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By Noether’s normalization theorem, a noetherian graded algebra R has a
polynomial subring S generated by homogeneous elements such that R is finite
over S. It is known (see, for instance Stanley [24], §3) that R is Cohen-
Macaulay (C.-M., for short) if and only if R is free over any (equivalently some)
such S. Thus it is meaningful to ask which of the graded rings of automorphic
forms are C.-M. This is a problem posed by Eichler [4], [6] Igusa
determined the structure of the graded rings of Siegel modular forms of degree
two for groups containing /',(2), and Resnikoff and Tai [20], determined
the structure of the graded rings of automorphic forms on the complex 2-ball for
some arithmetic group. These rings turn out to be C.-M. However Freitag [6]
showed that the ring of Hilbert modular forms of degree =3 is not C.-M., while
in our previous paper [27], we proved that the ring of Hilbert modular forms
of even weight and of degree two is C.-M. In this paper we show that the
ring of automorphic forms fails to be C.-M. for a large class of neat arithmetic
groups as well as for the Siegel modular group I',=Sp,,(Z), g=4.

Samuel stated “All the examples of U.F.D.’s | know are C.-M. s it
true in general ?” (see Lipman for the history of this question). In the
case of characteristic zero, Freitag and Kiehl [9] gave a negative answer to this
question of Samuel by constructing analytic local rings which are U.F.D.’s of
dimension 60 and depth 3, hence not C.-M. As far as we know these are the
only previously known examples. As Freitag [7], has shown, the ring of
Siegel modular forms for I'; (g=3) is U.F.D. Hence our result shows that they
furnish negative examples to Samuel’s question in arbitrary high dimension.

To prove our assertion it is enough to prove that the Baily-Borel compacti-
fication of the corresponding quotient space is not a C.-M. scheme, where a
C.-M. scheme is a scheme whose local rings are all C.-M. This gives some
generalization of the result of Igusa [17], where he shows that the Baily-Borel
compactification does not admit a finite nonsingular covering under some condition
on the bounded symmetric domain and the arithmetic group.

This work was done while the author was staying at Harvard University.
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§1. Main result.

1.1. Let H, be the Siegel space of degree g, i.e., {ZeM,(C) | Z=Z,

ImZ>0}. The symplectic group 51)2g<1z):{1\/1:_(é1 g)eMzgm) 1 A'D—B!C=1,,

A'B=B'A, CtD:D‘C} acts on H, by the symplectic transformation

Z —> MZ=(AZ+B)CZ-+D)! M:(é g)esngm).

Let I", denote the Siegel modular group Sp.,(Z). A holomorphic function f on
H, is called a Siegel modular form of weight k if it satisfies

fMz=1cz+Diz)  M=(L el

and if it is holomorphic also at cusps (the last condition is automatic if g>1).
Let A(l',)= kEB A(l',), denote the graded ring of Siegel modular forms. The
z0

quotient space H,/I'; is the coarse moduli space of the principally polarized
abelian varieties over C of dimension g. It has the natural compactification
(H,/T';)* called the Satake compactification which is isomorphic to Proj(A(I'y)),
and set-theoretically equals

Hg/FgUHg—l/Fg—IU UHl/F1U{a pOint}.

THEOREM 1. Let g=4. Then the Satake compactification (Hz/I ;)* is not a
Cohen-Macaulay scheme. For the graded ring A(l',) of Siegel modular forms,
the ring A(Pg)‘”:k EB( )A(Fg)k is not Cohen-Macaulay for any integer r.

=0(r

Let 9 be a bounded symmetric domain, and /" an arithmetic group acting
on 9. The quotient space @/I" has the natural compactification (9/1")*, which
is called the Baily-Borel compactification [2]. Let j(7, z2) be the Jacobian of
rel’, at a point ze9, which is an automorphy factor. Let us fix some auto-
morphy factor p such that p*e=j;-* for a positive integer k,. A holomorphic
function f on @ is called an automorphic form for I' of weight £ if it satisfies

fGa)=p, 2)¥f(z)  for yel’

and if f is holomorphic also at cusps (the last condition is automatic if
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codim((@/I"*—(@/I'))=2). Then the compactification (9/1")* is isomorphic to
the projective spectrum of the graded ring of automorphic forms for I'. I is
said to be neat if, taking some (equivalently any) faithful representation ¢ of I’
to GL,(C), the algebra generated over @ by all the eigenvalues of ¢(7) is
torsion free for every y=I'. Any arithmetic group has a neat arithmetic sub-
group of finite index.

THEOREM 2. Let D be a bounded symmetric domain, and I' a neat arithmetic
group acting on D. Let D’ (resp. D”) be the highest (resp. the second highest)
dimensional rational boundary component. Suppose rank 9’=rank D—1 and suppose
one of the following holds;

(i) m:=dim9—dim9’'=3 is odd,

(i) m=4 is even, and dim D" =dim D’'—2.

Then the Baily-Borel compactification (D/I")* is not a Cohen-Macaulay scheme.
If A(I') denotes the ring of automorphic forms, then A(L')™ is not Cohen-
Macaulay for any vr.

REMARKS. (i) Let R:@Rk be a graded algebra, and let R7= @ R,.

k=0(r)

Then it is standard that Proj(R)=~Proj(R‘) for any r, and that Proj(R) is a
C.-M. scheme if R is C.-M. (cf. [27], §1). So the first assertion implies the
second both in and in

(ii) In the case of characteristic zero, an invariant subring of a C.-M.
ring under an action of a finite group is also C.-M. by Hochster and Eagon [15].
It follows from this and from that the ring of Siegel modular forms
for any normal subgroup of I', of finite index is not C.-M. if g=4.

(iii) The proof of is given in §4, which is easily generalized to
the following case. For a diagonal matrix

t
T:( ' )9 tilti+1 (lh:l, Tty g_l))
Lg

let
ran={u=(2 By | (% D= %, D)
I' (T) acts on H, by
Z —> MZ=(TAT*Z+TB)CT*Z+D)™*, Mz(é g)el“g(T).

Then the Satake compactification (H,/I",(T))* is not a C.-M. scheme for g=4,
and A (T))™ is not C.-M. for any r», A(I',(T)) denoting the graded ring of
Siegel modular forms for I',(T).

"~ (iv) The rings A(I"y), A(I';) of Siegel modular forms of degree 1,2 are
known to be C.-M. (cf. Igusa [16]). On the other hand, the graded ring A([’)
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of Siegel modular forms of degree three is believed to be not C.-M. However
our method does not work in this case. It will be investigated in a later paper

[28].

§2. Proof of Theorem 2.

2.1. Let 9, 9, 9", I" be as in Let X=9/I', and let X* be
its Baily-Borel compactification. Set-theoretically, D*:= X*—X is the union of
lower dimensional pieces

@,/F;, Ty @//F;, £D”/]jg, ) @”/[12,: QNI/F;”’

similar to 9/I". We denote by X’ the highest dimensional cusp 9'/['{\U -
w9’/I",. Let X, together with the morphism z: X—X*, be a toroidal com-
pactification which was constructed by and which is determined by a pro-
jective regular ['-admissible decomposition of the associated polyhedral cone. =
coincides with the normalization of the blowing up of X* along some sheaf 4*
of ideals with the support of ©y./9* contained in D*. Hence X is canonically
contained in X on which # induces the identity map. D:=X—X is known to
be a divisor with only normal crossings. The following is a direct consequence
of the construction of X, where it is essential that rank 9’=rank 9—1.

LEMMA 1. i) The fibre x~Y(x), x& X', is an abelian variety of dimension m—1,
where m=dim 9—dim 9.

ity Let I'’ be any arithmetic group having I’ as a normal subgroup, and let
Ipe be the sheaf of ideals determining the reduced subscheme D*. Then by a
suitable choice of a I'-admissible decomposition, I'’/I" acts naturally on X, and
IpT equals 9% on X\ UX' for a positive integer r. In this case, the quotient space
X/("/T") gives a toroidal compactification of D/I'’, and == (XUX’) is the
blowing up of X\UX’ with respect to the sheaf of ideals defining the reduced
subscheme X'.

2.2. Let j, p, ko be as in §1. There is a coherent sheaf L(p*) on X
defined by

HYU, L(p*))={f€0,-:(U) | fG2)=p(, 2)*f(2), rel’, zep~*(U)},

where p is the projection of @ onto X, and U is any open subset of X. Baily
and Borel showed that .£(;-!)’ canonically extends to an ample invertible sheaf
LY on X*, since I is neat (cf. Mumford [18], the proof of Proposition 3.4).
At any rate there is an integer k, such that k,|k, and L(p*1)’ extends to an
invertible sheaf .L(p*1) on X* satisfying .L(p*1)®*o/*1=_r(j-!) (for instance, take
b, as k,). Since X* is normal and projective, X* 1is isomorphic to
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Proj(kElBkH"(X*, L(0)%)). Our purpose is to show that this is not a C.-M.
1

scheme, and so we may replace p by p®. In other words, we may assume

(i) L£:=.L(p) is an ample invertible sheaf,

(ii) L®*=_(p*), especially L®%o=_(5-1).

If codim(X*—X)=2, then .L®* equals the direct image 7x.L(p®)’, i being the
inclusion of X to X* HOX*, _£®*) is just the space of automorphic forms of
weight k2. A global section of H°(X*, L®*RJp) is called a cusp form of weight
k. When @ is a point, the space of automorphic forms, or cusp forms of
weight £=0 is just C. It is well-known that if 23>0, then dimcHY(X*, .L®F%)
equals the sum of the dimensions of the spaces of cusp forms of weight £ on
X* (@))%, (9 /T H*, -, where 9/}, 9’/I"}, --- are all the members appearing
in the cusps of X*.

Let us put Q(&) := X(X*, .L®*), the Euler-Poincaré characteristic, which equals
dimcH(X*, £2%) for £>0, since .L is ample. Let SM==*.L. Then the canoni-
cal invertible sheaf Ky on X is isomorphic to H®*®@0z(—D) (cf. [1], Chap.
IV, §1, [Theorem I). We put P(k):=XX, H*ROz(—D)). It equals
dimcHY(X, H®*@R0z(—D)) for k>0 by the vanishing theorem of Kodaira type
(Grauert and Riemenschneider [11]). Hence P(k) for £»0 is equal to the
dimension of the space of cusp forms of weight k, since HY%X, H®*Q0O z(— D))
~HYX*, L2*QIps).

PROPOSITION 1. Let I’ be a neat arithmetic group acting on 9. If we denote
n=dim 9, n’'=dim P’, n”=dim D", then we have

P(k+ko)=(—1)"P(—k)+0(k™).
Under the additional assumption rank 9'=rankD—1, we have

Pkt ko) =(—1)"P(— )+ O(fmsx(" =m0

2.3. PROOF OF PROPOSITION 1. Tensoring #®“*+*® with the short exact
sequence
0-——>OX(——D‘) OX' OD 0,

we get
AUX, HEFOQO g(—D)=UX, HEF++0)—U(D, HE*+*0R0p).
Since (X, H®*+*0)=(—1)"P(—k) by the Serre duality theorem, we have
P(k+ko)=(—D"P(—k)—XD, HE*+*0RQ0Op).
We have the Leray spectral sequence
EPt=H?(D*, Rizs(MEH*+*I0RQ0p)) == HP*4(D, M ***0R0p).
By the projection formula, we have H?(D*, Rimsw( MO *+*0R0Op))=HP(D*, L®k+ko
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QR¥%+«Op), which vanishes for »>0 and %2>0, because .£ is ample. Thus

H(D*, LB *+*0QR s Op)~HY (D, M2F+*2R0Op), £>0
and

UD, HEE ROy = 5 (—1)idimeH(D*, LE* QR TOp),
=0
E>0.

Since the dimension of D* equals n’, we immediately see the first assertion.
Let us suppose rank 9’=rank 9—1. As we recalled in Lemma 1, z-'(X’) is flat
over X’, and moreover its fibres are abelian varieties of dimension m—1. By
the base change theorem R*m«Oj is locally free on X’. By cup product we have
a canonical homomorphism

i X
AR7«Op —> R'm+xOp

on X’ (cf. [12], Chap. 0, 12.2). It is an isomorphism since so is the induced
homomorphism on the fibre at each point. Since dimz-'(x)=m—1 for x=X’,
the sheaf Riz«Op, i>m—1, is supported on D*—X’. So

UD, HEF+HOQOp)= "3 (—1) dimcHD*, Lo* 0@ Rizs0p)+0(k™).

=0
Now our assertion follows from the following lemma;

LEMMA. Let Y’ be a normal irreducible projective variety of dimension n'
with an ample invertible sheaf L', and Y” its subvariety of dimension n”. Let
Yy'=y’'—Y”.

(i) Let F, @ be coherent sheaves on Y’ such that F|yo=G|yo. Then

dimcHYY’, L®*QF)=dim:H(Y’, L/®*QR2)+0(k™).
(ii) Suppose Y° is nonsingular. Let &, -+, Ep-1 be coherent sheaves on Y’

such that &,|yo s locally free of rank m—1, and giIYOZ/l\gllyo. Then
721(—1)idimcj—]0(y/’ L7®FRE,)= 0 (pmax, ni-m Dy

&, being the structure sheaf Oy.

Proor. To prove (i) we may assume that &, ¢ have no coherent sub-
sheaves supported on Y”, and that &, ¢ are generated by their global sections.
Let {s;} be global sections of &. Then s;|yo can be regarded as sections of
H(Y?, g) via the isomorphism. Let {s;} be the rational sections of ¢ given as
their extensions, and let ¢ be the coherent sheaf generated by & and {si}.
Then we have two short exact sequences

0 F g g/F 0
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0 Qg g é/g 0,

where ¢/F, G/¢ are supported on Y”. Then
dimcH(Y’, £®*QF)=dimcH'(Y’, .L'®*RE)+O0(k™),
dimcH(Y’, L'®*QR4)=dimcHY’, L/®*R3E)+O0(k™).

This shows (i). Now let us prove (ii). We may assume &;’s are torsion free.
There is a proper modification ¢:)~’—>Y such that ¥ is a compact complex
manifold with ¢:¢-'(Y°)>Y" and &f:= ¢*&, is locally free of rank m—1
(Riemenschneider [21]). By the Riemann-Roch theorem we easily see that

T DAY, L PDAS) =0 ).
Then by the same argument as in the proof of we have

21(——1)"dimcH°(Y’, £/§9k®¢*/1:\8{)20(kmax(n’, n' —m+1)) .

i
We are done, since &; and ¢«/\&; satisfy the condition in (i). q.e.d.

2.4. PROOF OF THEOREM 2. By Remark (i) of §1, it is enough to show
that X*=Proj (kEDO HY(X*, £®%) cannot be a C.-M. scheme. The dualizing sheaf
2

wx. is the uniquely determined coherent sheaf on X* which gives rise to a
functorial isomorphism Hom(F, wy.)=H™(X*, 4)” for any coherent sheaf & (cf.
Hartshorne [14]). By Grauert and Riemenschneider [1I], wyx. coincides with
ixKy, where ¢ is the canonical inclusion of X into X*, and Ky is the canonical
invertible sheaf on X. Obviously Ky=.®%|, and hence wy.=ix(.L®*0| z)=_L®F0
by Koecher’s principle (cf. Serre [23]).

We suppose that X* is a C.-M. scheme. Then by [14], for instance, we
have the Serre duality H¥(X*, £&8%+ ko)~ [r-{(X* _r®-*¥)" and hence Q(k-+k,)
=(—1)"Q(—*k). If P’(k) denotes the Hilbert polynomial for the space of cusp
forms of weight 2 on X/, then Q(k)=P(k)+P’'(k)+0O(k™). Now we can apply
to X’ and P’ the first assertion of [Proposition 1, and we get P/(k+ko)=
(=™ P'(—k)+O(k™), where k| is an integer such that 0<k{<k, (Baily and
Borel [2], Proposition 1.11). Hence P’(k) is of the form

P(k)=co(k—k¢/2)™ +co(k—ko/2)™ 7+ -+ +0(R™),  ¢o7#0.

Then, applying to P(k) the second assertion of we get Q(k+ky)
—(=D)"Q(—=k)={P(k+ko)—(—1)"P(—k)} +{P(k+ke)—(—1)"P'(—kR)} + O(R™)=
P'(k+ko)—(—1)"P'(—= k) + (k™" ) Hence Q(k+ko) — (—1)"Q(—k)=
co{l—(—=1)™} b™ 4 0 co{bo+ (=14 (=)™ 1) ks /2} B¥ -1 oo 4 O (kmax (n5 ' =mtD)
which cannot vanish by our assumption, hence we have a contradiction. So X*
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is not a C.-M. scheme. q.e.d.

§3. Siegel modular forms.

3.1. Let X:=X,:=H,/I',, and X* be its Satake compactification, which is
set-theoretically equal to X,UX} . ,=X,UX, ;U -UX, The dimension n of
X* equals g(g+1)/2. For an integer % such that kg is even, let .£(k) denote
the coherent sheaf on X* corresponding to Siegel modular forms of weight &,
i.e., the sheaf defined by

HU, L(&))

(i) f(MZ)=|CZ+D|*f(Z) for M=(£ 5)61“3, Zep(UNX),

(ii) f extends holomorphically to the intersection of U and
of the cusps

=1{/E0p-10)

for open sets UU of X*, p being the canonical projection of H, to X, where the
second condition is automatic if g>1. H°X¥*, L(k)) is the space of Siegel
modular forms of weight .. It is easy to verify that .£(k) is reflexive and that
if % is even, then .£(k)] Xy, is the coherent sheaf on X7%_, corresponding to
Siegel modular forms of weight 4.

H,, 0=r=<g-1, can be regarded as a rational boundary component of H,.
Let Z be a point of H, where 0<r=<g. Then the group of matrices of the form

A 0B *}
* tU"IN* £ A/ B/

M= o ID' *)erg, M:(c, D,)en, MZ=2Z,
0 010 U

is equal to the stabilizer group at Z in /7, up to conjugacy. Then the following
is standard;

LEMMA 2. Let Z€H,, 0=r=g. Then L(k) is invertible at the image of
Z in X%, if |C'Z+D'|*|U|* equals one for any M<I', stabilizing Z, where
C’, D', U are as above.

COROLLARY. There is a positive integer N, satisfying the following ;
(1) Lo:=L(N,) is an ample invertible sheaf,

(ii) L(E+Ny)=L(k)RLy for all k,

(iii) the algebra é}OH"(X*, L0289 is generated by HY(X*, .L,).

Since I'; has fixed points of even order, N, must be an even integer.
Let X° denote the Zariski open subset of X consisting of the images of
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points in H, whose stabilizer in I, is trivial, i.e., {*+1,;}. When g=3, X§ is
just the smooth locus of X,.

LEMMA 3. The codimension of X,—X% in X,is g—1. Moreover, the image
in X, of the fixed point set under the action of Mel', with M*+1,, is of
codimension =g. Especially, L(k) for even k is invertible except on a subvariety
of codimension =g.

PrROOF. Let M be a torsion element of I',. M can be diagonalized as
C‘l ) 0 \
: g
UMU: C_tl
0 . Etn
where { is a root of unity and U is a unitary matrix. Then the dimension of
the fixed point set in H, under M is given by

#{W, 1) | lsis =g, (=1}

(cf. Gottschling [107]). The first assertion follows immediately from this. If
M?+1,,, then some {*i#-+1, hence the second follows. .£(k) is invertible at a

point Z, fixed only by M’s such that M*=1,,. Indeed, letting M=<g g ), we

get (CZ,+D)YC(MZ,)+D)=1,. Hence (CZ,+D)*=1,, thus |CZ,+D|*=1. q.e.d.

3.2. Let m:X—X* be a toroidal compactification. Let D:=X—X, and
D¥:=X*-X=X,_,U -+ UX, = induces a map of D to D* which we shall
also denote by =.

PRrOPOSITION 2. If >0, then
RiTL'*szRiTE*OD
on Xg-1.

Proor. Let I',(l):={Mel';|M=1,, mod/} be the principal congruence sub-
group of level /. Let X()=H,/I';(/). Denote by X*() and X(/) its Satake
compactification and its toroidal compactification, respectively. Let D*():=
X*()—X (), and D(0):=X()—X(). We shall denote also by = the morphism
of X() to X*(). Moreover, X’(/) donotes the union of the highest dimensional
cusps in D*(/), which is a disjoint union of copies of H,-,/I";-,(I).

We first show Riz«OQgq, = R'n«Opy, on X’(!) for i>0, provided that /=3.
Let 9p., be the sheaf of ideals of D*(/) with the reduced structure in Ox.q,
and let J:=9p,)0zq,. Here we note that we have the canonical injection of
Oxwy t0 Ozquy. Since [=3, we can apply to our argument. So
7 (X()\UX'() is the blowing up with respect to Jp«uy! xwyux ), and hence
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Il z-1xwyuxrayy 18 an invertible sheaf of ideals on z-YX({)\UX’(l)) defining
z~ 1 X’(l)). We have a short exact sequence

O___)Jj+1_>5j_>5j/‘gj+l__>0,

where 97/47*! is an invertible sheaf on #~'(X’(/)). We thus have a long exact
sequence

Qi ) ) S ) .
—> Rigg 99t —> Rinyd’ —> R'myd’/97+ —> Ritigygitt —>,

For a point x€X’(l) and for >0, (97/9*Y),-1, is ample on m~*(x) by the
definition of the blowing up, and hence the higher cohomology groups
Hi{z(x), (97/I7 ) z-1¢2y), >0, vanish since - (x) is an abelian variety. By
the base change theorem Rim4«9’/97*' vanishes at xeX’(l) if />0, 7>0, and
hence a; ; is surjective at x for >0, 7>0. Since Rimy9'=0 for >0, ;>0
([12], Théoréme (2.2.1), (ii)), it follows that Rim.d, >0, vanishes on X’()).
Considering the long exact sequence in the case j=0, we get R‘mi«Ozq
~Rir«Opa, on X’(I) for :>0.

To prove the proposition we note that by general theory (cf. Grothendieck
[13], Théoreme 5.3.1, the proof of its corollary and Corollaire to Proposition
5.2.3), H(Y /G, (¢xF)%) and H¥Y, F)° are canonically isomorphic, where Y is a
separated scheme over C with an action of a finite group G, and & is a coherent
sheaf on Y having an action of G compatible with the action on Y, and
¢:Y—-Y /G is the quotient morphism. Now let U be an affine open subset of
Xy X% and let U be the inverse image of U in X, ()=H,_,/I",-,()CX"({).
Then, letting G be the subgroup of I",/I",(I) stabilizing J, we have

HU, Rinyx0x)=Hi(z"(U), 0g)=H¥x"*0), 0201,)=HU, Rizs0z )%,
H(U, RinyOp)=Hx~Y(U), 00):Hi(77_1(ﬁ), Omz))G:Ho(ﬁ, RimyOpy)°.

By what we saw above, the terms on the extreme right hand side are canoni-
cally isomorphic if 7>>0. Hence we are done. q.e.d.

REMARKS. (i) As we easily see, is true for a toroidal com-
pactification of a quotient space 9/I" of a bounded symmetric domain 9 by an
arithmetic group [I' provided that rank®’=rank9—1, 9’ being the highest
dimensional rational boundary component of 9.

(ii) Let Z be a point of H,_, whose stabilizer in /",-,/{+1,,-,} is trivial,
and let yeH,_,/I";-,({))CX%() be the corresponding point. Then the stabilizer
subgroup P at y of I', is generated by [ ',(I) and matrices M of the form
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e 0 0 b

v +1| ‘b
M=+ ———leT,.
O lg—-l —U
0 =1

Let W (resp. U) be the group generated by I ,(/) and matrices M of the form

) 0' 0 b {0 0
b 1] % e 1
M= ‘ resp. i l 0 e
0 |l —v ol 1,
01 o

Then we have inclusions of normal subgroups
I';,\h)cUcCWcCP.

U acts trivially on the fibre #-*(y). Let us suppose [/=3. Then z-y) is
isomorphic to an abelian variety C¢-1/(Z, 1,-)((Z)%-*. Regarding z as an ele-
ment of C%-?, an element M of W/U acts on n~%(y) as z—z+Zv+b. So the
quotient of x~%(y) by W is isomorphic to itself. Finally P/W acts on the abelian
variety as z—=+z. It follows that the fibre n~'(x) for x=X%_, is a (g—1)-
dimensional Kummer variety, i.e., the quotient of a (g—1)-dimensional abelian
variety by the group {=+id}, where = is the morphism of X, to X¥.

3.3. Let N, be as in [Corollary] to Lemma 2 Then the Euler-Poincaré
characteristic X(X*, .L(k+sN,)) is a numerical polynomial of s, since .L(k+sNy)
=L(R)QRQLY and £, is invertible. Let Q(k):=X(X* L(k)). If k is large
enough, then Q(%k) gives the dimension of the space of Siegel modular forms
of weight %, which equals >4 ,dimc {cusp forms of weight % for I} if £>2g+1
is even (cf. Cartan [3]).

We shall define P(%k) as follows. Fix an integer %, with 0<%k, <N,. Then

@o {cusp forms of weight £k,+sN,} is a graded module over the ring
sz

P HUX*, £8%). P(ki+sN,) is defined to be the Hilbert polynomial in s for the

820
graded module. Then P(k) is well-defined for any %k and equals the dimension
of the space of cusp forms of weight £ for 23>0 by definition.

COROLLARY TO PROPOSITION 2. Let 9p be the sheaf of ideals of D, and let
M(k)=n*.L(k). Under the condition g=3 and k even, we have

XX, HEYRIp)=P(k)+O(kE-1&-012)
PrROOF. Tensoring (k) with the short exact sequence

0 Ip Oz Op 0,
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we have a short exact sequence

0 — HERIp —> H(k) —> M EYRO, —> 0.
Hence
UX, HE)RIp)=UX, H(R)—XD, HE)ROp).

Now let us put .L/(k) ::.C<k)®0xtg which equals the coherent sheaf corre-
sponding to Siegel modular forms of weight £ on X%_,, since %k is even. We

have the Leray spectral sequence

_17

EP9=H?(X*, Rz, HM(k)) == HP*Y(X, H(k))

Epi=HP(X%-1, R (M(R)ROp) == H?*UD, HM(k)R0p).
By the same argument as in the proof of [Proposition 1, we get

HYX*, Riny ME)=H X, M), k>0,

HYX%-,, Rimy(MR)ROp)=HUD, M k)ROp),  k>0.

Now by Lemma 3 and [Proposition 2, both Rz, M(k) and Rim.(M(k)RQROp) are
isomorphic to .L/(k)QRn«Op on X*%_, minus a subvariety of codimension =g—1
if 7>0. Thus

dimcHU(X*, RimyM(k)=dimcHY (X1, R'ms(HM(R)QOp))+O(kE-1 E-21%)

for >0, hence

UX, HE)—AD, Hk)ROp)

=dimcH(X*, L(k))—dimcH(X%-,, L/(R)+O(k‘&-V(8-012) k>0,
We are done, since P(k) equals dimcHYX*, L(k))—dimcHY(X%.,, L/(k)) for
£>0. q.ed.

Since X has only quotient singularities, the canonical coherent sheaf Ky
(in the sense of Grauert-Riemenschneider [11]) and the dualizing sheaf coincide.
Let X° be the open subset of X whose points are not ramification points ofJthe
quotient morphism of X(I) to X for some [=3. Then X—X°is just the singular
locus, when g=3 (Tai [25]).

LEMMA 4. Let g=3.
(i) For the canonical injection i of X° to X, we have i4(L(R)| xo)=L(k)|x.
(i) For the canonical injection 1 of X° to X, we have
Ke=1:((Mg+1RIp)| z0)  if g is odd,
Ke=1(M(g+1)] 20) if g is even.

PrOOF. Since g=3, codim(X—X° is greater than one. Then (i) is an
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easy consequence of the extendability of holomorphic functions across a sub-
variety of codimension two. In the case (ii) with odd g, we have Kzo=
(M(g+1)Q®Ip) | xo by Tai [25], Theorem 1.1. If g is even, then any section in
HY(U, M(g+1)), for an open set U with UND+ @, vanishes automatically at a
point of D, so Kzo=M(g+1)| o (loc. cit). Then our assertion follows from
Grauert and Riemenschneider [11]. gq.e.d.

§4. Proof of Theorem 1.
4.1. We shall prove for even g=4.

PROPOSITION 3. Let g=4 be even, and N, be as in Corollary to Lemma 2.
If k is divisible by N,, then

QUe+g+1)=(—=1)"Q(—k)+ (25— DUX §-s, L7(k)+O0(R™ 57,
where L'(k) is .£(k)®0ng_1.

PROOF. N, is an even integer, so 2+g+1 is odd. Since any modular form
for I'; of odd weight is a cusp form, we have Q(k+g+1)=P(k+g+1).
JM(g+1) and Ky are isomorphic on X° by (i), and HY(X, H(k+g-+1))
=HYX°, HMk+g+1)=H'X, HERK?z), since codim(X—X=2. Thus

P(k+g+1)=XX, Mr)RQKx)
by the vanishing theorem of Kodaira type [11]. By the Serre duality we have
XX, HE)QK )=(—1)"UX, H(—F)).

On the other hand, we have

XX, )= 3 (—1)'dimcH (X, (k)

3

= Y (—1)'dimcHY(X*, L(k)RQR'm4«0%), £>0,

=0

by the same argument as in the proof of [Proposition 1. Since the fibre z~(x)
for xeX%-, is of dimension g—1, R‘nr. O is supported on X%_, for i=g.

Hence by
UX, M(k)=Q(R)+ gg (=D dimcH(X*, L(BQR 740p)+O(k 8- E-212%),

w1 (X3-)—X3-, is a fibre space of Kummer varieties, so R":r*ODIXg_l is 0

if 7 is odd or /=g, and it is a vector bundle of rank (g :1> if i<g is even.
So by the Riemann-Roch theorem X(X, M(k))=Q(k)+(28-2—1UX%-,, L'(k))

+O(k* %71, since the sum of (g_z._1> for 1=2,4, ---, g—2 is equal to 28-2—],
Now



160 S. TSUYUMINE

Qe+g+1D)=(—1"UX, H(—k))
=(—=D™{Q(—R)+ (252 —DXU(XF-y, L' (—k)+O(k™~2-1)}
=(—1)"{Q(—k)+(— )55 — DAUX §-1, L7(k)} 40k,
and we are done. q.e.d.

By Grauert and Riemenschneider [117, /41K yo gives the dualizing sheaf, ¢
being the inclusion of X° to X*, as we saw in §2.4. Since Kyo=~.L(g+1)| xo,
and since codim(X*—X=n—g+1>2, (uKxo=ix(L(g+1)| x0)=L(g+1) by the
extendability of holomorphic functions across a subvariety of codimension 2.

Now let us show that X* is not C.-M. If X* is C.-M., then we have for
k divisible by N,

HY(X*, Lk+g+1)=H X* L£(h)QRL(g+]1))
=H" Y X*, L(—k))"
by the Serre duality, and so Q(k+g+1)=(—1)"Q(—%). This contradicts Prop-

osition 3. Hence X* is not C.-M.

4.2. Let us prove for odd g=5. The above argument works
also for this case, so it is enough to show the following;

PROPOSITION 4. Let g=3 be odd. If k is divisible by N,, then
P(R)y=(—D"P(—k+g+1)—26"UX}-;, L(k)+0(k"57),
QR)y=(—1"Q(—k+g+1)— (252 =2)U(X}1, L/(R)+O(k"~271).

PrROOF. By the short exact sequence

0 —> MR)QIp —> M(k) —> HM(R)KOp —> 0,
we get
XX, HE)QIp)=UX, H(k)—XUD, H(k)Op).
Then
x()_(’ BRI p)=P(k)+O(k(8-D@E-2/2)

by [Corollary| to [Proposition 2, and

UX, HeN=(—1"UX, H(—E)RKx)
=(—1)"P(—k+g+1)

AD, SHEYRO)= %, (—1)'dimeH (D, H(ESO)

= gZ‘O (=17 dlmcH"(Xg 1, LIBQR T+0p)+ Ok E-DE-DIT)

=28 X%-1, L/(R)+O(k™-51)
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by an argument similar to that in This gives the first assertion.
Since Q(R)=P(k)+X(X%-,, L'(k)), we have

Qe)—(—D"Q(—k+g+1)
={P(k)—(—=1)"P(—k+g+D}+{XUX}-,, L/(k)—(—D"UX%-1, L (—k+g+1)}
=—(2f = DUX 31, L7(R)—(—D)"U( X}y, L7(—k+g+1)+0k"57).

Here we note that —(—1)"U(X%.,, L/(—k+g+1)=—(—D"(—1)"#X(X¥-., L'(k))
+ Ok £ )=XX%-,, L'(k))+O(k" #"'), because g is odd. Then the second
assertion follows immediately from this. q.e.d.

References

17 A.Ash, D.Mumford, M. Rapoport and Y.-S.Tai, Smooth compactification of locally
symmetric varieties, Math. Sci. Press, Brookline, Massachusetts, 1975.

27 W.L.Baily and A.Borel, Compactification of arithmetic quotients of bounded
symmetric domains, Ann. of Math., 84 (1966), 442-528.

[37 H.Cartan, Fonctions automorphes, Fcole Norm. Sup., Séminaire Henri Cartan
1957/1958, Secrétariat mathématique, Paris.

[4] M.Eichler, Projective varieties and modular forms, Lecture Notes in Math., 210,
Springer-Verlag, 1971.

[6] ————, On the graded rings of modular forms, Acta Arith., 18 (1971), 87-92.

[6] E.Freitag, Lokale und globale Invarianten der Hilbertschen Modulgruppen, Invent.
Math., 17 (1972), 106-134.

7731 ————, Stabile Modulformen, Math. Ann., 230 (1977), 197-211.

[8] ————, Die Irreducibilitit der Schottky relation (Bemerkungen zu einem Satz von
Igusa), Archiv der Math., 40 (1983), 255-259.

[97 E.Freitag and R.Kiehl, Algebraische Eigenschaften der lokal Ringe in der Hilbert-
schen Modulgruppen, Invent. Math., 24 (1974), 121-146.

[10] E.Gottschling, Uber die Fixpunkte der Siegelschen Modulgruppen, Math. Ann.,
143 (1961), 111-149.

[117 H.Grauert and O.Riemenschneider, Verschwindungssitze fiir analytische Kohomolo-
giegruppen auf komplexen Riumen, Invent. Math., 11 (1970), 263-292.

[121 A.Grothendieck, FEléments de géométrie algébrique, III, Publ. Math. I.H.E.S., 11,

1961.

[13] ————, Sur quelques points d’algébre homologique, Téhoku Math. J., 9 (1957),
119-221.

[14] R.Hartshorne, Algebraic geometry, Graduate Texts in Math., 52, Springer-Verlag,
1977.

(157 M.Hochster and J.A.Eagon, Cohen-Macaulay rings, invariant theory and the
generic perfection of determinantal loci, Amer. J. Math., 93 (1971), 1020-1058.

f16] J.Ilgusa, On Siegel modular forms of genus two, (II), Amer. J. Math., 86 (1964),
392-412.

[177 ————, On the theory of compactifications, Summer Institute on Algebraic
Geometry, Woods Hole, Amer. Math. Soc., 1964, (mimeographed).

[18] D.Mumford, Hirzebruch’s proportionality theorem in the noncompact case, Invent,
Math., 42 (1977), 239-272.



162

(19]
(20]
[21]

22]
[23]

[24]
[25]
(26]
[27]

(28]

S. TsuYyuMINE

J.Lipman, Unique factorization in complete local rings, in Algebraic Geometry—
Arcata 1974, Proc. Symposia in Pure Math., 29, Amer. Math. Soc., 531-546.
H.L.Resnikoff and Y.-S.Tai, On the structure of a graded ring of automorphic
forms on the 2-dimensional complex ball, Math. Ann., 238 (1978), 97-117.
O.Riemenschneider, Characterizing MoiSezon space by almost positive coherent
sheaves, Math. Z., 123 (1971), 263-284.
P.Samuel, On unique factorization domains, Iilinois J. Math., 5 (1961), 1-17.
J.-P.Serre, Prolongement de faisceaux analvtiques cohérent, Ann. Inst. Fourier
(Grenoble), 18 (1966), 363-374.
R.Stanley, Invariants of finite groups and their applications to combinatorics, Bull.
Amer. Math. Soc. (New series), 1 (1979), 475-511.
Y.-S. Tai, On the Kodaira dimension of the moduli space of abelian varieties, In-
vent. Math., 68 (1982), 425-439.
Y.-S.Tai and H.L.Resnikoff, On the structure of a graded ring of automorphic
forms on the 2-dimensional complex ball, I, Math. Ann., 258 (1982), 367-382.
S. Tsuyumine, Rings of modular forms (On Eichler’s problem), Nagoya Math. J., 99
(1985), 31-44.

,  Rings of automorphic forms which are not Cohen-Macaulay, II, (in
preparation).

Shigeaki TSUYUMINE

2856-235 Sashiogi
Omiya-shi, Saitama 330
Japan



	\S 1. Main result.
	THEOREM 1. ...
	THEOREM 2. ...

	\S 2. Proof of Theorem ...
	\S 3. Siegel modular forms.
	\S 4. Proof of Theorem ...
	References

