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1. Introduction.
Here we will consider the nonlinear difference equation

(1.1) L, y(x+n)ta, y(x+n—0D+ - +ayy(x+1)=R(y(x)),

where R(y) is a rational function of y:

R(y»)=P(¥)/Q(y),

(1.2) P(y)=a,y?+ - +a,,
Q(y)=bgy?+ -+ +by,
in which a,, -+, ay; ap, ==+, ay; by, -+, by are constants, a,a,b,#0. We suppose

that P(y) and Q(y) are mutually prime. In the sequel, we denote by p and ¢
the degree of the nominator P(y) and of the denominator Q(y), respectively.
We will investigate in this note whether the equation admits a mero-
morphic solution or not. Of course, we mean nontrivial solution, i.e., solution
which is not identically equal to a constant.
In and [2], Harris and Sibuya investigated the difference equation

(L.3) Fx+1)=F(x, 5(x)),
F(xy §):(Fj(x: yl; Y yn)’ ]:11 Yy n)!
F(oo, 0)=0.
When F; are rational functions of x, yi, -+, ¥,, then their results imply that the

equation possesses a meromorphic solution 3(x) which has an asymptotic
expansion

(1.4 )~ B an/xm

in an angular domain. This is a very general result. But in the present case
(1.I), the solution obtained by them has coefficients @,=0, m=1, 2, ---.
Therefore we need somewhat more detailed study of the equation to get non-
trivial solutions. :
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Put
(1.5) A={2eC ;(a,+ - +a)i=RA)}.
Suppose A is not void. For a A4, we put
(1.6) fi)=aut"+a,_ " '+ - +a;t—R'(A)=0,
and denote the roots of the equation [I1.6) as
(1.6%) 71(4), -, Tald), lz:() = - =7, (4] =0.
We proved in the following theorems.

THEOREM A. Suppose A is not void and there are a A A and a j, 1<7<n,
such that either

(1.7) lz; (A >1, or
(1-7,) T_,(R)‘—‘]. ,

then the equation (1.1) admits a nontrivial meromorphic solutions.
If p=¢-+2, then obviously the set A is not void. In this case we have the
following theorem [11].

THEOREM B. If p=q+2 in (1.1), then there are a A€ A and a j, 1=<j<n,
for which either (1.7) or (1.7") holds.
By Theorems A and B, we see the following fact [117.

THEOREM C. If p=q-+2, then the equation (1.1) admits a nontrivial mero-
morphic solution.

Thus we will confine ourselves to the case when p=g¢+1. In the sequel,
we assume that R(y) is of the form

(1.8) R»)=B.y+ 3 By, Ba#0, m20,

for sufficiently large v.

First we note that, when p=g¢-1, then the set 4 may be void. For exam-
ple, consider the case when R(y)=(a,+ --- +a;)y+1/Q(y). Further, even if 4
is not void, it may be that neither (1.7) nor (1.7) holds. For example, consider
the equation

Y(x+3)+y(x+2)F y(x+1)=2y(x)+1/y(x)%

In this case, A={1, (—1%+4/34)/2}, and R’(A)=0 for any A€ A. The equation
for this case possesses roots ¢=0, (—1=++/31)/2.
However, we obtain the following results for the case p=¢-+1. Put

(1.9) fe@)=ant"+ay "'+ -+ +ait—B,=0,
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where B_;=R’(c0) is in [1.8). Denote the roots of as
73(00), +++, Ta(00), |7:(00)| = ++» = |74(0)| 20.

LEMMA 1. Suppose that p=qg-+1 and q#0. Further suppose that |a, .|+ -
+la;|#0. Then at least one of the following possibilities (i) and (ii) is valid :

(i) A is not void and there are a A= A and a j, 1<j<n, for which either
(1.7) or (1.7") holds;

(i) There is a j, 1=j7=n, such that either

(1.10) 0< |7 (00)]| <1, or
(1.10") 7,(00)=1.

REMARK. If p=¢-+1 and ¢=0, then the equation (1.1) reduces to a linear
(homogeneous or inhomogeneous) equation and we have nothing to consider.
Hence we suppose that ¢+0 in Lemma 1.

If lap,_s|+ - +|a;|=0, then the equation (1.1) is of the form: a,y(x+n)
=R(y(x)) which is essentially an equation of order 1, and has been studied in
some detail in [10]. Hence we exclude this case in Lemma 1.

THEOREM 2. Suppose there is a j, 1=j7=n, for which (1.10) holds. Write
7,(00)=7. Put

(1.11) K=1{k=0; 7% is a root of (1.9)}.

(1) When the set K is void, there is a meromorphic solution y(x) of (1.1)
which has an expansion

(1.12) y(x):c_lr”—{-é_‘,mckr“”
in a domain
(1.13) D(p)={x; |t7*|=p}

for a sufficiently small p>0, in which m is the integer in (1.8). The coefficient
c-1, may be arbitrarily prescribed, and c,, k=m, are constants determined uniquely
if ¢-y 1S prescribed.

(2) When K is not void, there is a meromorphic solution y(x) of (1.1) which
has an asymptotic expansion

(1.14) y(x) ~ c-;rx—i—élmck(x)z"”
in a domain

1.13) Dp)={x;1z7*|=p, — - +s=arglx logeI= 35 —e}

for a sufficiently small p>0 and an e, 0<e<n/2. c_,is an arbitrarily prescribed
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constant, and c¢,(x), k=m, are polynomials with
(1.14%) deglc,(x)]=C*(k+1),
where C* is a constant. c¢,(x) are indeterminate for k€K, but we require

(1.15) ci(x), keK, are polynomials whose terms are least in number
among admissible ones (see the proof).

With the condition (1.15), c¢,(x) are uniquely determined if c-, is fixed.

THEOREM 3. Suppose there is a j, 1=j7=n, for which (1.10") holds. Let m
be the integer in (1.8), and k be the integer such that

(1.16) k=min{k=1; f#(1)+0}.
(1) Suppose that
(1.17) either m=0 or «&/(m+1) is not an integer.

Then there is a meromorphic solution y(x) which has an asymptotic expansion

- ‘
(118 30) ~ 59 ( 5"

(1.19) palx) ~ xx/<1+m>§)cjkx~f/<l+m>

in an angular domain

(1.20) D(M, &)={x ; larg(x+M)—x| <5 —s},

where e, 0<e<m/2, is an arbitrarily fixed number, and M is a sufficiently large
number. Cmi1,0 can be arbitrarily prescribed, and other cj, are determined u-
niquely if Cm+1,0 1S prescribed. M in (1.20) depends on e and cpeq 00

(2) Suppose that

(L.17) mz=1 and k/(m+1) is an integer.

Then there is a meromorphic solution y(x) which has an asymptotic expansion

(1.18% P(x) ~ éqk(x)(logx)“"‘”‘m“’,
(1.19") qk(x) ~ xr/arm) i Cjkx‘f/(1+m)
j=o

in an angular domain D(M, €) in (1.20). cCm+1,0 can be arbitrarily prescribed, and
other cj, are determined uniquely if Cm41,0 ¢S fixed. M in (1.20) depends on &
and Cm+1, o

In view of Lemma 1, Theorems 2 and 3 (together with Theorem A) assure
that the equation (1.1) admits a nontrivial meromorphic solution when p=<q-+1.
Therefore, if we note Theorem C, we see that the equation (1.1) possesses
always a nontrivial meromorphic solution.
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2. Proof of Lemma 1.
We put
2.1) AM)=a,+ - +a,—R'(A) for 2€C,
2.2) A(co)y=a,+ -+ +a,—B_,; with B_, in [(1.8).

It is easily seen that the set A consists of (¢+1) elements (counted according
to multiplicities) if and only if A(c0)#0, and that w=21=4 is a multiple root of
(ap+ -+ +a)w—R(w)=0 if and only if A(1)=0.

A(A)=0 if and only if z;(A)=1 for some 7, 1=;=n. A(c0)=0 if and only if
7;(co)=1 for some j, 1=;=n.

Assume that

(2.3) 7;()|=1 and ;)1 for any A€ 4 and j, 1=</7=<n,
and that
(2.3 T(00)#1 for any j, 1=j=n.

If, under the assumptions and (2.3"), we could deduce that
(2.3") 0< ]z (o)) <1 for some j, 1<7<n,

then we would be through.

By the assumption (2.3"), A(c0)#0. Hence the set A consists of (g+1)
elements 4, -+, 4,+;. By the assumption AQA)#0, h=1, ---, ¢g+1. Thus
An, 1=h=q+1, are all simple roots of (a,+ - +a,)w—R(w)=0. Therefore we
can write

1 gl 1 1
(ap+ - +Fa)w—Rw)  i=t A(An) w—2n °

(2.4)

Multiplying by w and letting w—co, we obtain

q+1

1 , 1
&) 2 e )

In (1.6), put t=(+1)/¢. Then
(2.6) AN+ D - =0,

Let {;(2) be roots of corresponding to 7,(4), i.e., 7;(A)=[{;A)+11/{;(A).
In [1.9), put t=(—1)/¢. Then

(2.6") A(co)Er— fLEm 14 o =0

0.

Let {;(c0) be roots of (2.6”) corresponding to 7;(c0), 1=7=n.
From and (2.6"), we obtain
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2.7) LAn)=—F(D/AR),  h=1, -, g+1,

@7) 33 8o0)= FLD/Ale).

Since f},(1)=fe(l)=na,+(n—Ll)a,-,+ -+ +a;, we obtain by

(2.8) 2 B+ 3 tieo=0.

By the assumption we get

(2.9) Re[{,(4.)]=-1/2  for h=1, .-, ¢+1 and j=I1, -, n.
Hence

:fi é Re[C;(h)]é—%(g%—l)é——n ,  since ¢#0.

Therefore by
(2.10) 2 Re[{;(c0)]=n .

Suppose that |7,(c0)| =1, noting that |z;(c0)|=|7,(c0)|. Then

Re[{y(e0)]=1/2.
Hence by

3 Relg (o)1 Zn—(1/2).
Then there must be a j/, 2=<;'=<mn, such that
Re[{;(c0)]>1.

Then obviously we have that 0< |z, (c0)| <1 for this ;.

Suppose that |7,(0)| <1, j=1, .-, n. If 7,(00)=0, j=1, :-+, n, then B_;=0
and a,.,= --- =a,;=0, which contradicts the assumption. Hence there is a
such that 0<|7,(c0)| <1. Q.E.D.

is a generalization of a lemma of Julia [4, p. 158].

3. Proof of Theorem 2. I. Formal solution.

Suppose that R(y) is expanded as in Put
3.1) y(x)=co1t*+ gock(x)r'k”:c-lr”(l+ glcz(x)r‘“),
3.1 crlx)=cp-1(x)/C-1,

in which we suppose c,(x), k=1, to be polynomials which may be constants.
Let

(3.2) (1+ :Z:chx)rw)":w lglc,’,’(x)z"”,
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then
k

(3.2 cH(x)=— l;: ci(x)eio(x), colx)=cq(x)=1.
Further, let
(3.3) (1+ > c;(x>r-kx)“":1+ 3 EO (x)r ke,

k=1 k=1
Then

1
(3.3") £0(x)= e () e (),
vyteetrg=$ Vie *** Vs
Javitetisve=k

J1<Je<<Js

&P)=1,  &()=0, k=12, -,
EPx0)=ci(x), k=12, .

Thus

B.4)  RO)=B(cr™+ B eator )+ B Byle o) (1+ eitnre)
k=0 s=m k=1

=B_ic.it*+ 3 Boycu(n)r o+ 3 Buerte s (14 3 20 () )
k=0 s=m k=1
=B _ ¢4+ B_1co{x)+ - +B_jcp-i(x)r"(M-D2
+k§m[3-1ck(x)+ 2B c:ie,gyl(x)],-k,

and
3.4" a,y{x+n)+ - +a,y(x+1)

=(@pt™ - )T+ 3 ( > aﬂ""‘ck<x+j))r‘“.
k=0 \ j=1

Thus
(3.5) (apz™+ - +a,;7—B_)c_,=0.
If m=1,
anco(x+n)+ - +aic(x+1)=B_,co(x),
(35) {4 e

ap T M ((x+n)+ e FatT P Ve (x+1)=Boicm-1(x) .

For k=m,

(3.5”) a,t Fre(x+n)+ o Fat B (x+1)=B iy (x)+Se(x),
where
(3.5 Su(x)= 3 BueTlefi(x).

By c_, is seen to be arbitrarily prescribed.
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(1) When the set K in (1.11) is void, we can suppose that c,(x) are con-
stants. By [3.5), ¢,=0, 0=k<m—1. Constant coefficients c,, k=m, are deter-
mined uniquely if ¢_; is fixed.

(2) When K is not void. Also in this case, we can take c,(x)=0 for
0=k=m—1. Suppose k=m. If k=K, then (3.5”) can not determine c,(x)
uniquely. But (3.5”) possesses polynomial solutions, and subtracting polynomial
solutions of homogeneous equation e,z **u(x+n)+ - +a;v"*u(x +1)— B_;u(x)=0,
we obtain c¢,(x) so as to satisfy the condition (1.15), which permit us to deter-
mine c¢,(x) uniquely if c_, is fixed.

If %, is sufficiently large, then

(3.6) a,t o TP —B_ = f(t7F)#£0 for k=k,.
Then obviously we obtain polynomials ¢,(x) such that
(3.7 deglc(x)]=deg[S.(x)].
Suppose that
3.8 deglc(x)]=C*(j+1)  for ;=0,1, .-, k—1,

where C* is a suitable constant. Then by (3.1)
deglci(x)]=C*;.
By (3.2’), we can easily see that

deglc/(x)]1=C*;.
Thus by (3.3)

deg[5é3)<x)]§c*(]1yl+ __}_J'svs)::c*k .
Therefore by (3.5”),
degl[S:(x)]=deg[¢(x)]=C*k.

By supposing that k= k,,
deglc,(x)]=deg[S,(x)]=C*e=C*(k+1).

Thus hold for any %, and we obtain a formal solution as stated in Theo-
rem 2.

4. Proof of Theorem 2. II. Existence proof.

(1) When the set K in (1.11) is void. Then we can take a constant A>0
such that

(4.1) [felt™M) ] =|ayz™*"+ o oyt *—B_|| Z A, k=0.

There are constants M >0 and »>0 such that
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4.2) |By| = M/rk, k=0.
Let C.;=|c_.,|. Consider the equation
(4.3) Caleml Autx)= 3 Mr=HCoule= ) *1—u(x))™*

=MrC_;|t|(1=u(x))/[rC_|v* | 1—u(x)—1],
i.e.,
4.3) Aulx)=Mr(l—u(x))/[rC_;|t*|1—u(x))—1].
Then

Mr—A Mr
” 2__ R, e

(4.3") u(er—(1+ ArC_llr”I)u(x)+ Tre e =0
which obviously possesses a solution in the form
(4.4) u()= Gl in |e*] 7=

for sufficiently small p>0. Obviously we have that, as easily seen from (3.5")

and [4.1), [4.2), [4.3),
(4.4 lcs| £C,  B=0,1,2, -

which proves the convergence of in D(p) of (1.13).
(2) When K is not void. We will prove the theorem by the fixed point
theorem. Let k, be the integer stated in Put for N=k,

(4.5) UN(x)zc_lr“r::z: L (x)T-*e,

Let 1"y be the family of functions Z(x), holomorphic in D.(py) (see (1.13)) and
satisfying the condition

(4.6) |Ex) | =Ky |x [TV e=¥2]  for x€D.(pn),

where C* is a constant in and py as well as Ky is a constant to be
determined later. ¢>0 is arbitrarily fixed.
Put for E(x)e7y,

4.7 TEIx)=az'[RUx(x—n)+E(x—n))—R(Ux(x—n))]
+az’ [R(Uy(x—n)— (@ Un(x)+an-1Un(x—1D+ - +aUn(x—n+1))]
+H—ax)lan-1(x—1)+ - +ay(x—n+1)]
=I,+1,+1,.
. Let M;=(1+|R'(0)])/|a,]. Then there is a py such that

L SEM|E(x—n)| EM\Ky|x—n|CF 0 o= 82| [z|*»¥  in  D.(px).
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Let v’ be a number such that 1<z’<1/|r|. Let py be so small that

[(x—n)/x|°" <7’ for x<D.(pw).
Then

(4.8) LIS eIV e VM Ky [ x [V e8] for x€D.(pw).

Next, since ¢_, and c,(x), £=0, 1, ---, are coefficients of formal solution, I,
begins with a term c¢¥(x)r""*, where c¥(x) is a polynomial of degree less than
C*(N+1). Hence there is a constant M, such that

(4.8 | L] SMp| x| X0 eV for xED(pn).
Let My=2(|ay-1|+ - +]a:|+1)/|a,|. Then
(4.87) L] S|V |V M Ky [ x| © Y+ [2=¥2] for xeD.(py).

Suppose N is sufficiently large and Ky is so large that
V"' MKy +Mo+7"V 7| Yo' M Ky < Ky

then T maps 1 into T, and T is obviously continuous in the topology of
uniform convergence on compact sets. Thus the fixed point theorem is applied,
since 7"y is convex and a normal family. Let &Zy(x) be a fixed point. Then
ya(x)=Uy(x)+E y(x) is a solution of [I.I)] in D.(pn).

Next we will show that the solution yy(x) is independent of N. Suppose
there would be another solution y%(x), holomorphic and satisfying y%(x)—Ux(x)
=0(|x|CW¥ 0 |z=¥2]) in Dp¥) for a p¥. Put h(x)=y%(x)—ywxx). If we
show that h(x)=0 in D.(ox)N\D.(p%), then it can be easily deduced that yy(x)
is independent of N. Thus it remains to show that: Let h(x) be holomorphic
and satisfy

4.9) Ph(x)| SK¥| x| +D | p=N 2| with a constant K*#
in Dp) for a p, and further satisfy
(4.9 ah(x+n)+ - +ah(x+1)=R(yy(x)+h(x))—R(yx(x)),

then we will have that h(x)=0.

(i) Suppose R’(co)=B_;#0. The right hand side of (4.9") can be written
as R’(co)(1+g(x))h(x), where g(x)—0 as Rex——oo in D.(p). Put x=—¢ and
h(—t+n)=u(t). Then (4.9’) is written as

(4.9 u(t+n)+Br-Out+n—1)+ - +Bo(H)u(t)=0,

where B;(t)=—a,_;/[R'(c0)(1+g(—1)]— —a,-;/R'(c0) as Ret—co, and B,(t)+0.
Thus [4.9) is an equation of Poincaré. By a theorem of Perron [7, p. 309], [3],
191,
lim sup| u(t47)| ¥ =lim sup | h(—t4n—7) |1
J-oo J=eo
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=lim sup|h(x+n—j)|7=1/|7*],
J—=o
where * is a root of [1.9).
On the other hand, by the assumption (4.9) on h(x),
| B ) K] ] SN 013 =N 13 [
—|zl¥ as j—oo,

This is impossible if N is so large that |z|¥<1/|z*| for any root z* of [(1.9).
Hence we must have that h(x)=0.

(ii) Suppose R’(c0)=B_.,=0. Put v=min{k=1; a,#0} and m’=min{k=1;
B,#0}. By [4.9") and [1.8)

(4.10) ah(x+n)+ - +ah(x+v)

=—m/Bp cz{™ V- 021 g (x))h(x),

where g,(x)—0 as Rex——co in D.(p).
Let t,, -+, t, be roots of the equation

4.11) Pt)=a,t" "+ - +a,=0,

with multiplicities s;, ---, sy (s;4 - +s,=n—v), respectively. Let ¢,=t",
7=1, -, u. We take N so large that

IO-J'|<1) ]:1, e, U
Put h(x)=7t"Y*H(x) in Then
a, v " H(x+n)+ - +a,e ™"V H(x+v)

:—m'erT_(m'“)xcif""+1)(1+g1(x))H(x)=¢(x)
and

(4.12) |p(x)| =B [z~ ™ *V7[ | H(x)|
with a constant B’'=2m’| By ||cz{™ *V].
For simplicity, we suppose that s,=--- =s,=1. Then by [7, p. 396]

S 9
(4.13) H(X)—Eﬂ](x)o']"l‘]; ¢/(O.j)

where x;(x) are periodic functions with period 1, and S denotes the summation
[7, p. 43]:

(4.13") _éw F(2)dz= ?:31 Flx—b).
By the definition, H(x) satisfies
(4.13") | H(x)| S K*| x| CH+D with a constant K*.

Hence we must have that =;(x)=0, j=1, ---, u in [4.13), as seen by letting

_§w ¢(z)a57°4z,
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Rex — —oo,
Since |H(x—k)|SK*|x—k|CWV+HD S K*K/| x| C1V+D pCN+D with a constant

K’, we have by
419 D1 e5 =B |e 03| B e ko | Hix— k)|

(=]
é(B/ kzl I T(m'+1)k0§—ll kC‘(N+l))K/K*|T-(m’ +1).z] I X [ C"(N+1).

Therefore, if we put

3

u 1 ,
K= 7 (aj)i(B

[T("" +1) ko.;e_—ll kC'(N+1))K/,
1

J

U

then

(4.15) [H(x)| SK**K*|gm W #n 2] | g | 07CV+D

by [(4.13). Again by [(4.12), using [4.15), we get
3 18— )] |a51| S B/ e #2] 55 e hgr|

XK**K*IT—(M'+1)&C] lx_k|C"(N+l)[z-(m’+l)kl

éK**K*IT_(m’+1>z|2(B’ él |T(ml+1)k0'§_ll kC"(N+1)>K/| x I C*(N+1)
é(K**)ZK*]T—(’M’+I)xIZI xIC'(N+l).

Repeating this procedure, we obtain

(415’) ]H(X)] é(K**)j[T—(m'+l)z|jK*l x I C*(N+1).

If |[Rex| is so large (Re x <0) that

K**IT—(M’+1)JJI <1 ,
then we have
H(x)=0 if Rex <(log K**)/[(m’+1)log ]

by letting j—oco in (4.15"). Hence H(x)=0, and we obtain A(x)=0.

5. Proof of Theorem 3(1). I. Determination of formal solution.
LEMMA 5.1. We have
(5.1) o, u(x+n)+ - +au(x+1)—B_julx)
=Bnd"u(x)+ -+ + Bidu(x)+ Boulx),
where 4% denotes the k-th difference, and

(5.1%) Br=rfPM)/k  (Boe=f(1)),
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in which fot)=ayt"+ - +a,t—B_, (see (1.9)).
PROOF. Let u(x)=t" in [5.1) Then we obtain easily

fw(t):ﬁn(t—l)n+ e +ﬁ1(t_1)+,80 ’

from which we get (5.1%). Q.E.D.
Suppose that R(y) is expanded as in [1.8). We consider here the case that

Bo=0 in [5.1)} Thus
(5.2) ay(x+n)+ - +ay(x+1)—R(y(x))

=B d"y(x)+ - +B1dy(x)— F(y(x))=0,
where -

(5.2") F(y)=Bnpy ™+ Bpey ™ 1 - (see [(1.8)).

Let £ be the number such that

(5.2") r=min{k=1; §,%0}.
We assume a formal solution of in the form [1.18):
- log x \*
G.3) Y= 2 paa(—=),
where
(5.3) pk(x)=x"‘m+”[00k+ > c,-kx""m“)].
=1
Then
2 log(x+1) \¢ ¢ logx \#
=5 pata+ D (ET) - (E5)]
= log x \*
+ 3 s+ D—pa0] (o),

in which

( 10gx(i~1%1) )J’_( 10§ x )f

:(_10_%3‘_+%1og(1+;1;))j(1+;1;)—j‘(’19%£)j
:[(1+%)"j—1]( ey

(14 3)” 8 ()G e ) ()™

Sy(o= 5 piote(BEY,

Thus, if we write

then
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64 pPE=paletD—pu)+ple D] (14 1) 1]

+E )G o1 ) Pt
In general, if we write
£y0)=F po(o(-52)",
then

1\-k
(5.5) p,g“(x)zp,g"”(x-|—1)——p,§l‘”(x)+1>;§"”(x+1)[(1+ —) —1]

+ 3N D) (L rog (1 + )) PR (x+1D),
I=1,2,

Then
(5.6) a,y(x+n)+ - +a,;y(x+1)—R'(0) y(x)
< n) ) 1ng
= 3 B0+ - +Bept (Y =F(y(x)).
On the other hand, write

6.7 s=pi0)(1+ 5 pie) (-,
where

(5.7 pix)=pr(x)/polx)  (Po(x)=1)
and

68 (1 5018 =1 3 pro(BE) (s=b),

where

8) PRGxY=— 2 PIDPHA(0).
Further, let
(5.9) (1+ 5 o (FBE) Y =(1 & prio(“255)')
® ! ~

=1+ 3 paeo(—EE) (FBx)=1).

Then
!
ﬁisk)(x)_ 2 . %y_rpéll(x)vl p‘;_/s(x)vs‘
I )

Thus

o o 1 k
(5.10 F(»)=3 Bpo)*(1+ 3 p(x)(—2)")



Nonlinear dijfference equations 583

g o (2 . 1
=3 Bopu0) ™+ 3 ( S Bapol) 5 ) (—22)
From and [5.10), we have

(5.11) B (x)+ - +Babi®( x)zsngpo(x)‘sﬁi?(x).
By these formulas, we will determine coefficients cj,.
Put
(5.12) po(x>_1:(x-K/(m+“/coo)(l+ écﬁl)xdj/(mi-l))
and
(5.12) Po(x)‘s-——-(x““"’““/630)(1-!—g C}o“”x""‘m“’)-
Then
;
(5.13) it =— l:El(Czo/ Co)C5Zho, SV =1,
and
!

(513/) C; 8) — Z — S: (c}gl—ol))u (Cé-ol))us .

yitetrg=$ yl! es ys‘_ $

kyvytethgrg=j
Ry < <kg

Further, put
p,;(x)z(l/coo)(COk_}_icjkx—j/(m.n))( i (=1 y - ]/(m+1)) i R Testy
j=1 = =
then
(5.14) Cor=Cor/Coo C;k—— 2 (Clk/coo)cu bo (Bz1).

Moreover
k

pr(x)=— 121 pix)pi(x)= é} Clpx ~HImaD

then

k J . )
©.15) Cie=— %(g th’ilj—n(ia—z)) (cfo=0 if j/=1).
Thus, if we put
(516) ﬁfﬁ(x> i kx J/(m+1)__sp//(x)+

then
(5.16") &¢h=( polynomial of ¢}, /=0, -+, j; k’=0, -, k—1)+sch,
hence

(5.16")  &$&=(a polynomial of (c;p/ces), 1=/=j, and of
Cirwry J7=0, -, 75 B'=1, -, R—=1)+(—=5/co0)Cjs .



584 N. YANAGIHARA

Thus, if we put

(6.17) Po(x) PR (x)=(x 75+ [ cfy) E()b}i)x'j"m“’ ,
P=
then
j
(6.17") b}i)zlgg ¥ - nr=cEh T B (cro/Cooy Cirr) s

I1sl=, 0=5'=), 1sk'=k—1,

where B(---) is a polynomial of the variables displayed there.
Write

(5.18) b O=bOsnn s for jZ(s+1),
=0 for j<(s+1k.

As seen from [5.5), pfP(x) begins with the term x*™+9-!{  Therefore we
can write

(5.19) p,g”(x):xf“mnj:(gnlc;,l;x—f/(mn, e =0 if j<(m+1).
Then by

(5.20) Bc+Bacscft 0+ e +fucip = 3 BER /el

By (5.19)

(5'21) p,g“”(x+1)~p,§l‘”(x):x’”‘"‘“’ Z C](_,Le—l)l:<1_l_ i)(bj”(m+1)__l:|x_~jl(m+l)’
J X

(5.21") ,gl-1>(x+1)[(1+—]16—)'k—1]

o —P(mtt
= /(4D 31 Cj(lze—n[(1_}__1_)(x—j)/(m+1)—k_<1+_1_>(” Jim ):Ix—j/(m+1)‘
7 x x

If we write
1\ ®-5/m+n > ) (k—7)/(m+1)
T M

t
then
(5'22) lgl—l)(x_l_l)__plgl—l)(x):xﬁ/(MJ—l) i ( 2 _C](':l;:l)rgj')x-j/(m+1)
J J +(m+1)t=j
and tz1

(5.22") p,gl—1>(x+1)[(1+%)'k—1}

[==]
= x &/ M+ (
J

Further write

(1+%>_k_h[-]lc—10g(l+%>]h:x—2hé}azhkx_t (50hk:1)

-1 -jl(m+1)
Ci'p ( t i+ i )x J .
I+ mID =] J Tt s +rm+n =7t )
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and
(1+ gathkx_t><1+ é)‘zjx—t)zl"i" épthij_t,
Fchkj:t,g;_t(sz'hﬁw',

then )

s (UL sl D)) e

=rrk+h .
- - 1
— Z(( )( E l’mkj,cj(,/ ,1k)+h>>x Jrm+1
J h J’ -H(m+1)+2h(m+1) =j

J'z(m+1) U-1), hzl

Thus, by [5.5), (5.22), (5.22’), (5.22”), we have

(5.23) c;i)—( +1 —+1— k>C] (A1), k
-1
(”(C;(lzl()mH) By T CJ('—Gnﬂ)[j/(mH)],k)

G4 (1-1)
)<C] 2(m+1) B+l 7T Cj—z(m+1>[j/2<m+1)1,k+[j/z<m+1>1),

where F{P and GJf are linear functions of the variables displayed there. [ ]
denotes the Gauss symbol, i.e., [a], a>0, is the largest integer which does not
exceed a.

We write as (5.11;). When k=0, we have

(5.11, Bab§® (x)+ -+ 4+ Beps® (x)=Bupo(x) ™ pie’ (x)+ -

or, writing as (5.20/,),

(5.2050)  Bacs 4 -+ e =cod" BubiTims1rs 0 Cor" T B b TRk ay g 0
Since ¢ =0 for j<(m+1)/, we obtain by (5.20,,), noting [5.18),

(5.24) Bec i1, 0=Co" Bub§i¥ =" Bn
By
(5.24/) CEI:)?L+1),C,0 < +1M_—,f +l)c(m+1)(x n,0

— ... (?1‘—}»:1 —K- ><Wf~ﬁ+2) (“n‘q—ljr‘_T)Coo .

From and (5.24), we obtain by our assumption (1.17)

(5.25) COOH_(Bm/ﬁK)(( ,;+1)( mil _,ﬁuz) (771’-:—1 ))—1¢0.

For 7, im+1r<y <(m+1)(/c+1), we have ¢t =0. Hence (5.20,,) determines ¢

JO »
and the right hand side of [5.23) for ¢, (m+1r<j<(m—+1)(k-+1), contains only
Ci-(m+vr o Lherefore ¢y, ==+, cmo are determined by (5.20,,). In fact, we note
the following relations from [5.14), (5.15), (5.16”), and (5.17"):
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(5.26) coP=(—1/coo)cjo+(a polynomial of c;,, j'<j—1),

(5.26") ¥ =(—s/co)cjo+(a polynomial of c;,, j'<j—1),

(5.27) cix=(1/coo)c;r+(a polynomial of c¢;,, j'<j—1),

(5.27") ch=(—1/co)c;p+(a polynomial of ¢; .., J'<7, B'Sk—1),

(5.28) & h=(—5s/coo)cjr+(a polynomial of cj 4, j7'<7, B/Sk—1),

(5.29) biP =08+ -+ =(—5/co0)Cjr+(a polynomial of cjpr, j/<7, K/<k—1).
Put

(5.30) Con=( "+i——k+1) ("+1 —ktr),

(5.30%) ;k:—m(—nfq) (771_’:?—“1).

(We note that Cj, does not depend on 7, £.) Then

(5.31) { R =CirCi-(mrvr, a7t =

-1, ( —
ISA: COOmmejz-n()m+1)/:, k_C;'kcj—(m-H)/:, P RN

Since, for j=(m+1),

Cir=Cjs if and only if
either j=(m+1)(k+1), k=0 or j=m-+k, k=1

Thus, by and (5.32), we see that cy,, ---, cmo are determined. Further by
(5.32), we see that cn+1,0 can be arbitrarily prescribed. In fact, by (5.20,,) for

J=m+1k+1),
(5.33) ,85+1C;5+1)+,8 C,;g):COOmB by, o o T B s b s 0

in which ¢{¢ contains ¢,;. By (5.32), the coefficients of ¢n45,0 On the both sides
of [5.33) are equal, hence c¢n+1,, can be arbitrary. Further, determines
co:- By (56.32), we see that this is consistent with other formulas.

Thus we obtain a formal solution in the form stated in the theorem.

(5.32) {

6. Proof of Theorem 3(1). II. Existence of solution.

We will show the existence of solution by an application of Laplace trans-
form, following the method of Harris and Sibuya [2].

6.1. As easily seen, there exists a function U(x) such that
6.1.1) U(x) is holomorphic in S(,:{x; larg(x +a)— 7| <%—!—so}

‘and
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(6.1.1") Ux) ~ xx/<m+n[coo+ » Cjkx_j,(mﬂ,( log x )k]
j+kzl x

as x tends to oo in the sector S,, where a (¢>0), &, (0<e,<7/2) are constants.
We fix a, &, and such a function U(x). Put

(6.1.2) y(x)=U(x)+2z(x).
Then the difference equation becomes
6.1.3) az2(x+n)+ - +az(x-+1)—B_z(x)=g(x, z(x)),
where
—s__Bs _
(6.1.4) gl(x, Z)__u=2m T+ La, U(x+n)+ - +a,U(x+1)—B_,U(x)] .

g(x, z) is holomorphic in

(6.1.5) |21 <80, larg(x+b)—7| <5+,

if 9, is sufficiently small and >0 is sufficiently large. Further
(6.1.6) g(x, 2)=x""ho(x)+g:(x, 2),

where

0

6L7)  xh(x)= 3 —DE [aU(xt )+ - +allx+1)—BoU(x)]

d=m U(x)*#

and
6.1.8) (x, 2)= i[ > C ———gi'——]z‘

A gi\x, = Lsh lp Ulx)+e |°
in which C,, are coefficients of
(6.1.8") (1+x)-#=1+§1 Craxt.

We write

(6.1.9) gilx, 2)=Bix"z+Bl(x)z+ 3 B}z,
where

(6.1.10) Bi=CinBn/ci*,
6110)  B{()= 3 CiuBu/Ux)*+CinBulU) ™ =i 2]
and

(6.1.10"  Byx)= 3 CiB,/Ux)"*#, 122,
pu=m
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6.2. Since the solution [1.18) of the equation [I.I) corresponds to a solution
z=¢(x) of the equation such that

(6.2.1) ¢x) ~ 0, i.e., d(x) ~ 04+0/x+0/x%4 ---

as x tends to oo in a sector, we consider the following problem.
We can write in (6.1.10") and (6.1.10")

(6.2.2) Bl(x)=h,(x)B¥(x),  Byux)=hi(x)B¥x),
where w
(6.2.3) hy(x)=x 51/ (m+D it mz=1;

‘=“x"‘< loi il ) if m=0.

ho(x), BY(x), and B,(x) are holomorphic in

(6.2.4) Si={x; largle+b)—n] <2 +5}
and
(6.2.5) ho(x) ~ 0, i.e., ho(x) ~ 0-+0/x+0/x%+ -

as x tends to co in the sector S,.

Let w(t), ko), K(t), and k&,(¢) be inverse Laplace transforms of z(x), x~2h,(x),
h(x)B¥(x), and h,(x)B¥(x), respectively. Then the equation corresponds
to the following integral equation

(6.2.6) (ape™ ™+ - +ae”*—B_Dw(®)

:ko(t)+B;kS:(t—s>ﬂ-1w(s>ds+S K(—s)w(s)ds

+ B r—9lus)as,

where Bf=Bi/[(k—1)!], and [w(?)]’ denotes an iterated convolution which is the
inverse Laplace transform of z(x)%.
Let T¢={t; |argt+x|<eg}, and T, be

6.2.7) T,=1{t; |largt+8,| <ell} for some 6, and &,

which is a subdomain of 7§ such that a,e "'+ - +a,e~*—B_,#0 for teT,. We
shall prove the existence of a solution w(¢) which is

(i) holomorphic in T, of [6.2.7),

(ii) of exponential order as ¢ tends to co in T,,

(iii) asymptotically equal to 0 as ¢ tends to 0 in T,.
Further, the Laplace transform of this solution w(¢) will be the solution satisfy-
ing [6.2.1), which corresponds to the desired solution [T.18).
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6.3. First, we need some estimates of k,(¢), K@), k().

Let S, be the sector in with sufficiently large a>0, and S;=
{x;|arg(x+a")—=n|<m/2+e,} with 0<a’<a—2. Suppose f(x) be a function
holomorphic and bounded in Sg:

| fx) =M for x€S;.
Further, let h(x) be holomorphic in S{ and satisfying
6.3.0) [h(x)| =M’ | x|~ with a>1, for x<S;.

Let ¢ be a number in T, of [6.2.7) and I be the path of integration in the
x-plane defined by

(6.3.1) I'y: x=—a+set?, —oo<s<oo,
where §=r/2—argt. Put
(6.3.2) FO={, h@ f@ede.
LEMMA 6.3.1. Let 0<ey<eo. Then
(6.3.3) [F(t)e‘”lgMM'lasinﬁl“““gily—i[‘“dp

for t€T,. Further
(6.3.4) [F®)e® | EMM ' Kla)|t]|* ! as t—0,

where K(a) is a constant depending only on a.
PrROOF. We note that, for t=T,,

0<£—86<0—TC<£+66.

2 2
On the other hand, since we have for x&1I;
arg(x+a)=0 (s>0)
=0—=r (s<0),

we also have

larg(x+a)—rx| <—7-2r—+66<%—|-so .

Thus
F(t):S_ h(—a-+set?) f(—a+setf)et-a+seifrtyit g

o0

=e“”e”$_ h(—a+set?) f(—a+setf)et'tids .
Hence
lF(t)e“‘IéMSi lh(_a_l—'sew)ldséMM,S_ml“‘a+38w!'ads.
Put s=¢-+acosf. Then

SQ_Q I-—a—l—se“’l‘“ds:t |c—iasinf| “de
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=|asinf| ""Soj |[(c/a sin 8)—i|~*do

~la sinol-aﬂg‘f |p—il-*dy,  p=a/asing,

which proves (6.3.3).
Further, if é=—a+{<TI}, then

F<t>=§T0h<-a+c>f<~ a+0)e g

where [p={se??; —co<s<co}. We write {{=1, then

at_4-1 g AN
F(t)est=t Sr*h( a+L)f(—a+TL)erdy,
where [I'* is the imaginary axis. Write

h(x)=x"*h'(x), [R'(x)| <M’ for x&S;.
Then

ST/ WP capr( o W
h(—a+ L=t~ at+yyn(—a+1),
and we can write
at—ja-1\ - (__ —apr _ n ” 7
F)et=t SP*( at+mn)"*h ( a-t+ t)f( a-t+ t)e”dr) .
We change the path ['* of integration to [, :
Ly={p=ir; lr|2}U{p=e"; —n/22¢=x/2},
then |—at+%n[=0d on I, for a §>0. Thus we obtain
[F(t)e“[é]t]“‘lMM’Sr |—at-+p|-*dy < MM'Ka)|t] " .
7
LEMMA 6.3.2. Let ¢, be a constant such that

(6.3.5) <6, <8,
and let the path Iy of integration be defined by

—a+sexp[i(§2£ +51):| s=0,

(6.3.6) I, x=
—«a+sexp[z’(§2£—sl)] s<0.

Then for teT,

6.3.7) F(t):Sr h(E)f (@) dE .

Therefore, F(t) is holomorphic in T,.
Proor. Note that, on [,
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larg(x+a)—=| <—725+51<12r—+50.

Put w=argt. Consider the relation

| n@s@eas
:S?h(&)f(s>e‘U-L+i(37r/2+51)eXp|:s |t] et riz+e1 )]s

+"_ @ f(@e-ermiomn-wexpls|t|eeni-selds

Since
n/2<n/24¢e—ee=n/2+ e twot+n=n/24e,+64<37/2,
—n/2<n/2—e,—e)Sw/2— et wtn=n/2—¢e1tei<n/2,

the integral is well defined. To prove the equality [6.3.7), it is sufficient to
prove that the integrals of h(&)f(£)eft on the arcs

lx+a|=R, 6=Zarg(x+a)=3n/2+¢,, and
|x+a|=R, n/2—e,Sargx+a)<0—=x
tend to 0 as R—oo. It is easily seen that on these arcs we have
n/2=0+w=arg(x+a)+w=3r/24+¢+w<3r/2,
—3r/2<n/2—¢e;Fwsarg(x+a)tw=0+w—nr=—x/2.

This implies that these integrals tend to 0 as R—co. Thus the proof of Lem-
ma 6.3.2 is completed.

LEMMA 6.3.3. Let C, be the path of integration in the t-plane defined by
(6.3.8) C,: t=ret?, 0=r<0 (w=1argt).

Then we have

(6.3.9) h(x) f(x):—zl—”—.gc F(t)e-=tdt
for x in
(6.3.10) Si={x;|arg(x+a)t+w|<z/2}.

ProoOF. Note that F(t)e®® is bounded and that
F(t)e—thF(t)eate—(x+a)t.

Hence the right member of is well defined and holomorphic for x&S,.
If |arg(x+a)—n|<m/2—e, then x=S,;. Therefore
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1 -zt ,_.L t -xt
mS%F(z)e di=5 - Scﬂpoh@ F(&)et dt]e dt
1 o 1 [ hOF®
T 2mi Sroh(é)f(.’f)dég%e‘f Ydi= 2ri Sro E—x d¢
=h(x)f(x).

Since the both sides of are holomorphic in S;, we have the equality
for x&S,.

LEMMA 6.3.4. When h(x)~0 as x tends to oo in the sector S, of (6.1.1),
then F(t) ~0 as t tends to 0 in the sector T, of (6.2.7).
The proof is easily obtained by Lemma 6.3.1.

LEMMA 6.3.5. Assume that g(t) is holomorphic in T, and
lgt)| =M, explo|t|] (¢>0).
Further, assume that g(t) ~0 as t tends to 0 in T,. Put

f(x):SC gte=e==tdt .
Then f(x) is holomorphic in
larg(x+a)+w|=n/2—7, |[x+a|>a/siny
and
f(x) ~ 0

as x tends to O in this sector, where y>0 is sufficiently small.
The proof is easy and may be omitted, see [2, p. 128].

6.4. Put
kit)y={ ethu@etaz,
. (I'; is the path of integration
(6.4.1) KO={ m@BIOFE, 1 e cector S, of BZA,

klo:)=§mhl<s>Bz*<s>ef‘ds ,

where t€T, and [={x; x=—b+se’’, —c0<s<oo, §=r/2—argt}. We note
that h,(x) satisfies [(6.3.0) with an a«>1, as seen from [6.2.3).
Let C(t) be the path of integration in the t-plane defined by

(6.4.2) Clt) : s=ret®, 0=7<|t],

where w=argt. Consider the equation
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(6.4.3) (ape "+ - +aje*—B_w(l)
:ko(t)—l—Bi"S )(t—s)“’w(s)ds+Sch(t—s)w(s)ds

C(t

+ 20 k—9)wE)ds,

=2

where [w(s)]' is an iterated convolution defined as

Lw®1*={__w(t—9)lu(s)]*ds.

c(t

Put

(6.4.4) w(t)=e"*u(t),
kot)=e"2kq(1),
K®)=e™R@),
kty=e ki),
with b in [6.2.4). Since
Lw®] =e"[u®)],
the equation becomes

(645) h3(t)u(t)::]30(t)+BTSC“)e—b(s-t)(t_s)m—lu(s)ds
+Sc(t)K(i—-S)u(s)ds—|— égc(t)él(t_s)[u(s)]lds ’

where

(6.4.6) hyt)=aze "'+ - +ajet—B._,

=B —=1)"+ - +Ble”—1)"
6.5. It is easy to see that
(6.5.1) lha(®) | =|2]*/L for teT,

with a constant L>0.
By the assumption and Lemma 63.4, we have

(6.5.2) Eot) ~ 0, hence  Eyt)/hs) ~ 0

as t tends to 0 in T,. Hence for every positive integer g, there exists a positive
constant L, such that

(6.5.3) Lo/ hs(t)| S L, Lt] "

We can assume that
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(6.5.4) IB¥(x) =My,  |BHx)| =M,/0

for xS, in [(6.2.4), where M, M, 8, are positive constants.
By Lemma 6.3.1,

(6.5.5) | K(@)| =M, K(a) 2] =2,
| ou(t)| < (Ma/OD K(a) |t
where
(6.5.6) a=r+(m+1)"! it m=1,
=rg+a’ for any «a’, 0<a’<1, if m=0.
6.6. For convenience in constructing a solution of the integral equation

(6.45), we introduce a parameter ¢ into [(6.4.5)] and consider the equation

(6.6.1) hs(t)ult, e)———ﬁo(t)+B’fS e P60 (t—s)*[eu(s, &)lds

C ()

+S R(—s)[euls, s)]ds+§)5 bi(t—s)[euls, &)]'ds .
C () 1=2 t)

C(

We can construct a formal solution of in the form
6.6.2) u(t, &)= 3 en(t),

by solving the sequence of equations
(6.6.3) ho(B)uo(t)=FEq(t)
hs(Du()=1",(2), v=1,2, -

where 177,(¢) depends only on uy(f), -+, u,-1(f). It is easily seen that u,(f) are
holomorphic in T, if ej is sufficiently small. If the series converges
uniformly for |e| =1 and for ¢ in any compact set of T, then

(6.6.4) u(t)=u(t, 1)
is a solution of [6.4.5)

6.7. We shall prove the convergence of for |e| =1 by the method of
majorants. Let t be a real nonnegative variable. Consider the following integral
equation (writing |B¥| as Bj):

6.7.1) L1z, s)=L#ﬂ‘“+B{T‘“IS:sv(s, e)ds
+M1K(a)r”'IS:ev(s, e)ds

+ 3 (Mo /a0 ey evts, o)'s,
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6.7.2) L-'zu(x, e)zL#r““—{—B{S:ev(s, e)ds—l—MlK(a)Sst(s, e)ds
+ 3 (M) K| Tents, e)'ds,

with K(a) in Lemma 6.3.1. We can construct a formal solution of in the
form

(6.7.3) v(r, &)= ”2; v, (1)

by solving the sequence of equations

(6.7.4) L~wy(t)=L,t*,
L~,(1)=9,(1), v=1, 2, -

where 9,(r) depends only on vy(z), -+, v,-1(7).
It is easily seen that v,(r) are nonnegative for =0 and that

(6.7.5) (O =vu(I2]D)

for teT, in [6.2.7). Hence, if the series converges uniformly for |e| =1
and for 7= in any bounded interval in 0=7<co, the series also converges
uniformly for |e|=1 and for ¢ in any compact set of T,.

6.8. Consider the following differential equation :

(6.8.1) — L“—Ed;c—p(x, g)=(u+1)- L, x"#2+Bix 'ep(x, ¢)

+M,K(a)x 'ep(x, e)+x“‘§2(M2/5i)K(a)e’p(x, &)t

Put x=1/{. Then becomes

(6.8.2) L~ C?C P& &)=(u+1)- L L** '+ Biep(C, )

+MK(a)ep(C, &)+ é (M,/0)K(a)e'(C, &),

where we write p(1/{, &) as P, e). is an equation of Briot-Bouquet
type, and admits a unique solution which is holomorphic at {=0 and (0, &)=0
[3, p. 403]. Therefore possesses a solution p(x, ) such that

(6.8.3) px, = F xFpj(e).

The coefficients pg(e) can be determined by inserting this series into and
equating the coefficients of x~#. Then pg(e)=0 for f=1, -+, p. If p is so
large that

(6.8.4) —p+eL(Bi+MK(a)+0 for |e]=2,
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then pg(e) are holomorphic in |e|=2. Thus

(6.8.5) px, )= = xPpsle).
B=p+1
Since is convergent, we have the estimates
(6.8.6) | D) S M(po)/E8 for |e|=p,<2,

where M(p,) is a positive constant. Put

(6.8.7) e, &)= gﬂuﬂ-i/(ﬂ—ln)pﬁ(e) ,
(6.8.8) , =i::ﬂ<rﬁ-1/<ﬁ~1>!>1 pa(e)| SM(po)Es" §;‘,ﬂ<r/eo)ﬁ-l/<ﬁ—1>!

= M(po)éste/é

for |e| <p,<2 and arbitrary 7, then the function ¥(z, ¢) is an entire function of
7 and is holomorphic for ¢, |e]<2. Hence we may write

(6.8.9) Bz, &)= 3 ene),

where this series converges uniformly on any compact set of {|z]| <oo} X {|¢| <2}.
We shall show that, as formal series in ¢, we have
(6.8.10) v(r, &)=1(z, ),

where v(z, ¢) is the formal solution (6.7.3) of the integral equation To
demonstrate this, it is sufficient to show that #(z, ¢) is a solution of [6.7.1)
Note that the identity

o ,3—1
T
x'ﬁ——S e "%z

o (B—1)!
and yield the representation
(6.8.11) (x, e)=§:ﬁ<r, e)e-tdr

for |e|=po<2 and Re[x]>&5'. By substituting #(r, &) into both sides of the
equation [(6.7.1) we obtain two functions which are holomorphic in (z, ¢), |7] <o,
|e] <2. The Laplace transforms of these two functions are equal since p(x, ¢)
is the unique solution of Therefore these two functions are the same,
and %(z, &) is a solution of

Since ¥=v, v(r, €) and hence u(?, &) also converge on any compact subset of
the region T, for |e|<2.

6.9. Inequalities and (6.8.8) imply
(6.9.1) lu(t, &) < M(poste o
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for |e|=p,<2 and arbitrary values of ¢ in T,. On the other hand, since v(z, ¢)
=0(z#*) as t—0, we have

(6.9.2) u(t, e)=0(|t|#*)
as ¢ tends to 0 in T,. Since p is arbitrary, we have
(6.9.3) u(t, &) ~ 0

as { tends to 0 in T,.

If we define u(f) by u()=u(t, 1), we get a solution u(f) of the equation
which satisfies the following conditions:

(i) wu(t) is holomorphic in T,

(ii) wu(t) is of exponential order as ¢ tends to co in T,

(i) u{)~0 as ¢ tends to 0 in T..

6.10. Put
(6.10.1) wt)=e "u(?),

where u(¢) is the function determined in §6.9.

Since u(t) is a solution of w(t) is a solution of which satisfies
the following conditions:

(1) w() is holomorphic in T,

(ii) w() is of exponential order as ¢ tends to co in T,

(1ii) w{)~0 as ¢t tends to 0 in T,,
which proves our theorem.

7. Proof of Theorem 3(2). I. Determination of formal solution.

As in we obtain

(7.1) Bady(x)+ - + Bl y(x)=F(y(x)),

where

(7.1) F(y)=Bny ™+ Bruny ™1+ - (see [1.8)).
We assume a formal solution of in the form (1.18"):

7.2) Y(x)= 3qx(x)(log x)1-RIm,

where

7.2) qk(x)———x‘”"””[co;,—{-Jé eaialt

Then
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Ay(x): ’:.goqk(x_l_l)[(log(x+1))(1—k)/(m+1)_(logx)(l—k)/(m+1)]

+ :2;0 [gx(x+1)—q,(x)](log x) A=/ (m+D

in which

(log(x +1))A-#)/(m+D —=(Jog x) A=k (m+D [1+10g<1+%)/10g x

g et 5O og(1+-4)) tog 7

Thus, if we write

](1—k’)/(m+1)

Ay(x): ’;i q’gl)(x)(log x)(l—k)/(m+1)’
=0
then

4 ()=qa(x+1) =)+ +h(mm:k((l— g ’)£(n1+1))(log(1+ —}%—))hqk:(x—l—l) .
hz1

In general, if we write

(7.3) Aly(JC):kioqlg”(x)(logx)(l-k)/(m+1),
then
(1—=Fk")/(m—+1) I\\* ,,_
) — il (l-1)
a0 a3, (T (D)) ey
g8V (x+1)—gi 0 (x) .
Let -
C]k(x):x”/(m“) 2 Cjkx‘j/("H_l).

j=o

Then

(7.5) ga(x+1)—gp(x)= x5/ m+D i Cjkx—j/(mﬂ)[(1+i>(x—j)/(m+l)_1]
Jj=0 X

00

— m+1) -Jjl{m+1

= x ¥/ ( E( 2 _erka-r>x Jjlr{m+1)
Jj=0 J’+t(t1£ii—1)=1

where D,; are the coefficients of the expansion

(7.5%) (11 /x) =301 eman =1 4 :21 Dyyxt,

Further

_l_ b £ (Mt S ) —j/(m+1)
7.6)  qulx+D)(log(1+ x)) =x py (jlﬂgzuzjc,-,k,Em,)x smen

where E;,;» are the coefficients of the expansion

(7.6") (l—l—%—)Oﬂq)/(m+l)(log(1—l—~i—>)h:éb Epnpzt,
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Thus, if we write

(77) q,ﬁ”(x)Zx"”"‘“) i c}i’x“”‘m“’,
j=0

then

(7.8) cip= SV Dy

7 +i<t1n+1)=;
(1**13,)/(771“—1) (I-1)
+k’+h}(£%1+1)=k{( h >j’+t(m+1)=jcj!k, Ethj'>}'

tzh
Obviously

(7.8) ¢k =0 it j<(m+1).
By assumption, x£/(m-+1) is an integer. We put

AC) 1/(m—+1)
(7.9) I'= Iz—k) (@—k/(m+1D) le=rcm+1y”

Then we can easily obtain that

(7.10) e mir=1"coo.

Write

(7.11) ¥(x)= 3 galx)(log x)-PrmeD
=q,(x)(log x)”‘m“’(l—l— g,‘l g4(x)(log x)—k/(m+1)) ’

then

(7.11) GH)=qx(0)/qo(x),  gi(x)=1.

Further write

(7.12) 1/3(x)=(go(x)l0g ) ™) (14 3 gf(x)(log x)74/m+2),

then

7.13) == Fae(0,  qln=1.

Moreover

(7.14) y(x)7#=go(x)"*(log x)'“”’“’”(l—l— éi 3§ (x)(log x>-k/<m+1>)
=qux)"*|(log 1)~/ + 32 4@ (x)log x)k-orenen |
=gx)™* 3% g (x)(log x) 41/,

in which

(7.14) gi(n)=1, 7P(x)=0 if k<s,

T () =851 (%) if kz=s+1,
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and
(8 S! /4 v " v
(7.15) g (x)= y1+_§ys=s mqh(x) 1eee gy (%),
Jivitetjsve=k
71<<Jg
Then
(7.16) S B/y0y'= T Buga0)7(| 2 38 (x)log 1) Rremb)
= 3 (£ B3 (1)) log )=,
k=m+1\s=m
Therefore
(7.17) Bagi® (x)+ - +BgfP(x)=0  if k=m,
(7.17") Brgmii(x)+ -+ + Beqiths(x)=Bn/qo(x)™.

In general,
k-
(7.18)  BaghP(0)+ - +BgiO (1) =T (Bu/qu0)Nq(x),  if kZm+1.

By these formulas, we determine coefficients Cip
Write

oc -]
(719) qo(x).:x:c/(nwl) EOcjox-1/<m+1)__:cooxx/(m+1)[1+ Zl‘lcgox—,z/(mﬂ)],
Jj= Jj=

(7.19%) C50=Cjo/ Coo ceo=1.

Further, write

_ x—lc/(7n+1) oo B »

(7.20) qolw) =1+ Beggoermm | (efr=1)

Coo j=1
and
7.21) gy o=t feg 14 B efso-ren ]

i=
oo
___(x/c/(m+1)/680)[x—(s+1)x/(m+1)+ ZlC}Es)x—(j+(s+1)lc)/(m+1)-|
Jj=
=——(x"/(m+1)/650) f: ?(_as>x-j/(m+1)
j=Gioe ’ ’

where
(7.21%) ¢59=0 if 7<(s+Dk,

?f-?_‘i)l)x,(]:l ’
in which

s!
7.92 e = DYWL el (pf=DYs
( ) Jjo vt Tog=s )21! .. ]Js! ( k10 ) ( kg0 )
kyvy+ethgyg=j

Ey <o <kg

and

(7.229) ?§63):C§:§§+l)x,0 .
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Further, if we write
(7.23) qé(x)':qk(x)/qo(x):cao‘[COk+ Z‘lcjkx"'"m“’][H— Z)lcj‘-al’x”"‘"‘“’}
Jj= Jj=
— i Clpx Il mED
i~ ’
then
C]k—~Co1 E Csz; Do-

Moreover, write

oo

(7.24) gr(x)=— th(x)q Li(x)= 3 cha Ty,

then

(7.24) ch=— 2 (& cliclyvav), =0 if 21

Thus, if we put

(7.25) )= 3 e =sql()+ -

and

(7.25') a0 (x)= 5, e x M =i (1),

then

(7.26) &h=sc+(a polynomial of ¢} ,, 0=/, 0Sk’'<k—1),

hence

(7.26") ¢80 =(—5s/co0)Cjcr-s-1-F(a polynomial of (c;o/ce) and of cjy,
1=l=), 0=/, 1Sk Sk—s5=2).

Since

(7.27) qolx)™°Gi" ()= (20 [ ¢ ) E C;('E”X‘j”m“)j;io Cip xmarm+n

:(xx/(m+1)/cs C(- .,s’cﬁ}?)x‘j”’"“’,

—(s+1)x( i +] =7
J’

2(s+hH)x
we obtain by (7.18) and

(7.28) Bt B =5 (| 3 Ewen), it kzmtl,
s=m Coo N
and
(7.28") BaCi A+ o A+ Bicip = if k=<m.
When j=m+1e+;’, 0=<;7'<m+1, and 0<k<m-1, then by (7.8") we have
=0 for [=k+1,
and by (7.28")
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cp=0, if j<m+1)x+1).

On the other hand, by

Frnrnarm () (5 e) - (5
if j/=0. Therefore

(7.29) ¢y =0 for 0<j/<m—+1, 0=k<m-+1.
By (7.28) for k=m+1,

B, _ B

(7.30) Brcilmart o B = T[ L2 Ca("—om)cf("f?zn“:l’
Coo J].;__(*-‘r{(.’=i7)lt

and

(7.30) ﬁnc§;7ll)+1)lc,m+1+ +ﬁxc?7c?%+1)x,m+1:Bm/C(7)%'

Thus, by (7.8’) and using (7.307),

(7.31) B:l'coy=Bn/cfs, e, ct'=Bn/(BI)#0,

which determines cg,#0.
By [7.29), ¢;o=0, 0<j’<m-+1. By for j=(m+1)(k+1), we have

(7.32) ﬂx+1€gﬁii)(:¢+1),m+1+ﬁxcm+1>(x+1), m+1
=(Bm/65’c‘,)[?§;z”ii>x, Oéinﬂ’-‘i-)l,m+l+ +?E;nﬂli)(:c+1),05(§:mn)z+1:| .

By [7.31) we see that the coefficients of ¢,4;, On the both sides of coin-
cide. Hence c¢n+1,0 can be arbitrarily prescribed.
In this way, other ¢;, are determined successively.

8. Proof of Theorem 3(2). II. Existence of solution.

As in §6, we will prove the existence of solution by the method of Laplace
transform, following Harris and Sibuya [2].

Let V(x) be a function, holomorphic in the sector S, of and asymp-
totically expanded as

(81) V(x) ~ xx/(m+1)[coo+ 2 c]_kx—j/<m+1)(logx)(l—k)/(m+1)]
jtkz1
as x tends to oo in S,.
Put
(8.2) y(x)=V(x)+z(x),

and write the equation in the form

(8.3) az(x+n)+ - +az(x+1)—B_jz(x)=g(x, z(x)),
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where

oc

@4  glr, D=3 Hor (V o~V GEnt e eV D= BV (0],

Arguing as in § 6 by means of inverse Laplace transform, we obtain the exis-
tence of the desired solution for (1.1).
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