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§0. Introduction.

In this paper we consider symbols P(x, & on R™ whose derivatives do not
necessarily converge to 0 as |&]—co, and we give some sufficient conditions for
the L?-boundedness of the associated pseudodifferential operators P(x, D). Some
modifications of the Fourier multiplier theorem of Mikhlin type and Stein type
are also obtained, together with those of the Littleweed-Paley decomposition of
the space LP?(R"). Part of the results of this paper has been announced in
Yamazaki [15]. '

The LP?-boundedness of pseudodifferential operators on R™ with non-smooth
symbols has been studied by many authors. See Mossaheb-Okada [8], Nagase
[10], Coifman-Meyer [4], Muramatu-Nagase and Bourdaud [2]. They con-
sidered symbols P(x, §) on R" satisfying the estimate |0§P(x, §)| =C,(1+41§])~'*!
for every multi-index a satisfying |a|<n-1 (or |a|<n-+2), and obtained the
L?-boundedness of the associated pseudodifferential operators P(x, D) defined by
the formula

P(x, Dyu(x)=|e*=¢P(x, i(@)ds

under some assumptions on the regularity of the symbol P(x, & with respect to
x. Here d& denotes (2r)"d&, and #(€) denotes the Fourier transform of u(x).
Here and hereafter we assume 1<p<oco and denote L?=LP(R"), and the in-
tegrals are done over R" unless otherwise specified.

On the other hand, Stein [117 proved the LP?-boundedness of the Fourier
multiplier m(§) satisfying the estimates [£*0§m(£)| <C for all a= N™ such that
a;=0or 1 for every /=1, 2, ---, n. Here the space R" is regarded as the direct
product of n copies of R.

Fefferman and Fefferman-Stein regarded R® as R* !X R!, and ob-
tained several boundedness properties of the singular integrals with kernels
K(y, z) (yeR"!, zeRY) satisfying the estimate |K(y, 2)| <C|y|-"*'|z|-! under
some hypotheses.
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The purpose of this paper is to obtain the L?-boundedness of the pseudodif-
ferential operators whose symbols satisfy the estimates corresponding to one of
the identifications R*=R*® X ... X R*¥), where n(l), ---, n(N) are positive in-
tegers satisfying n(1)4 --- +n(N)=n.

For example, we can prove the following result corresponding to the iden-
tification R"=RX --- XR:

THEOREM 1. Let w be a continuous, monotone-increasing, concave function on
R*={t; t=0} into itself satisfying the condition

glt‘l(—log 1-le(t)dt < oo
0

Suppose that a symbol P(x, &) satisfies the estimates

|05, P(x, §)| =C(1+&5)~*/2
and
Ia}glp(x; E)—agLP<yy é)] écw<[x—-y])(l_}_é%>_k/2

for every x, vy, §R", [=1,2, .-, n and k=0, 1, ---, n+1. Then the associated
pseudodifferential operator P(x, D) is bounded on L.

This theorem is an immediate consequence of our main theorem (LTheorem 2).
The latter can also be applied to the symbols satisfying estimates of parabolic
type with respect to the weight function introduced by Fabes-Riviere [5].

The outline of this paper is as follows. In Section 1 we state our main
theorem and derive from it. For this purpose we generalize the
notion of the modulus of continuity introduced in Coifman-Meyer [4], and we
introduce several notations.

In Section 2 we establish a generalization of the multiplier theorem of
Mikhlin-Hérmander type for the functions satisfying anisotropic estimates with
shift. For references, see Triebel and the papers cited there. Our proof
is a modification of the method used in [12].

In Section 3 we obtain some versions of the Littlewood-Paley decomposition
theorem of L? of parabolic and product type. The results in this section will
also be used in the forthcoming papers [14].

In Section 4 we prove the necessity of the condition in [Theorem 2 by
constructing a symbol which is not bounded on L? for any 1<p<oo.

The sufficiency of will be proved in Section 5. Our methods employed
in these two sections are modifications of those of Coifman-Meyer [4].

Finally, in Section 6, we give two generalizations of

§1. Notations and statement of the main theorem.

First we put AQ)={leN; n()+ - +n—-1)</Znl)+--- +n(v)} for each
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v=1, ---, N and denote x=R" as (x©, ---, x™), where x® =(x))1e10,ER"™.
We give a weight M=(M®, ..., M%) to R*, where each M“ =(m,)ic40, Satisfies
min;c4,m;=1, and we put m=max;-, .. ,m; and | MY | =3 c10,m; for each yv=
1, -, N.

Next, as in Fabes-Riviere and Calderén-Torchinsky [3], we define the
action of t€R* to y=(¥)icay ER™ by t* y=("91)1c4, and denote by [y],
the only positive number ¢ satisfying t-*®y=@¢"")*"ys{yeR"*; |y|=1}.
For y=0 we set [0]=0.

If f(x) is a function on R", then we denote by 4 the difference of first
order with respect to the v-th part of the coordinate variables; that is, we write

Ly f(x)=f(x®, o, x® =y, o, xP)—f(x)
for v=1, 2, -, N and yeR"™.

Next we generalize the notion of the modulus of continuity.

DEFINITION. We call a set of functions {w,(t,), wy(ty, ta), «*+, wx(ly, L, -, )}
a modulus of continuity if it satisfies the following three conditions:
1) For each v=1, .-, N the function w,(,, ---, £,) is continuous of (R*)* into R*,
and is concave, monotone-increasing for each f¢,.
2) o, -+, t,) is invariant under any permutation on the variables ¢,, .-+, ¢,.
3) For each 1=pu<v<N we have

w),(tly ) tu)ézy-'uw,u(tl} Tty t;l)'

Using the above definition, we consider the conditions (*y) (=0, 1, ---, N)
on symbols P(x, & as follows:

0 For every v=1, 2, -+ N, (€A(v) and k=0, 1, -, n+1 we have
185, P(x, &)| SC(L+[&™],)-mk,

(*p) (p=1, 2, ---, N) For every v=1, 2, -, N, (€ A(), £=0, 1, .-, n+1,
1<p()< - <V([1>§ZV and y<1>eRn(v(1))’ - y(#)ERn(u(,u)) we have

[ 458y - 4,08 P(x, )| £Co, (| y(D), =+, | 3(e)DA4[E¥],) "™k,
REMARK. Since the inequality

SEHIB%[ v & e 45605 P(x, §)| 202 SEURQLIAZ(&((W) AZ(&%‘,%%GELP(% £)]
x x

holds for every 1=A<p and 1=k(1)<---<k()=p, the condition 3) in the defini-
tion causes no loss of generality.

Now we can state our main theorem.

THEOREM 2. The following three conditions concerning moduli of continuity
are equivalent :
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1) For every v=1, 2, ---, N we have

Sl...gl_@&’_:;i,tjﬁdt ceedt, < o0
1 v .

0 tyoet,

(1.1)

0
2) If a symbol P(x, §) satisfies the condition (*p) for all p=0, 1, ---, N, then the
associated operator P(x, D) is bounded on L? for every 1<p<co,
3) For every symbol P(x, &) satisfying the conditions (*u) for all p=0,1, ---, N
there exists 1< p<co such that the operator P(x, D) is bounded on LZ.

In order to find a condition on w,(¢) which implies the hypothesis 1), suppose
that {w,(t), -+, oy, -+, ty)} is @ modulus of continuity. Then we have

¢ 2
(1.2) Sl Slfql‘,(fl’u__"ﬁ,)* dt, - dt,

0 0 ty-t,

2
dt,--- dt,

A

ff e

0

S P Py )
=-1{(~1og t)v-l-ﬁlfidt.
Hence the hypothesis 1) is satisfied if
(1.3) S:(—logZ)N“lglii)idt<OO.
Putting N=#n and n(l)=n(2)=---=n(n)=1, we have immediately.

Conversely, let w,(!) be a continuous, mornotone-increasing, concave function
which does not satisfy (1.3). Then, by putting w,(t,, -+, {,)=2""'w,(min{z,, ---, {,}),
we can construct a modulus of continuity {w,(t,), ---, @wx({, -+, ty)} Which does
not satisfy the condition [(1.1), since the equality in holds in this case.
Hence the condition in is sharp. ’

If w,(t) is of the form (1—log )’ then (1.3) holds if and only if d<—N/2.
If w,(t)=(1—logt)~V/2{1+log (1—log?)}?, then (1.3) holds if and only if 6<—1/2.

On the other hand, by putting N=1, M®P=M and [ -],=[ -], we have the
following result on the symbols satisfying estimates of parabolic type, which is
a modification of Theorem 7 in [14].

COROLLARY. Let w(t) be as above, and assume that

2

If a symbol P(x, &) satisfies the estimates
|08, P(x, &)| SCA+[£])-™*

dt< oo,

and
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|08,P(x, §)—08,P(y, &)1 =Ca(] x—y DA+ [£])~™*

for every [=1, ---, n and k=0, 1, ---, n+1, then the associated operator P(x, D)
is LP-bounded.

Comparing this corollary with [Theorem 1, we see easily that the former
requires less regularity of P(x, & with respect to x. On the other hand, the
latter can be applied to the symbols whose derivatives do not necessarily con-
verge to 0 as |&|—co.

§2. Quasi-homogeneous Fourier multipliers.

In this section we consider the case N=1, and denote [ - ]; simply by [-].
For a Lebesgue measurable subset E of R", let p(E) denote the Lebesgue measure
of E. For a Banach space X and 1=<p<co, we denote by L?(X) the set of
strongly measurable X-valued functions f(x) on R™ satisfying

[ lunco=({1rol )" <oo

as in Triebel [12], and we denote L?(C) simply by L?.
We start with some properties of our weight function [ -].

LEMMA 2.1. For & nER™ and 0=t<co, we have the following :

D E+nl=[&1+In].

2)  [t"&]=tl€].

3)  min{[&l, [§|V™}=[]=max{[&], [§]V™}.

4) [£&] is a C-function of §€R"\{0}, and for every real number s and for every

multi-index a there exists a constant Cs , such that the estimate |0¢([€]5)|=<
Cs, o[E15-%2 holds for every §=R™.

Proor. The assertion 1) is exactly the same as Remark 1 of Fabes-Riviére
[5]. To prove the assertions 2) and 3), put s=[£]. Then we have [(st)~¥t¥¢]
=[s"¥&]=1, which implies the assertion 2). Also we have [s - ™&|<Z|s~¥¢|<
|s~1&] or |s ™&|=|s &l =|s'&| according as s=1 or s=1, which implies the
assertion 3). The smoothness of the function [ -] follows from the implicit
function theorem. Finally, we can derive the estimate of the derivatives from
the quasi-homogeneity (the assertion 2)) of the derivative 0g[£].

Next we shall show a general statement on the boundedness of convolution
operators. For this purpose we need the following

LEMMA 2.2. Let f(x) be a function in L' such that f(x)=0 a.e., and v be a
positive number. Then there exist a sequence of positive numbers {e,} and a
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sequence of rectangles {I,} satisfying the following conditions:
1) The edges of each rectangle are parallel to the coordinate axes, and the length
of the edges of I, parallel to the x;-axis is equal to ef'.

2) Iinly, =9 if j#Fk.

3) f(x) =t for almost all x&I, where [= k@xlk'

4) ré,u([k)‘lgl f(x)dx=ZCyr, where C, is a constant independent of ©>0.
k

This lemma is the same as the sublemma to Lemma 2 of Fabes-Riviére [5].
By virtue of this lemma we can prove the following

PROPOSITION 2.3. Let X, Y be Banach spaces and K(x) be a locally strongly
integrable mapping of R™ into L(X,Y). For an X-valued simple function f(y),
we define a Y-valued measurable function K*f(x) by K*f(x):SK(x—-y)f(y)dy.

Suppose A>0, 1<p=r<co, 1/p—1/r=1—1/q and that the following two condi-
tions hold :

1) There exists a constant B>2 such that, for any t>0 and y&R"™ satisfying
[y]1<tB~', we have

| I =3 =Kl pdrs Ar.
[x]ztB
2) For any X-valued simple function f(y) we have

2.1 IK*fllerar = Al fllepcxs -

Then, for every constants s and o satisfying 1<s<og <o and 1/s—1/e=1—1/g,
there exists a positive constant C depending only on n, M, B, p, r, s such that
IK*f ooy =CAl fllscxy holds for every X-valued simple function f(x).

REMARK. From the conclusion of the proposition and the fact that the set
of X-valued simple functions is dense in L%(X) (1<s< o), it follows immediately

that the operator K* can be extended to L*(X) and that the same inequality
holds for all f< L3(X).

PROOF OF THE PROPOSITION. By multiplying K by a constant, we may
assume A=1. First we consider the case 1<s<p.
Let I and I’ be rectangles defined by

I={xeR"; |x,—z,|=<L™} and I'={x&€R"; |x,—z,|<~/nL™ B,
where zeR". If yel, then it follows that

Lo [y—z]=[LY(y—2)]=[1, 1, -, D]=+/n.
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Hence, putting t=+/7LB, we have [y—z]=tB-* if yI. On the other hand, if
[x—z]<tB=+/nLB? then x<I’.
Next, let w(y) be an X-valued simple function satisfying w(y)=0 (y¢&1I) and

SI w(y)dy=0. Then we have

Krww=| _ Ka—puwdy=| _ (Kx—y)—Kxuwldy.

[y-zist

Hence, by the generalized Minkowski inequality, we obtain

(Stx_z]gmHK*w(xw%’dx)x/q

(o =) =Kol w()] xdy) dx)

1A

={lwlzay,

that is,
1/q
(Sxel' I K*w(x)”?,dx> Sllwloix, -

Now suppose that R>0 and that f is an X-valued simple function. We
apply to the function | f(x)|x< L' and the number t=RY| f(x)|}1%x),
and get the sequences {I,} and {e,}.

Next, for every NeN we put

: N
f(x) (x%[ or xekgllk
N ERS)

=N+1

f(N)(x):l

Jf(X) (x&D
0 (xel\@[k>
k=1

hi(x)= )
1ﬂ<1k>-131kf<x>dx (x&l,, k<N)

and

ol (1)
ERVEV —nt)  (xely)

for £=1, 2, ---, N, and set
Ii={xeR"; |x,—2{®* | =+/nep'B*/2},

where (z{%, ---, z{) is the center of the rectangle I,.
Then A(x) and g.(x) are X-valued simple functions, and from the above
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argument and we obtain

(LS NET ) I P e P W V{CO P

Hence, putting I’=\Ji=.I;, we have
1/q
( ok
RMN\I' Y

= 32 17 edx =21l

It follows that

K* 3 g4(x)

%1(3-1271\ I II K*gk “ ‘f,dx)”q

k

(2.2) p({rerr; |K* é gk(x)Hy>R/2}>

urrealfxernrs o §aiol, > )

IIA

oo . : N q
kgl @v'n )np(lk)+(R/2)_qSRn\1' I,K* kglgk(x)”ydx

sV B, 17 leds+20R20 [

=Ce 1 fascn+ R fI100)
<CR| flacxs
where C is a constant independent of N.
On the other hand, from the fact that ||A(x)|x=C,r and
N
@l =, 10ldet B[, fede] 1@l

we obtain

1A | Lr ey S(Cor) V2| F () o x
which implies

(2.3) p{xeR™; |K*h(x)ly>R/2H=(R/2)7IK*h(x)] Lrr
S2R{Cot| f()Zica } 2N F )| Ty
=2"CET PR f()ex,s -

Combining and [2.3)] we obtain

e{x R |K*f M (0)]ly>RH=CR f(x)|{1cx)

with a constant C independent of N.
It follows that

pxeR™; |K*f()lly>RD=CRY f(0)%1cx)
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for every X-valued simple function f(x); that is, the operator K* is of weak
type (1, g). From this and hypothesis 2), we obtain the conclusion in case 1<
s<p by virtue of the Marcinkiewicz interpolation theorem. We can prove the
conclusion in case p<s<g<oo by the standard duality argument, using the
following lemma.

LEMMA 2.4. Let X be a Banach space and X’ be its dual. Suppose 1<p,
p'<co and 1/p+1/p’=1. Then an X-valued (resp. X’'-valued) strongly measurable
function f(x) belongs to the space L?'(X) (resp. L? (X)) if and only if the func-

tional f: g(x)HS(f(x), g(x)>dx belongs to (L?(X")) (resp. (L?(X))). Furthermore,
we have “f“LP'(X):“f“ wpxyy (resp. ”f”LP'(X’J:“f”(LP(X))’)-

This lemma can be verified by approximating f(x) by simple functions, and
the proof will be omitted.

Now we can prove the main result of this section. In the following theorem
we assume 1< p<co, and that X and Y are Hilbert spaces, and denote by
LH(X, Y) the Hilbert space of all Hilbert-Schmidt operators of X into Y, equipped
with the Hilbert-Schmidt norm. For every /=1, ---, n, let k; be the least natural
number that satisfies m;k;> | M| /2, and let ¥(¢¥) be a real-valued C> function on
R satisfying 0¥ ()<1, ¥t)=1 if t=1, and ¥()=0 if t=4/3. This function
¥'(t) will be fixed throughout this paper.

THEOREM 2.5. Let K(§) be a continuous function of R™ into LH(X,Y) such
that 0}, K(&) exists for every =1, 2, ---,n and k=1, 2, -, k. If there exists a
sequence {a;}jcz of elements of R™ such that we have the estimate

Szj_quszﬂHa}él{eXD(—iz_j‘waj'5)K(5)}l[%H(X,Y)dféAZA?j('M'"Zm’k)
for every jeZ, |=1,2, .-, n and k=0, 1, ---, k;, then we have
[F K@) ](x)Lrwy=CA log(2+5l}pl a;Dullzecxs
for every X-valued simple function u(x), where C is a constant independent of the
sequence {a;}.

PrROOF. We put ¢;§)=¥2/[£])—-¥2'7[E]), K;&)=¢;6)K () and Gx)=
FUK;&)1(x) for jeZ, and G (x)=2X_yG;(x) for NeN. We shall apply
Proposition 2.3 to G™. For /=1, 2, ---, N we have

((agstexp(—i2-"a, O K @Hiner.ndg) "

=2 ("Zl)(S Iaé"%‘h(ﬁj(f) |2 “agz{eXP(—-iz_jMaj’E)K(&)} H%,H(X,Y) dS)l/Z

T hsky
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IIA

» (k‘)c.2~jmz(kz—h>(A22]‘<|Mw~2mzh>)1/2

RSk I\
SC/A.zj([Ml/z—mlkl) .

Hence, setting /,={xeR"; [x]?™xj=1/n}, we obtain

[ 16— ) nor v dx
[xlzt, xedy

1/2

IA

1/2 . . . ;
{ xittidr) (a1 F - Texp(—i27% 0, K i@l e, rd)
[zizt, x€J

1/2

1/2 ) ' y _
é(n kzg [th]-wzlml-t\Mldx) '(S“agf{eXp(—lz"‘”afE)K;(E)}Ileq‘Y)ds)
[rlzi
é(c't"“lm”'M')”z'C’A-2f|M1/2—ikzmz
=CA(27t) M1 12=miky

by virtue of the Plancherel formula for the Hilbert space LH(X, V). (See Bergh-

Lofstrom and Triebel [12].)
Since implies R*=\_J2~,J,, we have

SE t||Gj(x_2-jMaj)“LH(X’Y)dxénCA(th)\M\/2—’n‘lel
1z

which implies

(2.4) SE ! L”Gj(x""'y)"“Gj(x)”LH(X,Y)dx§2nCA<2jt>\MI/2—mlkl

if [y1=t/2 and [2-7%a;]<t/2.
Next, in general we have

@5 (16020 ) ncr o dx=1G, (0l Lcx i dx
([{ra-texp(—iz-a,- 01,100 twca v
+35 712k exp(—i2 " 4, O KOl bmor i} )

= (2 (14 2 x3) “ax) 0 acore
—CA.

Finally, if 2/t=<1 and [y]=<t we have
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28 (16, (x—2"a,~ )~ G (x—2"a )l urcr s
([ Bt )"
-(S{llff*[{exp(—z‘y-s~z'2~f‘”a,ﬂ~5>—exp<—z‘2-ﬁ"a1~-5)}Kj<5>1<x>n2m,y>
+ 35 I F 29 (exp(—iy-—i2 7 a,8)
—exp(—i2 0, VKA Ercx )
=270 {{I exp(—iy- )= 1} -exp(—i2a, DK@ imcr.v

L . . s ~ \1/2
+ 35 298 ({exp(—iy- )1} -exp(—i2 4, K EN Encr.ro} dE) -
From Lemma 2.1, we obtain the inequalities
|e=v4—1|<|y|[€] =n-max |y.|1&] Sn-max [y]™[§]™=C2"

and ‘ ,
e N e S AL Ll

§<2J‘1)1-mzk.tmzkz—_gjt.z-mu'k (k=1)

for £esupp K. It follows from the estimate (2.6) and these inequalities that

(2.7) SHGj(x'*Z’jMaj—y)—Gj(x—2””’%)l|L11<x,y>dx§CA2’t-
Combining [2.4), [2.5) and [2.7), we conclude that
2.8 [ MG =)= G Dl e i
CA-27t (21t=1)
<:{CA (1=27t=1+2-supsla.])

CA(29)11z-mingkymy (25t >1+42-sup,[as])

for yeR" satisfying [v]=t/2.
Let 4, be the greatest integer satisfying 2"%=<1, and #, be the least integer
satisfying 2"t=1+2-sup,[a,]. Then we have h,—h,<3-+log,(1+sups[az]).
We now consider the kernel G‘¥’(x). First, it follows from that

S[z]zz; I1GY (x—9)— G ()L x,vrdx

N
= B0 16 G=9)=C ) mor rdx

j=-N
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SCA( g‘: 2t 4+(hy—he—1)+ i (274) 1M i/2=ming mlk1>
= i=hy
=CA{C'+log,(1+sup[a.])}
for [y]<t/2. Since [a,]<max{|a;|, |a;|™}, we obtain
Stxj>2c ”G(N)<x’—y)‘G(N)(x)”LH(X,Y)dX§CA'IOg(Z—}—sL}ep la,])

for [y]=t/2 with a constant C independent of {a,} and N.
On the other hand, for natural numbers L, N (L<N) and every X-valued
simple function u(x), we have the estimates

L2(Y) S

ggz-sgp LKA v |2(®) 38

N 2 .
> K@) de

J=-

few e —ues,

<2 u(x)l 2oz (sup 16,0l e )
=2C A u(x)ll 22

by virtue of the estimate together with the Riemann-Lebesgue inequality
and the Plancherel formula.
In the same way we have

HS{G<N><x—y>—G<L><x—y>}u(y

<{|CE, + 2 ool 2

(P +j[5122L)2-s9p IS x| 2(9) |35

—0 as L, N— oo,

Applying [Proposition 2.3, we see immediately that

”G(N)*u”u)a/)§CA‘103(2+S%P lag])-llullercx)

for 1<p<oo, where C is a constant independent of N, A4, {a,} and u(x). We
also have

GC™*y—GP*y —> 0 in L?(Y) as L, N—
for any fixed X-valued simple function u(x). Hence, the operator G‘*’* con-

verges strongly to G* in L(L?(X), L?(Y)), and the operator norm of G* is
dominated by CA-log(2-+sup,|a,|). The proof of is now complete.
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§3. The Littlewood-Paley decomposition of parabolic type and
product type.

In this section we prove a generalization of the Littlewood-Paley decomposi-
tion theorem. Our theorem is different from the original one on the following
points: First, we regard R" as R*® X --- X R**’ and consider a decomposition
of each R, Secondly, our decomposition of each R**? is “parabolic”. Thirdly,
we estimate the L?-norm not only of {33]ux(x)|%}'/% but of

_ - N
{EIVK(X(I)‘FZ k(l)M(l)a(l)’ - x(N)__]_z E(NYM(C >a<N))|z}1/z

for general a=R".
In the sequel, for 1</<N, k=N and y=R""”, we put

{Wj,o<n>=1lf<[rzjj>,
U, v()=Y2*[n])—T2"*[n],) for k=1.

Suppose 1=v=N and a?=R"*? for j=1, 2, ---, v. For usCyR"), a=(a®, -,
a®) and K=(kQ), ---, k(v))e N* we put
ufz”,)K(x):g_l[exp(z'i‘,IZ'k(j)M(j)a(j) .é(j))ﬁij‘ k(j)(é(j)m(s)](x> .
J= J=
Then we have the following

PROPOSITION 3.1. There exists a constant C independent of a and u(x) such
that

([P lué”,’K(x)12)"211Lp§Cfllog(2+ia‘”l)'llullw.
KeNY Jj=1
Proor. By induction, we have only to prove

B I XZ TuPcx)]D V2 p=Clog2+1a® DI 2 [ug&x) 52 Lo

KeNY KeNv-1
for every y=1, -, N, where the right-hand side is regarded as log(2+|a™|)-|ulr»
if v=1.

We prove (3.1) by using the Rademacher functions {7,}senx. The functions
ret) (keN, te[0, 1]) are defined by

{l (0=t=£1/2),
ro(t):
-1 (1/2<t=1)

and 7,(t)=r,(2%t—[2%t]), where [2%t] is the greatest integer not greater than
2%t. Then we have the following

LEMMA 3.2. For every veN and 1<p<co, there exists a constant C such that
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CH 2 brrea(t) = royE )l Lo o, 130
KeNYy :

IA

f KgNbe”k(l)(tl) e @) L2 o, 13u>"——(K.§Ny [bx|?)/?
=CI 2 bxreay(ty) - TearE) e, 1
KEN

holds for every family of complex numbers {bg}xens.

This lemma is proved in the Appendix of Stein [1I].
In view of this lemma, (3.1) is equivalent to

I 2 u@x ()7 ey ey G oo, 119
KENY
=C-log2+1a™])- ||K€%J_1 ud R eyt - T ew-n - Dl L RR A0, 129-1)
which will be obtained by integrating

32 ([0 ] Dk i) - ram®) PdxVdt,
RM(Y) KenNY

§C1’{Iog(2+|a(”])}p-g | 2 uereat) - ree-nt-)1%dx®

RL) | KENY-1
with respect to dx® .- dx®-Vdx®*V ... dx M d¢, --- dt,-,. Fix t,, -+, t,-; and x@
(j#v), and put

v(y):Ke%y_lut(lu,_Kl)(x(l): Tty x(u—l), y; x(v+1)1 Tty x(N))'rk(l)<t1)'“rk(v—l)(tv-l)'

Then the desired estimate (3.2) can be written as

[ane

=Cr{log2+1a® 2| | 10(3)17dy

R

o

7 A(OF " [explia® 2 V@)W, (o)) dydt

k=

where y, neR"®,
In view of we have only to show

3.3) H{F - [exp@Ea®2-** VT, (019} kenlzras
=C-log(2+1a® Dllv(y) e

for v(y)e LP(R™™),
To verify [3.3), we consider the LH(C, (*-valued continuous function K*(n)
on R*® for 1=1, 2, 3 defined by

Kz(ﬁ): {eXp(Z.a(u)Z_kM(y) : ﬁ)wv k(ﬁ)}keN, £=2(mod3) «

Then there exists a constant B such that

|08 {exp(—i2 P a® - KA | o, i dp S BH-2704 13m0

Szi-lg[n],,gsz
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for h=0, 1, .-+, n(¥)+1.
Applying to each K*, we obtain [3.3). This completes the proof.

If y=1, M®¥=(1, 1, ---, 1) and =0, then the above proposition is the
Littlewood-Paley decomposition theorem of L?. For v=1 and general M we
obtain a decomposition of parabolic type, and for y=n and MV = ... =M™ =(1)
we have a decomposition of product type.

If a=0, we have the converse of [Proposition 3.1. Fix a constant B>+/2,
and for j=1, -+, N set [; ;={neR"?; [9];=B} and I, ,={psR"?; 2¢¥B'<
[9];=2*%B} for every positive integer k. We also fix ve{l, ---, N}. Then, for
Ke N* we denote by Ix the “parabolic dyadic domain”; that is, we put

Ix=1{6€R"; &V &l for all j=1, -+, v}
Then we have the following

PROPOSITION 3.3. Suppose 1<p<oo. If a family of functions {ux(x)}xen»
satisfies supp @ x(&)CIx and

10 35 Tug(x) )| p= A<,
KeNV

then the infinite sum u(x)=2genvux(x) converges in LP, and it satisfies the
estimate |Ju(x)||,p=<CA for some constant C.

Proor. We have only to show that there exists a constant C independent
of L= N such that

(o 2 luxtol)”

R(1),, E(»)=0

(3.4) ()2 =C]

I

holds for every {ux(x)}xen», Where u(x)=3lu....zm=otx{x). To prove
we may assume that every ux(x) belongs to C3(R™).
For ‘U(X)EC%:(Rn> and K/:(k/(l), e k'(v))E_Z”, put
0 (k"()<0 for some j=L1, -, v),

VD=V G,y (ED) oWy e 0y (EPIDE) (%)
(R'(5)=0 for every j=1, ---, v).

Ly

Then there exists an integer h determined by B such that | k(;)—k’(;)| <h holds
for all j=1, 2, ---, v if

supp @ x(§)Msupp 0 (§)# D .
This implies

Su(x)mdngﬁ(f)ﬁ—@ié

=\ = axer T @
k(1),- K

S k(W)=0 "ENV
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Q.J

ax(§)-0

Sk(l),"', k(V)=0 |k’ (j)—k(j)l<h

h —_—
S 2 > U(X) Uk s(x)dX
A1), AWy=~h k1), k(¥)=0

Hence

uu(x)mdx' = >

S Lk ()] + | vics ()] dx
(1),, AW)=-h k(1),- k(ld) 1}

<@h+1) S( B lux(0) 9% 3 |oxlo) | dx

KeNVY

=(@h+1)"-

k(@19 ]IS o194

(k (1), k(v)=0

where p’=p/(p—1).
In view of [Proposition 3.1 for p’, there exists a constant C such that

‘Su(x)ﬂfx_)dx] gc

2 a1 vl

k(l),---,k(v)=o

Since (L?')’=L?, we obtain [3.4).

§4. Proof of Theorem 2: the necessity.

The assertion 2)—3) is trivial. Next we prove the assertion 3)—1) by con-
tradiction; given a modulus of continuity {w,(t,), -+, @y, -+, ty)} Where not
all of w, satisfy the estimate we shall construct a symbol P(x, &) satisfy-
ing the estimates (*p) for p=0, 1, ---, N such that the associated operator
P(x, D) is not bounded on L? for any 1<p<co,

Let v be the least integer such that w, does not satisfy [1.I). For KeN*
We put wx=w, (2 FVm 2-k@m . 2-ktm) where m=maxX;-, .. ,m; as in Section
1. We also put @, ,(y)=@ 2 *[5], for kN and p<R"?, where O(f) is a
smooth function on R* such that 0@ <1, O@)=0 (t=2/3, t=4/3) and O(t)=1
(3/4=t=5/4).

Now put [{(j)=n(1)+ --- +n(j) for j=1, 2, ---, N and put

P(x, )= 2 ox -eXp(—z'?y‘_z_,lzmzq)kmxlm> 111@’ e (E9).

Then, for j=v+1, v+2, ---, N, the symbol P(x, &) does not depend on x or
§. Hence we have only to show the estimates (*p) of the derivatives 0%,P(x, &)
for e A\ - \UAW).

For every £=R" there exist a neighborhood U of & in R™ and at most one
Ke NY such that

P(x, O=axexp(—i 3,270 Px1) I1.0;.405(
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holds for every &é<U.
Then, for every p=1, 2, ---y, h=1, 2, ---, N, le A(h), k=0, 1, ---, n-+1 and
yeR" such that [y,;]| =1 for all /, we have

| AL ({420 (08, P(x, €)}-+-)]
§wxﬁl lexp{—i2™ D D (x5 — Y1)} —exXp(—i2™ D kD xy )|
=

. I#th)j,k(j)(é)w)ﬂ -|08,D,, e (G|

IIA

B .
C-wg-1I min{2, 2™t @ |y, ;| }-2-kmik@
Jj=1

<2/C-ag-IT min {1, 200 |y} 2-kmirw,
J=1

where C is a constant indegendent of y and K.
Since wx is monotone-increasing, we have

OxSw,(|yP|, 2-mE® .. 2-mko))

if |y®[=2-"*®_ On the other hand, if [y®|<2-m*¥® then it follows from
the concavity of w, that

ka“)ly‘” ]wKézmk(l) l y(l) ]wy(z—mk(l)’ 2—mk(2)’ e, 2—mk(y))
+(1_2mk(1)ly(1) I)Q),,(O, 2—mk(2), e, 2—-mk(y))
éwy(lyU) |, z—mk(E)’ e, 2—mk(v))_
Repeating this argument p times, we obtain
| AL (- { At (B, P(x, EN}-o)]
éz,ucwy(ly(l) I’ e, ly(,u) I’ 2—mk(/l+1)’ e 2-mk(v)),2~kmzk(h)
éZuC,Z»—pwy(ly(l)l’ - ly(ﬂ)I)Z‘kmLk(h) .
If écsupp @y ¢y, then 2™ .2/3<[EM],<2%™.4/3 It follows

2_kmlk(h,§(§[_é%ln_>—kmzé(_l_i[%'i]lykmz

and hence
|4y ({44 @08,P(x, )}

SCau(ly®|, =, [ [)-(LH[EWTp) ™

Other differences can be estimated in the same manner, and the proof of
(*p) is complete. For p=y+1, ---, N, the condition (*p) is trivial since the cor-
respondent differences vanish identically. This completes the proof of (*p).
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It remains only to prove that the operator P(x, D) is not bounded on any
L?  Put

Ig={{t;, -, tL)ERY); 27mHEP <, <P-mED for every j=1, ---v}.

Then, from the inequality

1 1wyl y "ty tv 2
S S *(f%(_l___)ﬂ.dvfl...dtv
0 tyeenty

0

=3 g...SIme”(tl’ . t”)z,dtl...dzy

~ KEnv tieety
o-mk()
-mEQ) ... 9-mkG)\2, e
§K§vyﬁh(2 ’ , 2 )?-log 9-m k(DD

=(m-log2) ¥ oz,
KeNv

we have X xemwi=o0. Hence there exists a sequence of numbers {ax}xen»
such that S xeyvak <o and D xenragwrg=co. Let ¢(&) be a smooth function on
R™ not identically equal to 0 such that supp@(§)C{&: 1§/ =4-"}, and

uL(X):lK%LGKSF“I[sﬁ(E' ]i:lz—kmml(j)g“j))](x),

1
1,

Where el(j):(o, ttcy 0; O; Sty 0)-

Then, since
supp ¢($"‘ 22k (j)m”j)ez(j))
j=1

C{E; If(j)—Z’k(j)m”J')el(j)[§4'm f()r j:l, eee )J,
and |£Y|=<4-™ for j=vy-+1, ---, N}

C{g; 220 —1/4= [ ], =24 +1/4 for j=1, -, v,
and [£9],<1/4 for j=y+1, ---, N},

2)1/2

it follows from [Proposition 3.3 that
Il =C|( 3 laxl| 7 g(6- S 2t 0mwen,) )
=C 3 axl*F 610l

LP

=C % laxl®,
KENY

where C is a constant independent of L &N,
On the other hand, it is easily seen that

P(x, D)u(x)_—:K?Nwa exp(_l'jglz-ku‘) my (j)xl(j))

< g-1|::]l£=[1 @j‘ km(&(]‘))lK i GK'¢($—" EIZ-k'(j)ml(j)gl(j)):l(x)

s
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= agogF ' [¢]x).

1K |sL

This implies
| P(x, D)u(x)]ILp:C-IKELaKwK——>oo as L — oo,
: I<

Thus the operator P(x, D) is not bounded on L? for any 1< p<oo.

§5. Proof of Theorem 2: the sufficiency.

In this section we prove the assertion 1)—2) of Suppose that
the symbol P(x, §) satisfies the estimates (*u) for all p=0, 1, ---, N, where the
modulus of continuity {e,(t,), ---, wy(t;, .-+, ty)} satisfies the condition [1.I)]. We
shall prove the L?Z-boundedness of the operator P(x, D). First we introduce

functions ¢; +(p) €CHR") by @, ()= (2'[7],) and &; (=¥ (2 *[n])—
U(2-***[y]; for k=1. Then we have:

o, (=1 if pesupp¥?; .,
where ¥'; , has been defined at the beginning of Section 3.
G.1) { @i xn)=0;,20-2¥Pp) if k=1.
supp @, o(n)C{n; [1,=8/3}.
supp @;, x(n)C{y; 2 *=[n],=2%%/3} if k=1,

Next we put

QK(?C, E):P(x, 2<k(1)+2)M(1>§(1)’ - 2(k(N)+2)M(N)E(N))

><¢1 k(l)(2<k(1>+zm<1)5(1)) ¢N k(N)<2(k(N)+2)M(N)$(N))

and decompose P(x, & as follows:
5.2) P(x, &)= ENP(X, Eﬂpl,km(g(l')“‘w‘N,k(N)(g(N))
KEN

=K§NP(x, 81 1, D) P a ey ENNVT Lk (ED) Uy ey (D)
=Kezz:vNQK(x’ 2-(k(1)+2)M<1)€(1), v 2-(k(N)+2)M(N)5(N))
'w1,k<1)(5(1))"'WN,k<N>($(N)>-
Then, since the support of Qx is contained in the set
{(x, &; [£9];£2/3 for all j=1, ---, N}

C{(x, &; 1&I1=1 for all =1, -+, n},
we can write

6.3) Qx(x, =3 ax,a(x)exp(mih-8),
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where ax n(x) is determined by
1
oD exp(—min-8)Qutx, §)a

for h=(h®, -, RY=(h,, --+, h,)EZ™. (The estimate given later assures
the convergence of the right-hand side of [5.3).)
Substituting into (5.2) and putting

aK.n(x)'—_z_n°Sl

N . N NN .
bg, n(é):exp(m'z h -2”(“’”2)}”(])5(”)11 U ri»h(E9)
j=1 Jj=1
and Pu(x, §)=Zkenw ak, n(x)bg 1(§), We can write

P(x, &= 2 EnaK,h(X)QXp(ﬂ'Z.ﬁlh(j)'2°(k(j)+2)M(j)$(j))'ﬁle,k(j)(s)
J= J=

KENN nez
= 2 Pulx, §).
heZR

Here the change of the order of the summations will be justified by the
estimate later and the fact that each P.(x, &) is a locally finite sum with
respect to KeN".

Since

log(2+|h®])---log(2+ 1A ])
<0,
n&zn 1k Ay | P e Ry | P

it suffices to prove

log2+ A ])---log(2+ R ])
lﬁ—lh1|”+1%_...%_lhnln+1

for all u(x)eC%(R™), where C is a constant independent of & and u(x).
For KN¥ and every subset A of U={]1, 2, ---, N} we put

O, a§)=HF@HOLEP]) T A-F@+O[EP]y)

lullze

(5.4) | Pr(x, Dyullrp<C

and
Ar 0, 4AX)=F [P, 4E)dx, (6)](x),

where dg (&) denotes the Fourier transform of ax, ,(x). We also put ux,a(x)
=F[bg, n(E)(E)1(x).

Then, since JcyPx, 4(8)=1, we have ax, r(x)=2icrlx, n 4(x). It follows
that

Pp(x, Dyu(x)= 2 ax n(x)F '[bx,aE)(E)](x)

KENN

= 3 ZNaK,h,A(x)uK,h<x>-
ACU KEN
Hence, will follow from

] M1y, )
65 3 axn a0up a@llpsC OELEIATL) 0g @k A D)

T [ [P o o LRy [0

luCx)l e
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To prove (5.5), we may assume A={v+1, v+2, ---, N} (0=Zv=<N) without loss
of generality. We would like to show that there exists a constant C which is
independent of K, h and A and satisfies the estimate

(5.6) lak,n, 4(X) | SCOU27FD, wor) 27FO) (L[ hy | "4 oo TRy | 472

First, the condition (*v) and the facts (5.1), together with the equality

ri*axa(0={x(x, E)'(;Zr—-—a@g)nﬂexp(—nih-é)dé

_:(_T%ZT)”HS exp(—nih-&)(»a%—)nﬂ{P(x, 2(k(1)+2)M(1)e(1), . 2(k(N)+2)M(N>E(N))
1
.¢1 k(l)(z(k(1)+2)M(1)$(l)) ¢N k(N)(z(k(N)+2)M(N)E(N))}d$’
imply the estimate
Ly " Ay {dywag, w(x)} )]

<C- sup 24@W*Mmig (|y®| ... |y@ ). sup  (14[x])~™

0sjsn+l nESUPP 61, k(1)

écwv(ly(l)l’ EY [y(y)l)

with a constant C independent of K, h and y®, -.-, y®,
In the same manner we obtain the estimates

[h " Ay oAy wag, ()} ) =Caly®], -, [yP])
for /=2, ---N and

IAéﬂ)("'{AZ(V)GK,h(x)}'“)|écw»(lym], e Ly,
It follows that

(5.7 |4y (AL wag, n(x)})]
=Ca,(1y ™1, =, 13D DA+ AP e A LR 2
From [5.7);and the equality

@ 0= 57T =T @0 [E01)- T #@HOL691) a0 |0)

:Sﬁlg_1EW(22_k(j)[s(j)]j)](y(j))'(”‘1)”'415‘1)("'{AZ(vWK,n(x(l),
i=
e, x(v)’ x(u+1)__y(v+1)’ e X(N)—y(N))}“-)dy
:Sﬁ (2k(j)|M(J‘)|g~-1[w'(4[$(j)]j>](2k(j)Mu‘)y(j)))
j=1

'(—1)”‘[’;(1)(,_‘{A’-Z,(v)aK,h(x(l), ey, x(”),

x(v+1)__y(v+1)’ e x(N)_y(N))}.,.>dy,
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‘we conclude
@ a0 SO Ly | 79054 g |2
Jouzrowmym, o aronye
T 1T 1)1 dy
SOy |7 o[ 9,274, o, 2750)
Jastyen a1y NI FraEe1109) dy
SCU@HD, e, 2Oy | ¥ e L | )

Thus we have [5.6).
On the other hand, applying [Proposition 3.1 to ux »(x) by putting v=AN and

a P =2-MIP D we obtain

.8) I, 35k, (0) 9721 SCII, log 2+ A )] u(x) 25

with a constant C independent of A and u(x).
Now we put K'=(kQ), ---, k()), K"=(k(w-+1), ---, k(N)) and K=(K’, K’).
Then it follows from and that

II( EN_I 2 ag,n aAX)ug (X)) e
K'ENN-v KiENY

§||(K ZN_{ 2 law kom0 2 Tue, ko, n(0)PHY o
"'eN Y K'eNV K'enNv

=( SUP sup( X |a(K’,K’),h,A(x)|2)1/2)'H(Z |HK,h(X)|2)1/2“Lp
K*eNN-v z&R™ K'cNV KeNY

§C(K,§Nywu(2—k(1>’ e, 2RONHUR | p P | | rED)

N .
T Tog 2+ A - |u(x)] oo
On the other hand, suppose that

§Esupp ik, 1(§)CTsuppbg,n(§).
Then we have ,
[§9],=4/3 if k(5)=0,
{2“""1§E5”’];§2’*"”2/3 if k()>0.

We also have [§P],;<2%%/3 for j=y-1, v+2, ---, N if

N , )
Eesupp dx, n, 4(E)CTsupp jIIMW(Zz"“” [£97)).

Hence, if
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§esupp FLax, n, a(X)uk, n(x)1E)CTSupp(8x, n, s k. 1)(&),
we have

(5.9) [§],=5/3 if j>v and k(;)=0,
' 2kN1/3<[¢0];<5-289 /3 if j>u and k(5)>0.

So we can apply [Proposition 3.3 to the sequence

{ > i @k ko h,AX) Uk, ko, 1 (X))} kren N -v
KiCNY

to obtain the estimate

a i ’ X) U ’ 4 X
IIK’E%N"VK’;NV (K', K ),h.A( ) (K', K ),h( )HLp

<C(1+|hy| "4 - +|hn|"+1)"1'ﬁl log(2+| A |)
=

(2 @ (2R, e 27ROy (x) | 1o
K'&eNV
Since

. 2
3 0,27k, .., 2-k(u))2§cgl w,(l,, , L) dt, - dt, <o,

K/ ENY 0 tyrt,

we have (5.5). This completes the proof of

§6. Some generalizations.

In this section we give two slight generalizations of

First, let L be an integer greater than 1. In this section we change the
definition of 4%. For v=1, 2, -, N and y=eR"®, we denote by 4 the difference
of L-th order with respect to the v-th part; that is, we write

Ag/f(x):éo(-—l)k(ﬁ)f(x(”, o X —hy, e, x DY

Then the conditions (*p) (#=1, ---, N) become weaker than the original ones,
but we still have the following

THEOREM 3. If the modulus of continuity {w,, -+, @y} satisfies the condition
1) of the main theorem, then every symbol satisfying the weakened conditions
(*u) for p=0, 1, .-, N defines an LP-bounded operator.

SKETCH OF THE PROOF. We proceed as in Section 5, and here we remark
only the difference.
For KeN¥ and every element A=(a(l), ---, a(N)) of I={0, 1, ---, L}?, we
put
L L ) .
__ AR R Wo2=k () H.
Oru®= TI (1+2 (~1r(Jpre+orel)

N=0
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L

% I e

a(j)#0

W@+ oLa()s 1,
and
g, n, A(X)=F [P, 4(8)dk, 1(6)](x).

Then, since X 4c:Pk, 4(&)=1, we have only to prove (5.5) for this ax a, 4(x).

We assume a(l)=--- =a@)=0, a(v+1), -+, a(N)>0. Then we have as in
Section 5.

On the other hand, we have the equality

axn aw=3 [ (14 5 (-1 )rE-rorre,)

Jj=1

% I (=10 0 WO LatiE oD ax, o0 (o)

Jj=1

(11 (00 + 2 -1 ( D) g @010 1))o9)

af].))g-l[mz—w[a(f)éﬁ]»](y‘f’)

X aK,h(x(l)_y(l)’ ) x(N)—y(N))dy

X ﬁ (___1)(1(]')—1(

Jj=v+1

=| 1 (20w g [ aLeP] )1 ¥ Dy )

j=1

L
a(j)
XD — 1)y @td, x(N’——a(N)y(N’)}---)}dy,

. (___l)a(v+1)+---+a(N)—N+v<

))X {diw(-Adywag n(x®, -, x*,

since
g-l[w‘(zz—k(j)[rE(j)]J)](y(j))
:g_IEW(él[Z"kU)M(j)-Tf(j)]j):](y(f))
e RS
:»r—n—(ﬁg-1[W(4[5u>]j)](721;(;)111(;)3}(])),
where m(j)=>canmi- k(7). Combining these facts, we obtain [5.6). On the

other hand, we have also in this case. Hence this theorem can be proved
in the same way as in Section 5.

Putting N=1 in this theorem, we obtain Theorem 7 in [13].

Next, to treat symbols having less regularity with respect to x, we modify
the conditions (*g). Let £(f) be a bounded, monotone-decreasing function of
R* into R*, and consider the condition (*p2) (u=0, 1,---, N) as follows:
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(*09) For every v=1, 2, ---, N, /e A(v) and £=0, 1, ---, n+1 we have
198, P(x, &) SCU+[E 1) ™ T 2[6])),

(*u) (p=1, ---, N) For every v=1, 2, ---N, (€ A@), k=0, 1, ---, n+1,

1=Sy(1)< - <y()=N and y(1)eR "™, ... y(p)eR"*#’ we have

| 458 ({43308, Plx, )}
=Co,(lyD], -, ly(;z)l)(1+[$(”’]y)“’“"ﬁlﬂ([é(j)]j)-

Here 4 denotes the difference of L-th order defined in this section.

Then our final result is as follows:

THEOREM 4. Suppose that {w,(ty), ---, wy(ty, -+, ty)} s a modulus of con-
tinuity satisfying

S:S:_‘”%_t) a(x 1) Q(ti”)zdfl"'dty<oo

for all v=1, ---, N. If a symbol P(x, &) satisfies the conditions (*pf) for all
p=0, 1, .-, N, then the associated operator P(x, D) is LP-bounded.

L0

REMARK. Especially, if 2(¢) satisfies S ———dt<oc, then no regularity con-
1

ditions with respect to x other than (*02) are needed, since we can take w,=1
for all v=1, ---, N.

SKETCH OF THE PROOF. We may assume £2(0)=£(1). In the same way as
we have obtained the estimate we obtain the estimate

|4y - Ay ax,n(x)]
=Ca,(|yD1, =, [yW)NA+ 1Ay LR | ") Ry Ly
where Q,=0(2%-%. It follows that
lak,na(x)| SCo27FD, o) 27FOND, ) -+ 246, 2(0)V
X (A4 Thy [P eee A LRy [ P71

for A=l such that a(;)=0 (j=v) and a(j)>0 (;>v). Hence we have only to
show
S @, (27FD e 2EONZOR Gy e %y <00
K'eNV

Putting
Ii={{t, -, t.); 0=;=1(j€A), 1=4,=8( & A)}

for Al, we have
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> @, (27FW 27RO 02 e 2%,

K'eNv

CS:S: %(ttll,.::.t; £)* Q(SLQ)Z.“Q(Slt,)Zdtlmdt”

e -1 T aG) ) e

If A={1, ---, j}, then we have
S...SIA 0(t:/8, -, 4,/8)° ,Q(_l_)z...Q<_l_)2dt1 e dt,
|

A

A

tl"'ty tl tv

- Sjg(o)m—j)lp—j%;'df&

=

[

sty

Xgl...SIMQ(%)Z...Q(}_)ZMI - dt,

o Jo tiety t

A

C.

Similar estimates for general A<I lead to the desired estimate. This completes

the

proof.
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