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We shall consider the two problems on the arithmetical nature of the
Dedekind sums. One is Rademacher’s problem on the signs of the Dedekind
sums for three consecutive Farey fractions, and the other is Sali\’e’s problem on
the exceptional values of the Dedekind sums. For these purposes we shall first
prepare some general lemmas with their own independent interest. Indeed some
of them seem to give a new light on the reciprocity of the Dedekind sums and
also on the multiplier theory of Dedekind’s eta function.

1. Definition.

It is sometimes more convenient to deal with the function $D(h, k)$ , following
H. Sali\’e and others, rather than $s(h, k)$ itself because of its integral valuedness.
Our standpoint is this, so that we define the function $D(h, k)$ as follows. For
each pair $(h, k)$ of relatively prime integers with positive $k$ , or equivalently,
for each reduced fraction $h/k(k>0)$ , we put

$D(h, k)=12ks(h, k)$ ,

where $s(h, k)$ is the Dedekind sum, which is defined by

$s(h, k)=_{\mu} \sum_{(mod k)}((\frac{\mu}{k}))((\frac{h\mu}{k}))$ ,

and $((x))=0$ or $x-[x]-1/2$ according as $x$ is an integer or not. Besides we
put for a convenience

$D(h, 0)=2h$ for $h=\pm 1$ .

As we shall deal with the function $D(/\iota, k)$ exclusively, we call it simply the
Dedekind sum henceforth. We shall also understand that every pair $(h, k)$ is
always of relatively prime integers with non-negative $k$ when it appears in the
function $D(h, k)$ or as a reduced fraction $/\iota/k$ . which may happen to be $\pm 1/0$ .

We can make reference to the monograph [4] by H. Rademacher and
E. Grosswald for general facts and background of the Dedekind sums, and princi-
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pally we need the following well-known formulas.

(1a) $hD(h, k)+kD(k, h)=h^{2}+k^{2}-3hk+1$ ,

(1b) $D(h, k)=D$ ( $h$ ‘, k) if $h\equiv h’(mod k)$ ,

(2) $D(-h, k)=-D(h, k)$ ,

(3) $D(h, k)=D(\overline{h}, k)$ if $h\overline{h}\equiv 1(mod k)$ .
We should notice that the function $D(h, k)$ is completely determined by the prop-
erties (1) only. The formula (1a) will be often quoted as the reciprocity of
the Dedekind sums.

A further investigation, especially on the values of $D(h, k)$ , can be found
in his very suggestive work [6] by H. Sali\’e.

2. General lemmas.

We here give some lemmas about the fundamental properties of the Dedekind
sums, not only for later use but also for their own considerable interest. The
main and general results are Lemmas 5, 6, 7 and 8, but some particular cases
of them, namely Lemmas 3, 4 and 9, will be frequently used.

Let $\Lambda$ denote the semi-group consisting of all two by two matrices with

non-negative integer entries and determinant one. If $(\begin{array}{ll}h Hk K\end{array})$ is an element of
$\Lambda$ , then $h/k$ and $H/K$ are both non-negative reduced fractions, the former of
which may happen to be $\infty=1/0$ , and these $H/K<h/k$ are so-called adjacent
Farey fractions, and vice-versa.

LEMMA 1. It holds

(4a) $D(h+k, k)=D(h, k)$ ,

(4b) $D(h, h+k)=D(h, k)-D(k, h)+2k-2h$ .

PROOF. Directly or easily derived from (1a) and (1b). In fact, the prop-
erties (1) and (4) are equivalent to each other, so that the function $D(h, k)$ is
completely determined by (4) only, too. For instance we can deduce the reci-
procity from (4) by mathematical induction.

LEMMA 2. If $\sigma=(\begin{array}{ll}a bc d\end{array})$ is an element of $\Lambda$ and $h/k$ is a non-negative

reduced fraction, then it holds

$D(ah+bk, ch+dk)$

$=dD(h, k)-cD(k, h)+hD(a, c)+kD(b, d)+2ck-2dh$ .

PROOF. We can first see that the formula is nothing but (4) in the case
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$\sigma=T_{+}=(\begin{array}{ll}1 10 1\end{array})$ or $T_{-}=(\begin{array}{ll}1 01 1\end{array})$ . Since the two elements $T_{+}$ and $T_{-}$ generate

tbe semi-group $\Lambda$ , the general formula is obtained by mathematical induction
method. In fact, we can easily deduce the formula of the case $T_{+}\sigma$ or $T_{-}\sigma$

from one of the case $\sigma$ , where it must be noticed that the element $(\begin{array}{ll}d cb a\end{array})$ can

be obtained by exchanging $T_{+}$ and $T_{-}$ for each other in the word expression

of $(\begin{array}{ll}a bc d\end{array})$ by them.

LEMMA 3. If $H/K<h/k$ are both non-negative adjacent Farey fractions, then
it holds

$D(H+h, K+k)=D(H, K)+D(h, k)+2k-2K$ .

PROOF. This is a special case of Lemma 2, namely, the case $h/k=1/1$ , and
$(\begin{array}{ll}a bc d\end{array})$ is replaced anew by $(\begin{array}{ll}h Hk K\end{array})$ for later convenience.

LEMMA 4. If $h_{1}/k_{1}<h_{2}/k_{2}$ are both non-negative adjacent Farey fractions
and $n$ is a non-negative integer, then it holds

$D(h_{1}n+h_{2}, k_{1}n+k_{2})=k_{1}n^{2}+(D(h_{1}, k_{1})+2k_{2}-3k_{1})n+D(h_{2}, k_{2})$ ,

$D(h_{1}+h_{2}n, k_{1}+k_{2}n)=-k_{2}n^{2}+(D(h_{2}, k_{2})-2k_{1}+3k_{2})n+D(h_{1}, k_{1})$ .
PROOF. This is also a special case of Lemma 2, namely, the case $h/k=1/n$

or $n/1$ , and $(\begin{array}{ll}a bc d\end{array})$ is replaced by $(\begin{array}{ll}h_{2} h_{1}k_{2} k_{1}\end{array})$ . The needed formula $D(1, n)$

$=n^{2}-3n+2$ is obvious by the reciprocity. Sali\’e also obtained essentially the
same formula by a different method ([6], p. 73, Satz 1’).

The nature of the formula in Lemma 2 can be much clarified if we use a

matric expression. For each element $\sigma=(\begin{array}{ll}a bc d\end{array})$ of $\Lambda$ let us put

$D(\sigma)=(\begin{array}{llll}D(a, c) D(b, d)D(c, a) D(d, b)\end{array})$ ,

and

$C(\sigma)=(\begin{array}{ll}0 1-1 0\end{array})(D(\sigma)\sigma^{-1}-2I)$ ,

where $I$ denotes the identity matrix. Then we have

LEMMA 5. If $\sigma$ and $\tau$ are elements of $\Lambda$ , then it holds

$C(\sigma\tau)=C(\sigma)+\sigma C(\tau)\sigma^{-1}$ .
PROOF. Let $\sigma=(\begin{array}{ll}a bc d\end{array}),$ $\tau=(\begin{array}{ll}h Hk K\end{array})$ and $\sigma\tau=(\begin{array}{ll}h_{1} H_{1}h_{1} K_{1}\end{array})$ , then Lemma 2 says
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$D(h_{1}, k_{1})$

$=(d, -c)(\begin{array}{ll}D(h, k)D(k, h)\end{array})+(D(a, c),$ $D(b, d))(\begin{array}{l}hk\end{array})-2(d. -c)(\begin{array}{l}hk\end{array})$ .

At the same time it holds

$D(k_{1}, h_{1})$

$=(-b, a)(\begin{array}{ll}D(h, k)D(k, h)\end{array})+(D(c, a),$ $D(d, b))(\begin{array}{l}hk\end{array})-2(-b, a)(\begin{array}{l}hk\end{array})$ ,

because $(\begin{array}{ll}d cb a\end{array})(\begin{array}{l}kh\end{array})=(\begin{array}{l}k_{1}h_{1}\end{array})$ . Further if we replace $h$ and $k$ with $H$ and $K$,

respectively in these right-hand sides, then $h_{1}$ and $k_{1}$ are replaced by $H_{1}$ and
$K_{1}$ , respectively. Thus we have

$D(\sigma\tau)={}^{t}\sigma^{-1}D(\tau)+D(\sigma)\tau-2{}^{t}\sigma^{-1}\tau$ ,

which implies Lemma 5, since $(\begin{array}{l}0 1-10\end{array})\sigma=\sigma(\begin{array}{l}0 1-10\end{array})$ .

LEMMA 6. If $\sigma$ and $\tau$ are elements of $\Lambda$ , then it holds

(5) $v(\sigma\tau)=v(\sigma)+v(\tau)$ ,

where $v(\sigma)$ is the function on $\Lambda$ defined by

(6) $2v(\sigma)=dD(c, a)-cD(d, b)+bD(a, c)-aD(b, d)$

for $\sigma=(\begin{array}{ll}a bc d\end{array})\in\Lambda$ .

PROOF. Since $2v(\sigma)$ is nothing but the trace of the matrix $C(\sigma)$ , the formula
(5) is immediately derived from Lemma 5.

LEMMA 7. If $\sigma=(\begin{array}{ll}h Hk K\end{array})$ is an element of $\Lambda$ and $v(\sigma)=l$ , then it holds

(7a) $H=lh+k-D(k, h)$ ,

(7b) $K=(l+3)k-h+D(h, k)$ ,

(7c) $h=(-l+3)H-K+D(K, H)$ ,

(7d) $k=-lK+H-D(H, K)$ .

PROOF. By means of the reciprocity, $H_{0}=k-D(k, h)$ and $K_{0}=3k-h+D(h, k)$

satisfy the condition $K_{0}h-H_{0}k=1$ . Hence we have $H=H_{0}+mh$ and $K=K_{0}+mk$

for some integer $m$ , that is, $D(h, k)=h-(m+3)k+K$ and $D(k, h)=k+mh-H$.
On the other hand, from the formulas (2) and (3) it follows that $D(K, k)=D(h, k)$

and $D(k, K)=-D(H, K)$ , so that we have $KD(h, k)-kD(H, K)=K^{2}+k^{2}-3Kk+1$ .
Hence we get $kD(H, K)=k(H-k-rnK)$ , and so $D(H, K)=H-k-\uparrow nK$, which is
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still valid when $k=0$ . Similarly we have $D(K, H)=K-(3-m)H+h$ . It follows
therefore $2v(\sigma)=K(k+mh-H)-k(K-(3-m)H+h)+H(h-(m+3)k+K)-h(H-k-$

$mK)=2(Kh-Hk)m=2m$ in view of the formula (6), so that $m=l$ . This com-
pletes the proof.

LEMMA 8. If $\sigma$ is an element of $\Lambda$ , then it holds

$C(\sigma)=v(\sigma)I+\partial A$ ,

where $\partial A=\sigma A\sigma^{-1}-A$ and $A=(\begin{array}{ll}3 1-1 0\end{array})$.
PROOF. It might sound strange that this lemma is equivalent to Lemma 7.

Since $D(\sigma)=(\begin{array}{ll}0 -11 0\end{array})C(\sigma)\sigma+2\sigma$ by definition, it is sufficient to prove

$D(\sigma)=(\begin{array}{ll}0 -11 0\end{array})(v\langle\sigma)\sigma+\sigma A-A\sigma)+2\sigma$ ,

or in other words

$D(a, c)=-(1+3)c+a+d$ , $D(b, d)=-ld+b-c$ ,

$D(c, a)=la-b+c$ , $D(d, b)=(l-3)b+a+d$ ,

where we put $l=v(\sigma)$ . ’Fhe latters are the same formulas as (7) of Lemma 7,
which finishes the proof.

LEMMA 9. Let $h/k$ be a $po\alpha tive$ reduced fraction and let us put

(8) $H=k-D(k, h)$ , $K=3k-h+D(h, k)$ .

If $H$ is $po\alpha tive$ , then $H/K<h/k$ are adjacent Farey fractions and it holds

(9a) $D(H, K)=-D(k, h)$ ,

(9b) $D(K, H)=D(h, k)+3D(k, h)$ .

PROOF. This very useful lemma is a particular case of Lemma 7, namely,

the case $1=0$. In fact, from our assumption it follows $\sigma=(\begin{array}{ll}h Hk K\end{array})$ is an element

of $\Lambda$ and $v(\sigma)=0$ . Hence we have $D(H, K)=H-k=-D(k, h)$ and $D(K, H)$

$=K-3H+h=(K-3k+h)-3(H-k)=D(h, k)+3D(k, h)$ . This completes the proof.
The formula (9a) was already known by Sali\’e ([6], p. 72, Satz 6).

It should be remarked that the function $v(\sigma)$ is uniquely determined by the
property (5) and the conditions $v(T_{+})=1$ and $v(T_{-})=-1$ . Hence $v(\sigma)$ is essen-
tially the same as the addend of log $\eta(z)$ , and so the formula (6) can be
regarded as a new description of this for the modular substitution $\sigma\in\Lambda$ .
Moreover, in view of Lemma 7, it is possible to extend the matric function $C(\sigma)$

on $\Lambda$ to one on the group $SL_{2}(Z)$ , and we can see that its coboundary coincides
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with $-12w(\sigma, \tau)I$ , where $w(\sigma, \tau)$ is the well-known cocycle which defines the
universal covering group of $SL_{f}(R)$ . This viewpoint will give some improve-
ment of our early discussion [1], but we do not touch on this topic.

3. Rademacher’s pair.

H. Rademacher once posed the following problem ([3], p. 626): If $h_{1}/k_{1}<$

$h_{2}/k_{2}$ are adjacent Farey fractions and if the Dedekind sums $s(h_{1}, k_{1})$ and $s(h_{2}, k_{2})$

are both positive, is it necessarily true that $s(h_{1}+h_{2}, k_{1}+k_{2})$ is non-negative 7

Unfortunately there are counter examples of this, $e$ . $g$ . $13/23<4/7:s(13,23)$

$=1/46,$ $s(4,7)=1/14$ and $s(17,30)=-1/18$ . In fact L. Pinzur ([2]) and K. H.
Rosen ([5]) already answered to the question by giving some infinite class of
such examples, independently. We here consider the same problem again but
by different approach from theirs, and obtain some new and much clearer results,
especially which will show that the problem is closely related to $t$) $(\sigma)=0$ ’

problem.
If $h_{1}/k_{1}<h_{2}/k_{2}$ are adjacent Farey fractions of some order, the mediant

$h/k=(h_{1}+h_{2})/(k_{1}+k_{2})$ gives rise to a new adjacent Farey sequence $h_{1}/k_{1}<h/k$

$<h_{2}/k_{2}$ of higher order, and then we will say that the left (right, resp.) parent
of $h/k$ is $h_{1}/k_{1}$ ( $h_{2}/k_{2}$ , resp.). Every reduced fraction $0<h/k<1$ has its unique
left parent and its unique right parent. For convenience’ sake we call a pair
of adjacent Farey fractions $H/K<h/k$ a Rademacher’s pair if it satisfies the
condition that $D(H, K)>0,$ $D(h, k)>0$ and $D(H+h, K+k)<0$ . In view of the
property (1a) we may assume $0<H/K<h/k<1$ without loss of generality.

THEOREM 1. For each reduced fraction $0<h/k<1$ with $D(h, k)>0$ there
exists a umque reduced fraction $H/K$ such that $H/K<h/k$ is a Rademacher’s pair,
unless $k^{2}\equiv-1(mod h)$ . If $k^{2}\equiv-1(mod h)$ , there are no such pairs.

PROOF. It can be easily seen by Lemma 3 that $k<K$ if $H/K<h/k$ is a
Rademacher’s pair, so that $h/k$ is necessarily the right parent of $H/K$. Any
fraction whose right parent is $h/k$ can be expressed as $H_{n}/K_{n}$ with $H_{n}=h_{0}+nh$

and $K_{n}=k_{0}+nk$ by some positive integer $n$ , where $h_{0}/k_{0}$ denotes the left parent
of $h/k$ . We first prove that there exists a positive integer $n$ such that
$D(H_{n}, K_{n})=0$ if and only if $k^{2}\equiv-1(mod h)$ . Assume that $D(H_{n}, K_{n})=0$ , then
$D(k, K_{n})=0$ hence $k^{2}\equiv-1(mod K_{n})$ by the reciprocity. Therefore either fraction
$h/H_{n}$ or $((k^{2}+1)/K_{n})/k$ is the right parent of $k/K_{n}$ , so that they coincide with
each other, thus we have $k^{2}+1=K_{n}h$ . If $k^{2}\equiv-1$ $(mod h)$ conversely, then
$k^{2}\equiv kh_{0}\equiv-1(mod h)$ hence $k\equiv h_{0}(mod h)$ . This combined with the assumption
$0<h/k<1$ gives a positive integer $n=(k-h_{0})/h=(k^{z}+1-k_{0}h)/kh$ , so that
$D(H_{n}, K_{n})=D(k, (k^{2}+1)/h)=0$ (cf. [4], p. 28).

Now we set
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$F(x)=-k\chi_{\ulcorner}^{2_{-}}(D(/l, k)-2k_{0}+3k)x+IJ(h_{0}, k_{0})$ ,

so that $D(H_{n}, K_{?l})=F(n)$ by Lemma 4. Suppose tbat $D(h, k)>0$ , then we can
see $F(1)>0$ . In fact, $kF(1)=kD(h_{0}, k_{0})+kD(h, k)+2k(k-k_{0})=(k_{0}D(h, k)-k^{2}-k_{0}^{2}$

$+3kk_{0}-1)+kD(h, k)+2k^{2}-2kk_{0}>k^{2}-k_{0}^{2}\perp kk_{0}-1>0$ . Hence the equation $F(x)=0$

has a real solution $\beta$ greater than 1, and $\beta$ is not an integer unless $k^{2}\equiv-1$

$(mod h)$ . Put $n=[\beta]\geqq 1$ , then $D(H_{n}, K_{n})=F(n)>0$ and $D(H_{n}+1\iota, K_{n}+k)=F(n+1)$

$<0$ . Thus we have a Rademacher’s pair $H_{n}/K_{n}<h/k$ unless $k^{2}\equiv-1(mod h)$ .
Uniqueness of such $n$ is obvious. On the contrary if $k^{2}\equiv-1(mod h)$ , then
$D(H_{n}, K_{n})=0$ for some $n$ , which means that there are no Rademacher’s pairs
with the right fraction $h/k$ . We have thus finished the proof of Theorem 1.

EXAMPLE. Suppose that a fraction $/\iota/k=3/13$ is given. We see that $D(3,13)$

$----12>0$ and 3 does not divide $13^{2}+1$ . Since the left parent of 3/13 is 2/9 and
$D(2,9)=16$ , we have $F(x)=-13_{X^{2}}\perp 33x+16$ . So the integral part of the greater
root of $F(x)=0$ is 2. Hence $H=2+2\cdot 3=8$ and $K=9+2\cdot 13=35$ . Thus we obtain
a Rademacher’s pair $8/35<3/13$ , and we can make certain that $D(3,13)$

$=12>0,$ $D(8,35)=30>0$ and $D(11,48)=-2<0$ .

THEOREM 2. For each of almost all fractions $/l/k$ whose $C07mnon$ left parent
is a fixed fraction $0</l_{0}/k_{0}<1$ , the Rademacher’s pcur $H/K<h/k$ is given by

$H=k-D(k, h)$ , $K=3k-h+D(h, k)$ .

Further, at the same time it holds

$h=3H-K+D(K, H)$ , $k=H-D(H, K)$ .

PROOF. We first prove that the above defined pair $lI,/K<h/k$ is really a
Rademacher’s pair if both the conditions $D(h, k)>0$ and $D(k, /\iota)<0$ are satisfied.
By means of the reciprocity and Lemma 9, we can see that $H/K<h/k$ are both
positive and adjacent Farey fractions and $D(H, K)=-D(k, h)>0$ . In view of
Lemma 3, it, further, follows that $D(H+h, K+k)=(H-k)+(K-3k+h)+2k-2K$
$=(H-K)+(h-k)-k<0$ . Next we have to show that almost all fractions $h/k$

whose left parent is $h_{0}/k_{0}$ satisfy the conditions $D(h, k)>0$ and $D(k, h)<0$ . If
we denote the right parent of $h_{0}/k_{0}$ by $/\iota_{\infty}/k_{\infty}$ , we have $h=h_{U}n+h_{\infty}$ and $k=k_{0}n$

$+k_{\infty}$ for some positive integer $n$ . Since $h_{0}/k_{0}<h_{\infty}/k_{\infty}$ and $k_{\infty/}’h_{\infty}<k_{0}/h_{0}$ are both
adjacent Farey fractions, we can deduce from Lemma 4 that $D(h, k)\sim k_{0}n^{2}$ and
$D(k, h)\sim-h_{0}n^{2}$ when $narrow\infty$ , so that we have $D(h, k)>0$ and $D(k, h)<0$ with a
Pnite number of possible exceptions of $n$ or $h/k$ . This completes the proof. In
practice the evaluation can be done as follows. For given $0</\iota_{0}/k_{0}<1$ , put first

$h_{\infty}=h_{0} \{\frac{D(k_{0},h_{0})-k_{0}}{h_{0}}\}$ and $k_{\infty}=k_{0} \{\frac{h_{0}-D(h_{0},k_{0})}{k_{0}}\}$ , where $\{x\}=x-[x]$ denotes

the fractional part of $x$ , so that $/\iota_{\infty}/k_{\infty}$ is the right parent of $h_{0}/k_{t1}$ . Put next
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$h=h_{0}n+h_{\infty}$ and $k-- k_{0}n+k_{\infty}$ . Then $H$ and $K$ are given by $H=1\iota_{t)}+(n+l)(h_{0}n+h_{\infty})$

and $K=k_{0}+(n+l)(k_{t)}n+k_{\infty})$ , respectively, where $1<(D(/l_{0}, k_{0})-h_{0}+k_{\infty})/k_{0}$ . The
lower bound of $n$ is automatically determined by the conditions $D(h, k)=K-3k$

$+h>0$ and $D(H, K)--- H-k>0$ .

EXAMPI,1. Let us take $/\iota_{0}/k_{0}=2/9$ , and so $/\iota_{\infty}/k_{\infty}=1/4$ and $1=(D(2,9)-2$

$+4)/9=2$ . Hence we have a series of Rademacher’s pairs: $H/K=(2n^{2}+5n$

$+4)/(9n^{z}+22n+17)</\iota/k--(2n+1)/(9n+4)$ . whose Dedekird sums are $D(h, k)=$

$9n^{2}-3n+6,$ $D(H, K)--- 2n_{\backslash }’n-2)$ and $D(H+h, K+k)=-(n+4)(7n+5)$ , so that $n\geqq 3$ ,

necessarily. It should be noticed that a Rademacher’s pair $8/35<3/13$ is not
included in the above series, though the left parent of 3/13 is 2/9. $\prime I^{\cdot}hese$

exceptional cases must be handled by ’l’heorem 1.

4. Exceptional values.

As it was shown by H. Sali\’e, it is known that

$D(h, k)\equiv 0$ , $\pm 2$ or $\pm 6$ $(mod 18)$

for every reduced fraction $h/k$ ([5], P. 75). Sali\’e considered the converse prob-
lem whether $W$ is a value of Dedekind sums for a given integer $W\equiv 0,$ $\pm 2$ or
$\pm 6$ (mod18), and he observed as a computational phenomenon that $\pm 24,$ $\pm 34$ ,
$-\vdash 88$ and $\pm 214$ would be exceptional values, that is, the function $D(h, k)$ never
takes these values. Now we can prove this as an application of Lemma 9,
though the intrinsical nature of these exceptional values is still unclear.

LEMMA 10. If $2<|D(h, k)|\leqq k$ for a reduced fraction $h/k$ , then there exists
a reduced fraction $h_{1}/k_{1}$ such that $0<k_{1}<k$ and $|D(h_{1}, k_{1})|=|D(h, k)|$ .

PROOF. We may assume $0<h<k$ , and by replacing $k-h$ by $h$ if necessary,
we can suppose that $D(h, k)=-W$ and $W>2$ . By replacing again $h$ by $\overline{h}$ if
necessary, we may assume that $0<h\leqq\overline{h}<k$ , where $\overline{h}$ is the minimal positive
integer such that $h\overline{h}\equiv 1(mod k)$ . Now let us put $h_{1}=h-D(h, k)=h+W$ and
$k_{1}=3h-k+D(k, h)$ , so that $h_{1}$ and $k_{1}$ are positive. Hence we have $D(h_{1}, k_{1})$

$=-D(h, k)=W$ by means of Lemma 9, and $kk_{1}=hh_{1}+1=h^{2}+hW+1$ . On the
other hand it holds that $h+\overline{h}\equiv-W(mod k)$ , since $h(D(h, k)-h)\equiv 1(mod k)$ by
the reciprocity. From this and our assumption $2<W\leqq k$ it follows that $h+\overline{h}$

$=k-W$ or $2k-W$ . Hence $2h+W\leqq h+\overline{h}+W\leqq 2k$ . ’Fherefore $4kk_{1}=4h^{2}+4hW+4$

$<(2h+W)^{2}\leqq 4k^{2}$ , and so we have $k_{1}<k$ . This completes the proof.

The descending procedure of Lemma 10 can be repeated as far as the
denominator $k$ is not less than $|D(h, k)|$ . Hence we have

THEOREM 3. If $W(|W|>2)$ is a value of Dedekind sums, then it can be
attained by a fraction with the denominator less than $|W|$ , that is, there exist
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relatively prjme integers $fl$ and $k$ such that $D(/\iota, k)=W$ and $0<h<k<|W|$ .

EXAMPLF. Let us start with the fact $D(31,44)=-30$ . Since 31 $\cdot 27\equiv 1$ (mod

44), we put $h=27$ and $k=44$ . Then $h_{1}=h-D(h, k)=57$ and $k_{1}=3h-k+D(k, h)$

$=35$ , so that we have $D(57,35)=D(22,35)=30$ . Thus $D(13,35)=-30$ . Since
13 $\cdot$ $27\equiv 1(mod 35)$ , we put anew $h=13$ and $k=35$ . In this case we have $h_{1}=43$

and $k_{1}=16$ . In this way we obtain $D(43,16)=D(11,16)=30$ or $D(5,16)=-30$ .
The denominator 16 is now less than 30. If we apply the descending once
more, we can obtain $D(2,11)=30$ . On the other hand it can be known that the
least denominator is 7, namely, $D(1,7)=30$ . In general, it seems difficult to
find the least denominator for a given value of Dedekind sums.

In view of Theorem 3 it is now possible to know whether or not a given
integer $W$ is a value of Dedekind sums by evaluating the sums $D(h, k)$ for only
a finite number of fractions $h/k$ , namely, those which satisfy the conditions
$0\leqq h/k<1$ and $1\leqq k\leqq|W|$ . In practice even a half of the number of fractions
suffices because $D(k-h, k)=-D(h, k)$ . For instance the number of reduced
fractions $h/k$ satisfying the conditions $0\leqq h/k\leqq 1/2$ and $1\leqq k\leqq 23$ is 87 and we
can easily make certain that the set of these 87 values of $D(h, k)$ does not
contain the value 24. It is thus verified that the number 24 is certainly an
exceptional value. By a calculation of 170,616 values of $D(h, k)$ , that is, for
reduced fractions $h/k$ with the conditions $0\leqq h/k\leqq 1/2$ and $1\leqq k\leqq 1059$, we have
proved the following

THEOREM 4. The numbers $\pm 24,$ $\pm 34,$ $\pm 88,$ $\pm 214,$ $\pm 304,$ $\pm 344,$ $\pm 394$ and
$\pm 1060$ are exceptional values of Dedekind sums.

REMARK. After the preparation of this paper, some larger exceptional
values have been determined: $\pm 1924,$ $\pm 2050,$ $\pm 3364,$ $\pm 4804,$ $\pm 9250,$ $\pm 17674_{y}$

$\pm 21220,$ $\pm 25090$ , $\pm 25540$ by Mr. Norimune Saito; $\pm 49930$ , $\pm 55780$, $\pm 67714$ ,
$\pm 74500,$ $\pm 75274$ by Dr. Chiaki Nagasaka. Furthermore Dr. Nagasaka has Pro-
posed a very exciting conjecture: for $W>344,$ $\pm W$ is exceptional if and only
if $W=2(n^{2}+1);n\equiv\pm 4(mod 9)$ and each odd prime factor of $n$ is congruent to
$\pm 1$ modulo 8 ([7]).

Added after submission. Very recently a big progress has been made in
the exceptional value problem. The author has succeeded in reforming
Nagasaka’s to a more general conjecture ([8]), and now it has been proved by

Prof. Hiroshi Saito ([9]).
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