mathcal{M}(R)$ the maximal ideal space of the algebra $H^{\infty}(R)$ and by τ the canonical continuous mapping from R into $\mathcal{M}(R)$. In this note we shall answer negatively the following question (cf. [3], [4]): If $H^{\infty}(R)$ separates the points of R, does it follow that

(0.1) the mapping τ is a homeomorphism of R onto an open subset of $\mathcal{M}(R)$?

We shall show, in addition, that property (0.1) has several equivalent conditions; one of them asserts existence of a family of certain meromorphic functions on R (Theorem).

Property (0.1) is satisfied if R is an arbitrary domain on the complex plane or on any closed Riemann surface whenever $H^{\infty}(R)$ contains a nonconstant function. It is also satisfied for any Riemann surface of Parreau-Widom type (Stanton [7]). As indicated in Gamelin [4], property (0.1) has some applications ([2], [5]). For instance, one can show uniqueness (and existence by Theorem) of the Ahlfors function on R when (0.1) is valid.

Before stating the results, we fix notations. Equipped with the sup-norm $||f|| = \sup_{a \in R} |f(a)|$, $H^{\infty}(R)$ is a Banach algebra. Let $H^{\infty}(R)^*$ be the dual space of the Banach space $H^{\infty}(R)$. One may identify the maximal ideal space $\mathcal{M}(R)$ as the set of all $\phi \in H^{\infty}(R)^*$ satisfying $\phi(fg) = \phi(f)\phi(g)$ $(f, g \in H^{\infty}(R))$ and $||\phi|| = \phi(1) = 1$. For each point $a \in R$, the point evaluation $f \to f(a)$ defines an element ϕ_a in $\mathcal{M}(R)$. A canonical map $\tau: R \to \mathcal{M}(R)$ is now defined by $\tau(a) = \phi_a$. Inheriting the weak* topology from $H^{\infty}(R)^*$, the set $\mathcal{M}(R)$ is a compact Hausdorff space and the map τ is continuous. Two points a, b of R are said to be separated by $H^{\infty}(R)$ if there is a function f in $H^{\infty}(R)$ with $f(a) \neq f(b)$, and $(f/g)(a) \neq (f/g)(b)$. The points of R are said to be (weakly) separated by $H^{\infty}(R)$

if $H^{\infty}(R)$ (weakly) separates any distinct two points of R.

Suppose that $H^{\infty}(R)$ contains nonconstants. It follows from Royden [6: Proposition 2] that there exists a Riemann surface R' and an analytic map σ of R into R' such that $H^{\infty}(R')$ weakly separates the points of R' and $H^{\infty}(R)$ $=H^{\infty}(R')\circ\sigma$. This implies that $H^{\infty}(R)$ is isomorphic to $H^{\infty}(R')$ as Banach algebras. Thus, we may restrict our attention to the case in which $H^{\infty}(R)$ weakly separates the points of R. Finally, we shall denote by $M^{\infty}(R)$ the family of the meromorphic functions on R that are bounded off some compact subset K of R, where the set K may depend on the function.

Now we state our results.

THEOREM. Suppose that $H^{\infty}(R)$ weakly separates the points of a Riemann surface R. For a given point a of R, one of the following properties implies all the others:

- (a) There is a neighborhood U of the point a such that the restriction map $\tau | U : U \rightarrow \mathcal{M}(R)$ is open.
- (b) There is a neighborhood U of the point a such that the map $\tau | U$ is a homeomorphism of U onto an open subset of $\mathcal{M}(R)$.
- (c) There is a meromorphic function $g \in M^{\infty}(R)$ with a pole at the point a.
- (d) There is a meromorphic function $g \in M^{\infty}(R)$ such that g is analytic on $R \setminus \{a\}$ and has a simple pole at the point a.
- (e) There is a bounded linear operator T on $H^{\infty}(R)$ such that

(e.1)
$$T(fg) = gTf + f(a)Tg$$
, $f, g \in H^{\infty}(R)$; and

(e.2)
$$(Tf)(a) \neq 0$$
 for some function $f \in H^{\infty}(R)$.

- (f) There is a homeomorphism Φ of the open unit disc D onto an open subset of $\mathcal{M}(R)$ satisfying
 - (f. 1) $\Phi(0) = \phi_a; and$
 - (f.2) $\hat{f} \circ \Phi$ is analytic on D for every $f \in H^{\infty}(R)$, where $\hat{f}(\phi) = \phi(f)$ is the Gelfand transform of f.

In section 3 we shall construct two examples. Both answer negatively our question; the first one is easier and the second says more. In fact, we shall construct a Riemann surface such that $\tau(E)$ is never open in $\mathcal{M}(R)$ for any non empty subset E of R (in particular, for E=R). This also shows that $M^{\infty}(R) \setminus H^{\infty}(R)$ may be empty even if $H^{\infty}(R)$ separates the points of R.

ACKNOWLEDGEMENT. The main part of the present work was accomplished when I was invited to Nagoya University in July, 1985. I am grateful to Professors M. Ito and M. Nakai and their colleagues for giving me a stimulating opportunity to visit. I am also grateful to Professor T. W. Gamelin for calling this problem to my attention. Finally, I would like to express my thanks to the referee for many helpful comments to improve the presentation of the paper. Especially, I owe him the present version of the lemma in the following section.

1. A Lemma.

We shall need the following lemma (cf. [5: Chap. II, section 3]).

LEMMA. Suppose that $a \in R$ is the pole of a function in $M^{\infty}(R)$, and that $h \in M^{\infty}(R)$ has minimal total number of poles, among all functions in $M^{\infty}(R)$ with pole at a. Then $fh \in H^{\infty}(R)$ for all $f \in H^{\infty}(R)$ satisfying f(a)=0. Moreover, there is $f \in H^{\infty}(R)$ such that f(a)=0 and $(fh)(a)\neq 0$.

PROOF. Let $\{a = a_1, a_2, \dots, a_m\}$ be the pole set of the function h. Note that $H^{\infty}(R)$ identifies the points a_1, a_2, \dots, a_m . Let $g \in M^{\infty}(R)$ have minimal total number of poles, among all functions in $M^{\infty}(R)$ with pole set included in $\{a_1, a_2, \dots, a_m\}$. Say the pole set of g is $\{b_1, b_2, \dots, b_k\}$. Let $f \in H^{\infty}(R)$ have minimal total number of zeros at $\{b_1, b_2, \dots, b_k\}$, among all functions in $H^{\infty}(R)$ vanishing at $\{b_1, b_2, \dots, b_k\}$. Then, by the minimality of g and f, we see that $fg \in H^{\infty}(R)$ and $(fg)(b_j) \neq 0$ for all j. Hence, $(fg)(a) \neq 0$ and g must have a pole at a. By the minimality of h and g, g has the same order of pole at each a, as h. Thus, $fh \in H^{\infty}(R)$ and $(fh)(a) \neq 0$. For any $F \in H^{\infty}(R)$ satisfying F(a) = 0, we have $Fh \in H^{\infty}(R)$ by the minimality of f. This proves the lemma.

2. Proof of Theorem.

(a) \Rightarrow (b): It follows from [6: Proposition 1] that there are functions f, g in $H^{\infty}(R)$ such that f/g has a simple zero at the point a. We may assume that (U, z) is the local coordinate satisfying f/g=z. Replacing U by a smaller one, if necessary, we may assume that the point a is the only zero of f on U. Now it is easy to see that f and g separate the points of U. Thus, $\tau|U$ is one-to-one, and hence, homeomorphic.

(b) \Rightarrow (c): Our proof is similar to the proof of Rossi's "Local peak set theorem" ([1: III. 8. 1]). We can choose a function f in $H^{\infty}(R)$ so that a local coordinate (U, z) satisfies $f(z)=z^k$, |f|=1 on ∂U and τ is homeomorphic on a neighborhood of \overline{U} . Put $f_1=f$. Now we choose functions $f_2, f_3, \dots, f_n \in H^{\infty}(R)$ such that $f_j(a)=0$ and

$$\{\phi \in \mathcal{M}(R) : |\phi(f_j)| \leq 1, 2 \leq j \leq n\} \subset \tau(U).$$

Choose a small $\varepsilon > 0$ so that $|f_j(p)| < 1$, $j=2, \dots, n$ when $p \in U$ and $|z(p)| < \varepsilon$. Write $w = (w_1, \dots, w_n)$. Put $V = \{w \in C^n : |w_j| < 1, j=1, \dots, n\}$ and $W = \{ w \in C^n : |w_1| > \varepsilon \} \cup \overline{V}^c$. Then,

$$\boldsymbol{\sigma}(f_1, \cdots, f_n) \subset V \cup W,$$

where the left hand side denotes the joint spectrum $\{(\phi(f_1), \dots, \phi(f_n)): \phi \in \mathcal{M}(R)\}$. Now choose functions $f_{n+1}, \dots, f_N \in H^{\infty}(R)$ and a polynomial polyhedron P such that $\sigma(f_1, \dots, f_N) \subset P$ and $\pi(P) \subset V \cup W$, where $\pi(w_1, \dots, w_N) = (w_1, \dots, w_n)$. Put

 $V' = P \cap \pi^{-1}(V)$ and $W' = P \cap \pi^{-1}(W)$.

We regard the holomorphic function $1/w_1$ on $V' \cap W'$ as Cousin data for the cover $\{V', W'\}$ of *P*. By Oka's theorem, there exist holomorphic functions h_1 on V' and h_2 on W' such that $h_2 - h_1 = 1/w_1$ on $V' \cap W'$. Now the desired function *g* is defined by

$$g(p) = \begin{cases} h_2(f_1(p), \dots, f_N(p)), & (f_1(p), \dots, f_N(p)) \in W', \\ 1/f(p) + h_1(f_1(p), \dots, f_N(p)), & (f_1(p), \dots, f_N(p)) \in V'. \end{cases}$$

(b) \Rightarrow (d): We prove this implication by a slight modification of the above proof. Note that $\sqrt[k]{f} = \sqrt[k]{w_1}$ has a single-valued analytic branch on $\sigma(f_1, \dots, f_n) \cap V$ and that $w_1^{-1}(\zeta)$ intersects the set $\sigma(f_1, \dots, f_n) \cap V \cap W$ at exactly *n* distinct points for every $\varepsilon < |\zeta| < 1$. Hence, we can find an open subset V_1 of *V* so that $\sigma(f_1, \dots, f_n) \subset V_1 \cup W$ and $\sqrt[k]{w_1}$ has a single-valued holomorphic branch on $V_1 \cap W$. Now we may use V_1 and $\sqrt[k]{w_1}$ instead of *V* and w_1 to obtain a meromorphic function *g* with a simple pole at the point *a*.

(c) \Rightarrow (e): Take a function $h \in M^{\infty}(R)$ whose total number of poles is minimal, among all functions with pole at a. We define an operator T on $H^{\infty}(R)$ by Tf = h(f - f(a)). By the lemma, T satisfies (e. 1) and (e. 2).

(e) \Rightarrow (f): This is the Bishop-Banaschewski theorem ([8: Theorem 15.12]).

(f) \Rightarrow (b): The map $f \rightarrow \hat{f} \circ \Phi$ gives a representation of the algebra $H^{\infty}(R)$ on the open unit disc D in the sense of [6: p. 116]. Since $H^{\infty}(R)^{\widehat{}} \circ \Phi$ separates the points of D, there is a one-to-one analytic map of D into the representation space $X=\operatorname{Rep} H^{\infty}(R)$ [6: Proposition 1]. We may identify D and R as open sets of X. For $b \in R$ with $\phi_b \in \Phi(D)$, points b and $\Phi^{-1}(\phi_b)$ in X are not separated by $H^{\infty}(X)$. Since τ is continuous, there are many such b in a neighborhood of a. By [6: Lemma 1], $0 \in D$ must be the same point as a in the space X. This means that D is identified with a neighborhood of a, and shows (b).

The implications $(d) \Rightarrow (c)$ and $(b) \Rightarrow (a)$ are trivial. This completes the proof.

3. Examples.

By Schwarz's lemma the canonical map $\tau: R \to \mathcal{M}(R)$ is continuous even if $\mathcal{M}(R)$ is equipped with the norm topology induced from $H^{\infty}(R)^*$.

340

EXAMPLE 1. We shall construct a Riemann surface with the following properties:

(3.1) $H^{\infty}(R)$ separates the points of R; and

(3.2) τ is not an open map (even in the norm topology for $\mathcal{M}(R)$).

Let D be the open unit disc. Choose a sequence of closed disjoint slits I_k in D such that I_k has no accumulation points in the interior of D. Put

$$D^* = D \smallsetminus \bigcup_{k=1}^{\infty} I_k.$$

For the moment, we think of D_0 , D_1 , \cdots as a sequence of copies of D^* . Roughly speaking, the required Riemann surface R will be constructed by joining every D_k ($k \ge 1$) to D_0 along two sides of the cut I_k crosswise (Fig. 1), though actually

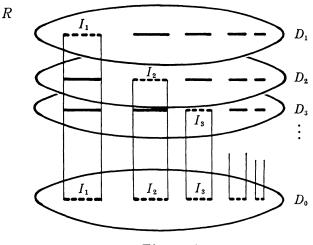


Figure 1.

we will do this in a little more complex way. We consider finite disjoint subintervals J_{k1}, \dots, J_{kn_k} of I_k for each k, and what we really do is to join D_k with D_0 along two sides of the cuts J_{kj} $(1 \le j \le n_k)$ crosswise. So, the precise definition of D_k is as follows:

$$D_{0} = D \setminus \left(\bigcup_{k=1}^{\infty} \bigcup_{j=1}^{n_{k}} J_{kj} \right)$$
$$D_{k} = D \setminus \left(\left(\bigcup_{j=1}^{n_{k}} J_{kj} \right) \cup \left(\bigcup_{n \neq k} I_{n} \right) \right), \qquad k \ge 1.$$

We shall show that the surface R has the desired property if the integers n_k are chosen to be sufficiently large. Let $D^* = \bigcup_k K_k$, where $\{K_k\}$ is an increasing

M. Hayashi

sequence of compact sets. Denote by D_k^0 the corresponding copy of D_k in D_0 . The subset $D_k \cup D_k^0$ of R can be considered as a two-sheet cover of the domain $D_k^* = D \setminus \bigcup_{n \neq k} I_n$. Now let $f \in H^{\infty}(R)$, $|f| \leq 1$. Every non-branching point $z \in D_k^*$ has two pre-images z_k^+ and z_k^- in $D_k \cup D_k^0$. Set $g_k(z) = [f(z_k^+) - f(z_k^-)]^2$. As is well-known, $g_k(z)$ extends to an analytic function on D_k^* , and it is zero at the branch points, which are the end points of the slits J_{kj} . Since $|g_k| \leq 4$, we can choose an integer n_k , independent of f, so that

$$|g_k| \leq (\varepsilon_k)^2 \quad \text{on } K_k,$$

where $\varepsilon_k \downarrow 0$ is a sequence of positive numbers. Hence,

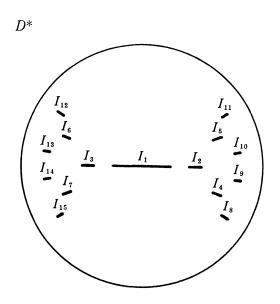
$$\|\phi_{z_k^+} - \phi_{z^-}\| = \sup\{|f(z_k^+) - f(z^-)| : f \in H^{\infty}(R), |f| \leq 1\} < \varepsilon_k,$$

where $z^-=z_k^-$ is the point on the sheet D_0 for $z \in D^*$. This shows that $\phi_{z_k^+} \rightarrow \phi_z^$ in the norm topology as $k \rightarrow \infty$, and hence, $\phi_{z_k^+} \rightarrow \phi_z^-$ in the weak* topology. Now it remains to show that $H^{\infty}(R)$ separates the points of R. To this end, we consider a Riemann surface R_k obtained by joining two copies of $D \setminus \bigcup_{j=1}^{n_k} J_{kj}$ along all two sides of J_{kj} . Denote by π , π_k the ramified covering maps from R, R_k onto the open unit disc D, respectively. Note that there is a natural inclusion map ψ_k from the subset $D_0 \cup D_k$ of R into R_k such that $\pi_k \circ \psi_k = \pi$. Of course, ψ_k maps D_0 to one sheet of R_k and D_k to the other sheet. Now, we extend ψ_k to the whole of R by mapping all the other D_j 's in R to the sheet containing $\psi_k(D_0)$ so that $\pi_k \circ \psi_k = \pi$. Inspecting analytic coordinates at each point, we see that ψ_k is an analytic map of R into R_k . Here, it is crucial that no D_j other than D_0 and D_k contain the segment I_k , where the conformal structure in R_k is changed by ramifications. Since R_k is a finite bordered Riemann surface, $H^{\infty}(R_k)$ separates the points of R are separated by $H^{\infty}(R)$.

EXAMPLE 2. In the above example the sheets D_k $(k \ge 1)$ are openly imbedded in the maximal ideal space $\mathcal{M}(R)$. With a little more effort, we next construct a Riemann surface R satisfying (3.1),

- (3.4) $\tau(E)$ is never open in $\mathcal{M}(R)$ (with respect to the norm topology) for any non empty subset E of R; and
- $(3.5) \qquad M^{\infty}(R) = H^{\infty}(R).$

We take I_k , J_{kj} , D^* and K_k as in Example 1. To define D_k , we first order them as follows. At stage 0, only D_0 exists. At stage 1, D_0 has one child, which we name D_1 . At stage 2, each of D_0 , D_1 has one child, which we name D_2 and D_3 , respectively, and we continue this process for all D_k . According to this ordering, we see that each D_l , $2^{k-1} \leq l < 2^k$, has only one parent $D_{p(l)}$, so that $0 \leq p(l) < 2^{k-1}$. Now we define



R I_1 I_3 I_7 $I_{\scriptscriptstyle 15}$ D_1 D_{15} D_{14} D_{τ} I_7 I_6 I₁₄ I₁₃ D_6 $D_{13} D_{12}$ D_3 I₁₂ I_3 I_2 I_5 *I*₁₁ D_2 $D_{11} D_{10}$ D_5 I₁₀ I₉ I 5 I 4 D_4 D, D,8 D_0 Ī₈ I₂ Ī4 I₁

Figure 3.

M. Hayashi

$$D_l = D \setminus \left(\bigcup_{i=1}^{\infty} I_i^{(l)}\right), \qquad l = 0, 1, 2, \cdots,$$

where $I_i^{(l)} = \bigcup_{j=1}^{n_i} J_{ij}$ for i=l or p(i)=l, and $I_i^{(l)} = I_i$, otherwise. The desired Riemann surface is now obtained by joining D_l with $D_{p(l)}$ along the two sides of J_{lj} $(1 \le j \le n_l)$ crosswise for each $l=1, 2, \cdots$. In other words, at stage k, we join $D_0, \dots, D_{2^{k-1-1}}$ with $D_{2^{k-1}}, \dots, D_{2^{k-1}}$ so that (3.1) holds for each joined pair (Fig. 2, Fig. 3). Define a finite bordered Riemann surface R_l and covering maps π , π_l as in Example 1. Furthermore, we define a one-to-one map ψ_l from the subset $D_l \cup D_{p(l)}$ of R onto the corresponding subdomain of R_l so that $\pi_k \circ \phi_k = \pi$. We extend ϕ_l analytically to the whole of R by mapping all the D_i 's that are D_i 's descendants to the same sheet as the one containing $\phi_i(D_i)$ and all the remaining D_i 's to the other sheet of R_i . As before, we see that $H^{\infty}(R)$ separates the points of R, and (3.5) follows from the theorem. In order to have (3.4), we choose ε_k satisfying $\sum_{k=1}^{\infty} \varepsilon_k < \infty$ in (3.3). Put $E = \pi^{-1}(\zeta)$ for $\zeta \in D^*$. Then, the set $\tau(E)$ is totally bounded in the norm metric $\|\phi_1 - \phi_2\|$. Therefore, the norm closure $\tau(E)$ is a totally disconnected compact set, and hence, it is homeomorphic to Cantor's ternary set. Consequently, $\overline{\tau(E)} \setminus \tau(E)$ is dense in $\tau(E)$, and (3.4) holds.

References

- [1] T. W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N. J., 1969.
- [2] T. W. Gamelin, Lectures on $H^{\infty}(D)$, La Plata Notas de Mathematica No. 21, 1972.
- [3] T. W. Gamelin, The algebra of bounded analytic functions, Bull. Amer. Math. Soc., 79 (1973), 1095-1108.
- [4] T. W. Gamelin, Extremal problems in arbitrary domains, Michigan Math. J., 20 (1973), 3-11.
- [5] M. Hayashi, Hardy classes on Riemann surfaces, thesis, Univ. of California, Los Angeles, 1979.
- [6] H. L. Royden, Algebras of bounded analytic functions on Riemann surfaces, Acta Math., 114 (1965), 113-142.
- [7] C. M. Stanton, Bounded analytic functions on a class of open Riemann surfaces, Pacific J. Math., 59 (1975), 557-565.
- [8] E. L. Stout, The Theory of Uniform Algebras, Bogden and Quigley, Tarrytownon-Hudson, N.Y., 1971.

Mikihiro HAYASHI Department of Mathematics Hokkaido University Sapporo 060 Japan

344