J. Math. Soc. Japan
Vol. 39, No. 2, 1987

The maximal ideal space of the bounded analytic
functions on a Riemann surface

Dedicated to Professor Yukio Kusunoki on his 60th birthday

By Mikihiro HAYASHI

(Received Oct. 28, 1985)

Introduction.

We denote by H*(R) the algebra of all bounded analytic functions on a
Riemann surface R, by H(R) the maximal ideal space of the algebra H*(R) and
by t the canonical continuous mapping from R into #(R). In this note we
shall answer negatively the following question (cf.[3], [4)): If H*(R) separates
the points of R, does it follow that

(0.1) the mapping = is a homeomorphism of R onto an open subset of H(R)?

We shall show, in addition, that property (0.1) has several equivalent conditions;
one of them asserts existence of a family of certain meromorphic functions on
R (Theorem).

Property (0.1) is satisfied if R is an arbitrary domain on the complex plane
or on any closed Riemann surface whenever H*(R) contains a nonconstant
function. It is also satisfied for any Riemann surface of Parreau-Widom type
(Stanton [7]). As indicated in Gamelin [4], property (0.1) has some applications
(2], [5)). For instance, one can show uniqueness (and existence by
of the Ahlfors function on R when (0.1) is valid.

Before stating the results, we fix notations. Equipped with the sup-norm
If |=supecrl| f(a)|, H®(R) is a Banach algebra. Let H>=(R)* be the dual space
of the Banach space H*(R). One may identify the maximal ideal space H(R)
as the set of all g H=(R)* satisfying &(fg)=¢(f)d(g) (f, g=H*(R)) and
@|=¢(1)=1. For each point a= R, the point evaluation f—f(a) defines an
element ¢, in M(R). A canonical map 7: R—H(R) is now defined by 7(a)=¢,.
Inheriting the weak* topology from H>(R)*, the set H(R) is a compact Hausdorff
space and the map ¢ is continuous. Two points a, b of R are said to be
separated by H=(R) if there is a function f in H*(R) with f(a)+f(b), and
weakly separated by H>(R) if there is a pair of functions f, g in H>(R) with
(f/g)a)#(f/g)b). The points of R are said to be (weakly) separated by H>(R)
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if H*(R) (weakly) separates any distinct two points of R.

Suppose that H=(R) contains nonconstants. It follows from Royden [6:
Proposition 2] that there exists a Riemann surface R’ and an analytic map ¢
of R into R’ such that H<=(R’) weakly separates the points of R’ and H*(R)
=H*(R"eg. This implies that H>*(R) is isomorphic to H*(R’) as Banach
algebras. Thus, we may restrict our attention to the case in which H<=(R)
weakly separates the points of R. Finally, we shall denote by M=(R) the
family of the meromorphic functions on R that are bounded off some compact
subset K of R, where the set K may depend on the function.

Now we state our results.

THEOREM. Suppose that H*(R) weakly separates the points of a Riemann
surface R. For a given point a of R, one of the following properties implies all
the others:

(a) There is a neighborhood U of the point a such that the restriction map
o|U :U-HU(R) is open.
(b) There is a neighborhood U of the point a such that the map t|U is a homeo-

morphism of U onto an open subset of M(R).

(c) There is a meromorphic function g€ M>(R) with a pole at the point a.
(d) There is a meromorphic function g€ M=(R) such that g is analytic on R~{a}

and has a simple pole at the point a.

(e) There is a bounded linear operator T on H*(R) such that

e.l) T(fg)=gTf+f(a)Tg, [f,gsH>(R); and
(e.2) (Tf)a)+ 0 for some function f<H>(R).

(f) There is a homeomorphism @ of the open unit disc D onto an open subset of
M(R) satisfying

(f.1) 00) =¢q; and

(£.2)  f@ is analytic on D for every f<H*(R), where f($)=¢(f)
1S the Gelfand transform of f.

In section 3 we shall construct two examples. Both answer negatively our
question; the first one is easier and the second says more. In fact, we shall
construct a Riemann surface such that 7(F) is never open in M(R) for any
non empty subset £ of R (in particular, for E=R). This also shows that
M=(R)NH=(R) may be empty even if H*(R) separates the points of R.
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1. A Lemma.

We shall need the following lemma (cf.[5: Chap. II, section 37).

LEMMA. Suppose that acR is the pole of a function in M>(R), and that
he M>(R) has minimal total number of poles, among all functions in M>=(R) with
pole at a. Then fhe H*(R) for all f € H*(R) satisfying f(a)=0. Moreover, there
1s fe H(R) such that f(a)=0 and (fh)(a)+0.

Proor. Let {a=a,, a,, .-, a} be the pole set of the function h. Note that
H=(R) identifies the points a,, a,, -, a¢n. Let geM=(R) have minimal total
number of poles, among all functions in M<=(R) with pole set included in
{a,, asy -+, an}. Say the pole set of g is {b,, b,, ---, b,}. Let feH>(R) have
minimal total number of zeros at {b,, b,, ---, b}, among all functions in H*(R)
vanishing at {b,, b,, ---, b,}. Then, by the minimality of g and f, we see that
fgeH=(R) and (fg)(b;)#0 for all . Hence, (fg)(a)#0 and g must have a pole
at a. By the minimality of & and g, g has the same order of pole at each g,
as h. Thus, fhe H*(R) and (fh)(a)#0. For any F= H>*(R) satisfying F(a)=0,
we have Fhe H*(R) by the minimality of f. This proves the lemma.

2. Proof of Theorem.

(a)=(b): It follows from [6: Proposition 1] that there are functions f, g
in H*(R) such that f/g has a simple zero at the point a. We may assume
that (U, z) is the local coordinate satisfying f/g=z. Replacing U by a smaller
one, if necessary, we may assume that the point a is the only zero of f on U.
Now it is easy to see that f and g separate the points of U. Thus, 7|U is
one-to-one, and hence, homeomorphic.

(b)=(c): Our proof is similar to the proof of Rossi’s “Local peak set
theorem ” ([1: III. 8.17). We can choose a function f in H*(R) so that a local
coordinate (U, z) satisfies f(z)==z%, |f|=1 on oU and 7t is homeomorphic on a
neighborhood of U. Put f,=f. Now we choose functions f,, fs, -, foE H*(R)
such that f;(a)=0 and

{peuR) : 16(fHI=1, 2=5j=n} C ).

Choose a small ¢>0 so that |fj(p)|<1l, j=2, -, n when peU and |z(p)|
<e. Write w=(w,, -, wyp). Put V={welC":|w; <1, j=1,--,n} and
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W={weC": |w,|>e}\UVe Then,
U(fly Ty fn) - VUW:

where the left hand side denotes the joint spectrum {(¢(f1), =, ¢(f2)) : o€ M(R)}.
Now choose functions f,.q, --, fx€H*(R) and a polynomial polyhedron P such
that ¢(fy, ---, f¥)CP and =n(P)CVUW, where n(w,, -+, wy)=(w;, -+, w,). Put

V'=PNrXV) and W’ = PNz W).

We regard the holomorphic function 1/w;, on V/N\W’ as Cousin data for the
cover {V’/, W’} of P. By Oka’s theorem, there exist holomorphic functions A,
on V/ and h, on W’ such that h,—h,=1/w, on V'N\W’. Now the desired
function g is defined by

h2(fl(p>: ny(p))y (fl(p)r "'7fN(p))EW/’
VD) +hi(fo(D), s Fn(D)),  (fu(p), -, Fx(DNEV".

(b)=(d): We prove this implication by a slight modification of the above
proof. Note that 4/ f =%/w, has a single-valued analytic branch on a(f;, -, fa)\V
and that wi'({) intersects the set a(fy, ---, [ )NVNW at exactly n distinct
points for every ¢<|{|<1. Hence, we can find an open subset V; of V so that
o(fi, -, fo)CV,UW and ¥/ w, has a single-valued holomorphic branch on V,N\W.
Now we may use V, and 4w, instead of V and w, to obtain a meromorphic
function g with a simple pole at the point a.

(c)=(e): Take a function he M>=(R) whose total number of poles is minimal,
among all functions with pole at a. We define an operator T on H%(R) by
Tf=h(f—f(a)). By the lemma, T satisfies (e.1) and (e.2).

(e)=>(): This is the Bishop-Banaschewski theorem ([8: Theorem 15.12]).

(f)=(b): The map f—f-® gives a representation of the algebra H*(R) on
the open unit disc D in the sense of [6: p. 116]. Since H*(R)"-@ separates the
points of D, there is a one-to-one analytic map of D into the representation
space X=Rep H*(R) [6: Proposition 1]. We may identify D and R as open
sets of X. For beR with ¢,=@(D), points b and @-*(¢d,) in X are not sepa-
rated by H>(X). Since z is continuous, there are many such b in a neighborhood
of a. By [6: Lemma 1], 0D must be the same point as ¢ in the space X.
This means that D is identified with a neigborhood of ¢, and shows (b).

The implications (d)=(c) and (b)=(a) are trivial. This completes the proof.

g(p) = {

3. Examples.

By Schwarz’s lemma the canonical map 7: R—H(R) is continuous even if
M(R) is equipped with the norm topology induced from H>*(R)*.
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ExaMPLE 1. We shall construct a Riemann surface with the following
properties :

3.1 H>(R) separates the points of K; and
3.2) T is not an open map (even in the norm topology for M(R)).

Let D be the open unit disc. Choose a sequence of closed disjoint slits I, in
D such that I, has no accumulation points in the interior of D. Put

D* = D~ le Is.
For the moment, we think of D,, D,, --- as a sequence of copies of D*. Roughly

speaking, the required Riemann surface R will be constructed by joining every
D, (k=1) to D, along two sides of the cut I, crosswise (Fig. 1), though actually

L L] LI

Figure 1.

we will do this in a little more complex way. We consider finite disjoint sub-
intervals Jyy, =+, Jrn, of I, for each k, and what we really do is to join D,
with D, along two sides of the cuts J,; (1=7=<n,) crosswise. So, the precise
definition of D, is as follows:

D= D~ ((UJi)u(Uln), k=L

n¥k

We shall show that the surface R has the desired property if the integers n,
are chosen to be sufficiently large. Let D*=\,K,, where {K,} is an increasing
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sequence of compact sets. Denote by D} the corresponding copy of D, in D,.
The subset D,\UD} of R can be considered as a two-sheet cover of the domain
Df=D~\U,x1l,. Now let fe H*(R), |f|<1. Every non-branching point z< D¥
has two pre-images zf and z; in D,\UD) Set g.(2)=[f(z})—f(zz)]®. As is
well-known, g,(z) extends to an analytic function on D¥, and it is zero at the
branch points, which are the end points of the slits J,;. Since |g,]|=4, we can
choose an integer 7,, independent of f, so that

(3.3) lgel = (er)? on K,,

where ¢, | 0 is a sequence of positive numbers. Hence,
.+ —¢.-Il = sup{|f(zi)—f(z7)| : FEH™(R), |[I=]1} <&,

where z~=z; is the point on the sheet D, for ze D*. This shows that ¢z;—+¢z—
in the norm topology as k—oo, and hence, ¢.+—¢,- in the weak* topology.
Now it remains to show that H=(R) separates the points of R. To this end,
we consider a Riemann surface R, obtained by joining two copies of D\\J7 T,
along all two sides of J,;, Denote by =, =, the ramified covering maps from
R, R, onto the open unit disc D, respectively. Note that there is a natural
inclusion map ¢, from the subset D,\UD, of R into R, such that m,¢,=m.
Of course, ¢, maps D, to one sheet of R, and D, to the other sheet. Now,
we extend ¢, to the whole of K by mapping all the other D,s in R to the
sheet containing ¢.(D,) so that m,°¢,=m. Inspecting analytic coordinates at
each point, we see that ¢, is an analytic map of R into R,. Here, it is crucial
that no D; other than D, and D, contain the segment I,, where the conformal
structure in R, is changed by ramifications. Since R, is a finite bordered
Riemann surface, H*(R,) separates the points of R,. Since H*(R;)¢,CH>(R)
for all £, we see that any two distinct points of R are separated by H*(R).

ExaMPLE 2. In the above example the sheets D, (k=1) are openly imbedded
in the maximal ideal space HM(R). With a little more effort, we next construct
a Riemann surface R satisfying (3.1),

3.4) 7(E) is never open in H(R) (with respect to the norm topology)
for any non empty subset E of R; and

(3.5) M=(R)= H*(R).

We take I, Ji;, D* and K; as in Example 1. To define D,, we first order
them as follows. At stage 0, only D, exists. At stage 1, D, has one child,
which we name D,. At stage 2, each of D,, D, has one child, which we name
D, and D,, respectively, and we continue this process for all D,. According to
this ordering, we see that each D,, 2¥-'</<2* has only one parent D,,
so that 0=<p(/)<2*-!. Now we define
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Figure 2.
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D, =D~ (Quw), 1=0,1,2, -,

=1

ng

where I{P=\Jj% J;; for i=l or p(i)=I, and I{¥=I,;, otherwise. The desired
Riemann surface is now obtained by joining D, with D,, along the two sides
of J;; 1=7=n,) crosswise for each /=1, 2, ---. In other words, at stage %, we
join D, -+, Dyr-1-q With Dys-1, -+, Dyr-; so that (3.1) holds for each joined
pair (Fig. 2, Fig. 3). Define a finite bordered Riemann surface R, and covering
maps m, m; as in Example 1. Furthermore, we define a one-to-one map ¢, from
the subset D,\UD,,, of R onto the corresponding subdomain of R, so that
Tredr=n. We extend ¢, analytically to the whole of R by mapping all the
Dys that are D,’s descendants to the same sheet as the one containing ¢,(D;)
and all the remaining D,’s to the other sheet of R;. As before, we see that
H>(R) separates the points of R, and (3.5) follows from the theorem. In order
to have (3.4), we choose ¢, satisfying 25,¢,<oo in [3.3). Put E=zn"*Q) for
feD*. Then, the set 7(E) is totally bounded in the norm metric |¢;—¢,].
Therefore, the norm closure z(E) is a totally disconnected compact set, and

hence, it is homeomorphic to Cantor’s ternary set. Consequently, 7(E)\t(E) is

dense in 7(E), and (3.4) holds.

References

[1] T.W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.

[27] T.W. Gamelin, Lectures on H*(D), La Plata Notas de Mathematica No. 21, 1972.

[3] T.W. Gamelin, The algebra of bounded analytic functions, Bull. Amer. Math. Soc.,
79 (1973), 1095-1108.

[4] T.W. Gamelin, Extremal problems in arbitrary domains, Michigan Math. J., 20
(1973), 3-11.

[5] M. Hayashi, Hardy classes on Riemann surfaces, thesis, Univ. of California, Los
Angeles, 1979.

[6] H.L.Royden, Algebras of bounded analytic functions on Riemann surfaces, Acta
Math., 114 (1965), 113-142.

[7] C.M. Stanton, Bounded analytic functions on a class of open Riemann surfaces,
Pacific J. Math., 59 (1975), 557-565.

[8]1 E.L.Stout, The Theory of Uniform Algebras, Bogden and Quigley, Tarrytown-
on-Hudson, N.Y., 1971.

Mikihiro HAYASHI
Department of Mathematics
Hokkaido University
Sapporo 060

Japan



	Introduction.
	THEOREM. Suppose ...

	1. A Lemma.
	2. Proof of Theorem.
	3. Examples.
	References

