J. Math. Soc. Japan Vol. 38, No. 1, 1986

On Z_p -extensions of real quadratic fields

By Takashi FUKUDA and Keiichi KOMATSU

(Received Sept. 18, 1984)

§0. Introduction.

Let k be a finite totally real extension of Q, and p an odd prime number. Concerning the Greenberg's conjecture (cf. [2]) which states that Iwasawa invariants $\mu_p(k)$ and $\lambda_p(k)$ both vanish, we have obtained some results in the previous paper [1]. The purpose of this paper is to extend the results in our previous work.

For a finite algebraic number field K, we denote by h_K , C_K , and E_K the class number of K, the ideal class group of K, and the unit group of K, respectively. We denote also by |X| the cardinality of a finite set X.

In the following, we assume that k is a real quadratic field and ε denotes the fundamental unit of k. Let p be an odd prime number which splits in k/Q, and \mathfrak{P} a prime of k lying above p. Take $\alpha \in k$ such that $\mathfrak{P}^{n_k} = (\alpha)$. We define n_1 (resp. n_2) to be the maximal integer such that $\alpha^{p-1} \equiv 1 \pmod{p^{n_1} \mathbb{Z}_p}$ (resp. $\varepsilon^{p-1} \equiv 1 \pmod{p^{n_2} \mathbb{Z}_p}$). Note that n_1 is uniquely determined under the condition $n_1 \leq n_2$. For the cyclotomic \mathbb{Z}_p -extension

 $k = k_0 \subset k_1 \subset k_2 \subset \cdots \subset k_n \subset \cdots \subset k_{\infty},$

let A_n be the *p*-primary part of the ideal class group of k_n , B_n the subgroup of A_n consisting of ideal classes which are invariant under the action of $\operatorname{Gal}(k_n/k)$, and D_n the subgroup of A_n consisting of ideal classes which contain a product of ideals lying over *p*. Let E_n be the unit group of k_n . For $m \ge n \ge 0$, $N_{m,n}$ denote the norm maps. We fix a topological generator σ of $G(k_{\infty}/k)$. Let ζ_p be a primitive *p*-th root of unity, and A_0^* the *p*-primary part of the ideal class group of $k(\zeta_p)$. Our main theorems are

THEOREM 1. Let k be a real quadratic field and p an odd prime number which splits in k/Q. Assume that

(1) $n_1=1$, and

(2) $A_0 = D_0$.

Then, for $n \ge n_2 - 1$, we have $|A_n| = |D_n| = |D_0| \cdot p^{n_2 - 1}$.

Concerning the Iwasawa invariants $\mu_p(k)$, $\lambda_p(k)$ and $\nu_p(k)$, we obtain the next corollary.

COROLLARY. Under the same assumption as Theorem 1, we have $\mu_p(k) = \lambda_p(k) = 0$ and $\nu_p(k) = \nu + n_2 - 1$, where ν is the integer such that $|A_0| = p^{\nu}$.

THEOREM 2. Let k be a real quadratic field and p an odd prime number which splits in k/Q. Assume that

- (1) $2 \leq n_1 < n_2$,
- (2) $|A_0| = 1$, and
- (3) A_0^* is an elementary p-abelian group.

Then, for $n \ge n_1 + n_2 - 2$, we have $(A_n : D_n) = p^{n_1 - 1}$, $|D_n| = p^{n_2 - 1}$, and $|A_n| = p^{n_1 + n_2 - 2}$.

COROLLARY. Under the same assumption as Theorem 2, we have $\mu_p(k) = \lambda_p(k) = 0$ and $\nu_p(k) = n_1 + n_2 - 2$.

REMARK. Note that $1=n_1 < n_2$ implies $A_0=D_0$. Hence, the assumption (2) of Theorem 1 is essential only when $n_1=n_2=1$ and $|A_0| \neq 1$.

§1. Proof of theorems.

We first refer to the following proposition.

PROPOSITION 1 (cf. Proposition 1 [1]). Let k be a real quadratic field and p an odd prime number which splits in k/Q. Then, for $n \ge n_2 - 1$, we have $|B_n| = |A_0| \cdot p^{n_2 - 1}$.

LEMMA 1. Let k and p be as in Proposition 1. Then,

- (1) $D_{n}^{h_{k}p^{n_{2}-n_{1}-1}} \not\subset A_{n}^{\sigma-1}$ for $n \ge n_{2}-1$, and
- (2) $D_n^{h_k p^{n_2-n_1}} \subset A_n^{\sigma-1}$ for $n \ge n_2 1$.

PROOF. Let $p=\mathfrak{PP}$ be the prime factorization of p in k, and $\mathfrak{P}^{h_k}=(\alpha)$ for $\alpha \in k$. Let \mathfrak{P}_n be the prime of k_n lying above \mathfrak{P} . (1) Assume that $D_n^{h_k p^{n_2-n_1-1}} \subset A_n^{\sigma-1}$. Then, $\mathfrak{P}_n^{h_k p^{n_2-n_1-1}} = I_n^{\sigma-1}(\alpha_n)$ for some ideal I_n of k_n and $\alpha_n \in k_n$. Hence, $\alpha^{p^{n_2-n_1-1}} = \pm N_{n,0}(\alpha_n)\varepsilon^m$ for some integer m, where ε is the fundamental unit of k. Now, $N_{n,0}(\alpha_n)$ is \mathfrak{P}' -adic p^{n_2-1} -th power for $n \ge n_2-1$ by local class field theory, and so is ε^m by definition of n_2 . But $\alpha^{p^{n_2-n_1-1}}$ is just \mathfrak{P}' -adic p^{n_2-2} -th power. It is a contradiction. (2) By definition of n_1 and n_2 , $\alpha^{(p-1)p^{n_2-n_1}}$ and ε^{p-1} are both generators of $1+p^{n_2}Z_p$. Hence, if we put $x=\alpha^{p^{n_2-n_1}}\varepsilon^m$, then $x^{p-1}\in 1+p^{n+1}Z_p$ for some integer m. Then, by local class field theory, x is a \mathfrak{P}' -adic norm for k_n/k and also \mathfrak{L} -adic norm if \mathfrak{L} is a prime of k_n prime to p. Hence, by the product formula of the norm residue symbol and Hasse's norm theorem, x is a global norm. Let $x=N_{n,0}(\alpha_n)$ for some $\alpha_n \in k_n$ and put $I_n = \mathfrak{P}_n^{h_k p^{n_2-n_1}(\alpha_n)^{-1}$. Then,

 \mathbf{Z}_{p} -extensions

$$N_{n,0}(I_n) = (\alpha^{p^{n_2 - n_1}} N_{n,0}(\alpha_n)^{-1}) = (\varepsilon^{-m}) = (1).$$

Hence, $I_n = J_n^{\sigma-1}$ for some ideal J_n of k_n .

We consider A_n as a $\mathbb{Z}_p[G(k_{\infty}/k)]$ -module.

LEMMA 2. Let k and p be as in Proposition 1. If $|A_0|=1$ and $\rho \in 1+p\mathbb{Z}_p$, then $A_n/A_n^{\sigma-\rho}$ is a cyclic group for all $n \ge 0$.

PROOF. We denote also by σ the restriction of σ to k_n . Let L be the intermediate field of the Hilbert *p*-class field of k_n which corresponds to $A_n^{\sigma-\rho}$ and put $X = G(L/k_n)$. By class field theory, $X \cong A_n/A_n^{\sigma-\rho}$. Hence, if $\tilde{\sigma}$ denotes an extension of σ to L, then $\tilde{\sigma}^{-1}\tau\tilde{\sigma} = \tau^{\rho}$ for $\tau \in X$. If M denotes the intermediate field of L/k_n corresponding to X^p , we can easily see that M/k is an abelian extension. Let \mathfrak{P} and \mathfrak{P}' be the primes of k lying above p and N the intermediate field of M/k corresponding to the inertia group of \mathfrak{P}' for M/k. By the assumption $|A_0|=1$, \mathfrak{P} is totally ramified in N/k. Therefore, $X/X^p \cong G(M/k_n) \cong G(N/k)$ is isomorphic to the Galois group of a finite abelian totally ramified extension of $k_{\mathfrak{P}}=\mathbf{Q}_p$ which is cyclic by local class field theory. Hence, X is cyclic.

Let $k^* = k(\zeta_p)$ where ζ_p is a primitive *p*-th root of unity and

$$k^* = k_0^* \subset k_1^* \subset k_2^* \subset \cdots \subset k_n^* \subset \cdots \subset k_\infty^*$$

the cyclotomic \mathbb{Z}_p -extension. We identify $G(k_{\infty}/k)$ and $G(k_{\infty}^*/k^*)$, and use the same topological generator σ . There exists a *p*-adic unit κ such that $\zeta^{\sigma} = \zeta^{\kappa}$ for all *p*-power-th roots of unity ζ .

LEMMA 3. Let F be a finite extension of Q, K a cyclic extension of F and ζ_m a primitive m-th root of unity. We assume that K contains ζ_m . Let L be a cyclic extension of K of degree m such that L is a Galois extension of F. We assume that there exists an element σ of G(L/F) of order m such that the restriction of σ to K is a generator of G(K/F). Let κ be an integer such that $\zeta_m^{\sigma} = \zeta_m^{\kappa}$. If $\sigma^{-1}\rho\sigma = \rho^{\kappa}$ for any element ρ of G(L/K), then there exists an element a of F such that $L = K(a^{1/m})$.

PROOF. Since the extension L/K is a Kummer extension, there exists an element α of K such that $L = K(\alpha^{1/m})$. Hence, there exists a generator τ of G(L/K) such that $(\alpha^{1/m})^{\tau-1} = \zeta_m$. Now, we have

$$\left(\frac{(\alpha^{1/m})^{\sigma^{-1}}}{\alpha^{1/m}}\right)^{\tau} = \frac{((\alpha^{1/m})^{\tau^{\kappa}})^{\sigma^{-1}}}{\alpha^{1/m}\zeta_m} = \frac{(\alpha^{1/m}\zeta_m^{\kappa})^{\sigma^{-1}}}{\alpha^{1/m}\zeta_m} = \frac{(\alpha^{1/m})^{\sigma^{-1}}}{\alpha^{1/m}}.$$

Hence, we have $(\alpha^{1/m})^{\sigma-1} \in K$. Since $N_{K/F}((\alpha^{1/m})^{\sigma-1})=1$, there exists an element d of K such that $(\alpha^{1/m})^{\sigma-1}=d^{1-\sigma}$. Put $a=\alpha d^m$. Then we have $a \in F$ and $L=K(a^{1/m})$.

T. FUKUDA and K. KOMATSU

LEMMA 4. Let k and p be as in Proposition 1. Assume that $|A_0|=1$ and A_0^* is an elementary p-abelian group. Then, for $n \ge 1$, $|A_n/A_n^{\sigma-\kappa}| = p$ if $|A_n| \ne 1$.

PROOF. It is easy to see that $|A_n| \neq 1$ implies $|A_n/A_n^{q-r}| \neq 1$. By Lemma 2, $A_n/A_n^{\sigma-\kappa}$ is cyclic. Assume that $p^2 ||A_n/A_n^{\sigma-\kappa}|$. Let L_n be the intermediate field of the Hilbert *p*-class field of k_n which corresponds to $A_n^{p^2} A_n^{\sigma-\kappa}$. Then L_n/k_n is a cyclic unramified extension of degree p^2 and L_n/k is a Galois extension. By Lemma 3, there exists $a \in k^*$ such that $k_n^* L_n = k_n^* (a^{1/p^2})$. Since $k_n^*(a^{1/p^2})/k_n^*$ is unramified, $(a) = I_n^{p^2}$ for some ideal I_n of k_n^* . Let $p = (\Re \Re')^{p-1}$ be the prime factorization of p in k^* . Since an ideal of k^* prime to p is unramified in k_n^*/k^* , $(a) = I^{p^2} \mathfrak{P}^m \mathfrak{P}'^{m'}$ for some ideal I of k^* and $m, m' \in \mathbb{Z}$. Put $b=a^{(p-1)h_k}$. Since $\mathfrak{P}^{(p-1)h_k}$ and $\mathfrak{P}'^{(p-1)h_k}$ are both principal ideals of k, $(b) = I^{(p-1)h_k p^2}(\beta)$ for some $\beta \in k$. By the assumption on A_0^* , $I^{(p-1)h_k p} = (\gamma)$ for some $\gamma \in k^*$. Hence, $(b) = (\gamma^p \beta)$ in k^* and $b = \gamma^p \beta \eta$ for some unit η of k^* . Since k^* is a CM-field, $b^2 = \pm \gamma^{2p} \beta^2 \eta_+ \zeta_p^r$ for some real unit η_+ of k^* and an integer r. Then, $k_n^*(a^{1/p}) = k_n^*((b^2)^{1/p}) = k_n^*((\beta^2 \eta_+)^{1/p})$ is a cyclic extension of k_n^* of degree p. Since $k_n^*(a^{1/p^2})/k_n$ is an abelian extension, if we denote by $k_{n,+}^*$ the maximal real subfield of k_n^* , then the subextension $k_{n,+}^*((\beta^2 \eta_+)^{1/p})/k_{n,+}^*$ is also a Galois extension of degree p. Now, $\beta^2 \eta_+ \in k_{n,+}^*$. Hence, it follows that $k_{n,+}^*((\beta^2 \eta_+)^{1/p})$ contains ζ_p which is a contradiction.

PROOF OF THEOREM 1. Note that $A_n = D_n A_n^{\sigma-1}$ implies $A_n = D_n$. By using Proposition 1, it suffices to prove that $A_n = D_n A_n^{\sigma-1}$. (1) If $n_2 = 1$, then $|A_n/A_n^{\sigma-1}| = |B_n| = |A_0| = |D_0|$ for $n \ge 0$ by Proposition 1. If follows that $A_n = D_n A_n^{\sigma-1}$. (2) If $n_2 > 1$, then

$$A_n \supset D_n A_n^{\sigma-1} \supset D_n^{h_k p^{n_2-2}} A_n^{\sigma-1} \supseteq A_n^{\sigma-1} \quad \text{for} \quad n \ge n_2 - 1$$

by Lemma 1. We see that $(A_n: A_n^{\sigma-1}) = |B_n| = |A_0| \cdot p^{n_2-1}$ by Proposition 1. It is easy to see that

$$(D_n A_n^{\sigma-1}: D_n^{h_k p^{n_2-2}} A_n^{\sigma-1}) = |A_0| \cdot p^{n_2-2}$$

by a group theoretical argument. Hence, we have $A_n = D_n A_n^{\sigma-1}$.

PROOF OF THEOREM 2. We see that $|A_n/A_n^{\sigma-x}| = p$ and $|B_n| \ge p^2$ for $n \ge n_2 - 1$ by Proposition 1 and Lemma 4. From this together with the Greenberg's argument [1, p. 281-282], it can be shown that A_n is cyclic for all $n \ge 0$. Thus Lemma 1 shows that $A_n^{\sigma-1} = D_n^{p^{n_2-n_1}}$ for $n \ge n_2 - 1$. Hence, for $n \ge n_2 - 1$,

$$|A_{n}| = (A_{n}: A_{n}^{\sigma-1})|A_{n}^{\sigma-1}| = |B_{n}||D_{n}^{p^{n_{2}-n_{1}}}| = \frac{|B_{n}||B_{n}^{p^{n_{2}-n_{1}}}|}{(B_{n}^{p^{n_{2}-n_{1}}}: D_{n}^{p^{n_{2}-n_{1}}})} = \frac{p^{n_{1}+n_{2}-2}}{(B_{n}: D_{n})}.$$

\mathbf{Z}_{p} -extensions

Now, $(B_n: D_n) \leq p^{n_1-1}$ since

$$B_n \supset D_n \supset D_n^{p^{n_2 - n_1 - 1}} \supseteq 1.$$

We will show that if $n \ge n_2 - 1$ and $(B_n : D_n) > 1$, then $(B_n : D_n) > (B_{n+1} : D_{n+1})$, from which Theorem 2 follows. Assume that $(B_n : D_n) = (B_{n+1} : D_{n+1}) = p^s$ for some $n \ge n_2 - 1$ and $s \ge 1$. We first observe that

$$(E_0 \cap N_{n,0}(k_n): N_{n,0}(E_n)) = (E_0 \cap N_{n+1,0}(k_{n+1}): N_{n+1,0}(E_n)) = p^s$$

by the assumption $|A_0|=1$ and Lemma 1 of [1] and $(E_0 \cap N_{n+1,0}(k_{n+1}): N_{n,0}(E_n)) = p^{s-1}$ by Lemma 2 of [1]. Now, $|A_n| = |A_{n+1}|$ implies that $N_{n+1,n}: A_{n+1} \rightarrow A_n$ is an isomorphism and hence $|B_n| = |B_{n+1}|$ implies that $N_{n+1,n}: D_{n+1} \rightarrow D_n$ is also an isomorphism. Let I_n be an ideal of k_n such that $cl(I_n) \in B_n$ and I_{n+1} an ideal of k_{n+1} such that $cl(I_{n+1}) \in B_{n+1}$ and $N_{n+1,n}(cl(I_{n+1})) = cl(I_n)$. Then, $I_n^{\sigma-1} = (\alpha_n)$ for some $\alpha_n \in k_n$ and $I_{n+1}^{\sigma-1} = (\alpha_{n+1})$ for some $\alpha_{n+1} \in k_{n+1}$. We can choose α_n and α_{n+1} so that $N_{n+1,n}(\alpha_{n+1}) = \alpha_n$. Since

$$(N_{n+1,0}(\alpha_{n+1})) = (N_{n,0}(\alpha_n)) = N_{n,0}(I_n^{\sigma-1}) = (1)$$

we see that $N_{n,0}(\alpha_n) \in E_0 \cap N_{n+1,0}(k_{n+1})$. Thus, $N_{n,0}(\alpha_n^{p^{s-1}}) \in N_{n,0}(E_n)$ and $N_{n,0}(\alpha_n^{p^{s-1}}) = N_{n,0}(\varepsilon_n)$ for some $\varepsilon_n \in E_n$. The Hilbert Theorem 90 implies that $\alpha_n^{p^{s-1}} \varepsilon_n^{-1} = \beta_n^{\sigma-1}$ for some $\beta_n \in k_n$. Then, $I_n^{p^{s-1}}(\beta_n^{-1})$ is σ -invariant and $\operatorname{cl}(I_n^{p^{s-1}}) \in D_n$ by the assumption $|A_0| = 1$. Hence, $B_n^{p^{s-1}} \subset D_n$. It is a contradiction.

§2. Examples.

Let $k=\mathbf{Q}(\sqrt{m})$. We will give all *m* less than 2000 such that $n_2 \ge 2$ for p=3, 5 and 7. A star in the table indicates that we can not apply Theorem 1 or Theorem 2 to such *m*. We have been able to determine A_0^* only when p=3 or 5.

m	nl	ⁿ 2	h _k	[*] 0	λ	m	nl	ⁿ 2	h k	[*] 0	λ
43 58 67 79 82 85 103 106 109 139 151	1 2 1 1 2 2 1 2 1 2	2 2 3 2 2 2 2 2 2 2 2 2 2 2 2	1 2 1 3 4 2 1 2 1 1 1	(3)	* *	181 199 202 238 247 253 271 295 310 322 331	1 1 2 1 2 1 2 1 1 1	2 2 3 4 2 2 2 2 2 2	1 2 2 1 1 2 2 4 1	(3)	*

p=3

m	nl	ⁿ 2	h _k	^A 0	λ	m	nl	ⁿ 2	h _k	^A 0	λ
337 391 397 406 418 454 457 502 505 511 571 607 610 634 667 679 694 727 730 733 745 751 754 787 790 802 871 874 877 886 979 9947 1006 10027 1051 1162 1126 1125 1153 1222 1237 1246	$1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 1 2 2 1 1 4 2 2 1 4 2 2 1 4 2 2 1 4 2 2 2 1 4 2 2 2 1 4 2 2 2 2	(3)	* ** * * * * * * * * *	1249 1258 1261 1294 1297 1318 1330 1333 1339 1390 1429 1453 1462 1477 1486 1498 1501 1507 1546 1555 1579 1585 1603 1669 1642 1645 1663 1669 1678 1663 1669 1714 1726 1738 1795 1810 1834 1855 1858 1867 1894 1903 1921 1963 1993	1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 2 2 2 4 2 3 4 2 3 4 2 3 2 2 2 2 2 2	1 4 2 7 1 1 4 1 6 2 1 5 1 4 1 5 2 1 4 6 2 1 2 2 1 2 2 1 1 1 2 2 4 2 4 2 4 2 4 2	(3) (3) (3)	** * * * ** * *** *

.

p=3 (continued)

\mathbf{Z}_{p} -extensions

p=5

m	nl	ⁿ 2	h _k	^A 0	λ	m	nl	ⁿ 2	h _k	^A 0	λ
39 51 69	1 1 1	2 2 2	2 2 1			1074 1079 1086	1 2 1	2 2 2	2 2 6		*
89 109 114	1 1 1	3 2 2	1 1 2			1111 1191 1194	2 1 1	· 2 · 3	10 6 2		*
134 139 161 186	1 1 2	2 3 2 2	1 1 2		*	1214 1231 1261 1279	1 2 1	2 2 3	1 2 1		*
191 211 214	2 1 1	3 2 2	1 1 1	(5,5)		1281 1289 1301	2 1 1	222	2 1 1		*
241 259 271	1 2 1	2 2 2	1 2 1		*	1321 1339 1351	1 1 1	2 2 2	1 6 8		
314 326 366 426	1 1 1	2 2 2 2	2 3 2			1366 1389 1406		2 2 2 2	1 1 6		
420 434 466 489	1 2 1 1	2 3 2 2	4 2 1	(25)	*	1420 1434 1441 1461		2 2 2 2	2 1 1		
501 509 514	2 1 1	2 2 3	1 1 4		*	1479 1529 1531	1 1 1	2 2 2	4 1 1		
519 526 534 541	1 1 2 1	2 2 2 2	2 1 2 1		*	1586 1621 1631 1641		2 3 2 4	4 1 4 5		
574 581 589	1 1 1	2 2 3	6 1 1			1686 1699 1731		2 2 3	2 1 4		
606 626 629	1 1 1	4 2 2	2 4 2			1741 1754 1761	1 2 1	2 2 2	1 2 7		*
634 674 699 719	1 1 2 1	4 2 2 2	2 4 2		*	1786 1829 1834 1851		2 2 2 2	2 1 2 6		
734 761 789	2 1 1	222	1 3 1		*	1861 1874 1891		2 2 2 2	1 2 2		*
791 869 874	2 1 1	2 2 2	4 1 6		*	1914 1921 1959	2 1 2	2 3 2	8 2 2		*
881 966 1031	2 1 2 1	222			*	1966 1969 1986 1986		2 2 3 2			*
1051	2	3		(5)		1999					

m	nl	ⁿ 2	h _k	λ	m	nl	ⁿ 2	h _k	λ
$\begin{array}{c} 23\\ 37\\ 39\\ 74\\ 123\\ 149\\ 214\\ 218\\ 229\\ 253\\ 267\\ 295\\ 303\\ 415\\ 417\\ 4478\\ 419\\ 478\\ 494\\ 501\\ 5519\\ 554\\ 583\\ 695\\ 751\\ 834\\ \end{array}$	$1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 2 2 1 1 2 4 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2	* * *	989 995 1045 1073 1103 1121 1171 1194 1247 1306 1311 1353 1373 1383 1415 1446 1451 1486 1590 1635 1702 1709 1751 1754 1759 1789 1789 1887 1898 1934 1954 1978		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 4 2 1 1 3 2 2 2 4 2 3 2 2 8 1 5 8 4 2 1 4 2 1 1 4 4 7 6 2 2 2	* *

References

- [1] T. Fukuda and K. Komatsu, On the λ invariants of Z_p -extensions of real quadratic fields, to appear in J. Number Theory.
- [2] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math., 98 (1976), 263-284.

Takashi Fukuda

Department of Mathematics Faculty of Science Yamagata University Kojirakawacho, Yamagata 990 Japan Department of Mathematics Tokyo University of

Keiichi KOMATSU

Agriculture and Technology Fuchu, Tokyo 183 Japan

p=7