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Introduction.

It is well-known ([7]) that at each point $p$ of a complex manifold $M$ the
indicatrix of the Carath\’eodory pseudo-meiric $C^{M}$ of $M$ is always a convex cir-
cular domain in the holomorphic tangent space $T_{p}(M)$ at $p$ . By using a family
of bounded plurisubharmonic functions on a complex manifold $M$, Sibony [19]

also defined a biholomorphically invariant pseudo-metric on $M$ whose indicatrices
are always convex. On the other hand, Suzuki [21] and Barth [4] showed,
independently, that if $M$ is a pseudoconvex starlike circular domain with center
at the origin $0$ in $C^{m}$ , an m-dimensional complex Euclidian space, then the indi-
catrix of the Kobayashi pseudo-metric $K^{M}$ of $M$ at $0$ coincides with $M$, the tan-
gent space $T_{0}(M)$ being identified with $C^{m}$ in the natural manner. In particular,
the indicatrix of $K^{M}$ at $0$ is pseudoconvex. It seems that indicatrices of the
Kobayashi pseudo-metric $K^{r}$ for a complex manifold $M$ are, in general, not
necessarily pseudoconvex, for the proofs of the result of Suzuki and Barth men-
tioned above essentially depend on the pseudoconvexity of the original domain.
The main purpose of this paper is to construct, intrinsically, two biholomor-
phically invariant pseudo-metrics, denoted by $B^{M}$ and $P^{M}$ , on a complex mani-
fold $M$, for each of which the indicatrix at each point is always pseudoconvex
in the tangent space.

The paper is organized as follows. In \S 1, we recall some results concern-
ing starlike circular domains and prove that if $M$ is a pseudoconvex bounded
starlike circular domain in $C^{m}$ with a continuous boundary, then the Bergman
metric of $M$ is complete (Theorem 1.11). Since the boundary of a pseudoconvex
Reinhardt domain is continuous, Theorem 1.11 is a generalization of the follow-
ing theorem of Skwarczytski [20; Theorem 3.16]: The Bergman metric of a
pseudoconvex bounded Reinhardt domain in $C^{m}$ is complete. Recently, the
theorem of Skwarczytski was also improved by Pflug [16]. He proved that
the Carath\’eodory metric of a pseudoconvex bounded Reinhardt domain in $C^{m}$ is
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complete.
The pseudo-metrics $B^{M}$ and $P^{M}$ mentioned above are constructed in \S \S 2 and

3, respectively. The pseudo-metric $B^{M}$ is defined on an m-dimensional complex
manifold $M$ by using a family of square-integrable holomorphic m-forms on $M$.
The pseudo-metric $B^{M}$ does not coincide with the square-root of the Bergman
pseudo-metric $g^{M}$ . However, it has the following two properties similar to
$(g^{M})^{1/2}$ : $C^{M}\leqq B^{M}$ on the tangent bundle $T(M)$ of $M$ and, if $M’$ is a domain in
$M$, then $B^{M}\leqq B^{M’}$ on $T(M’)$ (Proposition 2.4). The pseudo-metric $P^{M}$ is defined
on a complex manifold $M$ by using a family of negative plurisubharmonic func-
tions on $M$. The construction is similar to that of the pseudo-metric defined
by Sibony mentioned above. The pseudo-metric $P^{M}$ possesses the distance-
decreasing property for holomorphic mappings and it holds that $C^{M}\leqq P^{M}\leqq K^{M}$

on $T(M)$ for every complex manifold $M$ (Proposition 3.9).

In the last section, we investigate the structures of $B^{M}$ and $P^{M}$ at the
center $0$ of a starlike circular domain $M$ in $C^{m}$ . For a pseudo-metric $F$ on $M$,

let $F_{0}=F|_{T_{0}(M)}$ , where the tangent space $T_{0}(M)$ at $0$ is identified with $C^{m}$ in
the natural manner. We first note that Schwarz’ lemma formulated by Sadullaev
[18] can be improved as follows: If $\Phi$ is a holomorphic mapping of the unit
disk $U$ in $C$ into $M$ and if $\Phi(0)=0$ , then $P_{0}^{M}(\Phi(\lambda))\leqq|\lambda|$ for $\lambda\in U$ and $P_{0}^{M}(\Phi’(0))$

$\leqq 1$ (Proposition 4.2). It is well-known ([7]) that the indicatrix of $C_{0}^{M}$ coincides
with the convex hull of $M$. In connection with this, we show that the indi-
catrix of $P_{0}^{M}$ is exactly the holomorphic hull of $M$ (Theorem 4.3). On the other
hand, the indicatrix of $B_{0}^{M}$ is characterized as the domain of convergence of the
Bergman kernel of $M$ (Theorem 4.6). As a result, we have $C_{0}^{M}\leqq B_{0}^{M}\leqq P_{0}^{M}$

(Theorem 4.8). Finally, we show that $B_{0}^{M}=P_{0}^{M}$ for a bounded complete Rein-
hardt domain $M$ (Corollary 4.11).

NOTATIONS. Throughout this paper, we regard the function identically equal
to $-\infty$ as a plurisubharmonic function.

A pseudo-meiric on a complex manifold $M$ is by definition a non-negative
real-valued function $F$ on the holomorphic tangent bundle $T(M)$ of $M$ satisfying
$F(\lambda X)=|\lambda|F(X)$ for $X\in T(M)$ and $\lambda\in C$. If, in particular, $F(X)=0$ implies
$X=0$ , then $F$ is called a metric. Let $Mrightarrow F^{M}$ be an assignment from a complex
manifold $M$ to a pseudo-metric $F^{M}$ on $M$. The assignment $F^{M}$ is said to be
biholomorphically invariant or invariant, if $\Phi^{*}F^{M’}=F^{M}$ on $T(M)$ for any biholo-
morphic mapping $\Phi\in Bihol(M, M’)$ from a complex manifold $M$ onto another $M’$ .
Here, $\Phi^{*}F^{M^{r}}(X)=F^{M’}(\Phi_{*}X)$ for $X\in T(M)$ . We say the assignment $F^{M}$ to be
distance-decreasing for holomorphjc maPpings or to possess the decreasing property,
if $\Phi^{*}F^{M’}\leqq F^{M}$ on $T(M)$ for any holomorphic mapping $\Phi\in Ho1(M, M^{f})$ from a
complex manifold $M$ into another $M’$ . If $F^{M}$ possesses the decreasing property,
then $F^{M}$ is invariant. Typical examples of pseudo-metrics with the decreasing
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property are the Carath\’eodory pseudo-metric $C^{M}$ on $M$ defined by

(0.1) $C^{M}(X)= \sup\{\rho(f_{*}X);f\in Ho1(M, U)\}$ ,

and the Kobayashi pseudo-metric $K^{M}$ on $M$ defined by

(0.2) $K^{M}(X)= \inf$ { $\rho(Y)$ ; $Y\in T(U),$ $f\in Ho1(U,$ $M)$ with $f_{*}Y=X$ }.

Here, $X\in T(M)$ and $\rho$ is the Poincar\’e metric on the unit disk $U=\{\lambda\in C;|\lambda|<1\}$

in $C$, that is,

(0.3) $\rho(\xi\frac{d}{d\lambda})=\frac{|\xi|}{1-|\lambda|^{2}}$ , $(\lambda, \xi)\in U\cross C$ .

Schwarz’ lemma implies that $C^{M}\leqq K^{M}$ on $T(M)$ for any $M$ and that $C^{U}=K^{U}=\rho$ .
Furthermore, the following fact is immediate from the definition (cf. [11]):

If an assignment $F^{M}$ of pseudo-metrics possesses the decreasing
(0.4) property with $F^{U}=\rho$ , then $C^{M}\leqq F^{M}\leqq K^{M}$ on $T(M)$ for any

complex manifold $M$.

When we refer to the complex Euclidian space $C^{m},$ $\Vert u\Vert$ always means the
Euclidian norm $( \sum_{i=1}^{m}|u^{i}|^{2})^{1/2}$ of $u=(u^{1}, \cdots , u^{m})\in C^{m}$ .

\S 1. Starlike circular domains.

The interior of the indicatrix of a pseudo-metric on a complex manifold is
always a starlike circular domain in the holomorphic tangent space. Following
Barth [4] and [1] and using the terminology in [4], we recall some results
concerning such domains.

Let $V$ be a complex vector space of finite dimension endowed with the
structure of a metric space defined by a norm. A domain $M$, a non-empty con-
nected open subset, in $V$ is called starlike circular, if $\lambda M\subset M$ for any $\lambda\in C$ with
$|\lambda|=1$ . We denote by $C(V)$ or $C$ the totality of starlike circular domains in $V$ .
A non-negative real-valued function $N$ on $V$ is called a semi-gauge, if $N$ is uPper

semi-continuous and satisfies $N(\lambda v)=|\lambda|N(v)$ for $\lambda\in C$ and $v\in V$ . We denote by
$\mathcal{G}(V)$ or $\mathcal{G}$ the totality of semi-gauges on $V$ . For every $M\in C$, the function
defined by

$N^{M}(v)= \inf\{\lambda>0 ; v\in\lambda M\}$ $(v\in V)$

is a semi-gauge on $V$ and is called the semi-gauge defining $M$ . On the other
hand, for every $N\in \mathcal{G}$, the indicatrix IN of $N$ is defined by

$IN=\{v\in V ; N(v)<1\}$ ;

clearly $IN\in C$ . Two mappings $C\ni M\mapsto N^{M}\in \mathcal{G}$ and $\mathcal{G}\ni N-,IN\in C$ are mutually
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inverse and order-reversing, $i$ . $e.,$ $M_{1}\subset M_{g}$ if and only if $N^{M_{1}}\geqq N^{M_{2}}$ . We also
note that $N^{\lambda M}=\lambda^{-1}N^{M}$ for $\lambda>0$ . Every $N\in \mathcal{G}$ is continuous at the origin $0$ . In
fact, there exists a norm $\Vert\cdot\Vert$ on $V$ such that $N\leqq\Vert\cdot\Vert$ . If there exists another
norm $\Vert\cdot\Vert’$ on $V$ such that $N\geqq\Vert\cdot\Vert’$ , then we call $N$ a gauge. When $V=C^{m}$ ,
$M\in C$ is called a Reinhardt domain in $C^{m}$ if $(e^{i\theta^{1}}u^{1}, \cdots , e^{i\theta^{m}}u^{m})\in M$ for any
$(u^{1}, \cdots , u^{m})\in M$ and $(\theta^{1}, \cdots , \theta^{m})\in R^{m}$ ; furthermore, $M$ is called a complete
Reinhardt domain in $C^{m}$ if $(u^{1}, \cdots , u^{m})\in M$ and $|v^{a}|\leqq|u^{a}|$ ( $a=1,$ $\cdots$ , m) imply
$(v^{1}, v^{m})\in M$.

The following is easily shown by definition.

LEMMA 1.1. Let $M\in C(V)$ with $N=N^{M}$ .
(i) $M$ is bounded if and only if $N$ is a gauge.
(ii) $M$ is convex if and only if $N$ is a seminorm.
(iii) When $V=C^{m},$ $M$ is a Reinhardt domain if and only if $|u^{a}|=|v^{a}|(a=$

$1,$ $\cdots$ , m) imply $N(u^{1}, \cdots , u^{m})=N(v^{1}, \cdots , v^{m})$ .
(iv) When $V=C^{m},$ $M$ is a complete Reinhardt domain if and only if $|u^{a}|$

$\leqq|v^{a}|$ ( $a=1,$ $\cdots$ , m) imply $N(u^{1}, \cdots , u^{m})\leqq N(v^{1}, \cdots , v^{m})$ .

In the following proposition, the assertion $(a)\Leftarrow(b_{1})$ is proved in Barth [4;

Theorem 1, $(c)$] and $(a)\Leftrightarrow(b_{2})$ in [1; Theorem 5.4].

PROPOSITION 1.2. For $M\in C(V)$ with $N=N^{M}$ , the following three statements
are mutually equivalent:

(a) $M$ is pseudoconvex.
$(b_{1})$ $N$ is plurisubharmomc.
$(b_{2})$ log $N$ is plurisubharmonic.

Here, log $N$ may be $-\infty$ identically.

Proposition 1.2 yields a byproduct which has its own interest.

COROLLARY 1.3. Assume that $N$ is a non-negative real-valued function on $V$

and satisfies $N(\lambda v)=|\lambda|N(v)$ for $\lambda\in C$ and $v\in V$. Then, $N$ is plurisubharmonic if
and only if log $N$ is plurisubharmonic.

Corollary 1.3 is also proved directly (without use of the pseudoconvexity of
the corresponding domain) as follows: We may assume $V=C^{m}$ . “If” part of
the assertion follows from Jensen’s inequality. To prove the converse, suppose
that $N$ is plurisubharmonic on $C^{m}$ . Set

$f(v)=N(e(v^{1}+v^{m}), \cdots , e(v^{m- 1}+v^{m}), e(-v^{1}-\cdots-v^{m- 1}+v^{m}))$

for $v=(v^{1}, \cdots , v^{m})\in C^{m}$ , where $e(\xi)=\exp\xi$ . Then, by the assumption on $N$ we
have

(1.1) $f(v)=e({\rm Re} v^{m})g(v^{1}, \cdots , v^{m-1})$ ,
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where $g(v^{1}, \cdots , v^{m- 1})=N(e(v^{1}), \cdots , e(v^{m-1}), e(-v^{1}-\cdots-v^{m- 1}))$ . Since $N$ is pluri-
subharmonic on $C^{m}$ , so is $f$ . We want to show that log $f$ is plurisubharmonic.
To prove this, we may assume that $f$ is of class $C^{2}$ , because $f$ is approximated
from above by smooth plurisubharmonic functions (cf., $e$ . $g.,$ $[22$ ; \S 10.9]). In
this case, we can easily show the plurisubharmonicity of log $f$ by using the
relation (1.1) and by representing the complex Hessians of $f$ and log $f$ in terms
of $g$ . If these are done, it follows from the definition of $f$ that log $N$ is pluri-
subharmonic on $(C-\{0\})^{m}$ . Since a plurisubharmonic function bounded from
above is uniquely extended beyond a principal analytic set ([9; Satz 3]), log $N$

is plurisubharmonic on the whole $C^{m}$ , as desired.

Proposition 1.2 also provides an alternative proof of the following well-known
fact which we use later.

COROLLARY 1.4 ([8; Theor\‘emes 37 et 39]). The holomorphjc hull of a star-
like circular domain in $V$ is schlicht and starlike circular.

PROOF. Let $M\in C(V)$ and let $f\in Ho1(M)$ be a holomorphic function on $M$

with the homogeneous expansion $\Sigma_{j=0}^{\infty}f_{j}$ around $0$ , where $f_{j}$ is a homogeneous
polynomial of degree $j$ . Set

$M_{f}= Int\{v\in V;\sum_{j=0}^{\infty}|f_{j}(v)|<+\infty\}$ ,

$T_{f}(v)= \lim_{uarrow}\sup_{v}\lim_{jarrow}\sup_{\infty}|f_{j}(u)|^{1/j}$

for $v\in V$ , where Int $A$ means the interior of a subset $A$ of $V$. Since the family
$|f_{j}|^{1/j}$ of plurisubharmonic functions on $V$ is locally uniformly bounded, $T_{f}$ is
$also_{v}$ plurisubharmonic ([22; p. 74]). It is easily seen that $T_{f}\in \mathcal{G}(V)$ and $T_{f}=$

$N^{M_{f}}$ . We consider the domain

$\tilde{M}=Int\cap\{M_{f} ; f\in Ho1(M)\}$

which belongs to $C(V)$ . Every $f\in Ho1(M)$ is then extended to a function in
$Ho1(\tilde{M})$ via the homogeneous expansion of $f$ around $0$ , because $\tilde{M}\subset M_{f}$ . On the
other hand, it can be seen that

$N^{\overline{M}}(v)= \lim_{uarrow}\sup_{v}su_{P_{(M)}^{T_{f}(u)}}f\in H\circ$

for $v\in V$ so that $N$“ is plurisubharmonic. By Proposition 1.2, $\tilde{M}$ is pseudo-
convex; therefore, $\tilde{M}$ is the holomorphic hull of $M$.

Now, a domain $M\in C(V)$ is called strictly starlike circular if $\lambda M\supset C1M$ for
every $\lambda>1$ , where Cl $M$ means the closure of $M$ in the ambient space $V$. We
shall characterize such a domain $M$ in terms of the semi-gauge $N^{M}$ defining $M$.
For $M\in C(V)$ with $N=N^{M}$ , we first note the following facts which, in general,
hold and are easily checked:
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(1.2) $M=Int\{v\in V;N(v)\leqq 1\}$

(1.3) $\bigcap_{\lambda>1}\lambda M=\{v\in V ; N(v)\leqq 1\}$

(1.4) Cl $M\supset\{v\in V;N(v)\leqq 1\}$ .
PROPOSITION 1.5 ([1; Proposition 4.1 and its Corollary]). For $M\in C(V)$ with

$N=N^{M}$ , the following statements are mutually equivalent:
(a) $N$ is continuous.
(ab) The $oppo\dot{\alpha}te$ incluston of (1.4) holds.
(b) $M$ is stnctly starlike crrcular.

PROOF. Since the condition (b) is equivalent to Cl $M \subset\bigcap_{\lambda>1}\lambda M$, the equality
(1.3) induces the equivalence of (ab) and (b). The implication $(a)\Rightarrow(ab)$ is trivial.
To prove the opposite implication, suppose that (ab) holds, and put

$\tilde{N}(v)=\lim_{uarrow v.u}\inf_{\neq v}N(u)$

for $v\in V$. Fix $v\in V$ and take an arbitrary real number $\eta$ with $\tilde{N}(v)<\eta$ . Con-
sidering a sequence $(v_{n})$ in $V$ such that $v_{n}\mp v’,$ $v_{n}arrow v$ , and $\lim N(\nu_{n})=\tilde{N}(v)$ , we
see that $v/\eta\in C1M$. It follows from (ab) that $N(v)\leqq\eta$ . Thus we have $\tilde{N}(v)\geqq$

$N(v)$ so that the upper semi-continuity of $N$ implies the continuity of $N$ or the
assertion (a).

COROLLARY 1.6. If a domain $M\in C(V)$ is strictly starlike circular, then $M$

is fat, that is, Int Cl$M=M$.

This is easily obtained by applying Proposition 1.5 to the formula (1.2).

COROLLARY 1.7 ([1; Proposition 4.2]). If $M\in C(V)$ is convex, then $M$ is
strictly starlike circular.

PROOF. By (ii) in Lemma 1.1, $N^{M}$ is a seminorm so that it is continuous.
It follows from Proposition 1.5 that $M$ is strictly starlike circular.

COROLLARY 1.8 ([1; Proposition 4.3]). If $M\in C(C^{m})$ is a complete Reinhardt
domain, then $M$ is strictly starlike circular.

PROOF. Suppose $N(v)>1$ for a vector $v=(v^{1}, \cdots , v^{m})$ and put

$W=$ $\{(u^{1}, \cdots , u^{m})\in C^{m} ; |u^{a}|>|v^{a}|/N(v)(a=1, \cdots , m)\}$ .

Then $W$ is a neighborhood of $v$ , and $M\cap W=\emptyset$ by Lemma 1.1, (iv). Thus, $v$

belongs to the exterior of $M$. Hence we see that the condition (ab) in Proposi-
tion 1.5 holds.

In the remainder of this section, we give an application of Corollary 1.6 to
a problem concerning completeness of the Bergman metric.
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Let $hL^{2}(M)$ be the Hilbert space of all square-integrable holomorphic functions
on a bounded domain $M$ in $C^{m}$ , and let $k(u,\overline{v})$ be the Bergman kernel of $M$.
The kernel hull $c\chi(M)$ of $M$ is defined to be the largest, not necessarily schlicht,
domain containing $M$ on which the Bergman function $k(v,\overline{v})$ is real-analytically
extensible. We recall the following sufficient condition of Kobayashi [10; (A.4),
p. 284] for completeness of the Bergman metric:

For every infinite sequence $S$ in $M$ which has no adherent point
(1.5) in $M$ and for each $f\in hL^{2}(M)$ there exists a subsequence $(v_{n})$ of

$S$ such that $|f(v_{n})|^{2}/k(v_{n}, v_{n})$ converges to $0$ .

We need the following two lemmas.

LEMMA 1.9 (Pflug [15; Folgerung 4]). If $M$ is a bounded domain in $C^{m}$

and has a schlicht holomorphjc hull $\mathcal{H}(M)$ , then $\mathcal{H}(M)\subset Jt(M)\subset IntC1\mathcal{H}(M)$ .

LEMMA 1.10 (Skwarczytski [20; Theorem 3.15]). Let $M$ be a bounded
domain in $C^{m}$ . Suppox that for every boundary $p\alpha ntv$ of $M,$ $\lim_{uarrow v.u\in M}k(u,\overline{u})$

$=+\infty$ and the set of all holomorphic functions bounded in a neighborhood of $v$ is
dense in $hL^{2}(M)$ . Then Kobayashi’s con&tion (1.5) holds for $M$.

We can now prove the following generalization of a theorem of Skwarczytski
[20; Theorem 3.16] announced in Introduction of this paper.

THEOREM 1.11. Let $M$ be a bounded, strictly starlike crrcular domain in $C^{m}$ .
Then the following four statements are mutually equivalent:

(i) $JC(M)=M$.
(ii) Kobayashi’s condition (1.5) holds for $M$.
(iii) The Bergman metric on $M$ is complete.
(iv) $M$ is pseudoconvex.

REMARK 1.12. Under the assumption of Theorem 1.11, it is known [4] that
$M$ is pseudoconvex if and only if $M$ is a taut manifold in the sense of Wu [23;
p. 199].

PROOF OF THEOREM 1.11. Since $M$ is starlike circular and bounded, the
space of all holomorphic polynomials is dense in $hL^{2}(M)$ so that (i) implies (ii) by
Lemma 1.10. Implications $(ii)\Rightarrow(iii)$ and $(iii)\Rightarrow(iv)$ are well-known (cf. [5], [10]).

Suppose that (iv) holds. Then $\mathcal{H}(M)=M$. By Corollary 1.6 we have $M=Int$ Cl $M$
so that Lemma 1.9 implies $Jt(M)=M$, that is, (i) holds.

\S 2. Square-integrable holomorphic m-forms.

Throughout this section, a complex manifold under consideration is always
assumed to be connected and paracompact.
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Denote by $HL^{2}(M)$ the Hilbert space consisting of all square-integrable holo-
morphjc m-forms on a complex manifold $M$ of dimension $m$ , and by $(, )_{H}$ the
inner product on $HL^{2}(M)$ . If we denote by $\overline{M}$ the conjugate manifold of $M$,

and by $\Lambda\S^{m.0)}(\overline{M})$ the space of all $(m, 0)$-forms at $\overline{p}\in\overline{M}$, then the Bergman

form $\Pi K$ on $M$ is the unique $(2m, 0)$-form on the product manifold MxM such
that for every $p\in M$, the form $MK(\cdot,\overline{p})$ belongs to $HL^{2}(M)$ A $\Lambda_{p}^{1m}0$

) $(\overline{M})$ and
satisfies

$\alpha(p)=(\alpha, MK(\cdot,\overline{p}))_{M}$

for any $\alpha\in HL^{2}(M)$ . The mapping $M\ni parrow^{M}K(p,\overline{p})$ is also considered as an
$(m, m)$-form on $M$.

Given a multi-index $I=(i_{1}, \cdots , i_{m})$ of non-negative integers, and a local
holomorphic coordinate $z=$ $(z^{1}, \cdots , z^{m})$ of $M$, we put

$( \partial^{z})^{I}=\frac{\partial^{|I|}}{(\partial z^{1})^{i_{1}}\cdots(\partial z^{m})^{i_{m}}}$ ,

where $|I|=i_{1}+\cdots+i_{m}$ . For a non-negative integer $n$ and a point $p\in M$, we
consider the subspace

$H_{n}^{M}(p)=\{\alpha\in HL^{2}(M) ; (\partial^{z})^{I}\alpha(p)=0(|I|<n)\}$ ,

where $z$ is a coordinate around $p$ . The space $H_{n}^{M}(p)$ does not depend on the
choice of $z$ . For a holomorphic tangent vector $X\in T_{p}(M)$ at $p$ , we also consider
an $(m, m)$-form

$\mu_{n}^{M}(X)=\max\{(X^{n}\alpha\wedge\overline{X^{n}\alpha})(p) ; \alpha\in H_{n}^{M}(P), \Vert\alpha\Vert_{M}=1\}$

at $p$ , where the maximum is taken under the natural order in the space of
$(m, m)$ -forms at $p$ , and $\Vert\cdot\Vert_{M}$ is the norm corresponding to $(, )_{M}$ . We note that

(2.1) $\mu_{0}^{M}(X)=^{M}K(p,\overline{p})$

(2.2) $\mu_{n}^{M}(\lambda X)=|\lambda|^{2n}\mu_{n}^{M}(X)$

for $X\in T_{p}(M)$ and $\lambda\in C$ (see [3] for details).

LEMMA 2.1. If $M’$ is a domain in $M$, then $\mu_{n}^{M}\leqq\mu_{n}^{M’}$ on $T(M’)\subset T(M)$ for
any $n$ .

PROOF. If $\iota$ is the inclusion mapping of $M’$ into $M$ and $p\in M’$ , then $\iota^{*}H_{n}^{M}(p)$

$\subset H_{n}^{M’}(p)$ and $\Vert\iota^{*}\alpha\Vert_{M’}\leqq\Vert\alpha\Vert_{M}$ for any $\alpha\in H_{n}^{M}(p)$ . Therefore, for every $X\in T_{p}(M’)$ ,

$\mu_{n}^{1f}(X)\leqq\max$ { $(X^{n}\alpha$ A $\overline{X^{n}\alpha})(p)$ ; $\alpha\in H_{n}^{M}(P),$ $\Vert\iota^{*}\alpha\Vert_{M’}=1$ } $\leqq\mu_{n}^{M’}(X)$

as desired.

For a holomorphic coordinate $z$ around a point $p\in M$, we consider the $func^{-}$



Intrinsic Pseudo-metrics 635

tion $\mu_{n}^{M(p,z)}=\mu_{n}^{M}/(dz\wedge d\overline{z})_{p}$ on $T_{p}(M)$ , where $dz=dz^{1}\wedge\cdots\wedge dz^{m}$ for $z=(z^{1}, \cdots , z^{m})$ .
If $w$ is another coordinate around $p$ , then

(2.3) $\mu_{n}^{M(p,w)}=\mu$ ft $(p,z)|J_{z}^{w}(p)|^{2}$

on $T_{p}(M)$ . Here, $J_{z}^{f}$ means the Jacobian of a system $f=(f^{1}, \cdots , f^{m})$ of holo-
morphic functions in a neighborhood of $P$ with respect to the coordinate $z=$

$(z^{1}, \cdots , z^{m})$ . Similarly, if $\Phi\in Bihol(M, M’)$ and if $w$ is a coordinate around $q=$

$\Phi(p)$ , then

(2.4) $\Phi^{*}\mu_{n}^{M’(q,w)}=\mu_{n}^{M(p,z)}|J_{z}^{w\circ\Phi}(p)|^{2}$

on $T_{p}(M)$ .
If $M\in C(C^{m})$ and $S_{n}$ is a complete orthonormal system of the space of

square-integrable homogeneous polynomials of degree $n$ with

(2.5) $k_{n}(u,\overline{v})=_{f\in}8_{n}^{f(u)\overline{f(v)}}$

$(n=0, 1, )$ , and if $z$ is the natural coordinate of $M,$ $i.e.,$ $z(v)=v,$ $v\in M$, then
the Bergman form on $M$ is given by $MK=k(z,\overline{z})dz\wedge d\overline{z}$ with $k(u,\overline{v})=\Sigma_{n}k_{n}(u,\overline{v})$ .
Furthermore, it is known ([2]) that

(2.6) $\frac{\mu_{n}^{M(0,z)}((\partial_{v}^{z})_{0})}{(n!)^{2}}=k_{n}(v,\overline{v})$

for $v\in C^{m}$ . Here, we use the following convention:

(2.7) $\partial_{v}^{z}=\sum_{a=1}^{m}v^{a}\frac{\partial}{\partial z^{a}}$

for $v=(v^{1}, \cdots , v^{m})\in C^{m}$ .
LEMMA 2.2. Let $z$ be a holomorphjc coordinate around a Point $p$ of a complex

manifold $M$.
(i) The function log $\mu_{n}^{M(p.z)}$ is plurjsubharmOnjc on $T_{p}(M)$ for any $n$ .
(ii) The family $(2n)^{-1}\log(\mu_{n}^{M(p,z)}/(n!)^{2})(n=1, 2, )$ is locally uniformly

bounded from above.

PROOF. Referring to (2.7), we put

$h_{n}(v)=(2n)^{-1} \log(\frac{\mu_{n}^{M(p.z)}((\partial_{v}^{z})_{p})}{(n!)^{2}})$

for $v\in C^{m}$ .
(i) It is known ([1]) that there exists a positive semi-definite Hermitian

matrix $(g_{IJ}^{(n)})_{\rceil I1=\mathfrak{l}J1=n}$ of order $N=(\begin{array}{l}m+n-1n\end{array})$ such that

$h_{n}(v)=(2n)^{-1} \log\sum_{|I|=|J|=n}v5^{n\ddagger}g_{IJ}^{(n)}\overline{v5^{nJ}}$
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for any $v\in C^{m}$ , where

$v_{I}^{[n]}= \frac{n.!}{i_{1}!\cdot\cdot i_{m}1}(v^{1})^{i_{1}}$ $(v^{m})^{i_{m}}$

for $I=(i_{1}, \cdots , i_{m})$ . Since the mapping $C^{m}\ni varrow(v_{I}^{[n]})\in C^{N}$ is holomorphic, for the
proof of (i) it is sufficient to show that the function

$C^{N} \ni(v_{I})_{|I|=n}-\log\sum_{I.J}v_{I}g_{IJ}^{(n)}\overline{v_{J}}\in[-\infty, +\infty)$

is plurisubharmonic. By a linear change of variables it is sufficient to show
that the function

$C^{N} \ni(v^{1}, \cdots v^{N})-\log\sum_{a=1}^{\tau}|v^{a}|^{2}\in[-\infty, +\infty)$

is plurisubharmonic for any $r=0,$ $\cdots$ , $N$. The last assertion actually holds so
that the part (i) is proved.

(ii) Take a ball $B$ with center $z(p)$ in the image $z(U_{z})\subset C^{m}$ of the coordi-
nate neighborhood $U_{z}$ of $z$ and put $M’=z^{-1}(B)$ . Consider a new coordinate $w$

given by $w(q)=(z(q)-z(p))/R,$ $q\in U_{z}$ , where $R$ is the radius of $B$ . Then, $M’=$

$\{q\in U_{z} ; \Vert w(q)\Vert<1\}$ and the Bergman form $k(q,\overline{q}’)d?v\wedge d\overline{w}$ of $M’$ is explicitly
calculated and satisfies

$k(q,\overline{q})=V_{m}^{-1}(1-\Vert w(q)\Vert^{2})^{-m- 1}$ , $q\in M’$ ,

where $V_{m}$ is the volume of the unit ball in $C^{m}$ so that by (2.6) we have

$\frac{\mu_{n}^{M’(p.w)}((\partial_{v}^{w})_{p})}{(n!)^{2}}=\frac{(n+m)(n+m-1)\cdots(n+1)}{m!V_{m}}\Vert v\Vert^{2n}$

for $v\in C^{m}$ . Since $(\partial_{v}^{w})_{p}=R(\partial_{v}^{z})_{p}$ and $|J_{z}^{w}(p)|^{2}=R^{-2m},$ $(2.2)$ and (2.3) imply

$\frac{\mu_{n}^{M’(p,z}((\partial_{v}^{z})_{p})}{(n)^{2}}!=\frac{(n+m)(n+m-1)\cdots(n+1)}{m!V_{m}}\Vert v\Vert^{2n}$

An application of Lemma 2.1 gives

$h_{n}(v) \leqq(2n)^{-1}\log(\frac{(n+m)\cdots(n+1)}{m!V_{m}})+\log\Vert v\Vert$

for any $v\in C^{m}$ and $n$ ; therefore, $h_{n}$ are uniformly bounded from above on
$\Vert v\Vert<r$ for every positive number $r$ , which proves the part (ii).

Let $C^{M}$ be the Carath\’eodory pseudo-metric on a complex manifold $M$ (see
(0.1)). We prove the following lemma, which implies a result announced in [3;

Remark 4.3].

LEMMA 2.3. For every non-negative integer $n,$ $(n+1)^{2}(C^{M})^{2}\mu_{n}^{M}\leqq\mu_{n+1}^{M}$ on $T(M)$ .
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PROOF. The proof is done by the same argument as in the proof of [6;
Theorem 1]. Let $X\in T_{p}(M)$ . We may assume $C^{M}(X)>0$ . Assume that $f\in$

Hol $(M, U)$ is non-constant and $f(p)=0$ . Let $\alpha\in H_{n}^{M}(p)$ with $\Vert\alpha\Vert_{H}=1$ . Then
$f\alpha\in H_{n+1}^{M}(p),$ $0<\Vert f\alpha\Vert_{M}\leqq 1$ , and $X^{n+1}(f\alpha)(p)=(n+1)Xf(p)X^{n}\alpha(p)$ . Thus,

$(n+1)^{2}\rho(f_{*}X)^{2}$ ( $X^{n}\alpha$ A $\overline{X^{n}\alpha}$) $(p)=(X^{n+1}(f\alpha)\wedge\overline{X^{n+1}(f\alpha}))(p)$

$\leqq||f\alpha\Vert_{M}^{2}\mu_{n+1}^{M}(X)\leqq\mu_{n+1}^{M}(X)$ .
From this we get $(n+1)^{2}C^{M}(X)^{2}\mu_{n}^{M}(X)\leqq\mu_{n+1}^{M}(X)$ , which is the desired.

For a tangent vector $X\in T_{p}(M)$ of a complex manifold $M$, we put

$B^{M}(X)= \lim\sup\lim_{nYarrow X.Y\in r_{p^{(H)}}arrow}\sup_{\infty}(\frac{\mu_{n}^{M(p.z)}(Y)}{(n!)^{2}})^{1/2n}$ ,

where $z$ is a coordinate around $p$ . Since $\lim_{narrow\infty}\lambda^{1/2n}=1$ for any $\lambda>0,$ $(2.3)$ shows
that $B^{M}(X)$ does not depend on the choice of $z$ .

PROPOSITION 2.4. (i) For every connected Paracompact complex mamfold $M$,
$B^{M}$ is a pseudo-metric on $M$.

(ii) The asstgnment $M-B^{M}$ is fnholomorPhically invariant and distance-
decreaszng for open submanifolds, that is, if $M’$ is a domain in $M$, then $B^{M}\leqq B^{M’}$

on $T(M’)$ .
(iii) Assume that for every $p\in M$ there exists a form $\alpha\in H(M)$ which does

not vanish at $p,$ $i$ . $e.,$ $M$ satisfies Kobayashi’s condition (A.1) in [10]. Then $C^{M}$

$\leqq B^{M}$ on $T(M)$ .
(iv) The indicatrix of $B^{r}$ at every $p\alpha ntp$ of $M$ is a pseudoconvex starlike

circular domain in $T_{p}(M)$ .

PROOF. A property ([22; p. 74]) on plurisubharmonic functions and Lemma
2.2 imply that

(2.8) log $B^{M}$ is plurisubharmonic on every tangent space.

In particular, $B^{M}$ is real-valued. This and an application of (2.2) imply the
assertion (i). The first assertion of (ii) follows from the relation (2.4), and the
second from Lemma 2.1. Let $z$ be a coordinate around a point $p$ of $M$. The
assumption of (iii) implies that the constant function $\mu_{0}^{M(p.z)}$ on $T_{p}(M)$ is positive
(see (2.1)). Therefore, by Lemma 2.3 we have

C $M \leqq(\frac{\mu_{n}^{M(p.z)}}{\mu_{0}^{M(p,z)}(n!)^{2}})^{1/2n}$

on $T_{p}(M)$ for any positive integer $n$ . Thus the desired inequality of (iii) fol-
lows from the definition of $B^{M}$ . The assertion (iv) follows from (2.8) and Prop-
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osition 1.2. The proof is complete.

In the last section of this paper, we show that if $M$ is a symmetric bounded
domain in $C^{m}$ , then $B^{M}$ coincides with $C^{M}$ , contrary to the usual Bergman
metric.

\S 3. Negative plurisubharmonic functions.

For a point $p$ of a connected complex manifold $M$, we denote by LHC $(p)$

the totality of local holomorphic curves passing through $p$ , that is,

LHC $(p)= \bigcup_{\text{\’{e}}>0}\{\varphi\in Ho1(\epsilon U, M);\varphi(0)=p\}$ ,

where $\epsilon U=\{\lambda\in C;|\lambda|<\epsilon\}$ . Thus we see

$T_{p}(M)=\{\varphi*(d/d\lambda)_{0} ; \varphi\in LHC(p)\}$ .

We denote by $PS^{M}(p)$ the family of all negative plurisubharmonic functions $f$ on
$M$ satisfying the following srngulanty cm&tion $(S)_{p}$ and coordinate condition $(C)_{p}$ :

$\lim\sup_{uarrow 0.u\neq 0}(expf\circ z^{-1})(u)/\Vert u\Vert<+\infty$ for some holomorphic
(S)

coordinate $z$ with $z(p)=0$ .

If $\varphi_{i}\in LHC(p)(i=1,2)$ and $\varphi_{1*}(d/d\lambda)_{0}=\varphi_{2*}(d/d\lambda)_{0}\neq 0$ , then
(C)

$L_{f}[\varphi_{1}]=L_{f}[\varphi_{2}]$ .
Here

$L_{f}[ \varphi]=\lim_{\lambdaarrow 0},\sup_{\lambda\neq 0}\frac{(expf\circ\varphi)(\lambda)}{|\lambda|}$

for $\varphi\in LHC(p)$ . The inequality in the condition $(S)_{p}$ is equivalent to the ex-
istence of positive numbers $\eta$ and $\delta$ such that $(\exp f\circ z^{-1})(u)/\Vert u\Vert\leqq\eta$ for any
$u\in C^{m}$ with $0<\Vert u\Vert<\delta$ so that every $f\in PS^{M}(p)$ takes the value $-\infty$ at the
point $p$ , because $\lim\sup_{qarrow p.q\neq p}f(q)=f(p)$ . The condition $(S)_{p}$ does not depend
on the choice of the coordinate $z$ with $z(p)=0$ (cf. the proof of Lemma 3.4 be-
low). The family $PS^{M}(p)$ always contains the constant function $-\infty$ , and it
may consist only of one element $-\infty$ . (This case occurs when $M$ is compact or
$M=C^{m}.)$ If $f\in PS^{M}(p)$ and $\varphi\in LHC(p)$ and if $z$ is a holomorphic coordinate
with $z(p)=0$, then

(3.1) $\frac{(expf\circ\varphi)(\lambda)}{|\lambda|}=\frac{(\exp f\circ z^{-1})(z\circ\varphi(\lambda))}{\Vert z\circ\varphi(\lambda)||}\Vert\frac{z\circ\varphi(\lambda)}{\lambda}\Vert$

for all sufficiently small $\lambda\in C$ with $\varphi(\lambda)\neq p$ .
REMARK 3.1. When $M$ is one-dimensional, one can drop the condition $(C)_{p}$

in the definition of $PS^{M}(p)$ . Indeed, assume that $f$ is a negative subharmonic
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function on $M$ satisfying $(S)_{p}$ and that $\varphi_{i}\in LHC(p)(i=1,2)$ satisfy $\varphi_{i*}(d/d\lambda)_{0}=$

$X\in T_{p}(M)-\{0\}$ . If we regard $\varphi_{2}^{-1}$ as a coordinate around $p$ , the functions
$g_{i}(\lambda)=(expf\circ\varphi_{i})(\lambda)/|\lambda|,$ $\lambda\in\epsilon U$ satisfy

$g_{1}( \lambda)=g_{2}(\varphi_{2}^{-1}\circ\varphi_{1}(\lambda))|\frac{\varphi_{2}^{-1}\circ\varphi_{1}(\lambda)}{\lambda}|$

for all sufficiently small $\lambda\neq 0$ by (3.1). It follows from lim $\lambdaarrow 0,$
$\lambda\neq 0\varphi_{2}^{-1}\circ\varphi_{1}(\lambda)/\lambda=1$

that $L_{f}[\varphi_{1}]=L_{f}[\varphi_{2}]$ ; therefore, the condition $(C)_{p}$ is automatically satisfied.

LEMMA 3.2. For $f\in PS^{M}(p)$ and $\varphi\in LHC(p)$ wzth $\varphi*(d/d\lambda)_{0}=0$ , it holds that
$L_{f}[\varphi]=0$ .

PROOF. If $z$ is a coordinate appeared in the assumption $(S)_{p}$ on $f$ , then by
(3.1) we can find a positive number $\eta$ such that

$\frac{(expf\circ\varphi)(\lambda)}{|\lambda|}\leqq\eta\Vert\frac{z\circ\varphi(\lambda)}{\lambda}\Vert$

for all sufficiently small $\lambda\neq 0$ ; therefore, the desired assertion follows from
$\varphi_{*}(d/d\lambda)_{0}=0$ or lim $\lambdaarrow 0.\lambda\neq 0z\circ\varphi(\lambda)/\lambda=0$ .

For $f\in PS^{M}(p)$ and $X\in T_{p}(M)$ , we set $L_{f}(X)=L_{f}[\varphi]$ for some $\varphi\in LHC(p)$

with $\varphi*(d/d\lambda)_{0}=X$. By $(S)_{p}$ and (3.1) we have

(3.2) $L_{f}(X)\in[0, +\infty)$ .
By $(C)_{p}$ and Lemma 3.2, we see that $L_{f}(X)$ does not depend on the representa-

tion of $X$ in terms of $\varphi$ . We also see that

(3.3) $L_{f}(\lambda X)=|\lambda|L_{f}(X)$

for any $X\in T_{p}(M)$ and $\lambda\in C$. Indeed, the assertion for $\lambda\neq 0$ follows immediately
from definition and for $\lambda=0$ from Lemma 3.2 and (3.2).

LEMMA 3.3. For $f\in PS^{M}(p)$ and $\varphi\in LHC(p)$ ,

log $L_{f}(X)= \lim_{rarrow 0+}((2\pi)^{-1}\int_{0}^{2\pi}f\circ\varphi(re^{i\theta})d\theta$ -log $r)$ ,

where $X=\varphi*(d/d\lambda)_{0}$ .

PROOF. The function $g=f\circ\varphi-$ log $|\cdot|$ is subharmonic on $\epsilon U-\{0\}$ and is
bounded from above in a deleted neighborhood of $0$ so that it can be extended
uniquely to a subharmonic function $\tilde{g}$ on $\epsilon U$ by the requirement $\tilde{g}(O)=\lim_{\lambdaarrow 0}\sup_{\lambda\neq}g(\lambda)$

$=\log L_{f}(X)$ . Thus, our assertion is equivalent to

$\tilde{g}(0)=\lim_{rarrow 0+}(2\pi)^{-1}\int_{0}^{2\pi}\tilde{g}(re^{i\theta})d\theta$ ,
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which follows from the properties $\tilde{g}(0)\leqq(2\pi)^{-1}\int_{0}^{2\pi}\tilde{g}(re^{i\theta})d\theta$ and

$\lim_{rarrow 0}\sup_{+}\tilde{g}(re^{i\theta})\leqq\lim_{\lambdaarrow 0},\sup_{\lambda\neq 0}\tilde{g}(\lambda)=\tilde{g}(0)$

and from Fatou’s lemma.

LEMMA 3.4. Let $\Phi\in Ho1(M, M’)$ and $p\in M$. If $f\in PS^{M}$
‘
$(\Phi(p))$ and if $X\in$

$T_{p}(M)$ , then $f\circ\Phi\in PS^{M}(p)$ and $L_{fo\Phi}(X)=L_{f}(\Phi_{*}X)$ .

PROOF. Let $z$ and $w$ be coordinates in $M$ and $M’$ with $z(P)=0$ and $w(q)=0$ ,
respectively, where $q=\Phi(p)$ . Then, by (3.1) we have

$\lim_{uarrow 0}\sup_{u\neq 0}\frac{(\exp f\circ\Phi\circ z^{-1})(u)}{||u\Vert}=\lim_{uarrow 0.\Phi\circ z}\underline{\sup}_{1_{(u)\neq q}}\frac{(expf\circ\Phi\circ z^{-1})(u)}{||u\Vert}$

$\leqq\Vert|(w\circ\Phi\circ z^{-1})’(0)\Vert|\lim_{varrow 0},\sup_{v\neq 0}\frac{(expf\circ w^{-1})(v)}{\Vert v\Vert}$ ,

where $\Psi’(0)$ indicates the linear part of a mapping $\Psi$ at $0$ and $\Vert|\Psi’(0)\Vert|=$

$\sup_{||u||=1}\Vert\Psi’(0)u\Vert$ its operator norm. From this inequality we see that $f\circ\Phi$ satisfies
the condition $(S)_{p}$ . Furthermore, if $\varphi\in LHC(p)$ and if $\varphi_{*}(d/d\lambda)_{0}=X$, then $\Phi\circ\varphi$

$\in LHC(q)$ and $(\Phi\circ\varphi)_{*}(d/d\lambda)_{0}=\Phi_{*}X$. It follows that $f\circ\Phi$ satisfies also the con-
dition $(C)_{p}$ and that

$L_{f\circ\Phi}(X)= \lim_{\lambdaarrow 0}.\sup_{\lambda\neq 0}\frac{(\exp f\circ\Phi\circ\varphi)(\lambda)}{|\lambda|}=L_{f}(\Phi_{*}X)$ ,

which proves the lemma.

LEMMA 3.5. Let $M\in C(C^{m})$ with $N=N^{M}$ , and let $z$ be the natural coordinate
on M. Then $L_{f}((\partial_{u}^{z})_{0})\leqq N(u)$ for any $f\in PS^{M}(0)$ and $u\in C^{m}$ (see (2.7)).

PROOF. Take any $\eta>N(u)$ . Since $N(\eta^{-1}u)<1$ , the function $\varphi(\lambda)=\lambda\eta^{-1}u$ ,
$\lambda\in U$ belongs to Hol (Cl $U,$ $M$ ) $\cap LHC(0)$ with $\varphi*(d/d\lambda)_{0}=\eta^{-1}X$, where $X=(\partial_{u}^{z})_{0}$ .
Furthermore, the function $f\circ\varphi-$ log $|\cdot|$ is extended to a subharmonic function
on C1U and is negative on the boundary of $U$ so that the maximum principle
implies

log $L_{f}( \eta^{-1}X)=\lim_{\lambdaarrow 0},\sup_{\lambda\neq 0}$ ( $f\circ\varphi(\lambda)$ –log $|\lambda|$ ) $\leqq 0$ .

Hence $\eta\geqq L_{f}(X)$ by (3.3). This shows $L_{f}(X)\leqq N(u)$ .

For a holomorphic tangent vector $X\in T_{p}(M)$ of a connected complex mani-
fold $M$, we consider the extremal quantity

$Q^{M}(X)= \sup\{L_{f}(X);f\in PS^{M}(p)\}$ .

LEMMA 3.6. (i) For every $\Phi\in Ho1(M, M’)$ , it holds that $\Phi^{*}Q^{M’}\leqq Q^{M}$ .
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(ii) For every $p\in M$, there exists a semi-gauge $N_{p}$ on $T_{p}(M)$ such that
$Q^{M}|_{\tau_{p^{(M)}}}\leqq N_{p}$ .

PROOF. The assertion (i) immediately follows from Lemma 3.4. Let $(w, U_{w})$

be a holomorphic chart of $M$ around $P$ with $w(P)=0$ and let $M’$ be a starlike
circular domain included in $w(U_{w})\subset C^{m}$ with a semi-gauge $N’$ . By (i) and by

Lemma 3.5, we get

$Q^{M}((\partial_{u}^{w})_{p})\leqq Q^{M’}((\partial_{u}^{z})_{p})\leqq N’(u)$

for $u\in C^{m}$ , where $z$ is the natural coordinate of $M’$ ; therefore the semi-gauge
$N_{p}$ defined by $N_{p}((\partial_{u}^{w})_{p})=N’(u)$ has the desired property of (ii).

LEMMA 3.7. (i) $Q^{M}$ is a pseudo-metric on $M$.
(ii) $\lim\sup_{xarrow 0,x\in\tau_{p}(M)}Q^{M}(X)=0$ .
(iii) The asszgnment $M->Q^{M}$ possesses the decreasing prOperfy.
(iv) For the unit disk $U,$ $Q^{U}$ coincides with the Poincar\’e metric $\rho$ on $U$

(see (0.3)).

PROOF. The statement (ii) in Lemma 3.6 implies that $Q^{M}$ is real-valued
and that (ii) holds. By (3.3) we have $Q^{M}(\lambda X)=|\lambda|Q^{M}(X)$ which proves (i).

The assertion (iii) then follows from Lemma 3.6, (i). The assertion (iv) is
proved as follows: We first get $Q^{U}((d/d\lambda)_{0})\leqq N^{U}(1)=1$ by Lemma 3.5. The
function $f(\lambda)=\log|\lambda|,$ $\lambda\in U$ , satisfies $(S)_{0}$ so that $f\in PS^{U}(0)$ by Remark 3.1; while
$L_{f}((d/d\lambda)_{0})=1$ . Therefore, $Q^{U}((d/d\lambda)_{0})=1$ . Combining this with (i) we have
$Q^{U}=\rho$ on $T_{0}(U)$ . It follows from the homogeneity of $U$ that $Q^{U}=\rho$ on the
whole $T(U)$ .

For $X\in T_{p}(M)$ , we set

$P^{M}(X)= \lim_{Yarrow X.Y\in}\sup_{\tau_{p^{(M)}}}Q^{M}(Y)$ .

The function $P^{M}$ is thus upper semi-continuous on every tangent space $T_{p}(M)$ .
LEMMA 3.8. For every $p\in M$, the function $l=\log P^{M}|\tau_{p^{(M)}}$ safisfies

$l(X) \leqq(2\pi)^{-1}\int_{0}^{2n}l(X+e^{i\xi}Y)d\xi$

for any $X,$ $Y\in T_{p}(M)$ .
PROOF. Take a coordinate $z$ with $z(p)=0$ and set $X=(\partial_{u}^{z})_{p},$ $Y=(\partial_{v}^{z})_{p}$ . For

any $f\in PS^{M}(p)$ , by Lemma 3.3 we have

$l(X+e^{i\xi}Y)\geqq\log Q^{M}(X+e^{i\xi}Y)$

$\geqq\lim_{rarrow 0+}((2\pi)^{-1}\int_{0}^{2\pi}f\circ z^{-1}(re^{i\theta}(u+e^{i\xi}v))d\theta-$ log $r$).
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Fatou’s lemma and Fubini’s theorem show

$\int_{0}^{2\pi}l(X+e^{t\xi}Y)d\xi\geqq\lim_{rarrow 0+}\sup\int_{0}^{2n}d\theta((2\pi)^{-1}\int_{0}^{2n}f\circ z^{-1}(re^{i\theta}u+re^{i(\theta+\xi)}v)d\xi-$ log $r)$ .

Since $f\circ z^{-1}$ is plurisubharmonic in a neighborhood of $0$ in $C^{m}$ , we have

$(2 \pi)^{-1}\int_{0}^{2\pi}foz^{-1}(re^{i\theta}u+re^{i(\theta+\xi)}v)d\xi\geqq foz^{-1}(re^{i\theta}u)$

for all sufficiently small $r$ , so that by Lemma 3.3 we get

$(2 \pi)^{-1}\int_{0}^{2\pi}l(X+e^{i\xi}Y)d\xi\geqq\log L_{f}(X)$ .

From this we see

(3.4) $(2 \pi)^{-1}\int_{0}^{2\pi}l(X+e^{i\xi}Y)d\xi\geqq\log Q^{M}(X)$ .

Take a sequence $X_{f}\in T_{p}(M)$ converging to $X$ with lim $Jarrow\infty Q^{M}(X_{j})=P^{M}(X)$ . Since
$l$ is upper semi-continuous it follows from Fatou’s lemma and (3.4) that

$(2 \pi)^{-1}\int_{0}^{2r_{\vee}}l(X+e^{i\xi}Y)d\xi\geqq(2\pi)^{-1}\int_{0}^{2\pi}\lim_{jarrow}\sup_{\infty}l(X_{j}+e^{i\xi}Y)d\xi$

$\geqq\lim_{jarrow\infty}\sup(2\pi)^{-1}\int_{0}^{2\pi}l(X_{j}+e^{i\xi}Y)d\xi$

$\geqq\lim_{jarrow}\sup_{\infty}$ log $Q^{M}(X_{j})=l(X)$ .

We have obtained the desired formula.

PROPOSITION 3.9. (i) For every connected complex manifold $M,$ $P^{M}$ is a
pseudo-metric on $M$.

(ii) The $as\alpha gnmentM\vdasharrow P^{M}$ possesses the decreasrng property.
(iii) $C^{M}\leqq P^{M}\leqq K^{M}$ on $T(M)$ for any $M$.
(iv) For every $p\in M$, the indicatnx of $P^{M}$ at $p$ is a Pseudoconvex starlike

circular domain in $T_{p}(M)$ .
PROOF. Lemma 3.6, (ii) and Lemma 3.7, (i) imply that $P^{M}$ is real-valued

and that $P^{M}(\lambda X)=|\lambda|P^{M}(X)$ for $\lambda\in C-\{0\}$ and $X\in T(M)$ ; while the last formula
for $\lambda=0$ , which is equivalent to $P^{M}(0)=0$ , follows from Lemma 3.7, (ii). This
proves the assertion (i). The statements (iii) and (iv) in Lemma 3.7 imply (ii)

and the assertion $P^{U}=\rho$ , respectively. Observing (0.4) and using (i), (ii) and
the fact $P^{U}=\rho$ , we get (iii). Lemma 3.8 shows that log $P^{M}$ is plurisubharmonic
on $T_{p}(M)$ so that Proposition 1.2 yields (iv).
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\S 4. Invariant pseudo-metrics on a starlike circular domain.

In this section we assume that $M$ is a domain belonging to $C(C^{m})$ with
semi-gauge $N^{M}$ and that $z$ is the natural coordinate of $M$. Put $F_{0}(u)=F((\partial_{u}^{z})_{0})$

for $u\in C^{m}$ , where $F=C^{M},$ $K^{M},$ $B^{M}$ , or $P^{M}$ (see (0.1), (0.2) as well as (2.7)).

Proposition 3.9 implies the first two inequalities of the following:

(4.1) $C_{0}^{M}\leqq P_{0}^{M}\leqq K_{0}^{M}\leqq N^{M}$

on $C^{m}$ ; while the last inequality is proved as follows ([4]): Fix $u\in C^{m}$ and
take $\eta>N^{M}(u)$ . The function $f(\lambda)=\lambda\eta^{-1}u,$ $\lambda\in U$ , then belongs to Hol $(U, M)$ and
satisfies $f_{*}\eta(d/d\lambda)_{0}=(\partial_{u}^{z})_{0}$ with $\rho(\eta(d/d\lambda)_{0})=\eta$ (see (0.3)). By the definition (0.2)

we see that $K_{0}^{M}(u)\leqq\eta$ . This gives $K_{0}^{M}(u)\leqq N^{M}(u)$ .

REMARK 4.1. The last inequality of (4.1) provides a simple proof of the
following result of Kodama [13; Theorem 2]: $M$ is bounded if and only if $M$

is hyperbolic in the sense of Kobayashi [11], [12]. In fact, suppose that $M$ is
hyperbolic in the sense of Kobayashi. By a result of Royden [17; Theorem 2]

there then exists a positive constant $\eta$ such that $K_{0}^{M}\geqq\eta\Vert\cdot\Vert$ . Combining this
with (4.1) we see that $N^{M}$ is a gauge or $M$ is bounded (Lemma 1.1, $(i)$ ). The
converse is well-known ([11], [12]).

We get also the following improvement of Schwarz’ lemma due to Sadullaev
[18; Lemma 1].

PROPOSITION 4.2. For $\Phi\in Ho1(U, M)$ with $M\in C(C^{m})$ and $\Phi(0)=0$ , the fol-
lowing inequalities hold:

(i) $P_{0}^{M}(\Phi(\lambda))\leqq|\lambda|$ for $\lambda\in U$ ;
(ii) $P_{0}^{M}(\Phi’(0))\leqq 1$ .

Furthermore, erther if the equality in (i) holds at some $\lambda\neq 0$ or if the equality
in (ii) holds, then the equality in (i) holds for all $\lambda$ .

PROOF. By Proposition 3.9 we see that the function

$h(\lambda)=\{\begin{array}{ll}\log P_{0}^{M}(\Phi(\lambda))-\log|\lambda|, \lambda\in U-\{0\}\log P_{0}^{M}(\Phi’(0)), \lambda=0\end{array}$

is subharmonic on $U$. By (4.1) we see $h\leqq\log N^{M}\circ\Phi-$ log $|\cdot|\leqq-\log|\cdot|$ on $U-\{0\}$ .
The maximum principle then gives the inequality $h\leqq 0$ and all the statements
desired.

We next prove assertions about $P^{M}$ similar to the following well-known
facts ([7; S\"atze 5 und 7]) about $C^{M}$ :

(4.2) $M$ is convex if and only if $C_{0}^{M}=N^{M}$ .
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(4.3) The indicatrix $IC_{0}^{M}$ of $C_{0}^{M}$ coincides with the convex hull of $M$.

THEOREM 4.3. Let $M\in C(C^{m})$ with semi-gauge $N^{M}$ .
(i) $M$ is pseudoconvex if and only if $P_{0}^{M}=N^{M}$ .
(ii) The indicatrix $IP_{0}^{M}$ of $P_{0}^{M}$ cmncides with the holomorphic hull of $M$ (see

Corollary 1.4).

PROOF. “If” part in (i) follows from Proposition 3.9, (iv) and Proposition
1.2. Conversely, suppose that $M$ is pseudoconvex. We consider the function
$f=\log N^{M}$ , which is negative and plurisubharmonic on $M$ by Proposition 1.2.
There exists a unique $(0, +\infty$]-valued function $R$ on the complex projective
space $P=P^{m- 1}$ such that $N^{M}=\Vert\cdot\Vert/R\circ\pi$ on $C^{m}-\{0\}$ , where $\pi:C^{m}-\{O\}arrow P$ is
the canonical projection defining $P$. Since $N^{M}$ is upper semi-continuous, the
function $R$ is lower semi-continuous on $P$ (cf. [1; \S 3]) so that

$\lim_{uarrow 0},\sup_{u\neq 0}$ ( $f\circ z^{-1}(u)$ –log $\Vert u\Vert$ ) $\leqq-\min\{\log R(\xi) ; \xi\in P\}<+\infty$ ,

where $z$ is the natural coordinate of $M$ ; therefore, $f$ satisfies the condition $(S)_{0}$ .
Let $\varphi\in LHC(O)\cap Ho1(\epsilon U, M)$ with $\varphi_{*}(d/d\lambda)_{0}=(\partial_{u}^{z})_{0},$ $u\in C^{m}$ . Then, $f\circ\varphi(\lambda)$ –log $|\lambda|$

$=f(\varphi(\lambda)/\lambda)$ for $\lambda\in\epsilon U-\{0\}$ . Since the function $\psi$ on $\epsilon U$ defined by

$\psi(\lambda)=\{\begin{array}{l}\varphi(\lambda)/\lambda, \lambda\in\epsilon U-\{0\}u,\end{array}$

$\lambda=0$

is holomorphic, $f\circ\psi$ is subharmonic on $\epsilon U$ so that we have log $L_{f}[\varphi]=f\circ\psi(0)$

$=f(u)=\log N^{M}(u)$ ; this means that $f$ satisfies $(C)_{0}$ (hence $f\in PS^{M}(0)$ ) and that
$P_{0}^{M}(u)\geqq N^{M}(u)$ . Thus, “only if” part in the assertion (i) is proved.

The holomorphic hull of $M$ is schlicht and starlike circular (Corollary 1.4).

Hence, to prove (ii), it is sufficient to show that $IP_{0}^{M}$ is the smallest pseudo-

convex starlike circular domain including $M$. Suppose that $M^{f}\in C(C^{m})$ is pseudo-
convex and includes $M$. Since $M’$ is pseudoconvex, (i) shows $N^{K’}=P_{0}^{M^{r}}$ On
the other hand, since $M\subset M’$ , (ii) of Proposition 3.9 implies $P_{0}^{M’}\leqq P_{0}^{M}$ . Thus,
$N^{M’}\leqq P_{0}^{M}$ or $IP_{0}^{M}\subset M’$ as desired. This completes the proof.

COROLLARY 4.4 (Suzuki [21; Theorem 1], Barth [4; Theorem 2]). If $M$ is
pseudoconvex, then $K_{0}^{M}=N^{M}$ .

PROOF. By the use of (i) of Theorem 4.3 and (4.1), we have this corollary.

COROLLARY 4.5 (Sadullaev [18; Theorem 1]). Let $\Phi\in Ho1(M, M’)$ with $M\in$

$C(C^{m}),$ $M’\in C(C^{m’})$ , and $\Phi(0)=0$ . Assume that $M^{f}$ is pseudoconvex. Then the
linear part $\Phi’(0)$ of $\Phi$ at $0$ maps $M$ into $M’$ .

PROOF. By the decreasing property of $P^{M}$ , we see that $P_{0}^{M’}\circ\Phi^{f}(0)\leqq P_{0}^{M}$ on
$C^{m}$ . Since $M’$ is pseudoconvex, (i) of Theorem 4.3 gives $N^{H’}=P_{0}^{M’}$ Using
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(4.1), we see that $N^{M’}\circ\Phi’(0)\leqq N^{M}$ on $C^{m}$ , which proves the desired result.

THEOREM 4.6. For every $M\in C(C^{m})$ , the indicatrix $IB_{0}^{M}$ of $B_{0}^{M}$ coincides
with the kernel hull $JC(M)$ of $M$ (see \S 1).

PROOF. Let $k(u,\overline{v})dz\wedge d\overline{z}$ be the Bergman form on $M$ and let $k(u,\overline{v})=$

$\sum_{n=0}^{\infty}k_{n}(u,\overline{v})$ , where $k_{n}$ is the function given by (2.5). Since $k$ is holomorphic
on $M\cross\overline{M}$, the function $( \lambda, u,\overline{v})rightarrow\sum_{n}\lambda^{2n}k_{n}(u,\overline{v})=k(\lambda u, \lambda\overline{v})$ is holomorphic in a
neighborhood of $0$ in $C^{1+m+m}$ . If we define a function $r$ on $C^{m}$ by

$r(u)= \sup$ { $\lambda>0;\Sigma_{n}\lambda^{2n}k_{n}(v,\overline{v})$ converges in a neighborhood of $u$ },

then it follows from Cauchy-Hadamard formula that

(4.4) $r^{-1}=B_{0}^{M}$ on $C^{m}$

Since, in this case, it $(M)$ coincides with the domain Int { $u\in C^{m}$ ; $\sum_{n}k_{n}(u,\overline{u})$

$<+\infty\}$ which belongs to $C(C^{m})$ (cf. [14]), the semi-gauge $N^{JC(M)}$ of $c\chi(M)$ is
given by

$N^{JC(M)}(u)= \inf\{\lambda>0;u\in\lambda J\zeta(M)\}$

$=( \sup\{\lambda>0;\lambda u\in Jt(M)\})^{-1}$

$=r(u)^{-1}$

for $u\in C^{m}$ . Combining this with (4.4), we get $N^{j\zeta(M)}=B_{0}^{M}$ , which proves the
theorem.

LEMMA 4.7. For every $M\in C(C^{m})$ , the holomorphic hull $\mathcal{H}(M)$ is included in
the kernel hull $c\chi(M)$ of $M$.

PROOF. The proof of the same assertion for a bounded $M$ was given by
Mehring and Sommer [14; Satz 2]. Their argument is also valid for an un-
bounded $M$.

THEOREM 4.8. Assume that $M$ is a domain belonpng to $C(C^{m})$ and that, for
every $p\in M$, there exists a form $\alpha\in HL^{2}(M)$ such that $\alpha(p)\neq 0$ . Then the follow-
ing inequalities hold:

$C_{0}^{M}\leqq B_{0}^{M}\leqq P_{0}^{M}\leqq K_{0}^{M}\leqq N^{M}$

on $C^{m}$ ; therefore the following incluszons also hold:

$IC_{0}^{M}\supset IB_{0}^{M}\supset IP_{0}^{M}\supset IK_{0}^{M}\supset M$ .

PROOF. The last two inequalities were shown in (4.1). The second one
follows from Lemma 4.7, since $IP_{0}^{M}=\mathcal{H}(M)$ and $IB_{0}^{M}=_{C}f\zeta(M)$ (Theorems 4.3 and
4.6). The first one is a consequence of Proposition 2.4, (iii).
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COROLLARY 4.9. If $M$ is a symmetric bounded domain in $C^{m}$ , then $C^{M}=B^{M}$

$=P^{M}=K^{M}$ on the tangent bundle $T(M)$ .
PROOF. Since $M$ is assumed to be convex and starlike circular, Theorem

4.8 as well as (4.2) gives $C_{0}^{M}=B_{0}^{M}=P_{0}^{M}=K_{0}^{M}$ . Since $M$ is homogeneous, the
biholomorphic invariance of these metrics implies the desired formulas.

Finally, we give sufficient conditions for $B_{0}^{M}$ to coincide with $P_{0}^{M}$ .

PROPOSITION 4.10. If $M\in C(C^{m})$ is bounded and if the holomorphic hull
$\mathcal{H}(M)$ of $M$ is strictly starlike crrcular, then $B_{0}^{M}=P_{0}^{M}$ on $C^{m}$ .

PROOF. By Corollary 1.6, $\mathcal{H}(M)$ is fat. Therefore, by Lemma 1.9 we have
$j\zeta(M)=\mathcal{H}(M)$ so that Theorems 4.3 and 4.6 imply the assertion.

COROLLARY 4.11. If $M$ is a bounded, complete Reinhardt domain in $C^{m}$ ,
then $B_{0}^{M}=P_{0}^{M}$ on $C^{m}$ .

PROOF. It is well-known that, in this case, $\mathcal{H}(M)$ is also a bounded, com-
plete Reinhardt domain. Hence, $\mathcal{H}(M)$ is strictly starlike circular (Corollary
1.8). Applying Proposition 4.10, we have our corollary.
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