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Introduction.

We study congruences between Siegel modular forms of different weights by
using differential operators. As an example, we prove the following congruence
between eigenvalues of Hecke operators on $\chi_{20}^{(3)}$ and on $[\Delta_{18}]$ :

$\lambda(m, x_{20}^{(3)})\equiv m^{2}\lambda(m, [\Delta_{18}])$ mod 7, (0.1)

which was conjectured in Kurokawa [7]. Here $\chi_{20}(3)$ is the normalized eigen cusp
form of degree 2 and weight 20 which does not lie in the image of the Saito-
Kurokawa lifting and $[\Delta_{18}]$ is the Eisenstein series of degree 2 and weight 18
characterized as the eigenform satisfying $\Phi[\Delta_{18}]=\Delta_{18}$ where $\Phi$ is the Siegel
$\Phi$-operator and $\Delta_{18}$ is the normalized cusp form of degree 1 and weight 18.
Further, $\lambda(m, f)$ is the eigenvalue of the m-th Hecke operator on an eigenform
$f$. For precise definitions of these two forms and some other congruences, see
\S 4 below.

In Kurokawa [7], congruences of eigenvalues of Hecke operators between
lifted eigenforms are proved by using theory of the Saito-Kurokawa lifting and
the Eisenstein lifting. Our method is different and is as follows. We denote by
$M_{k}(\Gamma_{n})$ (resp. $M_{k}^{\infty}(\Gamma_{n})$ ) the C-vector space of holomorphic modular forms (resp.
$C^{\infty}$-modular forms) of degree $n$ and weight $k$ . Let $\delta_{k}$ be the differential operator
introduced by Maass [9] and modified as in Harris [3, 1.5.3], which sets uP a
map

$\delta_{k}$ : $M_{k}^{\infty}(\Gamma_{2})arrow M_{k+2}^{\infty}(\Gamma_{2})$ .
However, the differential operator $\delta_{k}$ does not keep holomorphy, so we use
holomorphic projection $P_{k}$ on $M_{k}^{\infty}(\Gamma_{2})$ defined by Sturm [18, Theorem 1] to
obtain information on a holomorphic constituent. For a subring $R$ of $C$ , let
$M_{k}(\Gamma_{2})_{R}$ be the R-module of holomorphic modular forms of degree 2 and weight
$k$ whose Fourier coefficients belong to $R$ . Assume $(1/2)R\subset R$ in the following.
We put $\delta_{k}^{r}=\delta_{k+2r-2}\cdots\delta_{k+2}\delta_{k}$ . In Theorem 1.5, we prove a certain congruence
modulo $(2w-2r-3)I$ between Fourier coefficients of $fg$ and those of $P_{w}(\delta^{p_{k}}f\cdot\delta 3g)$
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at the multiples of the unit matrix, where $f\in M_{k}(\Gamma_{2})_{R}$ and $g\in M_{l}(\Gamma_{2})_{R}$ with
$r=p+q,$ $w=k+l+2r$ and $I$ is an ideal of $R$ satisfying $(1/2)I\subset I$ and containing
all the Fourier coefficients of $g$ at non-zero matrices. This integrality of an
analytically defined map is relevant in our method. (Cf. Remark 1.6.) We denote
by $M_{w}^{r}(\Gamma_{2})_{R}$ the R-module generated by $\delta_{k}^{p}f\cdot\delta_{l}^{q}g$ where $f\in M_{k}(\Gamma_{2})_{R}$ and $g\in$

$M_{l}(\Gamma_{2})_{R}$ with $r=P+q$ and $w=k+l-2r$ . In \S 2, we study the condition such that
holomorphic projection of an element of $M_{w}^{r}(\Gamma_{2})_{C}$ is actually a holomorphic cusp
form of weight $w$ . (We note that an element of $M_{w}^{r}(\Gamma_{2})_{C}$ is not necessarily of
bounded growth in the sense of Sturm [18, (6)].) Taking a suitable element of
$M_{w}^{r}(\Gamma_{2})_{R}$ , we obtain congruences modulo $(2w-2r-3)I$ of Fourier coefficients at
the multiples of the unit matrix between holomorphic eigenforms $f$ and $g$ of
weight $w$ and $w-2r$ respectively. Here, $I$ is an ideal of $R$ depending on $f$ and
$g$ . For passage to congruences of eigenvalues of Hecke operator, we study

their relation in Proposition 3.3. Our method of proving congruences is gathered
in Theorem 3.4. Finally, concrete examples are proved in \S 4.

Our results suggest the following. Let $f\in M_{k}(\Gamma_{n})$ and $g\in M_{l}(\Gamma_{n})$ be eigen-
forms where $k-l$ is a positive even integer. Then under some additional con-
ditions, a suitable divisor $d$ of $k+l-(n+1)$ is likely to provide congruences of
type

$\lambda(M, f)\equiv r(M)^{n(k-l)/2}\lambda(M, g)$ mod $d$

where $r(M)$ is a multiplicator of $M\in GSp(2n, Z)$ and $\lambda(M, f)$ is the eigenvalue
of Hecke operator $T(\Gamma_{n}M\Gamma_{n})$ normalized as Andrianov [1, 1.3.3] on $f$. In our
example (0.1), we have $k+l-(n+1)=20+18-3=5\cdot 7$ . (The other factor 5 does
not give congruences.) This also fits to degree one case (cf. Swinnerton-Dyer
[19, p. 31, Corollary]).

We remark that there remains much to be done to obtain systematic results
as the degree one case treated by Serre [17] and Swinnerton-Dyer [19], includ-
ing the study of l-adic representations attached to Siegel modular forms.

The results of this paper have been announced in [16]. The author would
like to thank Professor N. Kurokawa for encouragements.

NOTATION. 1. For complex numbers $\alpha$ and $\beta$ , we put

$\epsilon(\alpha, \beta)=\{\alpha(\alpha-1)1$

$(\beta+1)\beta$ if $\alpha-\beta$ is a non-negative integer,
otherwise,

and

$\eta(\alpha, \beta)=\{\begin{array}{l}\alpha(\alpha-\frac{1}{2})\cdots(\beta+\frac{1}{2})\beta if 2(\alpha-\beta) is anon- negative integer, 1 otherwise.\end{array}$

2. For a square matrix $T,$ $|T|$ and Tr $(T)$ stand for its determinant and
trace respectively. We denote by $\sum_{T\geqq 0}$ (resp. $\sum_{\tau>0}$ ) the summation over all
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symmetric, semi-integral, positive semi-definite (resp. positive definite) matrices
$T$ (of a fixed size). For simplicity, we denote such a matrix $T=(\begin{array}{ll}t_{1} t_{3}/2t_{3}/2 t_{2}\end{array})$

of size two by $(t_{1}, t_{2}, t_{3})$ .
3. For each integer $n\geqq 1,$ $H_{n}$ denotes the Siegel upper half plane of degree

$n$ . For a $C^{\infty}$-function $f(Z)$ on $H_{n}$ satisfying $f(Z+S)=f(Z)$ for all $Z\in H_{n}$ and
all symmetric $S\in M(n, Z)$ , we denote its Fourier expansion as $f(Z)=\Sigma_{T}a(T,$ $Y$ ,
$f)e^{2\pi iTr(TZ)}$ , where $T$ runs over all symmetric semi-integral matrices of size $n$ .
Usually $f$ is written in the form $f(Z)= \sum a’(T, Y, f)e^{2\pi iTr(TX)}$ , but it is con-
venient for our purpose to write $f$ as the former. If $f$ is holomorphic, $a(T, Y, f)$

does not depend on Y. In this case, we write $a(T, Y, f)$ as $a(T, f)$ for simplicity.

\S 1. Differential operators and Fourier coefficients.

We study some differential operators and their effects on Siegel modular

forms. For a variable $Z=(\begin{array}{ll}z_{1} z_{3}z_{3} z_{2}\end{array})$ on $H_{2}$ , we put

$X= \frac{1}{2}(Z+\overline{Z})=(\begin{array}{ll}x_{1} x_{3}x_{3} x_{2}\end{array})$ ,

and

$\frac{d}{dZ}=(\frac\frac{\partial}{\partial z_{3}}\frac{\partial}{21\partial.z_{1}}$

$Y=\frac{1}{2i}(Z-\overline{Z})=(\begin{array}{ll}y_{1} y_{3}y_{3} y_{2}\end{array})$

$\frac{}{2}\frac{\partial}{\partial z_{3}}\frac{1\partial}{\partial z_{2}})$ ,

where $\overline{Z}$ is the complex conjugate of $Z,$ $\partial/\partial z_{j}=(\partial/\partial x_{J}-i\partial/\partial y_{j})/2$ and $i=\sqrt{-1}$ .
We define three differential operators on a $C^{\infty}$-function $f$ on $H_{2}$ as follows:

$D$ : $f arrow|\frac{d}{dZ}|f=\frac{\partial^{2}f}{\partial_{Z_{1}}\partial z_{2}}-\frac{1}{4}\frac{\partial^{2}f}{\partial z_{3}^{2}}$ ,

$\sigma$ : $farrow j$ . Tr $(Y \frac{d}{dZ}f)=i\sum_{f=1}^{3}y_{j^{\frac{\partial f}{\partial z_{j}}}}$ ,

$\delta_{k}$ : $farrow|Y|^{-k+1/2}D(|Y|^{k-1/2}f)$ .

Further, we set for a positive integer $r$ ,

$\delta_{k}^{r}$ : $farrow\delta_{k+2r-2}\cdots\delta_{k+2}\delta_{k}f$ .

We understand that $\delta_{k}^{0}$ is the identity operator. These differential operators
were studied by Maass [9]. In this section, for a $T=(t_{1}, t_{2}, t_{3})$ as in Notation
2, we put $B=\pi$ Tr $(TY)$ and $q^{T}=\exp$ ( $2\pi i$ Tr $(TZ)$ ).

LEMMA 1.1. Let $j$ and $k$ be integers, and let $T,$ $B$ and $q^{T}$ be as above. Then,
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the following operator identities hold:

$\delta_{k}|Y|^{j}=|Y|^{j}\delta_{k+j}$ , (1.1)

$D\sigma=(\sigma+1)D$ , (1.2)
and

$\sigma B^{j}q^{T}=(\frac{j}{2}B^{j}-2B^{j+1})q^{T}$ $(j\geqq 0)$ . (1.3)

PROOF. For a $C^{\infty}$-function $f$ on $H_{2}$ ,

$\delta_{k}|Y|^{j}f=|Y|^{-k+1/2}D|Y|^{k+j-1/2}f$

$=|Y|^{j}\delta_{k+}J$ .
We have $D\sigma f-\sigma Df=Df$ , hence $D\sigma=(\sigma+1)D$ . Using $\partial B/\partial z_{l}=-i\pi t_{l}/2$ and
$\partial q^{T}/\partial z_{l}=2\pi it_{l}q^{T}$ , we obtain

$\sigma B^{j}q^{T}=\sum_{l=1}^{3}iy_{l}(-\frac{i\pi jt_{l}}{2}B^{j-1}q^{T}+2\pi it_{l}B^{j}q^{T})$

$=( \frac{j}{2}B^{j}-2B^{j+1})q^{T}$ . Q. E. D.

For each integer $n\geqq 1,$ $\Gamma_{n}$ denotes the Siegel modular group of degree $n$ .
We denote by $M_{k}(\Gamma_{n})$ (resp. $M_{k}^{\infty}(\Gamma_{n}),$ $S_{k}(\Gamma_{n})$ ) the C-vector space of holomorphic
Siegel modular forms (resp. space of $C^{\infty}$-modular forms, space of holomorphic
cusp forms) of degree $n$ and weight $k$ . We note that $\delta_{k}^{r}$ maps $M_{k}^{\infty}(\Gamma_{2})$ to
$M_{k+2r}^{\infty}(\Gamma_{2})$ , by Harris [3, 1.5.3]. Further, for any subring $R$ of $C$ , we set

$M_{k}(\Gamma_{n})_{R}=$ { $f\in M_{k}(\Gamma_{n})|a(T,$ $f)\in R$ for all $T\geqq 0$ }
and

$S_{k}(\Gamma_{n})_{R}=M_{k}(\Gamma_{n})_{R}\cap S_{k}(\Gamma_{n})$ .
PROPOSITION 1.2. Let $R$ be a subnng (not necessarily contaimng 1) of $C$

satisfying $(1/2)R\subset R$ and let $f\in M_{k}(\Gamma_{2})_{R}$ . Then for each posttive integer $r$ , we have:
(1) $\delta_{k}^{r}f$ is a $Z[1/2]$ -linear combination of

$|Y|^{-b}\sigma^{c}D^{d}f$

where $b,$ $c$ and $d$ are integers satisfying $0\leqq c\leqq b\leqq r,$ $0\leqq d\leqq r$ and $b+d=r$ . More-
over, the coefficient of $|Y|^{-r}f$ ( $i$ . $e$ . in case of $c=d=0$) is given by

$(- \frac{1}{4})^{r}\eta(k+r-1,$ $k- \frac{1}{2})$ .

\langle 2) $\pi^{-2d}a(T, Y, \sigma^{c}D^{d}f)$ belongs to the nng $R[B]$ and its degree is not greater
than $c$ .
(3) If $c\geqq 1$ or $d\geqq 1,$ $a(O, Y, \sigma^{c}D^{d}f)=0$ .
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PROOF. (1) We use induction on $r$ . In case $r=1$ , we get by a straight-
forward computation,

$\delta_{k}^{1}f=-\frac{1}{4}k(k-\frac{1}{2})|Y|^{-1}f-\frac{1}{2}(k-\frac{1}{2})|Y|^{-1}\sigma f+Df$ . (1.4)

Hence, the assertions hold. Assume (1) for $\gamma$ . Since $\delta_{k+2r}$ is C-linear and $\delta_{k}^{r+1}=$

$\delta_{k+2r}\delta_{k}^{r}$ , it is enough to prove that $\delta_{k+2r}|Y|^{-b}\sigma^{c}D^{a}f$ satisfies (1) for $r+1$ in place
of $\gamma$ . Using Lemma 1.1 with $D\sigma^{c}=(\sigma+1)D\sigma^{C-1}=\cdots=(\sigma+1)^{c}D$ , we have

$\delta_{k+2r}|Y|^{-b}\sigma^{c}D^{d}f=-\frac{1}{4}(k+2r-b)(k+2r-b-\frac{1}{2})|Y|^{-b-1}\sigma^{C}D^{d}f$

$- \frac{1}{2}(k+2r-b-\frac{1}{2})|Y|^{-b- 1}\sigma^{c+1}D^{d}f+|Y|^{-b}(\sigma+1)^{C}D^{a+1}f$ .
Moreover, if $c=d=0$ , then $b$ must be equal to $r$ and the first term of the above
expression is

$- \frac{1}{4}(k+r)(k+r-\frac{1}{2})|Y|^{-r-1}f$ .

Thus, we see that (1) holds in case of $r+1$ , too.
(2) Since

$a(T, D^{d}f)=(2\pi i)^{2d}|T|^{d}a(T, f)$ , (1.5)

it is sufficient to show that there exists an $F\in R[B]$ whose degree is not greater
than $c$ , such that

$a(T, Y, \sigma^{c}q^{T})=F$ . (1.6)

But this is a direct consequence of (1.3).
(3) In case of $d\geqq 1$ , the assertion holds by (1.5). For $c\geqq 1$ , we see that the
constant term of the polynomial $F$ in (1.6) vanishes by (1.3). Therefore, setting
$T=0$ , we have $B=0$ and $F=0$ , so (3) also holds in this case. Q. E. D.

We prepare a formula on the generalized gamma function. From now on,
we set

$U= \{X=(\begin{array}{ll}x_{1} x_{3}x_{3} x_{2}\end{array}) \in M(2, R)|-\frac{1}{2}\leqq x_{j}\leqq\frac{1}{2}$ for $j=1,2,3\}$ ,

$V=\{Y=(\begin{array}{ll}y_{1} y_{3}y_{3} y_{2}\end{array})\in M(2, R)|Y>0\}$ ,

$dX=dx_{1}dx_{2}dx_{3}$ , $dY=dy_{1}dy_{2}dy_{3}$ ,

and
$d^{*}Y=|Y|^{-3/2}dY$ .

It is known that the measure $d^{*}Y$ is invariant under $Yarrow^{t}AYA$ for $A\in GL(2, R)$ .
LEMMA 1.3. Let $m_{1},$ $m_{2}$ and $m_{3}$ be non-negative integers and $\alpha>1/2$ . Put
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$I( \alpha;m_{1}, m_{2}, m_{3})=\int_{V}y_{1}^{m_{1}}y_{2}^{m_{2}}y_{3}^{m_{3}}e^{-Tr(Y)}|Y|^{a}d^{*}Y$ .
Then:
(1) If $m_{3}$ is odd, $I(\alpha;m_{1}, m_{2}, m_{3})=0$ .
(2) If $m_{3}$ is even,

$I( \alpha;m_{1}, m_{2}, m_{3})=\frac{\Gamma(m_{1}+\alpha+\underline{m}_{\underline{3}}2)\Gamma(m_{2}+\alpha+\frac{m_{3}}{2})\Gamma(\frac{m_{3}}{2}+_{2}^{1}--)\Gamma(\alpha-\frac{1}{2})}{\Gamma(\alpha+\frac{m_{3}}{2})}$ .

PROOF. If $Y=(y_{1}, y_{2}, y_{3})>0$ , then $(y_{1}, y_{2}, -y_{3})>0$ also. So, if $m_{3}$ is odd,
$I(\alpha;m_{1}, m_{2}, m_{3})=0$ . We assume that $m_{3}$ is even in the following.

We decompose $*\sim Y$ into a product of the lower triangular matrix $T=(\begin{array}{ll}t_{1} 0t_{3} t_{2}\end{array})$

and its transpose as $Y=T\cdot {}^{t}T$ and change variables from $Y$ to $T$ as in Maass
[10, p. 77]. Then we have

$I( \alpha;m_{1}, m_{2}, m_{3})=\frac{\Gamma(m_{1}+\alpha+\frac{m_{3}}{2})}{\Gamma(\frac{m_{3}}{2}+\alpha)}\cdot 4\int_{0}^{\infty}t_{1}^{m_{3}+2a-1}e^{-t_{1}^{2}}dt_{1}$

$\cross\int_{0}^{\infty}\int_{-\infty}^{\infty}t_{3}^{m_{3}}(t_{2}^{2}+t_{3}^{2})^{m_{2}}e^{-t_{2}^{2}-t_{3}^{2}}t_{2}^{2\alpha-2}dt_{3}dt_{2}$

$= \frac{\Gamma(m_{1}+\alpha+\frac{m_{3}}{2})}{\Gamma(\frac{m_{3}}{2}+\alpha)}\cdot\int_{V}y_{2}^{m_{2}}y_{3}^{m_{3}}e^{-Tr(Y)}|Y|^{\alpha}d^{*}Y$ . (1.7)

Here, we decompose $Y$ into a product of the upper triangular matrix $T=(\begin{array}{l}t_{3}t_{1}0t_{2}\end{array})$

and its transpose. Since $m_{3}$ is even,

$(1.7)= \frac{\Gamma(m_{1}+\alpha+\frac{m_{3}}{2})}{\Gamma(\frac{m_{3}}{2}+\alpha)}\cdot 8\int_{0}^{\infty}t_{1}^{2a-2}e^{-t_{1}^{2}}dt_{1}$

$\cross\int_{0}^{\infty}t_{2}^{2m_{2}+m_{3}+2\alpha-1}e^{-t_{2}^{2}}dt_{2}\int_{0}^{\infty}t_{3}^{m_{3}}e^{-t_{3}^{2}}dt_{3}$

$= \Gamma(7?l_{1}+\alpha+\frac{m_{3}}{\ovalbox{\tt\small REJECT} 2})\Gamma(m_{2}3\Gamma(\alpha+_{2}\underline{m}_{\underline{3}})m_{3}1122^{-}2$ .

Q. E. D.

We put a brief description on the holomorphic projection. For details, see
Sturm [18]. For $f\in M_{w}^{\infty}(\Gamma_{2})$ , we put
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$P(w, T, a(T, Y, f))=M(w, T) \int_{V}a(T, Y, f)e^{-4\pi TrtTY)}|Y|^{w-3}dY$ (1.8)

where

$M(w, T)^{-1}= \int_{V}e^{-4\pi Tr(TY)}|Y|^{w-3}dY$

$=I(w- \frac{3}{2}$ ; $0,0,0)|4\pi T|^{-w+3/2}$ .
We define

$M_{w}^{\infty}(\Gamma_{2})^{c}=$ { $f\in M_{w}^{\infty}(\Gamma_{2})|P(w,$ $T,$ $|a(T,$ $Y,$ $f)|)$ converges for all $T>0$ }

and for each $f\in M_{w}^{\infty}(\Gamma_{2})^{c}$ , we put

$P_{w}(f)= \sum_{T>0}P(w, T, a(T, Y, f))q^{T}$ .

Then, $P_{w}(f)$ belongs to the ring of formal power series $C[q_{3}, q_{3}^{-1}][[q_{1}, q_{2}]]$

where $q_{j}=\exp(2\pi iz_{j})$ . Assume, moreover, that $f$ is of bounded growth, namely,

$\int_{U}\int_{V}|f(X+iY)|\{Y|^{w-3}e^{-\rho Tr(Y)}dYdX<\infty$

for any positive constant $\rho$ . Then, $P_{w}(f)$ converges for all $Z\in H_{2}$ and belongs
to $S_{w}(\Gamma_{2})$ . (See Sturm [18, Theorem 1].)

LEMMA 1.4. Let $E$ be the unit matrix and $m$ be a positive integer. For
non-negative integers $b,$ $c,$ $c_{1},$ $c_{2},$ $c_{3},$

$d$ and $w$ satisfying $c\leqq b<w-2$ , we have:
(1) If $c_{3}$ is odd, $P(w, mE, |Y|^{-b}\pi^{c_{1}+c_{2}+c_{3}}y_{1}^{c_{1}}y_{2}^{c_{2}}y_{3}^{c_{3}})=0$ .
(2) If $c_{3}$ is even,

$P(w, mE, |Y|^{-b}\pi^{c_{1}+c_{2}+c_{3}}y_{1}^{c_{1}}y_{2}^{c_{2}}y_{3}^{c_{3}})$

$= \pi^{2b}\mu\frac{\epsilon(\frac{c_{3}}{2}-\frac{1}{2},\frac{1}{2})\epsilon(w+\frac{c_{3}}{2}b-\frac{5}{2}+c_{1},w+\frac{c_{a}}{2}b-\frac{3}{2})}{\epsilon(w-3,w-b-2)\epsilon(w-\frac{5}{2},w+c_{2}-b-\frac{3}{2}+\frac{c_{3}}{2})}$ (1.9)

where $\mu=(4m)^{2b-c_{1}-c_{2}-c_{3}}$ .
(3) If $T>0$,

$P(w, T, |Y|^{-b}B^{c}|2\pi iT|^{d})=(-1)^{d}|4\pi T|^{b+d}4^{-a-c}$

$\cross\sum_{c_{1}+c_{2}\Rightarrow c}(\begin{array}{l}cc_{1}\end{array})\frac{\epsilon(w-b--\frac{5}{2}+c_{1},w-b_{2}^{3}---)}{\epsilon(w-\frac{5}{2},w-b+c_{2}^{3}2^{---)\epsilon(w-3,w-b-2)}}$ . (1.10)

PROOF. We have (1) by Lemma 1.3 (1). SuPpose that $c_{3}$ is even. Then
using Lemma 1.3 (2), we have:
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$M(w, mE) \int_{V}\pi^{c_{1}+c_{2}+c_{3}}|Y|^{-b}y_{1}^{c_{1}}y_{2}^{c_{2}}y_{3}^{c_{3}}e^{-4\pi mTr(Y)}|Y|^{w-3/2}d^{*}Y$

$= \pi^{2b}\mu\frac{\Gamma(\frac{c_{3}}{2}+_{2}^{1}--)\Gamma(w-b-2)\Gamma(c_{1}+w-b-\frac{3}{2}+\frac{c_{3}}{2})\Gamma(c_{2}+w-b-\frac{3}{2}+\frac{c_{3}}{2})}{\Gamma(\begin{array}{l}1-- 2\end{array})\Gamma(w-2)\Gamma(\frac{c_{3}}{2}+w-b-\frac{3}{2})\Gamma(w-\frac{3}{2})}$

$= \pi^{2b}\mu\frac{\epsilon(\frac{c_{3}1}{22},\frac{1}{2})\epsilon(w+\frac{c_{3}}{2}-b-\frac{5}{2}+c_{1},w+\frac{c_{3}}{2}b-\frac{3}{2})}{\epsilon(w-3,w-b-2)\epsilon(w-\frac{5}{2},w+c_{2}-b-\frac{3}{2}+\frac{c_{3}}{2})}$ .

Now, we show (1.10). Let $U\in GL(2, R)$ be a positive definite matrix such that
$T=U\cdot {}^{t}U$ . By the substitution $Yarrow(4\pi)^{-1}{}^{t}U^{-1}YU^{-1}$ , we have:

$P(w, T, |Y|^{-b}B^{c}|2\pi iT|^{d})$

$=I$( $w- \frac{3}{2}$ ; $0,0,0$) $(-1)^{d}|4 \pi T|^{b+d}4^{- d-C}\int_{V}Tr(Y)^{c}|Y|^{w- b- 3/2}e^{-Tr(Y)}d^{*}Y$

$=I$( $w- \frac{3}{2}$ ; $0,0,0$) $(-1)^{d}|4 \pi T|^{b+d}4^{- d-c}\sum_{c_{1}+c_{2}=c}(\begin{array}{l}cc_{1}\end{array})I(w-b-\frac{3}{2}$ ; $c_{1},$ $c_{2},0)$ .

Hence, we have (1.10) by Lemma 1.3 (2). Q. E. D.

THEOREM 1.5. Let $R$ be a subring (not necessarily containing 1) of $C$ satisfy-
ing $(1/2)R\subset R$ . Let $f\in M_{k_{1}}(\Gamma_{2})_{R}$ and $g\in M_{k_{2}}(\Gamma_{2})_{R}$ with $k_{1}+k_{2}>4$ . Supp0se that
I is an ideal of $R$ satisfying
(1) (1/2) $I\subset I$,
(2) $a(T, g)\in I$ for all $T\neq 0$ .
Let $r_{1}$ be a non-negative integer and $r_{2}$ be a $po\alpha tive$ integer. We put $r=r_{1}+r_{2}$

and $w=k_{1}+k_{2}+2r$ . Then for any $po\alpha tive$ integer $m$ ,

$(2\pi i)^{-2r}\xi a(mE, P_{w}(\delta_{k_{1}}^{r_{1}}f\cdot\delta_{k_{2}}^{r_{2}}g))-\nu m^{2r}a(mE, fg)$ (1.11)

belongs to $(2w-2r-3)I$, where $\xi=\epsilon(w-3, w-r-2)\epsilon(w-5/2, w-r-3/2)$ and $\nu=$

$\eta(k_{1}+r_{1}-1, k_{1}-1/2)\eta(k_{2}+r_{2}-1, k_{2}-1/2)$ .

PROOF. By Proposition 1.2 and Lemma 1.4 with $b=r$ and $c=c_{1}=c_{2}=c_{3}=0$ ,
(1.11) is a $Z[1/2]$ -linear combination of

$\pi^{-2r}\xi P(w, mE, a(T_{1}, f)a(T_{2}, g)|Y|^{-b}B_{1}^{e_{1}}B_{2}^{e_{2}}(2\pi i)^{2d}|T_{1}|^{d_{1}}|T_{2}|^{d_{2}})$ (1.12)

satisfying

$b_{j}+d_{j}=r_{j}$ , $0\leqq e_{j}\leqq b_{j}\leqq r_{j}$ and $0\leqq d_{j}\leqq r_{j}$ for $j=1$ and 2,

$d_{2}\geqq 1$ or $e_{2}\geqq 1$ ,
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$T_{1}+T_{2}=mE$ , $T_{2}\neq 0$ , $T_{1},$ $T_{2}\geqq 0$

where $B_{1}=\pi$ Tr $(T_{1}Y),$ $B_{2}=\pi$ Tr $(T_{2}Y),$ $b=b_{1}+b_{2}$ and $d=d_{1}+d_{2}$ . Since $(1/2)R\subset R$

it is sufficient to show that

$\pi^{-2r}\xi P(w, mE, \pi^{2d+c_{1}+c_{2}+c_{3}}|Y|^{-b}y_{1}^{c_{1}}y_{2}^{c_{2}}y_{3}^{c_{3}})$ (1.13)

exists and that (1.13) belongs to $(2w-2r-3)R$ when the following conditions
are satisfied:

$b+d=r$ , (1.14)

$c_{1},$ $c_{2},$
$c_{3}\geqq 0$ , $0\leqq c_{1}+c_{2}+c_{3}\leqq b\leqq r$ , $c_{3}$ is even , (1.15)

at least one of $c_{1},$ $c_{2},$ $c_{3},$
$d$ is positive. (1.16)

By Lemma 1.4, (1.13) exists since $w-2-b\geqq 2+r>0$ . If $\alpha-\beta$ and $\beta-\gamma$ are non-
negative integers, by the definition of $\epsilon$ , we have $\epsilon(\alpha, \gamma)\epsilon(\alpha, \beta)^{-1}=\epsilon(\beta-1, \gamma)$ .
Using Lemma 1.4 and $(1.14)-(1.16)$ , we see that (1.13) is equal to

$(4m)^{b’} \epsilon(\frac{c_{3}1}{22},$ $\frac{1}{2})\epsilon(w-b-3, w-r-2)$

$\cross\epsilon(w+\frac{c_{3}}{2}-b+c_{1}-\frac{5}{2},$ $w+ \frac{c_{3}}{2}-b-\frac{3}{2})\epsilon(w+\frac{c_{3}}{2}-b+c_{2}-\frac{5}{2},$ $w-r- \frac{3}{2})$ ,

(1.17)

where $b’=2b-c_{1}-c_{2}-c_{3}\geqq 0$ . By (1.14), $d>0$ is equivalent to $b<r$ . Thus, if at
least one of $d,$ $c_{2},$ $c_{3}$ is positive, $w-r-3/2$ divides the fourth $\epsilon$-factor of (1.17).

Otherwise, by (1.14) and (1.16), we have $c_{1}>0,$ $c_{a}=0$ and $b=r$ . In this case,
$w-r-3/2$ divides the third $\epsilon$-factor of (1.17). Thus (1.13) belongs to $(w-r-3/2)R$

$\subset(2w-2r-3)R$ . Q. E. D.

REMARK 1.6. The key point of the proof is that the constant $\mu$ of (1.9) is
an integer under (1.15). This yields the integrality property of an analytically
defined $C^{\infty}$-map (differentiation followed by holomorphic projection). We note
that restriction to the coefficients at the multiples of the unit matrix simplify
the proof of Lemma 1.4 (2). Similar integrality seems to hold at an arbitrary
half-integral positive semi-definite matrix.

\S 2. Cuspidal conditions on holomorphic projections.

If $f\in M_{k}^{\infty}(\Gamma_{2})$ is of bounded growth, then $P_{k}(f)\in S_{k}(\Gamma_{2})$ . However we must
aPply $P_{k}$ to general $f$ in some cases. In this section, we show that $P_{k}(f)\in S_{k}(\Gamma_{2})$

for certain types of $f\in M_{k}^{\infty}(\Gamma_{2})$ constructed by using differential operators. Our
method is based upon Sturm [18, \S 4], where boundedness is studied for a product
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of a holomorphic modular form and a nonholomorphic Eisenstein series. For
simplicity, we put $\partial_{k}^{r}=\epsilon(k+r-3/2, k-1/2)^{-1}\delta_{k}^{r}$. We denote by $C_{1},$ $C_{2},$ $\cdots$ suitably
selected positive constants independent of $T$ and $Z$ .

LEMMA 2.1. For non-negative integers $k$ and $r$ , let $M_{k+2^{\gamma}}^{r}(\Gamma_{2})$ be the C-vector
subspace of $M_{k+2r}^{\infty}(\Gamma_{2})$ generated by

$\delta_{k_{1}}^{r_{1}}h_{1}\cdot\delta_{k_{2}}^{r_{2}}h_{2}$

where $k_{1}+k_{2}=k,$ $r_{1}+r_{2}=r(r_{1}, r_{2}\geqq 0),$ $h_{1}\in M_{k_{1}}(\Gamma_{2})$ and $h_{2}\in M_{k_{2}}(\Gamma_{2})$ . Let $f,$ $g\in$

$M_{k+2r}^{r}(\Gamma_{z})$ . Assume that $a(T, Y, g)=0$ for all $|T|=0$ . Then we have:

(1) $|f(Z)|<C_{1}(\lambda_{1}^{-r}+\lambda_{1}^{-r-k})(\lambda_{2}^{-r}+\lambda_{2}^{-r-k})$ (2.1)

for all $Z\in H_{2}$ where $\lambda_{1}$ and $\lambda_{2}$ are eigenvalues of $Y$.
(2) $|g(Z)|<C_{2}|Y|^{-k/2-r}$ (2.2)

for all $Z\in H_{2}$ .
PROOF. Let $\Omega=\Gamma_{2}\backslash H_{2}$ be the fundamental domain such that $Z=X+iY\in\Omega$

implies $Y>C_{s}E$ and that $Y$ is a reduced matrix. (Cf. Maass [10, p. 169].)

Then we have

$\frac{1}{2}(t_{1}y_{1}+t_{2}y_{2})\leqq Tr(TY)\leqq\frac{3}{2}(t_{1}y_{1}+t_{2}y_{2})$

and hence
$|TY|\leqq(Tr(TY))^{2}$

for $T=(t_{1}, t_{2}, t_{3})\geqq 0$ . Assume that $h\in M_{k}(\Gamma_{2})$ . Using Proposition 1.1, we see
that $a(T, Y, \delta_{k}^{r}h)$ is a C-linear combination of

$|Y|^{-b}$ Tr $(TY)^{c}|T|^{d}a(T, h)$

with $b+d=r$ and $0\leqq c\leqq b\leqq r$ . By the same method as Maass [10, PP. 184-185],

we have
$|a(T, h)||TY|^{d}$ Tr $(TY)^{c}|q^{T}|\leqq C_{4}e^{-\pi Tr(TY)}$ . (2.3)

Hence, we obtain $|Y|^{r}|\delta_{k}^{r}h(Z)|<C_{6}$ for all $Z\in\Omega$ . Using $r_{1}+r_{2}=r$, we see that
the same is true for $f,$ $g\in M_{k+2r}^{r}(\Gamma_{2})$ . Setting $\varphi(Z)=|Y|^{k/2+r}|f(Z)|$ and $a=k/2$

in Sturm [18, Proposition 2], we have (2.1). On the other hand, by (2.3), the
similar method to Maass [10, pp. 191-192] yields

$|g(Z)|<C_{6}\exp(-C_{7}\sqrt{|Y|})$

for all $Z\in\Omega$ . Therefore, setting $\varphi(Z)=|Y|^{k/2+r}|g(Z)|$ and $a=0$ in Sturm [18,
Proposition 2], we have (2.2). Q. E. D.

LEMMA 2.2. For $f\in M_{k}(\Gamma_{2})$ , we have $P_{k+2}(\delta_{k}f)=0$ and $P_{k+4}(\delta_{k}^{2}f)=0$ .



Siegel modular forms 137

PROOF. By a straightforward computation, we have (1.4) and

$\delta_{k}^{2}f=\frac{1}{16}\eta(k+1,$ $k- \frac{1}{2})|Y|^{-2}f+\frac{1}{4}(k+\frac{1}{2})^{2}(k-\frac{1}{2})|Y|^{-2}\sigma f$

$+ \frac{1}{4}(k-\frac{1}{2})(k+\frac{1}{2})|Y|^{-2}\sigma^{2}f-\frac{1}{2}(k+2)(k+\frac{1}{2})|Y|^{-1}Df$

$-(k+ \frac{1}{2})|Y|^{-1}\sigma Df+D^{2}f$ . (2.4)

We have $a(T, D^{j}f)=|2\pi iT|^{j}a(T, f),$ $a(T, \sigma D^{j}f)=-2|2\pi iT|^{j}Ba(T, f)(j\geqq 0)$ and
$a(T, \sigma^{2}f)=(-B+4B^{2})a(T, f)$ by (1.3). Using Lemma 1.4 (3), we see that
$P(k+2, T, a(T, Y, \delta_{k}f))=0$ and $P(k+4, T, a(T, Y, \delta_{k}^{2}f))=0$ for all $T>0$ .

Q. E. D.

The next theorem gives us sufficient conditions so that $P_{k+2r}(f)$ may belong
to $S_{k+2r}(\Gamma_{2})$ for $f\in M_{k+2r}^{r}(\Gamma_{2})$ .

THEOREM 2.3. Let $f\in M_{k}(\Gamma_{2})$ and $g\in M_{l}(\Gamma_{2})$ with $w>4$ where $k+l=w$ .
Let $r$ and $s$ be non-negative integers. Then we have the followzng:
(1) $\delta_{k}^{r}f\cdot\delta_{l}^{s}g$ is of bounded growth for $r+s\geqq 3$ . Especzally, $P_{w+2r}(g\delta_{k}^{r}f)$ belongs to
$S_{w+2r}(\Gamma_{2})$ for $r\geqq 3$ .
(2) If at least one of $f$ and $g$ is a cusp form, then $\delta_{k}^{r}f\cdot\delta_{l}^{s}g$ is of bounded
growth for all $r,$ $s\geqq 0$ .
(3) $P_{w+2}(g\partial_{k}f+f\partial_{l}g)$ belongs to $S_{w+2}(\Gamma_{2})$ . Especially, $P_{2k+2}(f\delta_{k}f)$ belongs to
$S_{2k+2}(\Gamma_{2})$ .
(4) $P_{w+4}(g\partial_{k}^{2}f+2\partial_{k}f\cdot\partial_{l}g+f\partial_{l}^{2}g)$ belongs to $S_{w+4}(\Gamma_{2})$ .

PROOF. In view of Lemma 2.1, we have only to check that the integral

$\int_{U}\int_{V}|\delta_{k}^{r}f(X+iY)||\delta_{l}^{s}g(X+iY)||Y|^{w+2tr+s)-8}e^{-\rho Tr(Y)}dYdX$

converges at $|Y|=0$ since $e^{-\rho Tr(Y)}$ is a rapidly decreasing function as $|Y|arrow\infty$

for any fixed $\rho>0$ . Since $\delta_{k}^{r}f\cdot\delta_{\iota}^{s}g$ belongs to $M_{w+2(r+S)}^{r+s}(\Gamma_{2})$ , by Lemma 2.1 (1),

we see that there exist positive constants $C_{8},$ $C_{9}$ such that

$|\delta_{k}^{r}f(X+iY)||\delta_{l}^{s}g(X+iY)|<C_{8}|Y|^{-(w+r+s)}$ for $Y<C_{9}E$ . (2.5)

Hence, the same argument as the proof of Sturm [18, Corollary 2] proves(1).
\langle Note that $w+2(r+s)-3-(w+r+s)>-1$ for $r+s>2.$ ) Without loss of generality,
we may assume that $g$ is a non-zero cusp form in the proof of (2). Then, by
Lemma 2.1 (2), we have

. $|\delta_{k}^{r}f(X+iY)||\delta_{l}^{s}g(X+iY)|<C_{10}|Y|^{-(k+r+s+l/2)}$ for $Y<C_{11}E$

instead of (2.5). Noting $l\geqq 10$ , we see that (2) holds by the same way.
For (3), we put $F=g\partial_{k}f+f\partial_{l}g-\partial_{w}fg\in M_{w+2}^{\infty}(\Gamma_{2})$ . By (1.4), we have
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$a((O, t, 0), Y, F)=0$ for all $t\geqq 0$ . Using $a({}^{t}UTU, Y, F)=|U|^{w}a(T, UY^{t}U, F)$

for $U\in GL(2, Z)$ , we see that $a(T, Y, F)=0$ for all $|T|=0$ . Hence, by (2.2), $F$

is of bounded growth. But $P_{w+2}(\partial_{w}fg)=0$ by Lemma 2.2. Therefore $P_{w+2}(g\partial_{k}f$

$+f\partial_{l}g)$ itself belongs to $S_{w+2}(\Gamma_{2})$ . Similarly, using (2.4), we see that $P_{w+4}(g\partial_{k}^{2}f$

$+2\partial_{k}f\cdot\partial_{l}g+f\partial_{l}^{2}g-\partial_{w}^{2}fg)$ belongs to $S_{w+4}(\Gamma_{2})$ . By Lemma 2.2, we have (4).

Q. E. D.

\S 3. Congruences of eigenvalues and Fourier coefficients.

If $f\in M_{k}(\Gamma_{1})$ is a normalized elliptic eigenform, then $\lambda(m, f)=a(m, f)$ and
the study of congruences for eigenvalues of Hecke operators is equivalent to
the study of congruences for Fourier coefficients. In case of Siegel modular
forms of degree $\geqq 2$, the situation is rather complicated, but a similar relation
exists. Here we study the degree two case. For each integer $m\geqq 1,$ $T(m)$ :
$M_{k}(\Gamma_{n})arrow M_{k}(\Gamma_{n})$ denotes the m-th Hecke operator. If $n\leqq 2$ and $f$ is a non-zero
eigen function of all Hecke operators $T(m)$ , we call $f$ an eigenform and denote
the eigenvalue of $T(m)$ by $\lambda(m, f)$ .

THEOREM 3.1. Let $R$ be the rzng of integers of an algebraic number field.
Let $f\in M_{k}(\Gamma_{2})$ be an utgenform and $g\in M_{w}(\Gamma_{2})$ be any form with $w\geqq k$ . We
assume that $a(mE, f)$ and $a(mE, g)$ belong to $R$ for all $m\geqq 1$ . Let $\mathfrak{p}$ be a prime
ideal of $R$ and suppose that there ensts a post tive integer $e$ such that

$m^{w-k}a(mE, f)\equiv a(mE, g)$ mod $\mathfrak{p}^{e}$ (3.1)

for all $m\geqq 1$ . Then, for all $m\geqq 1$ , we have

$m^{w-k}\lambda(m, f)a(E, f)\equiv a(E, T(m)g)$ mod $\mathfrak{p}^{e}$ . (3.2)

PROOF. From Proposition 2.1.2 and Theorem 2.3.1 of Andrianov [1], we
have for a prime power $p^{i}$ and for a positive integer $n$ which is prime to $p$ ,

$a(nE, T(p^{i})g)=\{\begin{array}{ll}a(n2^{i}E, g)+2^{w-2}a(n2^{i-1}E, g) if p=2,a(np^{i}E, g)+2\sum_{j=1}^{i}p^{(w-2)j}a(np^{i-j}E, g) if p\equiv 1 mod 4, a(np^{i}E, g) if p\equiv 3 mod 4.\end{array}$

(3.3)
The same formulas hold for $f$ also with $k$ instead of $w$ .

We prove that if $(m, n)=1$ , then

$a(nE, T(m)g)\equiv(mn)^{w-k}\lambda(m, f)a(nE, f)$ mod $\mathfrak{p}^{e}$ . (3.4)

We have (3.2) by setting $n=1$ in (3.4). We prove (3.4) by induction on the
number of primes dividing $m$ . In case of $m=1,$ $(3.4)$ certainly holds because of
(3.1). Next, we set $m=p^{i}m’$ with $(p, m’)=1$ . We note that $T(m)=T(P^{t})T(m’)$ .
Hence, using (3.3), if $p=2$ for example, we have
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$a(nE, T(m)g)=a(nE, T(2^{t})T(m’)g)$

$=a(n2^{i}E, T(m’)g)+2^{w-2}a(n2^{i-1}E, T(m’)g)$ .

By the induction hypotheses and the multiplicativity of eigenvalues, this is
congruent mod $\mathfrak{p}^{e}$ to the following:

$(mn)^{w-k}\lambda(m’, f)(a(n2^{i}E, f)+2^{k-2}a(n2^{i-1}E, f))$

$=(mn)^{w-k}\lambda(m’, f)a(nE, T(2^{i})f)$

$=(mn)^{w-k}\lambda(m, f)a(nE, f)$ .

The same is true for other primes $P$ also. Hence we have (3.4) for all co-prime
$m$ and $n$ . Q. E. D.

COROLLARY 3.2. Under the same assumptjOns and notations, we further
assume that:
(1) $g$ is also an eigenform,
(2) $a(E, g)\not\equiv O$ mod $\mathfrak{p}$ .
Then,

$m^{w-k}\lambda(m, f)\equiv\lambda(m, g)$ mod $\mathfrak{p}^{e}$ (3.5)

for all $m\geqq 1$ .

PROOF. By (3.1) with $m=1,$ $a(E, f)\equiv a(E, g)$ mod $\mathfrak{p}^{e}$ , which are units in $R_{\mathfrak{p}}$

(the localization of $R$ at $\mathfrak{p}$ ) by the assumption (2). Noting that $\lambda(m, f)$ and
$\lambda(m, g)$ are algebraic integers by Kurokawa [8, Theorem 1 (2)], we see that
(3.2) implies (3.5) as a congruence in $R$ . Q. E. D.

Now, we study a suitable condition which leads to the above congruence
(3.5). For example, when $w=k+2$ , if $a(T, g-(1/4\pi^{2})Df)$ belong to $\mathfrak{p}^{e}$ for all
$T\geqq 0$, then (3.1) is satisfied. Hence we have the congruence (3.5) under addi-
tional assumptions. But such a condition requiring all the Fourier coefficients
seems to be too restrictive for applications. So, in Theorem 3.4 below, we
formulate a condition which requires the Fourier coefficients at $mE(m\geqq 1)$ only.
For this purpose, we prepare a proposition.

PROPOSITION 3.3. Let $\{f_{1}, f_{n}\}(n=\dim S_{k}(\Gamma_{2}))$ be an ezgen basis of $S_{k}(\Gamma_{2})$ .
Let $K$ be an algebraic number field, $O_{K}$ its nng of integers, $\mathfrak{p}$ a Pnme ideal of
$O_{K}$ and $R$ the localization of $O_{K}$ at $\mathfrak{p}$ . Denote by $L$ the $compo\alpha te$ field of $K$ and
$Q(\lambda(m, f_{j})|m\geqq 1)$ for $j=1,$ $\cdots$ $n$ . $SuPPose$ that there exist post tive integers $m_{1}$ ,
$\ldots$ $m_{n}$ such that

$N_{L/K}(|(\lambda(m_{i}, f_{j}))_{1\leqq t,j\xi n}|)\not\equiv 0$ mod $\mathfrak{p}$ , (3.6)

where $N_{L/K}$ denotes the norm maPping from $L$ to K. Let $g\in S_{k}(\Gamma_{2})_{R}$ and assume
that
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$a(E, T(m_{i})g)\equiv 0$ mod $\mathfrak{p}^{e}$ (3.7)

for $i=1,$ $\cdots$ , $n$ with an integer $e>0$ . Then we have;

$a(mE, g)\equiv 0$ mod $\mathfrak{p}^{e}$ for all $m\geqq 1$ .

PROOF. We denote by $O_{L}$ the integer ring of $L$ .
First we remark the following fact. Let $S$ be a localization of $O_{L}$ , and

$f\in M_{w}(\Gamma_{2})_{S}$ be an eigenform. Then, if $a(E, f)\equiv 0$ modI for an ideal $I$ of $S$ ,
we have $a(mE, f)\equiv 0$ mod $I$ for all $m\geqq 1$ . Since $\lambda(m, f)$ are algebraic integers
in $O_{L}$ , this fact is obvious from the following equality:

$\sum_{m=1}^{\infty}\frac{a(mE,f)}{m^{s}}=a(E, f)\zeta(2s-2k+4)\zeta_{Q(\sqrt{}\overline{-1})}(s-k+2)^{-1}\sum_{m\approx 1}\frac{\lambda(m,f)}{m^{s}}$ , (3.8)

which is obtained by setting $D=-4,$ $x=trivial$ character, $N=N_{1}=E$ in Theorem
2.4.1 of Andrianov [1].

Now, write $g= \sum_{j\Rightarrow 1}^{n}c_{j}f_{j}$ with $c_{j}\in C$ . Let $\mathfrak{P}$ be a prime ideal of $O_{L}$ lying
above $\mathfrak{p}$ and $h$ be its ramification index. Then by (3.7),

$\sum_{j=1}^{n}\lambda(m_{i}, f_{j})c_{j}a(E, f_{j})\equiv 0$ mod $\mathfrak{P}^{eh}$ (3.9)

By (3.6), $|(\lambda(m_{i}, f_{j}))|\not\equiv 0$ mod $\mathfrak{P}$ Therefore, (3.9) has a unique solution modulo
$\mathfrak{P}^{eh}$ in the localization of $O_{L}$ at $\mathfrak{P}$ and, moreover, $c_{j}a(E, f_{j})\equiv 0$ mod $\mathfrak{P}^{eh}$ Since
$c_{j}f_{j}$ is an eigenform (or is equal to $0$), we have, as was remarked above,
$c_{j}a(mE, f_{j})\equiv 0$ mod $\mathfrak{P}^{eh}$ for all $m\geqq 1$ . So are $a(mE, g)$ . But $a(mE, g)\in R$ and
this yields $a(mE, g)\equiv 0$ mod $\mathfrak{p}^{e}$ for all $m\geqq 1$ . Q. E. D.

THEOREM 3.4. Let $K$ be an algebraic number field, $O_{K}$ its nng of integers,
$\mathfrak{p}$ its pnme ideal not divzckng the ideal (2), and $R$ the localization of $O_{K}$ at $\mathfrak{p}$ .
Let $f\in M_{w-2r}(\Gamma_{2})_{R}$ and $g\in S_{w}(\Gamma_{2})_{R}$ be ezgenforms $mth4<w-2r<w$ . Supp0se
that all the folloutng condr tions (1)$-(6)$ are satisfied:
(1) There exzst positive integers $m_{1},$

$\cdots$ $m_{n}$ such that

$N_{L/K}(|(\lambda(m_{i}, f_{j}))_{1\leqq i.j\leq n}|)\not\equiv 0$ mod $\mathfrak{p}$

where $n=\dim S_{w}(\Gamma_{2})$ and $\{f_{1}, f_{n}\}$ is an ergen basis of $S_{w}(\Gamma_{2})$ and $L$ is the
comp0stte field of $K$ and $Q(\lambda(m, f_{j})|m\geqq 1)$ for $j=1,$ $\cdots$ , $n$ .
(2) There exist a posr tive integer $e$ and $2s(s\geqq 1)$ modular forms $h_{1,t}\in M_{k_{1\cdot t}}(\Gamma_{2})_{R}$ ,
$h_{2.t}\in M_{k_{2\cdot t}}(\Gamma_{2})_{R}$ with $k_{1,t}+k_{2.t}=w-2r,$ $r_{1.t}\geqq 0,$ $r_{2.t}\geqq 1$ and $r_{1.t}+r_{2,t}=r$ for
$t=1,$ $\cdots$ $s$ such that

$a(mE, f) \equiv a(mE,\sum_{t=1}^{s}\nu_{t}h_{1.t}h_{2.t})$ mod $\mathfrak{p}^{e}$

for all $m\geqq 1$ , where
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$\nu_{t}=\eta(k_{1}t+r_{1,t}-1,$ $k_{1,t}- \frac{1}{2})\eta(k_{2,t}+r_{2,t}-1,$ $k_{2t}- \frac{1}{2})$ .

(3) $\mathfrak{p}^{e}$ &vides $(2w-2r-3)I$ where I is the ideal of $R$ generated by $a(T, h_{2,t})$ for
$T\geqq 0,$ $T\neq 0$ and $t=1,$ $\cdots$ $s$ .
(4) $a(E, f)\equiv a(E, g)$ mod $\mathfrak{p}^{e}$ and $a(E, f)\not\equiv O$ mod $\mathfrak{p}$ .
(5) $m\S^{r}\lambda(m_{i}, f)\equiv\lambda(m_{i}, g)$ mod $\mathfrak{p}^{e}$ for $i=1,$ $n$ .
(6) $\Sigma_{t=1}^{s}P_{w}(\delta_{k_{1,t}}^{r_{1\prime t}}h_{1,t}\cdot\delta_{k_{2,t}}^{r_{2t}}h_{2,t})$ belongs to $S_{w}(\Gamma_{2})$ .
Then we have:

$m^{2r}\lambda(m, f)\equiv\lambda(m, g)$ mod $\mathfrak{p}^{e}$ for all $m\geqq 1$ . (3.10)

PROOF. For each $t$ , put

$h_{s.\iota}= \epsilon(w-3, w-r-2)\epsilon(w-\frac{5}{2},$ $w-r- \frac{3}{2})(2\pi i)^{-2r}P_{w}(\delta_{k_{1,t}}^{r_{1,t}}h_{1,i}\cdot\delta_{k^{2t}}^{r_{2,t}}h_{2t})$ .

Then, by Theorem 1.5, we see that

$a(mE, h_{3.t})-\nu_{t}m^{2r}a(mE, h_{1,t}h_{2,t})$

belongs to $(2w-2r-3)I$ . (See the definition of the ideal $I$ in (3).) We put
$h_{s}=\Sigma_{t=1}^{s}h_{3.t}$ . By the condition (6), $h_{3}$ belongs to $S_{w}(\Gamma_{2})$ . Using (2) and (3), we
have

$a(mE, h_{3})\equiv m^{2r}a(mE, f)$ mod $\mathfrak{p}^{e}$ .

Hence, by Theorem 3.1, we have (particularly)

$a(E, T(m_{i})h_{3})\equiv m_{i}^{2r}\lambda(m_{i}, f)a(E, f)$ mod $\mathfrak{p}^{e}$ .
Therefore, using (4) and (5), we obtain

$a(E, T(m_{i})(g-h_{3}))\equiv\lambda(m_{i}, g)a(E, g)-m_{i}^{2r}\lambda(m_{i}, f)a(E, f)$ mod $\mathfrak{p}^{e}$

$\equiv 0$ mod $\mathfrak{p}^{e}$ .
Hene by Proposition 3.3 and the assumption (1), $a(mE, g)\equiv a(mE, h_{3})\equiv m^{2r}a(mE, f)$

$mod \mathfrak{p}^{e}$ for all $m\geqq 1$ . Using Corollary 3.2 with (4), we have (3.10). Q. E. D.

REMARK 3.5. By Igusa [4], if $\mathfrak{p}$ divides neither the ideal (2) nor the ideal
(3), then any element of $M_{k}(\Gamma_{2})_{R}$ is an R-linear combination of $\varphi_{4}^{a}\varphi_{6}^{b}x_{10}^{c}x_{12}^{d}$ where
$a,$ $b,$ $c$ and $d$ are non-negative integers and $4a+6b+10c+12d=k$ . (It is convenient
in numerical computation to use $4\chi_{10}$ and $12\chi_{12}$ instead of $\chi_{10}$ and $\chi_{12}.$ ) If $r\geqq 3$ , it is
possible to put all $r_{1,t}=0$ without violating the condition (6). Suppose moreover
that $\mathfrak{p}^{e}$ divides the ideal $(2w-2r-3)R$ and that $\mathfrak{p}$ does not divide rational primes
less than or equal to $2r+21$ . Then, selecting $h_{2.t}$ from $\varphi_{4},$ $\varphi_{6},$

$\chi_{10}$ and $\chi_{12}$ we
see that $\nu_{t}$ is a unit in $R$ . Therefore, conditions (2) and (3) are satisfied in this
case.
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\S 4. Examples.

We prove some congruences between Siegel modular forms of degree two
and different weights by using Theorem 3.4. For simplicity, we shall omit sub-
script $t$ in case of $s=1$ . We note that, in the situation of Theorem 3.4, it is
enough to calculate values in $R/\mathfrak{p}^{e}R\cong O_{K}/\mathfrak{p}^{e}O_{K}$ to prove congruences modulo $\mathfrak{p}^{e}$ .
This device reduces computational complexity.

First, we recall some facts on Siegel modular forms of degree 1 and degree
2. For an even integer $k\geqq 4$ , we denote by $E_{k}\in M_{k}(\Gamma_{1})$ the Eisenstein series
normalized to $a(O, E_{k})=1$ and, for dim $S_{k}(\Gamma_{1})=1$ , we denote by $\Delta_{k}$ the normalized
eigen cusp form of weight $k$ . The graded C-algebra of even weight $\oplus_{k\geqq 0}M_{2k}(\Gamma_{2})$

is generated by four elements. They are $\varphi_{4}\in M_{4}(\Gamma_{2}),$ $\varphi_{6}\in M_{6}(\Gamma_{2}),$ $\chi_{10}\in S_{10}(\Gamma_{2})$

and $\chi_{12}\in S_{12}(\Gamma_{2})$ . They are uniquely determined by the following normalizing
conditions: $a(O, \varphi_{4})=1,$ $a(O, \varphi_{6})=1,$ $a((1,1,1), 4\chi_{10})=-1$ and $a((1,1,1), 12\chi_{12})=1$ .
We can calculate their Fourier coefficients using the method of Maass [11, S\"atze
1 and 2]. In general, we denote Eisenstein series of weight $k$ and degree 2 by
$\varphi_{k}$ . It is known that $\Phi\varphi_{k}=E_{k}$ , where $\Phi$ is the Siegel $\Phi$-operator.

There are two liftings from degree 1 to degree 2 for each even integer
$k\geqq 4$ . The one is Eisenstein lifting $[]$ : $M_{k}(\Gamma_{1})arrow M_{k}(\Gamma_{2})$ , which is defined by
the generalized Eisenstein series attached to elliptic modular forms. If $f\in M_{k}(\Gamma_{1})$

is an eigenform, $[f]$ is uniquely determined by the conditions that $\Phi[f]=f$

and that $[f]$ is an eigenform. In this case, we have $\lambda(p, [f])=(1+p^{k-2})\lambda(p, f)$

for a rational prime $p$ . The other is the Saito-Kurokawa lifting $\sigma_{k}$ : $M_{2k-2}(\Gamma_{1})$

$arrow M_{k}(\Gamma_{2})$ constructed by Maass [12, 13, 14] and Andrianov [2]. As for eigen-
values, we have $\lambda(P, \sigma_{k}(f))=p^{k-2}+p^{h-1}+\lambda(p, f)$ for an eigenform $f\in M_{2k-2}(\Gamma_{1})$ .
As to $M_{k}(\Gamma_{1})$ , we know $M_{k}(\Gamma_{1})=E_{k}(\Gamma_{1})\oplus S_{k}(\Gamma_{1})$ with $E_{k}(\Gamma_{1})=CE_{k}$ . In the
degree two case, these two liftings give rise to the following decomposition:

$M_{k}(\Gamma_{2})=E_{k}^{I}(\Gamma_{2})\oplus E_{k}^{Il}(\Gamma_{2})\oplus S_{k}^{I}(\Gamma_{2})\oplus S_{k}^{II}(\Gamma_{2})$ ,

where $E_{k}^{I}(\Gamma_{2})=[E_{k}(\Gamma_{1})]=C\cdot\varphi_{k},$ $E_{k}^{Il}(\Gamma_{2})=[S_{k}(\Gamma_{1})],$ $S_{k}^{I}(\Gamma_{2})=\sigma_{k}(S_{2k-2}(\Gamma_{1}))$ and
$S_{k}^{II}(\Gamma_{2})=S_{k}^{I}(\Gamma_{2})^{\perp}$ (orthogonal complement of $S_{k}^{I}(\Gamma_{2})$ in $S_{k}(\Gamma_{2})$ with respect to the
Petersson inner product). We may call an element of $S_{k}^{II}(\Gamma_{2})$ “a generic form”
since it does not lie in the image of above two liftings. It is shown by Kuro-
kawa [5, \S 5] that

$S_{20}^{I}(\Gamma_{2})=Cx_{20}^{(1)}\oplus cx_{20}^{(2)}$ ,

$S_{20}^{II}(\Gamma_{2})=Cx_{20}^{(3)}$

where $\chi_{20}^{(j)}$ ($]^{=1},2$ and 3) are eigenforms dePned by

$x_{20}^{(1)}=1840x_{10\varphi_{4}\varphi_{6}}-12(7699+\sqrt{D})^{\chi_{12}}\varphi_{4}^{2}-16588800(8021+\wedge Dx_{10}^{2}$ ,

$x_{20}^{(2)}=184ox_{10\varphi_{4}\varphi_{6}}-12(7699-\sqrt{D})\chi_{12\varphi_{4}^{2}}-16588800(8021-\sqrt{D})x_{10}^{2}$ ,
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and
$x_{20}^{(3)}=4\chi_{10\varphi_{4}\varphi_{6}-12x_{12\varphi_{4}^{2}}+28569600x_{10}^{2}}$

with $D=63737521$ . We note that $x_{20}^{(3)}$ has the minimal weight 20 among generic
forms.

THEOREM 4.1. The following congruence holds for all $m\geqq 1$ ;

$\lambda(m, \chi_{20}(3))\equiv m^{2}\lambda(m, [\Delta_{18}])$ mod 7. (4.1)

REMARK. This congruence seems to be valid with mod 49, as was conjec-
tured by Kurokawa [7]. In the following, some computations are done in modulo
49 to clear the situation.

PROOF. Since $\Phi([\Delta_{18}]-[\Delta_{12}]\varphi_{6})=0$ , there exist $\alpha,$ $\beta\in C$ such that

$7[\Delta_{18}]=7[\Delta_{12}]\varphi_{6}+\alpha f_{18}+\beta g_{18}$ , (4.2)

where $f_{18}=4\chi_{10\varphi_{4}^{2}}$ and $g_{18}=12\chi_{12\varphi_{6}}$ . We use the method of Kurokawa [6] for
calculating $\alpha$ and $\beta$ . Let $S$ be (1, 1, 1). We apply $T(2)$ on (4.2) and compare
the Fourier coefficients at $E$ and $S$ . Then, we have:

$\alpha(a(2S, f_{18})-\lambda a(S, f_{18}))+\beta(a(2S, g_{18})-\lambda a(S, g_{18}))$

$+(a(2S, 7[\Delta_{12}]\varphi_{6})-\lambda a(S, 7[\Delta_{12}]\varphi_{6}))=0$ ,

$\alpha(a(2E, f_{18})-\mu a(E, f_{18}))+\beta(a(2E, g_{18})-\mu a(E, g_{18}))$

$+(a(2E, 7[\Delta_{12}]\varphi_{6})-\mu a(E, 7[\Delta_{12}]\varphi_{6}))=0$ ,

where
$\lambda=\lambda(2, [\Delta_{18}])=-34603536$ ,

$\mu=\lambda-2^{16}=-34669072$ .
By numerical values listed in Kurokawa [5] and Resnikoff-Saldana [15], we
have the following table.

$\frac{T}{a(T,f_{18}),a(T,7[\Delta_{12}]\varphi_{6})a(T,g_{18})}|_{-}^{-\frac{ES2E2S}{581492-6673296\Re 34320001011902560320162-1263008-24240}}$

Hence we have
$\alpha=80136/143\equiv 7$ mod 49,

$\beta=66960/143\equiv 18$ mod 49.
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Here we consider these congruences in $Z_{(7)}$ . Observing these values, we put,
in Theorem 3.4, as follows: $K=Q,$ $\mathfrak{p}=(7),$ $e=1,$ $w=20,$ $f=23\cdot 7[\Delta_{18}],$ $g=12\chi_{20}^{(3)}$ ,
$s=2,$ $r_{1.t}=0,$ $r_{2,t}=1(t=1,2),$ $k_{1,1}=k_{2,2}=12,$ $h_{1.1}=h_{2.2}=7[\Delta_{12}]+18\cdot 12\chi_{12}k_{1.2}=k_{2.1}$

$=6,$ $h_{1.2}=11\varphi_{6}$ and $h_{2.1}=23\varphi_{6}$ . Since all the Fourier coefficients of $\varphi_{6},12\chi_{12}$ ,
$7[\Delta_{12}],$ $f_{18},$ $g_{18}$ and $\chi_{20}^{(3}$ ‘ are rational integers by Igusa [4, Theorem 1] and Kuro-
kawa [6], all the Fourier coefficients of $f,$ $g,$ $h_{1,t}$ and $h_{2,t}(t=1,2)$ belong to
$R=Z_{(7)}$ .

Now we can verify that all the conditions (1) $-(6)$ of Theorem 3.4 are satisfied.
(1) We take $m_{1}=1,$ $m_{2}=2,$ $m_{3}=9$ and $f_{j}=x_{20}^{(j)}$ for $j=1,2$ and 3. We put $D=$

63737521. Then using Kurokawa [5, \S 7], we have

$|(\lambda(m_{i}, f_{j}))_{1\leq i,j\leqq 3}|\equiv|_{2+\sqrt{D}}^{1}5+6\sqrt{D}$

$\equiv 2\sqrt{D}$ mod 7.

Since, $N_{Q(\sqrt{}\overline{D})/q}(2\mathcal{F}D)\equiv-4D\not\equiv 0$ mod 7, (1) is satisfied.
(2) By the definition of $h_{1.t}$ and $h_{2.t}$ , we have

$\sum_{t=1}^{2}\nu_{t}h_{1.t}h_{2.t}\equiv 2277(7[\Delta_{12}]\varphi_{6}+18\cdot 12\chi_{12\varphi_{6}})$ mod 49

$\equiv 23(7[\Delta_{18}]-\alpha f_{18})$ mod49.

Using $\alpha\equiv 0$ mod 7 and $f_{18}\in M_{18}(\Gamma_{2})_{Z}$ , we see that (2) is satisfied.
(3) In our case, $2w-2r-3=35=5\cdot 7$ . Since $h_{2.t}\in M_{k_{2,t}}(\Gamma_{2})_{R}$ for $t=1$ and 2, we
have $(2w-2r-3)I\subset 7R$ .
(4) From values of $a$ and $\beta$ , we have $a(E, 23\cdot 7[\Delta_{18}])\equiv 2$ mod 49, which is con-
gruent to $a(E, 12x_{20}^{(3)})$ mod 49.
(5) By values in Kurokawa [5], we have $\lambda(m, x_{20}^{(3)})-m^{2}\lambda(m, [\Delta_{18}])\equiv 0$ mod 49 for
$m=2$ and 9 (cf. Remark 4.2 below). So condition (5) is satisfied (for mod 49 also).

(6) We have $h_{1.1}\delta_{6}h_{2,1}+h_{1,2}\delta_{12}h_{2,2}=(253/2)(\varphi_{6}\partial_{12}h_{1,1}+h_{1,1}\partial_{6}\varphi_{6})$ . Using Theorem
2.3 (3), we see that the condition (6) is satisPed.

Thus, by Theorem 3.4, the congruence (4.1) is proved. Q. E. D.

REMARK 4.2. We have: $\lambda(m, \chi_{20}^{(3)})-m^{2}\lambda(m, [\Delta_{18}])=2^{6}\cdot 3\cdot 7^{3}\cdot 2089,2^{4}\cdot 3^{4}\cdot 7^{2}$ .
26140973, $-2^{12}\cdot 3^{3}\cdot 7^{2}\cdot 20287\cdot 92333$ and $2^{6}\cdot 3^{8}\cdot 7^{2}\cdot 139\cdot 5814268161029177$ for $m=2,3,4$

and 9, respectively. Hence modulo 49 version of the congruence (4.1) holds for
all $m=2^{a}3^{b}$ with non-negative integers $a$ and $b$ .

Our next examples can be proved by aPplying Theorem (B) of Kurokawa
[7], which uses the theory of the Saito-Kurokawa lifting $\sigma_{k}$ , to the following
congruences:
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$\lambda(m, \Delta_{18})\equiv m^{2}\lambda(m, E_{14})$ mod 5,

$\lambda(m, \Delta_{22})\equiv m^{4}\lambda(m, E_{14})$ mod 17,

$\lambda(m, \Delta_{26})\equiv m^{6}\lambda(m, E_{14})$ mod 19.

Here we prove the corresponding congruences independently from the above
congruences.

THEOREM 4.3. The following congruences hold for all $m\geqq 1$ :

$\lambda(m, \chi_{10})\equiv m^{2}\lambda(m, \varphi_{8})$ mod 5, (4.3)

$\lambda(m, \chi_{12})\equiv m^{4}\lambda(m, \varphi_{8})$ mod 17, (4.4)

$\lambda(m, \chi_{14})\equiv m^{6}\lambda(m, \varphi_{8})$ mod 19. (4.5)

PROOF. In the proof of (4.3), we use Theorem 1.5 and Theorem 3.4 with
a slight modification. We put $K=Q,$ $\mathfrak{p}=(5),$ $R=Z_{(5)},$ $s=1,$ $h_{1}=\varphi_{4}$ and $h_{2}=5^{-1}\varphi_{4}$ .
Then, $h_{2}$ does not belong to $M_{4}(\Gamma_{2})_{R}$ . Taking into account that 5 divides
$a(T, \varphi_{4})$ for $T\neq 0$ , we see that $a(T_{1}, h_{1})a(T_{2}, h_{2})\in Z$ for $T_{1}+T_{2}=mE$ under
$m\geqq 1$ in (1.12). Hence we see that (1.11) belongs to $(2w-2r-3)R$ and conse-
quently we have Theorem 3.4. Further we put $f=14\cdot 5^{-1}\varphi_{8},$ $g=7\cdot 4\chi_{10}$ $w=10$ ,

$r=1,$ $r_{1}=0,$ $r_{2}=1,$ $e=1$ , and $k_{1}=k_{2}=4$ . Noting $\dim S_{10}(\Gamma_{2})=1$ , we see that con-
ditions (1) and (5) are satisfied with $m_{1}=1$ . Using $\varphi_{4}^{2}=\varphi_{8}$ , we see that $f=14h_{1}h_{2}$ ,

hence we have (2). In our case, $2w-2r-3=15$ and $a(E, f)\equiv a(E, g)\equiv 4$ mod5,
which prove (3) and (4). The condition (6) holds because of Theorem 2.3 (3).

Therefore, (4.3) is proved.
In the proofs of (4.4) and (4.5), there is no need of modification as above.

We put $K=Q$ and $k_{j,t}=4$ for $j=1,2$ and all $t$ . We note that $\varphi_{4}^{2}=\varphi_{8}\in M_{8}(\Gamma_{2})_{Z}$

and $a(E, \varphi_{8})=175680$ . For (4.4) we put $s=2,$ $\mathfrak{p}=(17),$ $w=12,$ $r=2,$ $r_{1,1}=0,$ $r_{2,1}=2$ ,
$r_{1.2}=r_{2,2}=1,$ $h_{1,1}=h_{1,2}=\varphi_{4},$ $h_{2}1^{=7\varphi_{4}},$ $h_{2,2}=9\varphi_{4},$ $f=8\varphi_{8}$ and $g=5\cdot 12\chi_{12}$ then we
have 5 $\cdot$ (9/2) $\cdot 4\cdot(7/2)\equiv(4\cdot(7/2))^{2}\equiv 9$ mod 17 and $a(E, f)\equiv a(E, g)\equiv 16$ mod 17. Also
we see that

$\sum_{t=1}^{2}\delta_{4}^{r_{1,t}}h_{1,t}\delta_{4}^{r_{2,t}}h_{2}t^{=\frac{441}{4}(\varphi_{4}\partial_{4}^{2}\varphi_{4}+(\partial_{4}\varphi_{4})^{2})}$ .

For (4.5) we put $s=1,$ $r=3,$ $r_{1}=0,$ $r_{2}=3,$ $\mathfrak{p}=(19),$ $w=14,$ $h_{1}=h_{2}=\varphi_{4},$ $f=2\varphi_{8}$ and
$g=6\cdot 4\chi_{14}$ then we have 6 $\cdot$ (11/2) $\cdot 5\cdot(9/2)\cdot 4\cdot(7/2)\equiv 2$ mod 19 and $a(E, f)\equiv a(E, g)\equiv$

$12$ mod 19. Hence, in both cases, conditions (2) and (4) are satisfied. For (3), we
have $p=(2w-2r-3)$ . Again observing $dimS_{12}(\Gamma_{2})=dimS_{14}(\Gamma_{2})=1$ , we have (1)

and (5) by taking $m_{1}=1$ . Using Theorem 2.3 (4) and (1), we see that (6) holds.
Therefore all the conditions (1) $-(6)$ of Theorem 3.4 are satisfied.

Thus, the congruences $(4.3)-(4.5)$ are proved. Q. E. D.
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