
J. Math. Soc. Japan
Vol. 39, No. 1, 1987

A sharp sufficient geometric condition for the
existenee of global real analytic solutions

on a bounded domain

By Akira KANEKO

(Received Nov. 21, 1984)
(Revised July 26, 1985)

1. Let $P(D)$ denote a linear partial differential operator with constant
coefficients. Let $\Omega\subset R^{n}$ be open and let $\mathcal{A}(\Omega)$ denote the space of real analytic
functions on $\Omega$ . In this paper we give a result which refines the following
one on the existence of global real analytic solutions abstracted from the work
of Kawai [7]:

THEOREM 1. Let $P(D)$ be locally hyperbOlic and let $K_{\text{\’{e}}}$ denote the local
prOpagatiOn $cme$ of $P(D)$ corresponding to the direction $\xi$ , which we assume can
be chosen depending in an $uPPer$ semi-continuous way on $\xi\in S^{n-1}$ . Assume that
$\Omega$ is bounded and that $\partial\Omega\cross S^{n-1}$ can be covered by two closed subsets $X$ ‘ such
that

(1) $(x, \xi)\in X^{*}$ implies either $P_{m}(\xi)\neq 0$ or $(\{x\}\pm K_{\xi})\cap\Omega=\emptyset$

(with the double signs in the same order). Then we have $P(D)\mathcal{A}(\Omega)=\mathcal{A}(\Omega)$ .

Our refined theorem is as follows:

THEOREM 2. Let $P(D)$ be locally hyperbolic and $\Omega\subset R$“ a bounded open set.
Assume that

(2) $(x, \xi)\in\partial\Omega\cross S^{n-1}$ implies either $P_{m}(\xi)\neq 0$ or $(\{x\}+K_{\text{\’{e}}})\cap\Omega=\emptyset$

for some choice of local propagation cone $K_{\xi}$ at $\xi$ (depending on $x$).

Then we have $P(D)\mathcal{A}(\Omega)=\mathcal{A}(\Omega)$ .
Generically there are only two choices of local propagation cones at every

$\xi$ , namely $\pm K_{\xi}$ . In that case the condition (2) is simply written as follows:

(2) $(x, \xi)\in\partial\Omega\cross S^{n-1}$ implies either of
$P_{m}(\xi)\neq 0,$ $(\{x\}+K_{\xi})\cap\Omega=\emptyset,$ $(\{x\}-K_{\xi})\cap\Omega=\emptyset$ .

Theorem 2 improves Theorem 1 in the following points: We do not need
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the global upper semi-continuity of $\xi->K_{\xi}$ , and we do not assume the possibility
of classifying points $(x, \xi)\in\partial\Omega\cross S^{n-1}$ according to the property (2) to two
“ closed “ subsets $X^{\pm}$ (with non-void intersection). In fact as for the latter we
have an explicit example by Zampieri [11] (see the last paragraph of this paper)

showing that (2)\ni (1) does not follow in general.
Concerning the problem of global existence of real analytic solutions there

already exists a necessary and sufficient condition by Hormander [5] when $\Omega$

is convex (but not necessarily bounded). However, his condition is not so
intuitive, and Kawai’s method based on the micro-local analysis has still value
though it is restricted to a locally hyperbolic operator $P(D)$ and to a bounded
$\Omega$ . RecentIy Zampieri [10] gave a paraphrase of Hormander’s condition also
in terms of $K_{\xi}$ as above. More precisely, he gave it in terms of local propa-
gation cones of every local irreducible factor of the principal part $P_{m}(\xi)$ , and
thus succeeded in giving a very sharp sufficient condition in general which in
particular was shown to be also necessary when the multiplicity of the zeros
of every local irreducible factor is at most two. Note however that his result
applies only to a convex $\Omega$ because it relies on Hormander’s work.

We have already given our main Theorem 2 in Kaneko [6]. There we
have also treated the case of unbounded $\Omega$, thus unifying the result of Andersson
[2] and of Kawai. Since the theory of Fourier hyperfunctions in a little
generalized sense is deeply employed there in order to treat systematically
hyperfunctions with unbounded analytic singular supports, we believe that it is
useful to give here a direct proof of the above main theorem for bounded $\Omega$

without employing Fourier hyperfunctions.
For further references on this problem see $e$ . $g$ . the introduction of Hormander

[5] or Cattabriga [3].

2. Let $\mathcal{B}$ denote the sheaf of hyperfunctions on $R^{n}$ . The following lemma
is the basis of all our calculations when considering a bounded $\Omega$ .

LEMMA 3. Let $f,$ $g$ be two hyperfunctions on $R^{n}$ one of which has compact
(analytic) singular support. Then the convolution $f*g$ is well defined as a section
of the quotient sheaf $\mathcal{B}/\mathcal{A}$ on $R^{n}$ . We can always choose its global $hy$perfunction
representative on $R^{n}$ . Denoting any such representative by the same symbol $f*g$ ,
we have

(3) S. S. $f*g\subset$ { $(x+y,$ $\xi)$ ; $(x,$ $\xi)\in S$ . S. $f,$ $(y,$ $\xi)\in S$ . S. $g$ }.

Here S.S. denotes the singular spectrum ( $i$ . $e$ . the equivalent notion of analytic
wave front set for distributions) of a hyperfunction.

This lemma immediately follows from the general theory on the manipulation
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of microfunctions given in Chapter I of S-K-K [9]. For the convenience of the
general reader we give here an elementary proof based only on the knowledge
of usual convolution for hyperfunctions.

PROOF. Assume that sing $suppg\subset\{|x|\leqq r\}$ and choose $R\gg r$ . Let $f_{R}$ be a
modification of $f$ with support in $|x|\leqq R$ . Then the convolution $f_{R}*g$ is
well-defined as a hyperfunction. In view of a corresponding formula for hyper-
functions, S.S. $f_{R}*g$ for $|x|<R-r$ is estimated by the right-hand side of (3).

Moreover, for $R’>R,$ $f_{R’}*g$ defines the same section of $\mathcal{B}/\mathcal{A}$ as $f_{R}*g$ on
$|x|<R-r$, because the difference $(f_{R’}-f_{R})*g$ becomes real analytic there. Since
$R$ is arbitrary, an element of $(\mathcal{B}/\mathcal{A})(R^{n})$ is thus determined. In view of
Malgrange’s vanishing theorem $H^{1}(R^{n}, \mathcal{A})=0$ , the canonical mapping $\mathcal{B}(R^{n})arrow$

$(\mathcal{B}/\mathcal{A})(R^{n})$ is surjective, hence we can always choose a global hyperfunction
representative for $f*g$ which is determined modulo $\mathcal{A}(R^{n})$ . This justifies the
above abuse of notation to consider $f*g$ also as denoting a hyperfunction
representative on $R^{n}$ . $q$ . $e$ . $d$ .

Next we remember the definition of locally hyperbolic operators.

DEFINITION 4 (cf. Andersson [1]). $P(D)$ is called locally hyperbolic if for
every $\xi^{0}\in S^{n-1}$ there exist a vector $v=v(\xi^{0})\in R^{n}\backslash \{0\}$ , a neighborhood $\Delta$ of $\xi^{0}$ in
$S^{n-1}$ and $\epsilon_{0}>0$ such that

$P_{m}(\xi+itv)\neq 0$ if $\xi\in\Delta$ and $0<|t|<\epsilon_{0}$ .
Here $P_{m}$ denotes the principal part of $P$.

Let $(P_{m})_{\xi}(\eta)$ denote the localization of $P_{m}$ at $\xi$ . If $P(D)$ is locally hyper-
bolic, then the localization at $\xi$ becomes hyperbolic to the direction $v(\xi)$

appearing in Definition 4, hence $v(\xi)$ can in fact move inside the normal cone
$\Gamma((P_{m})_{\xi}(\eta), v(\xi))$ of $(P_{m})_{\xi}(\eta)$ containing $v(\xi)$ (which may contain a characteristic
direction of the original operator). Its dual cone is denoted by $K_{\xi}$ and is called
the local $ProPagation$ cone of $P(D)$ at $\xi$ corresponding to $v(\xi)$ . For any choice
of $K_{\xi^{0}}$ we can always imbed it locally to an upper semi-continuous correspond-
ence $\xirightarrow K_{\xi}$ . Here the meaning of upper semi-continuity is the following:

(4) For any $\epsilon>0$ there exists $\delta>0$ such that $|\xi-\xi^{0}|\leqq\delta$ implies
that $K_{\xi}$ is contained in the $\epsilon$-neighborhood of $K_{\xi^{0}}$ .

(However we may obtain the opposite cone $-K_{\xi}$ when we let $\xi$ make a round
trip on $S^{n-1}.$ )

THEOREM 5. Let $P(D)$ be locally hyperbolic. Then for any $\xi^{0}\in S^{n-1}$ and
for any upper semi-cmtinuous chmce of the local pr0pagation cone $\xiarrow K_{\xi}$ on a
neighborhood $\Delta$ of $\xi^{0}$ we can construct a ”good” micro-local fundamental solution
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$E^{\Delta}(x)$ of $P(D)$ on $R^{n}\cross\Delta$ . That is, we can find a hyperfunction $E^{\Delta}(x)$ on $R^{n}$

such that

i) $P(D)E^{\Delta}(x)-\delta(x)$ is micro-analytic on $R^{n}\cross\Delta$ .
ii) S.S. $E^{\Delta}(x) \subset(\{0\}\cross\overline{\Delta})\cup(R^{n}\cross\partial\Delta)\bigcup_{\xi}\bigcup_{\cap\in N(P_{m})}.(K_{\xi}\cross\{\xi\})$ .

Here $N(P_{m})$ denotes the set of zeros of $P_{m}$ and $K_{\xi}$ is the assigned choice of local
$ProPagation$ cone.

This theorem is essentially proved in Kawai [7] (where he constructs a
pair of global “ good ” fundamental solutions assuming the global upper semi-
continuity of $\xi-,K_{\xi}$). Another proof based on the inverse Fourier transformation
may be found in Kaneko [6].

The correspondence $\xi-K_{\xi}$ is in general not lower semicontinuous. That is,
$K_{\xi}$ may expand suddenly as $\xi$ varies. This is the cause of the difficulty for
deriving (2) $\Rightarrow(1)$ . Therefore we now introduce on the cotangential sphere
$S^{n-1}$ the following stratification:

$S^{n-1}=\Xi_{0}u\Xi_{1}u\ldots u\Xi_{s}$ ,

where we put

$--k=$ { $\xi\in S^{n-1}$ ; the localization of $P_{m}$ at $\xi$ has order $m_{k}$ },

with some finite sequence of integers

$0=m_{0}<m_{1}<\ldots<m_{s}\leqq m=\deg P$ .

Thus $--0$ is the set of non-characteristic directions, and (if $m_{1}=1$ ) $\Xi_{1}$ is the set
of simply-characteristic directions. We have obviously the usual property of
stratification

$\Xi_{k+1}\subset\overline{\Xi_{k}}$, $--k=^{-}\backslash ^{-}$ $k=0,$ $\cdots$ $s$

with the convention $--s+1^{=\emptyset}$ .
LEMMA 6. Any choice of upper semi-cmtinuous correspmdmce of local ProP-

agatim cones $\xi-K_{\xi}$ is in fact continuous on each connected comPmmt of every
stratum $\Xi_{k}$ . Here the word “ continuity ” impljes both the uPper semi-continuity
(4) and the lower semi-continuity in the following sense:

(5) For any Poinf $x^{0}\in K_{\xi^{0}}$ and for any $\epsilon>0$ there exists $\delta>0$ such that
$|\xi-\xi^{0}|\leqq\delta$ implies that $K_{\xi}$ contains some pojnt in the $\epsilon$ -neighborhood of $x^{0}$ .

(Here the assertion of the lemma is that this condition (5) holds if $\xi$ is restricted
to the connected component $--0k$ of the stratum $--k$ containing $\xi^{0}$ . Note that we
do not assume that $K_{\xi}$ varies homeomorphically with $\xi\in\Xi_{k}^{0}.$ )
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PROOF. Let
$P_{m}(\xi+t\eta)=t^{m_{k}}(P_{m})_{\xi}(\eta)+o(t^{m_{k}})$

be the Taylor expansion defining the localization of $P_{m}$ at $\xi\in-k-0$ . For $\xi$ suffi-
ciently near $\xi^{0}$ , we have $(P_{m})_{\xi}(v)\neq 0$ with some fixed vector $v$ . Employ a linear
coordinate transformation bringing $v$ to $(1, 0, \cdots , 0)$ . Then we have

$(P_{m})_{\xi}(\eta)=a(\xi)\eta_{1}^{m_{k}}+\cdots$ ,

with $a(\xi)\neq 0$ for $\xi$ close to $\xi^{0}$ . By the assumption $(P_{m})_{\xi}(\eta)$ becomes a hyper-

bolic polynomial when $\xi\in\Xi_{k}^{0}$ . Let $\tau(\eta’ ; \xi)$ be the maximal root of the equation
$(P_{m})_{\text{\’{e}}}(\eta_{1}, \eta’)=0$ for $\eta_{1}$ . We have by definition

$K_{\xi}=\Gamma((P_{m})_{\xi}(\eta), v)^{o}$

where

$\Gamma((P_{m})_{\xi}(\eta), v)=the$ connected component of $\{\eta\in R^{n} ; (P_{m})_{\xi}(\eta)\neq 0\}$

containing $v$

$=\{\eta\in R^{n} ; \eta_{1}>\tau(\eta’ ; \xi)\}$ .
By the continuity of the roots of an algebraic equation, $\tau(\eta’ ; \xi)$ varies continu-
ously with $\xi$ . Hence $K_{\xi}$ varies lower semi-continuously in the above sense (5)

as long as $\xi\in\Xi_{k}^{0}$. (In fact if for some $\epsilon>0$ there exists a sequence $\xi^{l}\in E_{k}$

tending to $\xi^{0}$ such that $K_{\xi^{l}}\cap\{|x-x^{0}|\leqq\epsilon\}=\emptyset$ , then we could choose a sequence
of linear functions $\langle\cdot, \eta^{l}\rangle$ , $|\eta^{l}|=1$ , separating them, $i$ . $e$ .

$\langle x, \eta^{l}\rangle>0$ for $x\in K_{\xi^{l}}$ , $\langle x, \eta^{l}\rangle<0$ for $|x-x^{0}|\leqq\epsilon$ ,

hence especially $\eta^{l}\in\Gamma((P_{m})_{\xi^{l}}, v)$ in view of the convexity of the latter cone.
Replacing by a subsequence if necessary, we can assume that $\eta^{l}arrow\eta^{0},$ $|\eta^{0}|=1$ .
Then we would have $\eta^{0}\in\overline{\Gamma((P_{m})_{\xi^{0}},v)}$ by the above continuity of $\partial\Gamma((P_{m})_{\xi^{l}}, v)$ ,
and on the other hand,

$\langle x, \eta^{0}\rangle\leqq 0$ for $|x-x^{0}|\leqq\epsilon$ ,

hence $\langle x, \eta^{0}\rangle<0$ for some $x\in K_{\xi^{0}}$ . This is a contradiction. $q$ . $e$ . $d$ .
PROOF OF THEOREM 2. Let $f\in \mathcal{A}(\Omega)$ . Choose a hyperfunction eXtenSiOn

with minimal support $f\in \mathcal{B}[\overline{\Omega}]$ . Let $f= \sum_{\Delta}f^{\Delta}$ be a decomposition to a finite
sum such that S.S. $\tilde{f}\subset\subset\partial\Omega\cross\Delta$ , where $\Delta$ is a small neighborhood of some point
of $S^{n-1}$ on which a set of ” good “ micro-local fundamental solutions as in
Theorem 5 is available. Employing it we shall find a solution $u^{\Delta}\in \mathcal{B}(R^{n})$ of
$P(D)u^{\Delta}=\tilde{f}^{\Delta}$ such that $u^{\Delta}|_{\Omega}\in \mathcal{A}(\Omega)$ . Then setting $u= \sum u^{\Delta}$ we will have $P(D)u$

$=\tilde{f}+h$ , where $h\in \mathcal{A}(R^{n})$ . Since we can always choose a real analytic solution
$v$ of $P(D)v=h$ on a compact ball containing $\overline{\Omega}$ (see $e.g$ . Komatsu [8]), we will
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thus obtain a true real analytic solution $(u-v)|_{\Omega}$ .
Now we solve the equation $P(D)u=f_{0}=\tilde{f}^{\Delta}$ for a fixed $\Delta\subset S^{n-1}$ , where the

data $f_{0}\in \mathcal{B}(R^{n})$ satisfies S.S. $f_{0}\Subset\partial\Omega\cross\Delta$ . We shall solve it step by step on
$R^{n}\cross_{-k}-$ . In the sequel the convolution is understood always in the sense of
Lemma 3. First put

$u_{0}=E*f_{0}$ ,

where $E$ is any fundamental solution of $P$. Then we have

(6) S.S. $u_{0}\subset\subset(R^{n}\backslash \Omega)\cross(_{-0}^{-}\cap\Delta)-\cup\overline{\Omega}\cross(_{-1}^{-}\cap\Delta)-$ .
Namely, the singularity does not propagate into $\Omega$ except for the one with the
directional components in $--1-$. (In this first step this is due to the so-called Sato
fundamental theorem on the micro-analyticity of solutions at non-characteristic
directions, and we may write $\partial\Omega\cross\Delta$ instead of the first component on the
right-hand side of (6).) Choose a decomposition

$u_{0}=v_{0}+w_{0\prime}$

such that S.S. $v_{0}$ resp. S.S. $w_{0}$ are contained in the first resp. second component
in the right hand side of the estimate (6). (The possibility of such a decom-
position comes from the flabbiness of the so called sheaf $C$ of micro-functions
(see S-K-K [9]). Recently de Roever [4] gave a direct elementary way of
giving such a decomposition employing a new concrete formula of singular
spectral decomposition.) Here abandon $w_{0}$ and put

$f_{1}=f_{0}-P(D)v_{0}=P(D)w_{0}$ .
Then we have

S.S. $f_{1}\subset\subset(R^{n}\backslash \Omega)\cross(\overline{\Xi_{0}}\cap\Delta)\cap\overline{\Omega}\cross(\overline{\Xi_{1}}\cap\Delta)=\partial\Omega\cross(-1\cap\Delta)-$ .
Next we solve $P(D)u_{1}=f_{1}$ . Let $\xi\mapsto K_{\xi}^{j},$ $j=1,$ $\cdots$ , $N_{\Delta}$ be all the possible upper
semi-continuous correspondences of local propagation cones on $\Delta$ , and let $E^{\Delta.j}$

be the corresponding“ good “ micro-local fundamental solutions given by Theo-
rem 5. Put

(7) $X_{1}^{j}=$ { $(x,$ $\xi)\in\partial\Omega\cross\Delta$ ; $P_{m}(\xi)\neq 0$ or $(\{x\}+K_{\xi}^{j})\cap\Omega=\emptyset$ }, $j=1,$ $\cdots$ $N_{\Delta}$ .
In view of Lemma 6 we see easily that this constitutes a relatively closed
covering of $\partial\Omega\cross(_{-1}^{-}\cap\Delta)$ . Thus $\{\overline{X^{J}}\}_{j=1}^{N}\Lambda$ constitutes a closed covering of
$\partial\Omega\cross(^{-}1\cap\Delta)-$ , and we can choose a decomposition such that

$f_{1}= \sum_{j=1}^{N_{\Delta}}f_{1}^{j}$ , S.S. $f_{1}^{j}\subset\subset\overline{X_{1}^{j}}$ .

Then put
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$\mathcal{U}_{J}=\sum_{j=1}^{\Lambda}E^{\Delta,f}*f_{1}^{j})$

(In the case we assume (2), it suffices to prepare a pair of “ good “ micro-local
fundamental solutions $E^{\Delta}$ . ‘, put

(7) $X_{1}^{f}=$ { $(x,$ $\xi)\in\partial\Omega\cross\Delta$ ; $P_{m}(\xi)\neq 0$ or $(\{x\}\pm K_{\xi})\cap\Omega=\emptyset$ },

choose a corresponding decomposition $f_{1}=f_{1}^{+}+f_{1}^{-}$ , and put

$l\ell_{1}=A^{J,+}\backslash *I_{1}^{+}+F_{\lrcorner}^{\lrcorner}-*f_{1}^{-}$ . )

Then by the estimate of Theorem 5, and (7), (3), we have

S. S. $u_{1}\subset\subset(R^{n}\backslash \Omega)\cross$ (
$-$

A $\Delta$ ) $\cup\overline{\Omega}\cross$ ( $---$ A $\Delta$).

Thus choose a corresponding decomposition by S.S.

$u_{1}=v_{1}+w_{1}$ ,

and put

$f_{2}=f_{1}-P(D)v_{1}=P(D)w_{1}$ .
Then we have

S.S. $f_{2}\subset\subset(R^{n}\backslash \Omega)\cross(\overline{\Xi_{1}}\cap\Delta)\cap\overline{\Omega}\cross(\overline{\Xi}_{2}\cap\Delta)=\partial\Omega\cross(\overline{\Xi_{2}}\cap\Delta)$ .

From now on the proof works similarly and we finally obtain a solution
$u=v_{0}+v_{1}+\cdots+v_{s}$ of $P(D)u=f_{0}$ modulo $\mathcal{A}(R^{n})$ , which is real analytic in $\Omega$ .

$q$ . $e$ . $d$ .

3. We give here an example of stratification to Zampieri’s operator:

$P(D)=D_{1}^{2}D_{2}^{2}-D_{2}^{2}D_{3}^{2}-D_{3}^{4}-D_{4}^{4}-D_{3}^{2}D_{4}^{2}$ .
We have

$S^{n-1}=\Xi_{0}u\Xi_{1}u\Xi_{2}$ ,

where $--0^{=}\{P(\xi)\neq 0\},$ $\Xi_{1}=\{P(\xi)=0, \nabla_{\xi}P(\xi)\neq 0\}$ and $\Xi_{2}=\{(\pm 1,0,0,0), (0, \pm 1,0,0)\}$ .
As is shown by Zampieri, the pointwise geometric condition (2) does not imply
(1) if we consider $e$ . $g$ .

$\Omega=\{|x_{1}+x_{3}|<1, |_{X_{1^{-x_{3}}}}?|<1, |x_{2}|<1, |x_{4}|<1\}$ .
(See Example 3.1 of Kaneko [6] for detailed calculus.) Hence the stratification
is really necessary for this example. (In fact this example has stimulated our
present work.)

A typical case where the stratification is unnecessary is the operators whose
local propagation cones are all half lines, hence especially operators with simple
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characteristics. For such operators the global solvability under pointwise geo-
metric condition (2) is already obtained by Kawai [7]. For general locally

hyperbolic operators Kawai formulates his main $th\cdot eorems$ with some concrete
geometric assumptions which assure the decomposition (1). As is seen from
the above example, however, these assumptions are in any case not definitive.

We suppose that our condition (2) is even necessary for the existence of
real analytic solutions on a bounded domain. $\ln$ fact, when we consider a
bounded domain $\Omega$ , there seems to be no practical difference between ours and
Zampieri’s refined one in terms of the local propagation cones of local irreducible
factors of $P_{m}$ . An approach from the micro-local analysis to the necessary
condition will be discussed in the forthcoming paper.
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