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Introduction.

We denote by $H^{\infty}(R)$ the algebra of all bounded analytic functions on a
Riemann surface $R$ , by $\mathcal{M}(R)$ the maximal ideal space of the algebra $H^{\infty}(R)$ and
by $\tau$ the canonical continuous mapping from $R$ into $\mathcal{M}(R)$ . In this note we
shall answer negatively the following question (cf. [3], [4]): If $H^{\infty}(R)$ separates
the points of $R$ , does it follow that

(0.1) the mapping $\tau$ is a homeomorphism of $R$ onto an open subset of $\mathcal{M}(R)$ ?

We shall show, in addition, that property (0.1) has several equivalent conditions;
one of them asserts existence of a family of certain meromorphic functions on
$R$ (Theorem).

Property (0.1) is satisfied if $R$ is an arbitrary domain on the complex plane
or on any closed Riemann surface whenever $H^{\infty}(R)$ contains a nonconstant
function. It is also satisfied for any Riemann surface of Parreau-Widom type
(Stanton [7]). As indicated in Gamelin [4], property (0.1) has some applications
([2], [5]). For instance, one can show uniqueness (and existence by Theorem)

of the Ahlfors function on $R$ when (0.1) is valid.
Before stating the results, we fix notations. Equipped with the sup-norm

$\Vert f\Vert=\sup_{a\in R}|f(a)|,$ $H^{\infty}(R)$ is a Banach algebra. Let $H^{\infty}(R)^{*}$ be the dual space
of the Banach space $H^{\infty}(R)$ . One may identify the maximal ideal space $\mathcal{M}(R)$

as the set of all $\phi\in H^{\infty}(R)^{*}$ satisfying $\phi(fg)=\phi(f)\phi(g)$ $(f, g\in H^{\infty}(R))$ and
$\Vert\phi\Vert=\phi(1)=1$ . For each point $a\in R$ , the point evaluation $farrow f(a)$ defines an
element $\phi_{a}$ in $\mathcal{M}(R)$ . A canonical map $\tau;Rarrow \mathcal{M}(R)$ is now defined by $\tau(a)=\phi_{a}$ .
Inheriting the weak* topology from $H^{\infty}(R)^{*}$ , the set $\mathcal{M}(R)$ is a compact Hausdorff
space and the map $\tau$ is continuous. Two points $a,$

$b$ of $R$ are said to be

seParated by $H^{\infty}(R)$ if there is a function $f$ in $H^{\infty}(R)$ with $f(a)\neq f(b)$ , and
weakly seParated by $H^{\infty}(R)$ if there is a pair of functions $f,$ $g$ in $H^{\infty}(R)$ with
$(f/g)(a)\neq(f/g)(b)$ . The points of $R$ are said to be (weakly) separated by $H^{\infty}(R)$
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if $H^{\infty}(R)$ (weakly) separates any distinct two points of $R$ .
Suppose that $H^{\infty}(R)$ contains nonconstants. It follows from Royden [6:

Proposition 2] that there exists a Riemann surface $R’$ and an analytic map $\sigma$

of $R$ into $R’$ such that $H^{\infty}(R$
‘

$)$ weakly separates the points of $R’$ and $H^{\infty}(R)$

$=H^{\infty}(R’)\circ\sigma$ . This implies that $H^{\infty}(R)$ is isomorphic to $H^{\infty}(R’)$ as Banacb
algebras. Thus, we may restrict our attention to the case in which $H^{\infty}(R)$

weakly separates the points of $R$ . Finally, we shall denote by $M^{\infty}(R)$ the
family of the meromorphic functions on $R$ that are bounded off some compact
subset $K$ of $R$ , where the set $K$ may depend on the function.

Now we state our results.

THEOREM. Suppose that $H^{\infty}(R)$ weakly separates the Points of a Riemann
surface R. For a given point $a$ of $R$ , one of the folloutng prOperijes impljes all
the others:
(a) There is a neighborhood $U$ of the point $a$ such that the restriction map

$\tau|U:Uarrow \mathcal{M}(R)$ is open.
(b) There is a neighborhood $U$ of the pOjnt $a$ such that the maP $\tau|U$ is a homeo-

morPhsm of $U$ onto an open subset of $\mathcal{M}(R)$ .
(c) There is a meromorphc function $g\in M^{\infty}(R)$ with a Pole at the Point $a$ .
(d) There is a meromorPluc function $g\in M^{\infty}(R)$ such that $g$ is analytic on $R\backslash \{a\}$

and has a simple Pole at the Point $a$ .
(e) There is a bounded linear operator $T$ on $H^{\infty}(R)$ such that

$(e. 1)$ $T(fg)=gTf+f(a)Tg$ , $f,$ $g\in H^{\infty}(R)$ ; and
$(e. 2)$ $(Tf)(a)\neq 0$ for some function $f\in H^{\infty}(R)$ .

(f) There is a homeomorpfusm $\Phi$ of the open unit disc $D$ onto an open subset of
$\mathcal{M}(R)$ satisfying

$(f. 1)$ $\Phi(0)=\phi_{a}$ ; and
$(f. 2)$ $f\circ\Phi$ is analytic on $D$ for every $f\in H^{\infty}(R)$ , where $f(\phi)=\phi(f)$

is the Gelfand transform of $f$.
In section 3 we shall construct two examples. Both answer negatively our

question; the first one is easier and the second says more. In fact, we shall
construct a Riemann surface such that $\tau(E)$ is never open in $\mathcal{M}(R)$ for any
non empty subset $E$ of $R$ (in particular, for $E=R$). This also shows that
$M^{\infty}(R)\backslash H^{\infty}(R)$ may be empty even if $H^{\infty}(R)$ separates the points of $R$ .
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1. A Lemma.

We shall need the following lemma (cf. [5: Chap. II, section 3]).

LEMMA. SuPpose that $a\in R$ is the pole of a function in $M^{\infty}(R)$ , and that
$h\in M^{\infty}(R)$ has minimal total number of Poles, among all functions in $M^{\infty}(R)$ with
Pole at $a$ . Then $fh\in H^{\infty}(R)$ for all $f\in H^{\infty}(R)$ satisfying $f(a)=0$ . Moreover, there
is $f\in H^{\infty}(R)$ such that $f(a)=0$ and $(fh)(a)\neq 0$ .

PROOF. Let $\{a=a_{1}, a_{2}, \cdots , a_{m}\}$ be the pole set of the function $h$ . Note that
$H^{\infty}(R)$ identifies the points $a_{1},$ $a_{2},$

$\cdots$ , $a_{m}$ . Let $g\in M^{\infty}(R)$ have minimal total
number of poles, among all functions in $M^{\infty}(R)$ with pole set included in
$\{a_{1}, a_{2}, \cdots , a_{m}\}$ . Say the pole set of $g$ is $\{b_{1}, b_{2}, \cdots , b_{k}\}$ . Let $f\in H^{\infty}(R)$ have
minimal total number of zeros at $\{b_{1}, b_{2}, \cdots , b_{k}\}$ , among all functions in $H^{\infty}(R)$

vanishing at $\{b_{1}, b_{2}, \cdots , b_{k}\}$ . Then, by the minimality of $g$ and $f$, we see that
$fg\in H^{\infty}(R)$ and $(fg)(b_{j})\neq 0$ for all $j$ . Hence, $(fg)(a)\neq 0$ and $g$ must have a pole
at $a$ . By the minimality of $h$ and $g,$ $g$ has the same order of pole at each $a_{J}$

as $h$ . Thus, $fh\in H^{\infty}(R)$ and $(fh)(a)\neq 0$ . For any $F\in H^{\infty}(R)$ satisfying $F(a)=0$ ,

we have $Fh\in H^{\infty}(R)$ by the minimality of $f$. This proves the lemma.

2. Proof of Theorem.

$(a)\Rightarrow(b)$ : It follows from [6: Proposition 1] that there are functions $f,$ $g$

in $H^{\infty}(R)$ such that $f/g$ has a simple zero at the point $a$ . We may assume
that $(U, z)$ is the local coordinate satisfying $f/g=z$ . Replacing $U$ by a smaller
one, if necessary, we may assume that the point $a$ is the only zero of $f$ on $U$.
Now it is easy to see that $f$ and $g$ separate the points of $U$ . Thus, $\tau|U$ is
one-to-one, and hence, homeomorphic.

$(b)\Rightarrow(c)$ : Our proof is similar to the proof of Rossi’s “ Local peak set
theorem “ ([1: III. 8. 1]). We can choose a function $f$ in $H^{\infty}(R)$ so that a local
coordinate $(U, z)$ satisfies $f(z)=z^{k},$ $|f|=1$ on $\partial U$ and $\tau$ is homeomorphic on a
neighborhood of $\overline{U}$. Put $f_{1}=f$. Now we choose functions $f_{2},$ $f_{3},$ $f_{n}\in H^{\infty}(R)$

such that $f_{j}(a)=0$ and

$\{\phi\in \mathcal{M}(R) : |\phi(f_{j})|\leqq 1,2\leqq j\leqq n\}\subset\tau(U)$ .

Choose a small $\epsilon>0$ so that $|f_{j}(p)|<1,$ $j=2,$ $\cdots$ , $n$ when $p\in U$ and $|z(p)|$

$<\epsilon$ . Write $w=$ $(w_{1}, \cdots , w_{n})$ . Put $V=\{w\in C^{n} : |w_{j}|<1, j=1, \cdots , n\}$ and
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$W=\{w\in C^{n} : |w_{1}|>\epsilon\}\cup\overline{V}^{c}$. Then,

$\sigma(f_{1}, f_{n})\subset V\cup W$ ,

where the left hand side denotes the joint spectrum $\{(\phi(f_{1}), \cdots , \phi(f_{n})):\phi\in \mathcal{M}(R)\}$ .
Now choose functions $f_{n+1},$ $f_{N}\in H^{\infty}(R)$ and a polynomial polyhedron $P$ such
that $\sigma(f_{1}, \cdots , f_{N})\subset P$ and $\pi(P)\subset V\cup W$, where $\pi(w_{1}, \cdots , w_{N})=(w_{1}, \cdots , w_{n})$ . Put

$V’=P\cap\pi^{-1}(V)$ and $W’=P\cap\pi^{-1}(W)$ .

We regard the holomorphic function $1/w_{1}$ on $V’\cap W’$ as Cousin data for the
cover {V’, $W’$ } of $P$. By Oka’s theorem, there exist holomorphic functions $h_{1}$

on $V’$ and $h_{2}$ on $W’$ such that $h_{2}-h_{1}=1/w_{1}$ on $V’\cap W’$ . Now the desired
function $g$ is defined by

$g(p)=\{\begin{array}{ll}h_{2}(f_{1}(p), f_{N}(p)), (f_{1}(p), \cdots f_{N}(p))\in W’,1/f(p)+h_{1}(f_{1}(p), f_{N}(p)), (f_{1}(p), f_{N}(p))\in V’.\end{array}$

$(b)\Rightarrow(d)$ : We prove this implication by a slight modification of the above
proof. Note that $\sqrt[k]{f}=\sqrt[k]{w_{1}}$ has a single-valued analytic branch on $\sigma(f_{1}, \cdots , f_{n})\cap V$

and that $w_{1}^{-1}(\zeta)$ intersects the set $\sigma(f_{1}, \cdots , f_{n})\cap V\cap W$ at exactly $n$ distinct
points for every $\epsilon<|\zeta|<1$ . Hence, we can find an open subset $V_{1}$ of $V$ so that
$\sigma(f_{1}, f_{n})\subset V_{1}\cup W$ and $\sqrt[k]{w_{1}}$ has a single-valued holomorphic branch on $V_{1}\cap W$.
Now we may use $V_{1}$ and $\sqrt[k]{w_{1}}$ instead of $V$ and $w_{1}$ to obtain a meromorphic
function $g$ with a simple pole at the point $a$ .

$(c)\Rightarrow(e)$ : Take a function $h\in M^{\infty}(R)$ whose total number of poles is minimal,
among all functions with pole at $a$ . We define an operator $T$ on $H^{\infty}(R)$ by
$Tf=h(f-f(a))$ . By the lemma, $T$ satisfies $(e. 1)$ and $(e. 2)$ .

$(e)\Rightarrow(f)$ : This is the Bishop-Banaschewski theorem ([8: Theorem 15.12]).
$(f)\Rightarrow(b)$ : The map $farrow\hat{f}\circ\Phi$ gives a representation of the algebra $H^{\infty}(R)$ on

the open unit disc $D$ in the sense of [6: p. 116]. Since $H^{\infty}(R)^{\wedge}Q\Phi$ separates the
points of $D$ , there is a one-to-one analytic map of $D$ into the representation
space $X=RepH^{\infty}(R)$ [ $6$ : Proposition 1]. We may identify $D$ and $R$ as open
sets of $X$. For $b\in R$ with $\phi_{b}\in\Phi(D)$ , points $b$ and $\Phi^{-1}(\phi_{b})$ in $X$ are not sepa-
rated by $H^{\infty}(X)$ . Since $\tau$ is continuous, there are many such $b$ in a neighborhood
of $a$ . By [6: Lemma 1], $O\in D$ must be the same point as $a$ in the space $X$.
This means that $D$ is identified with a neigborhood of $a$ , and shows (b).

The implications $(d)\Rightarrow(c)$ and $(b)\Rightarrow(a)$ are trivial. This completes the proof.

3. Examples.

By Schwarz’s lemma the canonical map $\tau:Rarrow \mathcal{M}(R)$ is continuous even if
$\mathcal{M}(R)$ is equipped with the norm topology induced from $H^{\infty}(R)^{*}$ .
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EXAMPLE 1. We shall construct a Riemann surface with the following
properties:

(3.1) $H^{\infty}(R)$ separates the points of $R$ ; and

(3.2) $\tau$ is not an open map (even in the norm topology for $\mathcal{M}(R)$ ).

Let $D$ be the open unit disc. Choose a sequence of closed disjoint slits $I_{k}$ in
$D$ such that $I_{k}$ has no accumulation points in the interior of $D$ . Put

$D^{*}=D \backslash \bigcup_{k=1}^{\infty}I_{k}$ .

For the moment, we think of $D_{0},$ $D_{1},$ $\cdots$ as a sequence of copies of $D^{*}$ . Roughly
speaking, the required Riemann surface $R$ will be constructed by joining every
$D_{k}(k\geqq 1)$ to $D_{0}$ along two sides of the cut $I_{k}$ crosswise (Fig. 1), though actually

$R$

Figure 1.

we will do this in a little more complex way. We consider finite disjoint sub-
intervals $J_{k1},$ $\cdots$ , $J_{kn_{k}}$ of $I_{k}$ for each $k$ , and what we really do is to join $D_{k}$

with $D_{0}$ along two sides of the cuts $J_{kj}(1\leqq j\leqq n_{k})$ crosswise. So, the precise
definition of $D_{k}$ is as follows:

$D_{0}=D \backslash (\bigcup_{k=1}^{\infty}\bigcup_{j=1}^{n_{k}}J_{kj})$

$D_{k}=D \backslash ((\bigcup_{j=1}^{n_{k}}J_{kj})\cup(UI_{n}))$ , $k\geqq 1$ .

We shall show that the surface $R$ has the desired property if the integers $n_{k}$

are chosen to be sufficiently large. Let $D^{*}= \bigcup_{k}K_{k}$ , where $\{K_{k}\}$ is an increasing
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sequence of compact sets. Denote by $D_{k}^{0}$ the corresponding copy of $D_{k}$ in $D_{0}$ .
The subset $D_{k}\cup D_{k}^{0}$ of $R$ can be considered as a two-sheet cover of the domain
$D_{k}^{*}=D \backslash \bigcup_{n\neq k}I_{n}$ . Now let $f\in H^{\infty}(R),$ $|f|\leqq 1$ . Every non-branching point $z\in D_{k}^{*}$

has two pre-images $z_{k}^{+}$ and $z_{k}^{-}$ in $D_{k}\cup D_{k}^{0}$ . Set $g_{k}(z)=[f(z_{k}^{+})-f(z_{k}^{-})]^{2}$ . As is
well-known, $g_{k}(z)$ extends to an analytic function on $D_{k}^{*}$ , and it is zero at the
branch points, which are the end points of the slits $J_{kj}$ . Since $|g_{k}|\leqq 4$ , we can
choose an integer $n_{k}$ , independent of $f$, so that

(3.3) $|g_{k}|\leqq(\epsilon_{k})^{2}$ on $K_{k}$ ,

where $\epsilon_{k}\downarrow 0$ is a sequence of positive numbers. Hence,

$\Vert\phi_{z_{k}^{+}}-\phi_{z}-\Vert=\sup\{|f(z_{k}^{+})-f(z^{-})| : f\in H^{\infty}(R), |f|\leqq 1\}<\epsilon_{k}$ ,

where $z^{-}=z_{k}^{-}$ is the point on the sheet $D_{0}$ for $z\in D^{*}$ . This shows that $\phi_{z_{k}^{+}}arrow\phi_{z}-$

in the norm topology as $karrow\infty$ , and hence, $\phi_{z_{k}^{+}}arrow\phi_{z}-in$ the weak* topology.
Now it remains to show that $H^{\infty}(R)$ separates the points of $R$ . To this end,
we consider a Riemann surface $R_{k}$ obtained by joining two copies of $D\backslash u_{j=1}^{n_{h}}J_{kj}$

along all two sides of $J_{kj}$ . Denote by $\pi,$ $\pi_{k}$ the ramified covering maps from
$R,$ $R_{k}$ onto the open unit disc $D$ , respectively. Note that there is a natural
inclusion map $\psi_{k}$ from the subset $D_{0}\cup D_{k}$ of $R$ into $R_{k}$ such that $\pi_{k}\circ\psi_{k}=\pi$ .
Of course, $\psi_{k}$ maps $D_{0}$ to one sheet of $R_{k}$ and $D_{k}$ to the other sheet. Now,
we extend $\psi_{k}$ to the whole of $R$ by mapping all the other $D_{j}’ s$ in $R$ to the
sheet containing $\psi_{k}(D_{0})$ so that $\pi_{k}\circ\psi_{k}=\pi$ . Inspecting analytic coordinates at
each point, we see that $\psi_{k}$ is an analytic map of $R$ into $R_{k}$ . Here, it is crucial
that no $D_{j}$ other than $D_{0}$ and $D_{k}$ contain the segment $I_{k}$ , where the conformal
structure in $R_{k}$ is changed by ramifications. Since $R_{k}$ is a finite bordered
Riemann surface, $H^{\infty}(R_{k})$ separates the points of $R_{k}$ . Since $H^{\infty}(R_{k})Q\psi_{k}\subset H^{\infty}(R)$

for all $k$ , we see that any two distinct points of $R$ are separated by $H^{\infty}(R)$ .

EXAMPLE 2. In the above example the sheets $D_{k}(k\geqq 1)$ are openly imbedded
in the maximal ideal space $\mathcal{M}(R)$ . With a little more effort, we next construct
a Riemann surface $R$ satisfying (3.1),

(3.4) $\tau(E)$ is never open in $\mathcal{M}(R)$ (with respect to the norm topology)

for any non empty subset $E$ of $R$ ; and

(3.5) $M^{\infty}(R)=H^{\infty}(R)$ .
We take $I_{k},$ $J_{kj},$ $D^{*}$ and $K_{k}$ as in Example 1. To define $D_{k}$ , we first order
them as follows. At stage $0$ , only $D_{0}$ exists. At stage 1, $D_{0}$ has one child,
which we name $D_{1}$ . At stage 2, each of $D_{0},$ $D_{1}$ has one child, which we name
$D_{2}$ and $D_{3}$ , respectively, and we continue this process for all $D_{k}$ . According to
this ordering, we see that each $D_{l},$ $2^{k-1}\leqq l<2^{k}$ , has only one parent $D_{p(l)}$ ,
so that $0\leqq P(l)<2^{k-1}$ . Now we define
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$D^{*}$

Figure 2.

$R$

Figure 3.
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$D_{l}=D\backslash (U\infty I\ell^{l)})$ , $l=0,1,2,$ $\cdots$ ,

where $I_{i}^{(l)}= \bigcup_{j=1}^{n_{i}}J_{ij}$ for $i=l$ or $p(i)=l$ , and $I_{i}^{(l)}=I_{i}$ , otherwise. The desired
Riemann surface is now obtained by joining $D_{l}$ with $D_{p(l)}$ along the two sides
of $J_{lj}(1\leqq j\leqq n_{l})$ crosswise for each $l=1,2,$ $\cdots$ In other words, at stage $k$ , we
join $D_{0},$ $\cdots$ , $D_{2^{k-1}-1}$ with $D_{2^{k-1}},$ $\cdots$ , $D_{2^{k-1}}$ so that (3.1) holds for each joined
pair (Fig. 2, Fig. 3). Define a finite bordered Riemann surface $R_{l}$ and covering
maps $\pi,$ $\pi_{l}$ as in Example 1. Furthermore, we define a one-to-one map $\psi_{l}$ from
the subset $D_{l}\cup D_{p(l)}$ of $R$ onto the corresponding subdomain of $R_{l}$ so that
$\pi_{k}\circ\psi_{k}=\pi$ . We extend $\psi_{l}$ analytically to the whole of $R$ by mapping all the
$D_{j}’ s$ that are $D_{l}’ s$ descendants to the same sheet as the one containing $\psi_{l}(D_{l})$

and all the remaining $D_{j}’ s$ to the other sheet of $R_{l}$ . As before, we see that
$H^{\infty}(R)$ separates the points of $R$, and (3.5) follows from the theorem. In order
to have (3.4), we choose $\epsilon_{k}$ satisfying $\Sigma_{k=1}^{\infty}\epsilon_{k}<\infty$ in (3.3). Put $E=\pi^{-1}(\zeta)$ for
$\zeta\in D^{*}$ . Then, the set $\tau(E)$ is totally bounded in the norm metric $\Vert\phi_{1}-\phi_{2}\Vert$ .
Therefore, the norm closure $\overline{\tau(E)}$ is a totally disconnected compact set, and
hence, it is homeomorphic to C’antor’s ternary set. Consequently, $\overline{\tau(E)}\backslash \tau(E)$ is
dense in $\overline{\tau(E)}$ , and (3.4) holds.
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