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0. Introduction.

If $T:Xarrow 2^{Y}$ and $U:Yarrow 2^{X},$ $(x, y)\in X\cross Y$ is a coincidence of $T$ and $U$ if
$Tx\ni y$ and $Uy\ni x$ . In a recent paper, Browder, [4], has proved the existence
of coincidences in a variety of situations. In this paper we shall extend
Browder’s results to the case of $m(\geqq 2)$ spaces. The basic tool that we use is
Brouwer’s fixed-point theorem for a simplex (though we could equally well use
the KKM theorem). We prove in Corollary 3.2 that if, for each $i=0,$ $\cdots$ , $m-1$ ,
$X_{i}$ is a nonempty convex subset of a topological vector space and $T_{i}$ : $X_{i}arrow 2^{x_{i+1}}$

has nonempty convex values (with $(m-1)+1$ interpreted as $0$) then there exists
$(x_{0}, \cdots , x_{m-1})\in X_{0}\cross\cdots\cross X_{m-1}$ such that

for all $i=0,$ $\cdots$ , $m-1$ , $T_{i}x_{t}\ni x_{i+1}$

provided that each $T_{i}$ is either “Browder-Fan” (Definition 1.2) or of “Kakutani
type” (Definition 2.3). These definitions will require that some (but possibly
not all) of the sets $X_{i}$ are compact and some (but possibly not all) of the
underlying topological vector spaces are locally convex. It is curious that the
two kinds of map can be mixed in any order. Corollary 3.2 is a consequence
of the main existence theorem, Theorem 3.1, in which we allow some of the
maps to satisfy a weaker condition than ”Browder-Fan”. This weaker con-
dition does not require the vector spaces to be topologized, since it is stated in
terms of the ”polytopology”, which is an intrinsic topology defined on any
nonempty convex subset of a vector space (Definition 1.1). The proof of Theo-
rem 3.1 goes by way of two special cases, Theorem 1.4 and Theorem 2.5.

If $X$ is a nonempty compact convex subset of a topological vector space
and for all $f\in E’$ ,

$Sf= \{x : x\in X, f(x)=\max f(X)\}$

then $S:E’arrow 2^{X}$ has nonempty closed convex values. In Theorem 2.2, we prove
a coincidence theorem that involves the map $S$ . This result (which was proved
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in a different way in [11]) seems to be entirely independent of Theorem 3.1
and can best be thought of as a generalization of Kakutani’s fixed-point theorem
to the $non- locally-\infty nvex$ case. $ln$ fact, it has as immediate consequences
generalizations of Kakutani’s fixed-point theorem due to Browder, [4], Theorems
8 and 9, Fan, [5], Theorems 5 and 6 and Takahashi, [12], Theorem 8 and [13],

Theorem 11. These applications are discussed fully in [11], Remark 4.6.
We now introduce some abbreviations and notation. $Vs$ stands for “real

vector space”, tvs for “ real Hausdorff topological vector space”, lcs for “real
locally convex Hausdorff topological vector space”, lsc for ”lowersemicontinuous”
and usc for “uppersemicontinuous. If $E$ is a tvs we write $E’$ for its topological
dual. If $m\geqq 1$ we write $\sigma_{m}$ for the subset

$\{(\lambda_{1}, \lambda_{m}) : \lambda_{1}, \lambda_{m}\geqq 0, \lambda_{1}+ +\lambda_{m}=1\}$

of $R^{m}$ and $Z_{m}=\{0,1, \cdots , m-1\}$ with addition modulo $m$ . Finally, if $f:X\cross Y$

$arrow R$ we say that $f$ has property (P) in its first variable if, for all $y\in Y,$ $f(\cdot, y)$

has property (P); we define in its second variable analogously.
The author would like to express his appreciation to the referee for a

number of very useful comments on the first version of this paper.

1. Browder-Fan maps.

DEFINITION 1.1. Let $X$ be a nonempty convex subset of a vs $E$ . If $m\geqq 1$

and $x_{1},$ $\cdots$ , $x_{m}\in X$ we write $q[x_{1}, \cdots , x_{m}]$ for the map of $\sigma_{m}$ into $X$ defined by

$q[x_{1}, \cdots x_{m}](\lambda)=\lambda_{1}x_{1}+\cdots+\lambda_{m}x_{m}$ $(\lambda=(\lambda_{1}, \lambda_{m})\in\sigma_{m})$ .

The Polytopology of $X$ is the finest topology on $X$ with respect to which all the
maps $q[x_{1}, \cdots , x_{m}]$ are continuous. (A subset $Y$ of $X$ is polyopen $\Leftrightarrow$ for all
$m\geqq 1$ and $x_{1},$

$\cdots$ , $x_{m}\in X,$ $q[x_{1}, \cdots , x_{m}]^{-1}(Y)$ is open in $\sigma_{m}.$ )

We now give some motivation for the above definition. In order to establish
our results under the weakest possible hypotheses we shall assume that our
$vs’ s$ are tvs’s only when it seems strictly necessary. The polytopology of $X$ is
very useful in this connection since it is derived purely from the convexity of
X. (The word “polytopology” is an amalgam of “polytope” and “topology”).

Any real affine function on $X$ is poly-continuous. If $E$ is a tvs then the poly-
topology of $X$ is at least as fine as the relative topology.

DEFINITION 1.2. We say that $T:Xarrow 2^{Y}$ is Browder-Fan (B-F) if

$X$ is a nonempty compact convex subset of a tvs,

$Y$ is a nonempty convex subset of a vs,

for all $x\in X$, $Tx$ is a nonempty convex subset of $Y$
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and
for all $y\in Y$ , $T^{-1}y$ is open in $X$.

We say that $T:Xarrow 2^{Y}$ is poly-Browder-Fan (P-B-F) if

$X$ and $Y$ are nonempty convex subsets of $vs’ s$ ,

for all $x\in X$, $Tx$ is a nonempty convex subset of $Y$

and
for all $y\in Y$ , $T^{-1}y$ is poly-open in $X$.

We note that if $T$ is B-F then it is automatically p-B-F. See Remark 1.5
for the reason for the terminology “ Browder-Fan.”

The following results on selections are suggested by the proof of Browder,
[3], Theorem 1, p. 285.

LEMMA 1.3. (a) Let $T:Xarrow 2^{Y}$ be B-F. Then there exist $y_{1},$ $\cdots$ , $y_{n}\in Y$

and a continuous map $f$ : $Xarrow\sigma_{n}$ such that

for all $x\in X$, $Tx\ni q[y_{1}, \cdots y_{n}]f(x)$ .
(b) Let $T:Xarrow 2^{Y}$ be p-B-F and $x_{1},$

$\cdots$ , $x_{m}\in X$. Then there exist $y_{1},$ $\cdots$ $y_{n}\in Y$

and a continuous map $f:\sigma_{m}arrow\sigma_{n}$ such that

for all $\lambda\in\sigma_{m}$ , $Tq[x_{1}, \cdots x_{m}](\lambda)\ni q[y_{1}, \cdots , y_{n}]f(\lambda)$ .
(c) Let $T:Xarrow 2^{Y}$ be B-F. Let $Z$ be a nonempty convex subset of a $vs$ and
$U:X\cross Yarrow 2^{Z}$ . For all $y_{1},$

$\cdots$ , $y_{n}\in Y$ define $U[y_{1}, \cdots y_{n}]:X\cross\sigma_{n}arrow 2^{Z}$ by

$U[y_{1}, \cdots y_{n}](x, \lambda)=U(x, q[y_{1}, \cdots y_{n}](\lambda))$ $((x, \lambda)\in X\cross\sigma_{n})$ .
If

for all $x\in X$ and $y\in Tx$ , $U(x, y)$ is a nonempty convex subset of $Z$

and
for all $z\in Z$ and $y_{1},$ $\cdots$ , $y_{n}\in Y$ , $U[y_{1}, \cdots y_{n}]^{-1}(z)$ is open in $X\cross\sigma_{n}$

then there exists a map $g:Xarrow Y$ such that the map of $X$ into $2^{Z}$ defined by

$xarrow U(x, g(x))$

is B-F.

PROOFS. (a) For all $x\in X,$ $Tx\neq\emptyset$ hence

$X= \bigcup_{y\in Y}T^{-1}y$ .

Since $X$ is compact and the sets $T^{-1}y$ are open, there exist $y_{1},$ $\cdots$ , $y_{n}\in Y$ such
that

$X= \bigcup_{j=1}^{n}T^{-1}y_{j}$ .
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Let $p_{1},$ $\cdots$ $p_{n}$ be a continuous partition of unity on $X$ subordinate to this open
covering. Define $f:Xarrow\sigma_{n}$ by

$f(x)=(p_{1}(x), ’\cdot p_{n}(x))$ $(x\in X)$ .
Clearly $f$ is continuous. If $x\in X$ let $J=\{J:p_{J}(x)>0\}$ . Then

$q[y_{1}, \cdots y_{n}]f(x)=\sum_{j=1}^{n}p_{j}(x)y_{j}=\sum_{j\in J}p_{j}(x)y_{j}$ .
Now

$j\in J$ $\Rightarrow$ $x\in T^{-1}y_{j}$ $\Rightarrow$ $Tx\ni y_{j}$ .

Hence, since $Tx$ is convex,

$Tx\ni q[y_{1}, \cdots y_{n}]f(x)$

as required.
(b) This follows from (a) since the map of $\sigma_{m}$ into $2^{Y}$ defined by

$\lambdaarrow Tq[x_{1}, \cdots x_{m}](\lambda)$

is B-F.
(c) Let $y_{1},$ $\cdots$ , $y_{n}\in Y$ and $f:Xarrow\sigma_{n}$ be as in (a). The result follows with
$g=q[y_{1}, \cdots , y_{n}]f$. (We note that if $z\in Z$ then $U(x, g(x))\ni z\Leftrightarrow(x, f(x))\in$

$U[y_{1}, y_{n}]^{-1}(z).)$

We now come to our first cyclic coincidence theorem. This result will
eventually be incorporated into Theorem 3.1.

THEOREM 1.4. Let $m\geqq 1$ and, for each $i\in Z_{m}$ , let $T_{i}$ ; $X_{i}arrow 2^{x_{i+1}}$ be P-B-F.
SuppOse that there exzsts $i_{0}\in Z_{m}$ such that $T_{i_{0}}$ is B-F. Then there exists
$(x_{0}, \cdots , x_{m-1})\in X_{0}\cross\cdots\cross X_{m-1}$ such that,

for all $i\in Z_{m}$ , $T_{i}x_{i}\ni x_{i+1}$ .

PROOF. Case 1 $(m=1)$ . This is similar to, but simpler than, case 2 dis-
cussed below and so we leave the details to the reader.

Case 2 $(m\geqq 2)$ . Without loss of generality we suppose that $T_{0}$ is B-F. From
Lemma 1.3 (a) there exist $y_{1}^{1},$ $\cdots$ , $y_{n(1)}^{1}\in X_{1}$ and a continuous map $f_{0}$ : $X_{0}arrow\sigma_{n(1)}$

such that
for all $x\in X_{0}$ , $T_{0}x\ni q_{1}f_{0}(x)$ , (1.4.1)

where $q_{1}$ is written for $q[y_{1}^{1}, \cdots , y_{n(1)}^{1}];\sigma_{n(1)}arrow X_{1}$ . We now apply Lemma 1.3
(b) $m-1$ times and, for each $r\in Z_{m}\backslash \{0\}$ , find $y_{1}^{r+1},$ $\cdots$ , $y_{n(r+1)}^{r+1}\in X_{r+1}$ and a
continuous map $f_{r}$ : $\sigma_{n(r)}arrow\sigma_{n(r+1)}$ such that

for all $\lambda\in\sigma_{n(r)}$ , $T_{r}q_{r}(\lambda)\ni q_{r+1}f_{r}(\lambda)$ , (1.4.2)

where $q_{r+1}$ is written for $q[y_{1}^{r+1}, \cdots , y_{n(r+1)}^{r+1}]:\sigma_{n(r+1)}arrow X_{r+1}$ . Since $f_{m-1}f_{m-2}\cdots$
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$f_{1}f_{0}q_{0}$ is a continuous map of the simplex $\sigma_{n(0)}$ into itself (recall that, in $Z_{m}$ ,
if $r=m-1$ then $r+1=0$), from Brouwer’s theorem there exists $\lambda_{0}\in\sigma_{n(0)}$ such
that

$f_{m-1}\cdots f_{1}f_{0}q_{0}(\lambda_{0})=\lambda_{0}$ . (1.4.3)

The result follows from (1.4.1), (1.4.2) and (1.4.3) with

$x_{0}=q_{0}(\lambda_{0})$

and, for all $r\in Z_{m}\backslash \{0\}$ ,

$x_{r}=q_{r}f_{r-1}\cdots f_{0}q_{0}(\lambda_{0})$ .

REMARK 1.5. Our next result goes back to Browder, [3], Theorem 1, p. 285
and is equivalent to Fan’s minimax inequality, [6], Theorem 1, p. 103. These
results are our motivation for the terminology “ Browder-Fan “.

COROLLARY 1.6. If $T:Xarrow 2^{X}$ is B-F then there exists $x\in X$ such that
$Tx\ni x$ .

COROLLARY 1.7. Let $T:Xarrow 2^{Y}$ be P-B-F and $U:Yarrow 2^{X}$ be B-F. Then there
exis $ts(x, y)\in X\cross Y$ such that $Tx\ni y$ and $Uy\ni x$ .

Using Corollary 1.7 we can prove the following generalization of a two-
function inequality given in Simons [10], Theorem 1 (c), p. 380 and [11], Theo-
rem 1.4. See also Liu [9], Theorem 1, p. 517.

THEOREM 1.8. Let

$X$ be a nonempty convex subset of a $vs$ ,

$Y$ be a nonempty compact convex subset of a $tvs$ ,

$f:X\cross Yarrow R$ be quastconcave in its first variable
and lsc in its second variable,

$g:X\cross Yarrow R$ be poly-usc in its first variable
and quasiconvex in its second variable

and
$f\leqq g$ on $X\cross Y$ .

Then
$\min_{Y}\sup_{X}f\leqq\sup_{X}\inf_{Y}g$ .

PROOF. If the result were false, we could choose $r\in R$ so that

$\min_{Y}\sup_{X}f>r>\sup_{X}\inf_{Y}g$ .
We could then contradict Corollary 1.7 with

$Tx=\{y : y\in Y, g(x, y)<r\}$ $(x\in X)$
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and
$Uy=\{x : x\in X, f(x, y)>r\}$ $(y\in Y)$ .

REMARK 1.9. Following Ben-El-Mechaiekh, Deguire and Granas [2], D\’efini-

tion 2, p. 381 we say that $T:Xarrow 2^{Y}$ is $\phi^{*}$ if

$X$ is a nonempty compact convex subset of a tvs,

$Y$ is a nonempty convex subset of a vs,

for all $x\in X$ , $Tx$ is a convex subset of $Y$

and there exists 7: $Xarrow 2^{Y}$ such that

for all $x\in X$ , $\emptyset\neq\tilde{T}x\subset Tx$

and
for all $y\in Y$ , T-ly is open in $X$ .

We say that $T:Xarrow 2^{Y}$ is $poly-\phi^{*}$ if

$X$ and $Y$ are nonempty convex subsets of $vs’ s$

and
for all $x_{1},$ $\cdots$ $x_{m}\in X$ , $T\circ q[x_{1}, \cdots x_{m}]:\sigma_{m}arrow 2^{Y}$ is $\phi^{*}$ .

Then Lemma 1.3, Theorem 1.4, Corollary 1.6 and Corollary 1.7 remain true
with “ B-F” replaced by “

$\phi^{*}"$ and “ P-B-F’ replaced by “
$poly-\phi^{*}‘$ throughout.

The proofs are essentially identical with those given in the text. The modified
Lemma 1.3 (a) is then a slightly more precise version of [2], Th\’eor\‘eme 2.2,
p. 381, the modified Corollary 1.6 is [2], Th\’eor\‘eme 3.1, p. 382 and the modified
Corollary 1.7 is a generalization of [2], Corollaire 3.4, p. 382. Theorem 1.8 can
also be modified to give a generalization of [2], Corollaire 5.5, p. 384.

2. The support map and generalizations of Kakutani’s fixed-point theorem.

DEFINITION 2.1. Let $X$ be a nonempty compact convex subset of a tvs $E$ .
We define the support map $S:E’arrow 2^{X}$ by

$Sy= \{x : x\in X, \langle x, y\rangle=\max\langle X, y\rangle\}$ $(y\in E’)$ .
Theorem 2.2 was proved in a different way in [11], Theorem 4.5. It was

also shown in [11], Remark 4.6 that this result unifies a number of fixed-point
theorems for multivalued maps in tvs, lcs and normed space situations due to
Browder, Fan and Takahashi. Theorem 2.2 can be deduced from a recent
result in a similar vein of Fan [7], Theorem 8, p. 526. It can also be deduced
from a recent result of a totally different character of Granas and Liu, [8],
Th\’eor\‘eme 2.1, p. 329.
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THEOREM 2.2. Let $X$ be a nonempty compact convex subset of a tvs $E$ and
$T:Xarrow 2^{E’}$ be B-F. Then (with $S$ as above) there exists $(x, y)\in X\cross E’$ such that
$Tx\ni y$ and $Sy\ni x$ .

PROOF. Define $U:X\cross E’arrow 2^{X}$ by

$U(x, y)=\{z ; z\in X, \langle z, y\rangle>\langle x, y\rangle\}$ $((x, y)\in X\cross E’)$ .
Clearly, for all $(x, y)\in X\cross E’,$ $U(x, y)$ is a (possibly empty) convex subset of $X$

and, for all $z\in X$ and $y_{1},$ $\cdots$ $y_{n}\in E’$ ,

$U[y_{1}, \cdots y_{n}]^{-1}(z)=\{(x, \lambda) : x\in X, \lambda\in\sigma_{n},\sum_{j=1}^{n}\lambda_{j}\langle z, y_{j}\rangle>\sum_{j=1}^{n}\lambda_{j}\langle x, y_{j}\rangle\}$

(see Lemma 1.3 $(c)$ ) which is open in $X\cross\sigma_{n}$ . So if

for all $x\in X$ and $y\in Tx$ , $U(x, y)\neq\emptyset$ (2.2.1)

then we could apply Lemma 1.3 (c) and obtain a map $g:Xarrow E’$ such that the
map of $X$ into $2^{X}$ defined by $xarrow U(x, g(x))$ would be B-F. It would then follow
from Corollary 1.6 that there would exist $x\in X$ such that $U(x, g(x))\ni x$ . This
is impossible from the definition of $U$ . Thus (2.2.1) is false and so

there exist $x\in X$ and $y\in Tx$ such that

for all $z\in X$ , $\langle z, y\rangle\leqq\langle x, y\rangle$ .
This clearly implies that $x\in Sy$ and completes the proof of the theorem.

Here we shall consider just one application of Theorem 2.2, namely we
shall show how to deduce Kakutani’s original fixed point theorem from it. First
we make a definition.

DEFINITION 2.3. We say that $T:Xarrow 2^{Y}$ is of Kakutani type $(Kt)$ if

$X$ is a nonempty convex subset of a tvs,

$Y$ is a nonempty compact convex subset of a lcs $F$,

for all $x\in X$ , $Tx$ is a nonempty closed convex subset of $Y$

and
$T$ is usc.

LEMMA 2.4 (Kakutani). Let $X$ be a nonempty compact convex subset of a lcs
$E$ and $V:Xarrow 2^{X}$ be $Kt$ . Then there exists $x\in X$ such that $Vx\ni x$ .

PROOF. Let $y\in E’$ and $x\in Sy$ . Since $\emptyset\neq Vx\subset X$

$\min\langle Vx, y\rangle\leqq\max\langle X, y\rangle=\langle x, y\rangle$ . (2.4.1)

Define $T:Xarrow 2^{E’}$ by
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$Tx= \{y : y\in E’, \langle x, y\rangle<\min\langle Vx, y\rangle\}$ $(x\in X)$ .

It clearly follows from (2.4.1) that

$x\in Sy$ $\Rightarrow$ $y\not\in Tx$ .

From Theorem 2.2, $T$ is not B-F. Since $V$ is usc,

for all $y\in E’$ , $T^{-1}y$ is open in $X$ .
Further, by definition,

for all $x\in X$ , $Tx$ is convex.
It follows that

there exists $x\in X$ such that $Tx=\emptyset$ .

Since $Vx$ is closed and convex and $E$ is locally convex,

$Tx=\emptyset$ $\Leftrightarrow$ for all $y\in E’$ , $\min\langle Vx, y\rangle\leqq\langle x, y\rangle$

$\Rightarrow$ $Vx\ni x$ .
This gives the required result.

We now come to our second cyclic coincidence theorem. As was the ’case
with Theorem 1.4, this result will eventually be incorporated into Theorem 3.1
The case with $k=2$ is Browder [4], Theorem 1, p. 70.

THEOREM 2.5. Let $k\geqq 1$ and, for each $h\in Z_{k}$ , let $Y_{h}$ be a nonempty compact
convex subset of a lcs $F_{h}$ and $V_{h}$ : $Y_{h}arrow 2^{Y_{h+1}}$ be $Kt$ . Then there exists
$(y_{0}, \cdots y_{k-1})\in Y_{0}\cross\cdots\cross Y_{k-1}$ such that,

for all $h\in Z_{k}$ , $V_{h}y_{h}\ni y_{h+1}$ .
PROOF. We suppose that $k\geqq 2$ since the case when $k=1$ is essentially

Lemma 2.4. Let $X=Y_{0}\cross$ $\cross Y_{k-1}$ and $E=F_{0}\cross$ $\cross F_{k-1}$ and define $V:Xarrow 2^{X}$

by
$V(y_{0}, \cdots y_{k-1})=V_{k-1}y_{k-1}\cross V_{0}y_{0}\cross\cdots\cross V_{k-2}y_{k-2}$

$((y_{0}, \cdots y_{k-1})\in Y_{0}\cross\cdots\cross Y_{k-1})$ .
Then $V$ is Kt. From Lemma 2.4, there exists

$x=$ $(y_{0}, \cdots , y_{k-1})\in X$ such that $Vx\ni x$ .
This gives the required result.

REMARK 2.6. Theorem 2.2 remains true with “ B-F “ replaced by “
$\phi^{*}"$

(see Remark 1.9) throughout.
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3. A general cyclic coincidence theorem.

THEOREM 3.1. Let $m\geqq 1$ and, for each $i\in Z_{m}$ let $T_{i}$ : $X_{i}arrow 2^{x_{i+1}}$ be p-B-F or
$Kt$ subject to the following restrictions.

(a) If $T_{i}$ is $Kt$ then $T_{i+1}$ is B-F or $Kt$ .
(b) There exists $i_{0}\in Z_{m}$ such that $T_{i_{0}}$ is B-F or $Kt$ .

Then there exists $(x_{0}, \cdots x_{m-1})\in X_{0}\cross\cdots\cross X_{m-1}$ such that

for all $i\in Z_{m}$ , $T_{i}x_{i}\ni x_{i+1}$ . ( $3.1.1\rangle$

PROOF. In view of Corollary 1.6 and Lemma 2.4, we can suppose that
$m\geqq 2$ and, in view of Theorem 1.4, we can suppose that there exists $s\in Z_{m}$

such that $T_{s}$ is Kt. Let $s(O)<\ldots<s(k-1)$ be exactly those values of $s\in Z_{m}$

for which $T_{s}$ is Kt. For each $h\in Z_{k}$ let $t(h)=s(h)+1\in Z_{m}$ and $Y_{h}=X_{t(h)}$ . For
each $h\in Z_{k}$ we are going to define $V_{h}$ : $Y_{h}arrow 2^{Y_{h+1}}$ .
Case 1 $(t(h+1)=t(h)+1\in Z_{m})$ . Then $Y_{h+1}=X_{t(h)+1}$ . We define $V_{h}=T_{t(h)}$ .
Case 2 $(t(h+1)\neq t(h)+1\in Z_{m})$ . Here $T_{t(h)}$ is B-F, for all $r=t(h)+1,$ $\cdots$ ,

$s(h+1)-1$ , $T_{r}$ is P-B-F and $T_{s(h+1)}$ is Kt. Arguing as in Theorem 1.4, there
exist continuous maps

$f_{t(h)}$ : $X_{t(h)}arrow\sigma_{n(t(h)+1)}$ ,

$f_{r}$ : $\sigma_{n(r)}arrow\sigma_{n(r+1)}$ $(r=t(h)+1, \cdots s(h+1)-1)$

and
$q_{r}$ : $\sigma_{n(r)}arrow X_{r}$ $(r=t(h)+1, \cdots s(h+1))$

such that,
for all $x\in X_{t(h)}$ , $T_{t(h)}x\ni q_{t(h)+1}f_{t(h)}(x)$

and,

for all $r=t(h)+1,$ $\cdots$ , $s(h+1)-1$ and $\lambda\in\sigma_{n(r)}$ , $T_{r}q_{r}(\lambda)\ni q_{r+1}f_{\tau}(\lambda)$ .

We define $V_{\hslash}$ : $Y_{h}arrow 2^{Y_{h+1}}(i. e. X_{t(h)}arrow 2^{x_{s(h+1)+1}})$ by

$V_{h}=T_{s(h+1)}q_{s(h+1)}f_{s(h+1)-1}\cdots f_{t(h)}$ .

For all $h\in Z_{k},$ $V_{h}$ is Kt. In case 1 this is immediate from the definitions
and in case 2 this follows since $T_{S(h+1)}$ is Kt and $q_{s(h+1)},$ $f_{s(h+1)-1},$ $\cdots$ , $f_{t(h)}$ are
continuous. Thus, from Theorem 2.5, there exists $(y_{0}, \cdots y_{k-1})\in Y_{0}\cross\cdots\cross Y_{k-1}$

such that
for all $h\in Z_{k}$ , $V_{h}y_{h}\ni y_{h+1}$ .

For a1I $h\in Z_{k}$ we write
$x_{t(h)}=y_{h}\in Y_{h}=X_{t(h)}$ .

If $r\in Z_{m}\backslash \{t(h):h\in Z_{k}\}$ then there exists $h\in Z_{k}$ such that
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$r\in\{t(h)+1, \cdots s(h+1)\}$ .
We then write

$x_{r}=q_{r}f_{r-1}\cdots f_{t(h)}(x_{t(h)})\in X_{r}$ .

We leave it to the reader to show that (3.1.1) is satisfied.

If we are prepared to assume that the $X_{i}’ s$ are all subsets of tvs’s then we
obtain the following version of Theorem 3.1 that has a somewhat simpler
statement. The case with $m=2$, $T_{0}$ B-F and $T_{1}$ Kt generalizes Browder [3],
Theorem 7, p. 290, and [4], Theorem 3, p. 71, in that the topological conditions
are slightly weaker.

COROLLARY 3.2. Let $m\geqq 1$ and, for each $i\in Z_{m}$ , $T_{t}$ : $X_{i}arrow 2^{x_{i+1}}$ be B-F or
$Kt$ . Then there exists $(x_{0}, \cdots x_{m-1})\in X_{0}\cross\cdots\cross X_{m-1}$ such that

for all $i\in Z_{m}$ , $T_{i}x_{i}\ni x_{i+1}$ .
Our final result is a version of Corollary 3.2 in terms of sets.

COROLLARY 3.3. Let $m\geqq 1$ and, for each $i\in Z_{m},$ $X_{i}$ be a nonempty convex
subset of a tvs $E_{i},$ $A_{\ell}\subset X_{i}\cross X_{i+1}$ and

for all $x\in X_{i}$ , $\{y : y\in X_{i+1}, (x, y)\in A_{i}\}$ be nonempty and convex.

SuppOse that, for all $i\in Z_{m}$ , either

$X_{i}$ is compact and, for all $y\in X_{i+1},$ $\{x : x\in X_{i}, (x, y)\in A_{i}\}$ is open in $X_{i}$

$or$

$E_{i+1}$ is a $lcs,$ $X_{i+1}$ is compact in $E_{i+1}$ and $A_{i}$ is closed in $X_{i}\cross X_{t+1}$ .

Then there exists $(x_{0}, \cdots x_{m-1})\in X_{0}\cross\cdots\cross X_{m-1}$ such that

for all $i\in Z_{m}$ , $(x_{i}, x_{i+1})\in A_{i}$ .
PROOF. Immediate from Corollary 3.2 with

$y\in T_{i}x$ $\Leftrightarrow$ $(x, y)\in A_{i}$ .

REMARK 3.4. Theorem 3.1 and Corollary 3.2 remain true with “ B-F”
replaced by “

$\phi^{*}"$ and “ P-B-F’ rePlaced by “
$poly-\phi^{*}"$ (see Remark 1.9)

throughout.

The results of Browder and Fan discussed in this paper have been extended
in a totally different direction in Ben-El-Mechaiekh, Deguire and Granas [1],
Th\’eor\‘eme 2, p. 339.
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