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1. Introduction.

During the last years the study of real hypersurfaces of Kaehlerian manifolds
has been an important subject in geometry of submanifolds, especially when the
ambient space is a complex space form.

One of the first results in this way (see [12]) was to state that any real
hypersurface $M$ of a complex space form $\overline{M}(c)$ with holomorphic sectional cur-
vature $c\neq 0$ is not totally umbilical. This is a direct consequence of classical
Codazzi’s equation for such a hypersurface. From that equation, also one can
deduce that there does not exist real hypersurfaces $M$ of $\overline{M}(c),$ $c\neq 0$, with par-
allel second fundamental form $H$. So, it seems interesting to describe and
characterize real hypersurfaces of $\overline{M}(c),$ $c\neq 0$ , with a few principal curvatures
or with derivative $\nabla H$ of the second fundamental form of short length. These
problems have been solved, in the case $c>0$ , in [2], [6], [10], [11] and other
works.

On the other hand, Kon, in [5], stated that there are no Einstein real
hypersurfaces in $\overline{M}(c),$ $c>0$ , and he studied a less restrictive condition for the
Ricci tensor of these hypersurfaces: the pseudo-Einstein condition (see also [6]).

In fact, he classified the pseudo-Einstein real hypersurfaces of the complex pro-
jective space using Takagi’s works [10] and [11].

Finally, Cecil and Ryan generalized in [2] some results of [10] and [5].

They described in terms of tubes over complex submanifolds the real hypersur-
faces of the complex projective space which appear in the literature.

Now we are interested in these problems when $c<0$ , that is, when $\overline{M}(c)$ is
the complex hyperbolic space $CH^{m}$ (for convenience we will assume $c=-4$).

So, A. Romero and the author have classified in [7] all complete real hypersur-
faces of $CH^{m}$ which admit a $S^{1}$-principal bundle which is a parallel Lorentzian
hypersurface of the anti-De Sitter space $H_{1}^{2m+1}$ . These real hypersurfaces have
the least length for $\nabla H$ as we will show in a forthcoming paper.

In this paper we construct some examples of real hypersurfaces of $CH^{m}$

(Section 6) and we give a complete classification of the real hypersurfaces of $CH^{m}$

with at most two principal curvatures at each point. In this classification we
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obtain tubes over complex and totally real submanifolds of $CH^{m}$ and a real
hypersurface $M_{m}^{*}$ of $CH^{m}$ which has no focal points and which is congruent to
all its parallel hypersurfaces. In fact, we will prove

THEOREM 7.4. If $M$ is a complete real hypersurface of $CH^{m},$ $m\geqq 3$ , with at
most two pnncipal curvatures at each pmnt, then $M$ is congruent to one of the
following spaces:

a) A geodesic hypersphere.
b) A tube of arlntrary radius over a complex hyperboljc hyperplane.
c) $A$ “self-tube” $M_{m}^{*}$ .
d) A tube of radius $\log((1+\sqrt 3\neg/\sqrt{2})$ over a totally real hyperbolic hyper-

plane.
Also, we will obtain the following characterization of the space $M_{m}^{*}:$

COROLLARY 7.5. The only complete real hypersurface of $CH^{m},$ $m\geqq 3$ , which
has no focal Points and which is congruent to all its parallel hypersurfaces and
such that $J\xi$ is a principal vector is the space $M_{m}^{*}$ , where $\xi$ is a unit vector normal
to the hypersurface.

It is necessary to remark that the real hypersurface appearing in Theorem
7.4, d), has exactly two constant principal curvatures at each point and, however,
it is not totally $\eta$ -umbilical (see [5] for definition). This cannot hold when the
ambient space is the complex projective space (see [2]).

In Section 8 we will deal with pseudo-Einstein real hypersurfaces of $CH^{m}$ .
We will state:

COROLLARY 8.2. There are no Einstein real hypersurfaces in $CH^{m},$ $m\geqq 3$ .
In this way, we will prove the following classification result:

THEOREM 8.1. The only complete real hypersurfaces of $CH^{m}$ , $m\geqq 3$ , which
are Pseudo-Einstein are (up to congruences) the spaces a), b) or c) in Theorem 7.4.

This last result asserts that a real hypersurface of $CH^{m}$ is pseudo-Einstein
if and only if it is totally $\eta$ -umbilical.

Our main tool in this paper is based on [2]. Given a real hypersurface $M$

of $CH^{m}$ , we will “displace” it parallelly following a normal direction to obtain a
submanifold $\phi_{r}M$ of $CH^{m}$ which is complex or anti-holomorphic. Then we will
relate the respective second fundamental forms of $M$ and $\phi_{r}M$.

2. Preliminaries.

The Bergmann metric tensor $g$ and the complex structure $J$ of the complex
hyperbolic space $CH^{m}$ can be obtained as follows (see [4]): we consider the
Hermitian form $(, )$ on the complex vector space $C^{m+1}$ given by
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$(z, w)=-z_{0} \overline{w}_{0}+\sum_{j=1}^{m}z_{j}\overline{w}_{j}$

where $z=(z_{0}, z_{1}, \cdots z_{m}),$ $w=(w_{0}, w_{1}, \cdots w_{m})\in C^{m+1}$ . The inner product

$\langle z, w\rangle={\rm Re}(z, w)$

is an indefinite metric of index 2 on $C^{m+1}$ . Then, the hypersurface $H_{1}^{2m+1}$ of
$C^{m+1}$ defined by

$H_{1}^{2m+1}=\{z\in C^{m+1}|(z, z)=-1\}$

endowed with the induced metric tensor from $\langle, \rangle$ is the well known anti-
De Sitter space, which is a Lorentzian manifold of constant sectional curvature -1.
Moreover, if $z\in H_{1}^{2m+1}$ , the tangent space $T_{z}H_{1}^{2m+1}$ is identifiable with the sub-
space of $C^{m+1}$

$\{w\in C^{m+1}|\langle z, w\rangle=0\}$ .
Now, $H_{1}^{2m+1}$ is a principal $S^{1}$-bundle over $CH^{m}$ with projection map $\pi$ : $H_{1}^{2m+1}$

$arrow CH^{m}$ such that $Ker(\pi_{*})_{z}=span\{V_{z}\}$ with $V_{z}=\sqrt{-1}z\in T_{z}H_{1}^{2m+1}$ . So, the tangent
space $T_{\pi(z)}CH^{m}$ can be identified with the subspace of $C^{m+1}$

$T_{z}’=\{w\in C^{m+1}|(z, w)=0\}$ .

Now, the complex structure $J$ of $CH^{m}$ is induced from the multiplication by

the imaginary unity $\sqrt{-1}$ , that is,

$JX=(\pi_{*})_{z}(\sqrt{-1}X’)$

where $X\in T_{\pi(z)}CH^{m}$ and $X’\in T_{z}’,$ $(\pi_{*})_{z}(X’)=X$ (horizontal lift). Also, the Berg-
mann metric tensor $g$ of constant holomorphic sectional curvature $-4$ can be
obtained from the relation

$g(X, Y)=\langle X’, Y’\rangle$

where $X,$ $Y\in T_{\pi(z)}CH^{m}$ .
In this way, the projection $\pi$ : $H_{1}^{2m+1}arrow CH^{m}$ is a metric submersion in the

sense of [8] with fundamental tensor $J$. So, if $\nabla’$ and V are the metric con-
nections of $H_{1}^{2m+1}$ and $CH^{m}$ respectively, we have

(2.1) $\nabla_{\acute{X}’}Y’=(\overline{\nabla}_{X}Y)’+g(JX, Y)V_{z}$ $\nabla_{V_{z}}’X’=\nabla_{\acute{X}’}$ $V.=\sqrt{-1}X’$

for all $X,$ $Y\in T_{\pi(z)}CH^{m}$ .
Now, let $M$ be a real hypersurface of $CH^{m}$ and let $\xi$ be a unit normal field

defined near $x=\pi(z)\in M$. Then, if $X\in T_{x}M$, one has

$JX=\phi X+f(X)\xi$

tangent and normal components respectively. So, $\phi$ is a $(1, 1)$ -tensor and $f$ is
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a l-form. Moreover, $f(X)=g(X, U)$ with $U=-J\xi$ and $(\phi, f)$ determines a
metric almost contact structure on $M$ (see [5] for more details).

We denote by $H$ the Weingarten map on $T_{x}M$ associated to $\xi$ . Then the
Codazzi and Gauss equations for $M$ are (see [5], p. 341)

(2.2) $(\nabla_{X}H)Y-(\nabla_{Y}H)X=-f(X)\phi Y+f(Y)\phi X-2g(X, \phi Y)U$

(2.3) $R(X, Y)Z=-g(Y, Z)X+g(X, Z)Y-g(\phi Y, Z)\phi X+g(\phi X, Z)\phi Y$

$+2g(X, \phi Y)\phi Z+g(HY, Z)HX-g(HX, Z)HY$

where $X,$ $Y,$ $Z\in T_{x}M,$ $\nabla$ is the metric connection of the induced metric $g$ on $M$

and $R$ is the curvature operator of $\nabla$ .
Using (2.2) and the fact that $CH^{m}$ is Kaehlerian, Kon has stated in [5],

p. 342:

LEMMA 2.1. Let $M$ be a real hypersurface of $CH^{m}$ and we suppOse that $J\xi$

is a principal vector on $M$, that is, $HJ\xi=\mu J\xi$ . Then, we have
a) $2\phi=\mu(\phi H+H\phi)-2H\phi H$

b) $X\cdot\mu=(U\cdot\mu)f(X)$ for all $X$ tangent to $M$, and $(U\cdot\mu)(\phi H+H\phi)=0$ on $M$.
Also, from (2.2) we have immediately (see [12]):

LEMMA 2.2. Let $M$ be a real hypersurface of $CH^{m},$ $m>1$ . Then $M$ is not
totally umbilical.

Now, if $S$ is the Ricci tensor of $M$ we have from (2.3) (see [5], p. 341):

(2.4) $S(X, Y)=-(2m+1)g(X, Y)+3f(X)f(Y)+(trH)g(HX, Y)-g(H^{2}X, Y)$

for all $X,$ $Y$ tangent to $M$.
Finally, given the real hypersurface $M$ of $CH^{m}$ , one can construct (see [7])

a Lorentzian hypersurface $M’$ of $H_{1}^{2m+1}$ which is a principal $S^{1}$ -bundle over $M$

with time-like totally geodesic fibers and projection $\pi’$ : $M’arrow M$ in such a way
that the square

$j’$

$M’arrow H_{1}^{2m+1}$

$\pi_{M}^{\prime I}arrow^{i}CH^{n}\downarrow\pi$

is commutative ( $i,$ $i’$ being the respective immersions), and, thus, if $z\in M’$ , then
$V_{z}\in T_{z}M’$ and $Ker(\pi_{*}’)_{z}=span\{V_{z}\}$ . Moreover, if $\xi$ is a unit field normal to $M$

defined near $x=\pi’(z)$ , the horizontal lift $\xi’$ of $\xi$ by $\pi’$ provides a unit field
normal to $M’$ defined near $z$ . If $H’$ denotes the Weingarten map on $T_{z}M’$ as-
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sociated to $\xi’$ , we have shown in [7] the following relations between the maps
$H$ and $H’$ :

(2.5) $H’X’=(HX)’-f(X)V_{z}$ $H’V_{z}=(U_{x})’$

where $X\in T_{x}M$ and the ’ denotes horizontal lifts.
So, if $M$ has principal curvatures $\lambda_{1},$

$\cdots,$
$\lambda_{2m-2},$

$\mu$ at $x$ and $X_{1},$ $\cdots$ , $X_{2m- 2},$ $U_{x}$ is
an orthonormal basis of $T_{x}M$ with $HX_{i}=\lambda_{i}X_{i},$ $i=1,$ $\cdots$ , $2m-2$ , and $HU_{x}=\mu U_{x}$ ,
then, from (2.5), the vectors $(X_{1})’,$

$\cdots,$ $(X_{2m-2})’,$ $(U_{x})’,$ $V_{z}$ form an orthonormal
basis of $T_{z}M’$ with respect to which $H’$ is represented by

(2.6) $(\lambda_{1|}^{1}|\underline{\lambda}_{2m- 21}^{1}1||I|11I|^{-10^{-\{}}|\mu 1$

where the last submatrix corresponds to the restriction of $H’$ to the Lorentz
plane span $\{(U_{x})’, V_{z}\}\subset T_{z}M’$ .

As an immediate consequence, $H’$ is diagonalizable if and only if $\mu^{2}>4$ .
If $\mu^{2}=4$, there exists a null principal direction in $T_{z}M’$ . If $\mu^{2}<4$ , the Lorentz
plane span $\{(U_{x})’, V_{z}\}$ contains no principal directions (see examples in Section 6).

3. Focal points of a real hypersurface of $CH^{M}$ .
Let $M$ be a real hypersurface of $CH^{m}$ and let $P:NMarrow M$ be its normal

bundle. We define a map $F:NMarrow CH^{m}$ as follows: if $\eta\in NM$ and $P(\eta)=x\in M$,
we call $F(\eta)$ the point of $CH^{m}$ reached at distance $|\eta|$ along the geodesic of
$CH^{m}$ starting at $x$ with initial direction $\eta$ . A point $p\in CH^{m}$ is said to be a focal
point of the pair $(M, x)$ with multiplicity $\nu>0$ if $p=F(\eta),$ $\eta\in NM,$ $P(\eta)=x$ and
$\dim Ker(F_{*})_{\eta}=\nu$ (see [2]). A point $p\in CH^{m}$ is said to be a focal point of $M$ if
it is a focal point of some pair $(M, x)$ .

Now, if $\eta\in NM$, one has $\eta=r\xi$ where $r\in R$ and $\xi\in NM$ is a unit vector.
If $P(\eta)=x$ and $w\in H_{1}^{2m+1}$ with $\pi(w)=x,$ $F$ can be determined by

(3.1) $F(r\xi)=\pi(\cosh rw+\sinh r\xi’)$

where $\xi’$ is the horizontal lift of $\xi$ to $T_{w}H_{1}^{2m+1}$ . Moreover (3.1) is independent
of the choice of $w$ .



520 S. MONTIEL

For studying the kernel of $(F_{*})_{r\xi}$ : $T_{r\xi}NMarrow T_{F(r\xi)}CH^{m}$ , we can suppose from
(3.1) $r\geqq 0$ , taking $-\xi$ instead of $\xi$ if necessary. Moreover, as one has that $(F_{*})_{0}$

is an isomorphism, we put $r>0$ .
On the other hand, if $\xi$ is a unit normal field defined on a neighbourhood $W$

of $x\in M$, we have the following local trivialization of $NM$, taking into account
that $\eta=\lambda\xi$ with $\lambda\in R$ for all $\eta\in NM$

(3.2) $TNM|_{W}=TW\cross span\{\partial/\partial\lambda\}$ .
Thus, similar computations as in [2] provide us

(3.3) $(F_{*})_{r\xi}(\partial/\partial\lambda)=(\pi_{*})_{z}(\sinh rw+\cosh r\xi’)$

(3.4) $(F_{*})_{r\xi}(X)=(\pi_{*})_{z}\{\cosh rX’-\sinh r[(HX)’+\langle X’, \sqrt{-1}\xi’\rangle’-1w]\}$

for all $X\in T_{x}M$ and where $z=\cosh rw+\sinh r\xi’\in H_{1}^{2m+1}$ . It is easy to see from
(3.3) and (3.4):

PROPOSITION 3.1. If $M$ is a real hypersurface of $CH^{m}$ with $HJ\xi=\mu J\xi$ where
$\xi$ is a unit normal field defined near $x\in M$, then, with the local trivialization (3.2),

we have
a) $(F_{*})_{r\xi}(\partial/\partial\lambda)=(\pi_{*})_{z}(\sinh rw+\cosh r\xi’)$

b) $(F_{*})_{r\xi}(J\xi)=(\pi_{*})_{z}(\cosh 2r-(1/2)\mu\sinh 2r)(\sinh r\sqrt{-1}w+\cosh r\sqrt{-1}\xi’)$

c) $(F_{*})_{r\xi}(X)=(\pi_{*})_{z}(\cosh rX’-\sinh r(HX)’)$

where $X\in T_{x}M$ with $g(X, J\xi)=0$ and $z=\cosh rw+\sinh r\xi’,$ $\pi(w)=x$ .

REMARK. Computations for getting b) have been made in such a way that
the vector on the right side lies in $T_{z}’$ .

As an immediate consequence we find the focal points of $M$ when $HJ\xi=\mu J\xi$ .
PROPOSITION 3.2. Let $M$ be a real hypersurface of $CH^{m}$ with $HJ\xi=\mu J\xi$

where the unit normal field $\xi$ is defined near $x\in M$. Then
a) $Ker(F_{*})_{r\xi}=V_{\coth\tau}$ if $\mu\neq 2\coth 2r$ at $x$ , where $V_{\coth r}$ is the subspace of $T_{x}M$

consisting of the orthogonal to $J\xi$ Principal vectors cwresponding to the principal
curvature coth $r$ .

b) $Ker(F_{*})_{r\xi}=V_{\coth r}\oplus span\{J\xi\}$ if $\mu=2\coth 2r$ .

4. Parallel hypersurfaces and focal sets of a real hypersurface of $CH^{m}$ .
Let $M$ be an orientable real hypersurface of $CH^{m}$ and let $\xi$ be a unit normal

field on $M$. We suppose that $J\xi$ is a principal vector at each point of $M$, that
is, $HJ\xi=\mu J\xi$ . For $r>0$ , we define a map $\phi_{r}$ : $Marrow CH^{m}$ by $\phi_{r}(x)=F(r\xi(x))$ where
$F$ was defined in (3.1).

When there are no focal points of $M$ in $\phi_{\tau}M$, one has, from Propositions 3. 1
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and 3.2, that $\phi_{\tau}$ has rank $2m-1$ at each point of $M$. So, $\phi_{r}M$ is a real hyper-
surface of $CH^{m}$ called parallel hypersurface at oriented distance $r$ from $M$. If
$\phi_{r}M$ contains some focal point of $M$, then we need some additional assumptions
to guarantee that $\phi_{\tau}M$ is a submanifold of $CH^{m}$ . In fact, we have an analogue
to Theorem 1 in [2] :

THEOREM 4.1. Let $M$ be an orientable real hypersurface of $CH^{m}$ such that
$J\xi$ is a prjncipal vector at each pmnt, corresponding to a constant prjncipal curva-
ture $\mu$ . Let $r>0$ and we assume that $\phi_{r}$ has constant rank $q$ on M. Then, if
$\mu=2\coth 2r$ (resp. if $\mu\neq 2\coth 2r$), for every $x_{0}\in M$ there exists an open neighbour-
hood $W$ of $x_{0}$ such that $\phi_{r}W$ is a $q/2$-dimensional complex (resp. q-dimensional
anti-holmorphjc) submanifold embedded in $CH^{m}$ . Moreover $W$ lies in a tube of
ra&us $r$ over $\phi_{r}W$ .

PROOF. Given $x_{0}\in M$, let $W$ be an open neighbourhood of $x_{0}$ such $tha_{t}$

$\phi_{r}W=V$ is a q-dimensional real submanifold embedded in $CH^{m}$ (utilize the inverse
function theorem).

If $p\in V$ , one has $p=\phi_{r}(x)=\pi(z)$ with $z=\cosh rw+\sinh r\xi’$ , $x\in W$ and $w\in$

$H_{1}^{2m+1},$ $\pi(w)=x$ . Then $T_{p}V=span\{(\phi_{r})_{*}(X)|X\in T_{x}M\}$ . Since $HJ\xi=\mu J\xi$ , Ker $f_{x}$

is an H-invariant subspace of $T_{x}M$ and, so, we can take an orthonormal basis
$X_{1},$

$\cdots,$
$X_{2m-2},$ $J\xi$ of $T_{x}M$ which satisfy $HX_{i}=\lambda_{i}X_{i},$ $X_{i}\in Kerf_{x},$ $i=1,$ $\cdots,$ $2m-2$ .

So, we have

$T_{p}V=span\{(\phi_{r})_{*}(J\xi), (\phi_{r})_{*}(X_{i}), i=1, \cdots 2m-2\}$ .

From Proposition 3.1, we get

(4.1) $T_{p}V=span\{(\pi_{*})_{z}(\cosh 2r-(1/2)\mu\sinh 2r)(\sinh r\sqrt{-1}w+\cosh r\sqrt{-1}\xi’)$ ,

$(\pi_{*})_{z}(\cosh r-\lambda_{i}\sinh r)X_{i}’$ , $i=1,$ $\cdots 2m-2$}

where $z=\cosh rw+\sinh r\xi’\in H_{1}^{2m+1}$ with $\pi(w)=x$ for each $x\in\phi_{r}^{-1}(p)$ .
Now, we define $\eta$ : $\phi_{\tau}^{-1}(p)arrow T_{p}CH^{m}$ by

(4.2) $\eta(x)=(\pi_{*})_{z}(\sinh rw+\cosh r\xi_{w}’)$

where $w\in H_{1}^{2m+1}$ and $\pi(w)=x$ . Then, $\eta(x)$ is a unit vector which is orthogonal
to $T_{p}V$ from (4.1). This map $\eta$ can be defined for every $p\in V$ and, hence, we
have a map $\eta$ : $Warrow BV$ , where $BV$ is the unit normal bundle over $V$ . On the
other hand, if $\psi_{\tau}$ : $BVarrow CH^{m}$ is the tube of radius $r$ over $V$ , we have

$\psi_{r}(-\eta(x))=$ ($\cosh r(\cosh rw+\sinh r\xi_{w}’)$ -sinhr $\eta’(x)$ ) $=x$ .

So, $\psi_{r}(BV)\subset W$ and $\psi_{r^{o}}(-\eta)=I_{W}$ . Thus, $\eta$ is a diffeomorphism from $W$ onto an
open set $\eta(W)\subset BV$ and $W$ lies in a tube of radius $r$ over $V$ . Moreover, for
$p\in V,$ $\eta(W)\cap T_{p^{1}}V$ is open in $T_{p^{1}}V$ and so
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(4.3) $T_{p^{1}}V=span\{(\pi_{*})_{z}(\sinh rw+\cosh r\xi_{w}’)|w\in H_{1}^{2m+1}, \pi(w)=x\in\phi_{r}^{-1}(p)\}$ .

Now, if $\mu=2\coth 2r$ , from (4.3) and (4.1) we get $JT_{p^{1}}V\subset T_{p^{1}}V$ and $V$ is
complex. Finally, if $\mu\neq 2\coth 2r$ , then from (4.1), the vectors

$(\pi_{*})_{z}(\sinh r\sqrt{-1}w+\cosh r\sqrt{-1}\xi_{w}’)=J(\pi_{*})_{z}(\sinh rw+-\cosh r\xi_{w}’)$

with $z=\cosh rw+\sinh r\xi’,$ $\pi(w)=x$ lies in $T_{p}V$ for every $x\in\phi_{r}^{-1}(p)$ . But these
vectors span $JT_{p^{1}}V$ from (4.3). So, $JT_{p^{1}}V\subset T_{p}V$ and $V$ is anti-holomorphic
(generic in the sense of [13]).

REMARK. It is important to see that a real hypersurface $M$ of $CH^{m}$ with
$HJ\xi=\mu J\xi,$ $\mu\in R$ and $|\mu|\leqq 2$ cannot be a tube over a complex submanifold of
$CH^{m}$ (cf. [2]).

A global version of Theorem 4.1 can be obtained by supposing that $M$ is
complete from the Palais results in [9] exactly as in [2] :

THEOREM 4.2. Let $M$ be a complete real hypersurface of $CH^{m}$ with $HJ\xi=$

$\mu J\xi,$ $\mu\in R$ . Let $r>0$ and we assume that $\phi_{r}$ has constant rank $q$ on M. Then, if
$\mu=2\coth 2r$ (resp. $\mu\neq 2\coth 2r$ ) $M$ is a tube of radius $r$ over the complex (resp.
anti-holomorphic) submanifold $\phi_{\tau}M$ of $CH^{m}$ .

5. Principal curvatures of $\phi_{\tau}M$.
As in Theorem 4.1, let $M$ be an orientable real hypersurface of $CH^{m}$ such

that $J\xi$ is a principal field corresponding to a constant principal curvature $\mu$ .
Moreover, we will suppose that $\phi_{r}$ has constant rank $q$ on $M,$ $r>0$ .

We take $x\in M$ and we have $W$ and $\phi_{r}W=V$ associated to $x$ as in Theorem
4.1. If $p\in V$ , from (4.3) we can choose $x_{1},$ $\cdots$ , $x_{2m- q}$ points of $W$ with $\phi_{r}(x_{i})=p$

and such that $N_{i}=(\pi_{*})_{z_{i}}(N_{i}’),$ $N_{i}’=\sinh rw_{i}+\cosh r\xi_{w_{i}}’$ , constitute a basis of unit
vectors for $T_{p}^{\perp}V$ , where $w_{i}\in H_{1}^{2m+1}$ , $\pi(w_{i})=x_{i}$ and $z_{i}=\cosh rw_{i}+\sinh r\xi_{w_{i}}’$ ,
$i=1,$ $\cdots$ , $2m-q$ . Now, we distinguish two cases:

A) If $\mu=2\coth 2r$ , for fixed $i\in\{1, \cdots , 2m-q\}$ and using (4.1), we can take $q$

vectors
$T_{j}^{i}=(\pi_{*})_{z_{i}}(\cosh r-\lambda_{j}\sinh r)X_{j}’$

where $X_{j}\in T_{x_{i}}M,$ $g(X_{j}, J\xi)=0$ and $HX_{j}=\lambda_{j}X_{j},$ $\lambda_{j}\neq\coth r,$ $j=1,$ $\cdots,$ $q$ , which form
a basis of $T_{p}V$ .

If we denote by $H_{\tau,i}$ the Weingarten map on $T_{p}V$ associated to $N_{i}$ , we have

(5.1) $H_{r,i}T_{j}^{i}=tangent$ component of $-\overline{\nabla}_{\tau_{j}^{i}}N_{i}$ .

Now, by using the O’Neill formulae (2.1) we have

(5.2) $\overline{\nabla}_{\tau_{j}^{i}}N_{i}=(\pi_{*})_{z_{i}}\nabla_{(\cosh\tau-\lambda_{j}\sinh r)X_{j}’}’N_{i}’$ .
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It is easy to see that, if $\alpha(t)$ is a curve on $H_{1}^{2m+1}$ with $\alpha(0)=w_{i}$ and a(0) $=X_{j}’$ ,
then the curve $\gamma(t)=\cosh r\alpha(t)+\sinh r\xi’(\alpha(t))$ on $H_{1}^{2m+1}$ satisfies $\gamma(0)=z_{i}$ and $\dot{\gamma}(0)$

$=(\cosh r-\lambda_{j}\sinh r)X_{j}’$ . Moreover, $N_{i}’(t)=\sinh r\alpha(t)+\cosh r\xi’(\alpha(t))$ is a tangent field
to $H_{1}^{2m+1}$ along $\gamma(i)$ with $N_{i}’(0)=N_{i}’$ . Hence

$\nabla_{(\cosh\tau-\lambda_{j}\sinh r)X_{j}’}’N_{i}’=tangent$ to $H_{1}^{2m+1}$ component of $\dot{N}_{i}’(0)$

$=(\lambda_{j}\cosh r-\sinh r)X_{j}’$

as follows from a direct calculation. This, jointly with (5.1) and (5.2), gives us

(5.3) $H_{r,i}T_{j}^{i}= \frac{\lambda_{j}\cosh r-\sinh r}{\cosh r-\lambda_{j}\sinh r}T_{J}^{i}=\frac{\lambda_{j}\coth r-1}{\coth r-\lambda_{j}}T_{j}^{i}$ .

So, $T_{j}^{i},$ $j=1,$ $\cdots$ , $q$ , is a diagonalization basis for $H_{r.i}$ .
B) If $\mu\neq 2\coth 2r$ , for fixed $i\in\{1, \cdots, 2m-q\}$ , we have that $JN_{i}=$

$(\pi_{*})_{z_{i}}(\sqrt{-1}N_{i}’)$ lies in $T_{p}V$ as we have seen in Theorem 4.1 from (4.1). More-
over, there exists $q-1$ vectors

$T_{J}^{i}=(\pi_{*})_{z_{i}}(\cosh r-\lambda_{j}\sinh r)X_{j}’$

of $T_{p}V$ with $X_{j}\in T_{x_{i}}M,$ $g(X_{j}, J\xi)=0,$ $HX_{j}=\lambda_{j}X_{j}$ and $\lambda_{j}\neq\coth r$ , $j=1,$ $\cdots$ , $q-1$ ,

which form an orthogonal basis of the orthogonal complement of the line
span $\{JN_{i}\}$ in $T_{p}V$ .

Now, we will evaluate

(5.4) $H_{r.i}JN_{i}=tangent$ component of $-\overline{\nabla}_{JN_{i}}N_{i}$ .

By utilizing the O’Neill equalities (2.1), one has

(5.5) $\overline{\nabla}_{(\cosh 2r-(1/2)\mu\sinh 2r)JN_{i}}N_{i}$

$=(\pi_{*})_{z_{i}}\nabla_{(\cosh 2r-(1/2)\mu\sinh 2\tau)v\overline{-\iota}N_{i}’}’N_{i}’$

$+(\pi_{*})_{z_{i}}$ ($\cosh 2r-(1/2)\mu$sinh $2r$) $(\cosh r\sqrt{-1}w_{i}+\sinh r\sqrt{-1}\xi_{w_{i}}’)$ .

But $(\cosh 2r-(1/2)\mu\sinh 2r)(\sqrt{-1}N\text{\’{i}})=L_{i}+\langle L_{i}, V_{z_{i}}\rangle V_{z_{i}}$ with $L_{t}=(\cosh r-$

$\mu\sinh r)\sqrt{-1}\xi_{w_{i}}’-\sinh r\sqrt{-1}w_{i}\in T_{z_{i}}H_{1}^{2m+1}$ . Hence, the first addend on the right
side of (5.5) is

(5.6) $(\pi_{*})_{z_{i}}\{\nabla_{L_{i}}’N_{i}’+\langle L_{i}, V_{z_{i}}\rangle\nabla’V_{z_{i}}N_{i}’\}$ .

Now, if $\alpha(t)$ is a curve on $H_{1}^{2m+1}$ with $\alpha(0)=w_{i}$ and $\dot{\alpha}(0)=\sqrt{-1}\xi_{w_{i}}’$ , then the
curve $\gamma(t)=\cosh r\alpha(t)+\sinh r\xi’(\alpha(t))$ on $H_{1}^{2m+1}$ satisfies $\gamma(0)=z_{i}$ and $\dot{\gamma}(0)=L_{i}$ . So,
$N_{i}’(t)=\sinh r\alpha(t)+\cosh r\xi’(\alpha(t))$ is a tangent to $H_{1}^{2m+1}$ field which extends $N_{i}’$ along
$\gamma(t)$ . Evaluating $\dot{N}_{i}’(0)$ , taking its tangent to $H_{1}^{2m+1}$ component and using (2.1),

one has that (5.6) becomes
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(5.7) $(\pi_{*})_{z_{i}}\{(\sinh r-\mu\cosh r)\sqrt{-1}\xi_{w_{i}}’-\cosh r\sqrt{-1}w_{i}\}$

$+(\pi_{*})_{z_{i}}(\mu\cosh 2r-2\sinh 2r)\sqrt{-1}$ N\’i.

Finally, (5.4), (5.5) and (5.7) give us

(5.8) $H_{r.i}JN_{i}=2 \frac{\mu\coth 2r-2}{2\coth 2r-\mu}JN_{i}$ .

Moreover, in the same way as in the case A), we have

(5.9) $H_{r.i}T_{j}^{i}= \frac{\lambda_{j}\coth r-1}{\coth r-\lambda_{j}}T_{j}^{i}$ .

The equations (5.3), (5.8) and (5.9) relate the principal curvatures $\lambda_{j}\neq\coth r$ ,
$\mu$ of the real hypersurface $M$ and their corresponding of the focal submanifold
$\phi_{r}M$.

6. Examples.

EXAMPLE 6.1 (see [7]). If $p,$ $q$ are integers with $p+q=m-1$ and $t\in R$ with
$0<t<1$ , we consider the Lorentz hypersurface $M_{p,q}(t)$ of $H_{1}^{2m+1}$ dePned by the
equations

$-|z_{0}|^{2}+ \sum_{j=1}^{m}|z_{j}|^{2}=-1$ $t(-|z_{0}|^{2}+ \sum_{j=1}^{p}|z_{j}|^{2})=-\sum_{k=p+1}^{m}|z_{k}|^{2}$ .

It is easy to see that $M_{p.q}(t)$ is isometric to the product

$H_{1}^{2p+1}(1/(t-1))\cross S^{2q+1}(t/(1-t))$

where $1/(t-1)$ and $t/(1-t)$ are the respective squares of the radii.
If $z\in M_{p,q}(t)$ , one can see that

$\xi’(z)=-\frac{1}{\sqrt{t}}(tz_{0}, \cdots tz_{p}, z_{p+1}, \cdots z_{m})$

is a unit vector normal to $T_{z}M_{p.q}(t)$ . So, if $a=(a_{0}, \cdots, a_{m})$ lies in $T_{z}M_{p.q}(t)=$

$\{a\in C^{m+1}|\langle z, a\rangle=0, \langle\xi’(z), a\rangle=0\}$ and $H’$ denotes the Weingarten map associated
to $\xi’(z)$ , we have

$H’a=-\nabla_{a}’\xi’(z)=-D_{a}\xi’(z)$

where $D$ is the usual connection of $C^{m+1}$ . Hence

(6.1) $H’a= \frac{1}{1\sqrt{t}}(ta_{0}, \cdots ta_{p}, a_{p+1}, \cdots , a_{m})$ .

Now, if we put $M_{p.q}^{h}(t)=\pi(M_{p,q}(t))$ , we have a real hypersurface of $CH^{m}$ .
Since $M_{p,q}(t)$ is $S^{1}$-invariant, $\xi_{\pi(z)}=(\pi_{*})_{z}\xi’(z)$ provides a unit field normal to
$M_{p,q}^{h}(t)$ . If we denote by $H$ its associated Weingarten map, we have by using
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(6.1) and (2.5)

$(HU_{\pi(z)})’=H^{f}(-\sqrt{-1}\xi’(z))\perp V_{z}=-(\mathcal{F}t+(1/\sqrt{t}))\sqrt{-1}\xi’(z)$

and so $U=-J\xi$ is a principal Peld corresponding to the principal curvature
$\sqrt{t}+(1/\sqrt{t})$ . Then, from (2.5) and (2.6), we know that the principal curva-
tures of $H$ on the orthogonal complement of the line span $\{U_{\pi(z)}\}$ agree with
those of $H’$ in the orthogonal complement of the Lorentz plane span $\{V_{z}$ ,
$\sqrt{-1}\xi’(z)\}$ . Now, from (6.1) one can see that these principal curvatures are
$\sqrt{t}$ and $1/\sqrt{t}$ with respective multiplicities $2p$ and $2q$ .

So, $Mp_{q}(t)$ has constant principal curvatures tanh $r$ , coth $\gamma$ and 2coth2r with
multiplicities $2p,$ $2q$ and 1 respectively and where we have put tanh $r=\sqrt{t}$. It
is necessary to remark that, from (2.6), the Weingarten map $H’$ of $M_{p.q}(t)$ is
diagonalizable because 2coth $2r>2$ .

Now, the map $\phi_{r}$ : $M_{p,q}^{h}(t)arrow CH^{m},$ $r=\arg\tanh\sqrt{t}$ , defined in Section 4, has
constant rank $2(m-q-1)$ from Proposition 3.2. So, Theorem 4.2 asserts that
$M_{p,q}^{h}(t)$ is a tube of radius $\gamma$ over a $(m-q-1)$-dimensional complex submanifold
of $CH^{m}$ . Moreover, from (5.3), this submanifold is totally geodesic. In fact,
$M_{p.q}^{h}(t)$ is a tube of radius $\gamma$ over a space $CH^{m-q-1}$ embedded in $CH^{m}$ in a totally
geodesic way.

Only in the cases $p=0$ or $q=0$ (geodesic hypersphere or tube over a com-
plex hyperbolic hyperplane) $M_{p,q}^{h}(t)$ is totally $\eta$ -umbilical (see [3], p. 341 for
definition) and only in these cases the Ricci tensor $S$ of $M_{p,q}^{h}(t)$ is of the form

$S(X, Y)=ag(X, Y)+bf(X)f(Y)$

(pseudo-Einstein condition) for some functions $a,$
$b$ . In fact, from (2.4), one can

see that $a=-2m+(2m-2)\coth^{2}r$ , $b=2m$ if $p=0$ and $a=-2m+(2m-2)\tanh^{2}r$ ,
$b=2m$ if $q=0$ .

EXAMPLE 6.2 (see [7]). For fixed $t\in R$, with $t>0$ , let $N(t)$ be the Lorentz
hypersurface of $H_{1}^{2m+1}$ given by

$-|z_{0}|^{2}+ \sum_{j=1}^{m}|z_{j}|^{2}=-1$ $|z_{0}-z_{1}|^{2}=t$ .

Then $N(t)$ is clearly $S^{1}$ -invariant. Moreover, if $\alpha(s)=(\alpha_{0}(s), \cdots, \alpha_{m}(s))$ is a
curve on $N(t)$ with $\alpha(0)=z\in N(t)$ and a $(O)=a=(a_{0}, \cdots , a_{m})$ , we have

$\langle z, a\rangle=0$ ${\rm Re}(\overline{z}_{0}-\overline{z}_{1})(a_{0}-a_{1})=0$

where $\langle, \rangle$ is the indePnite inner product on $C^{m+1}$ defined in Section 2.
Hence, the tangent space $T_{z}N(t)\subset T_{z}H_{1}^{2m+1}$ is identifiable with

$\{a\in C^{m+1}|\langle a, z\rangle=0, \langle a, \eta(z)\rangle=0\}$

where we have put $\eta(z)=(z_{0}-z_{1}, z_{0}-z_{1},0, \cdots, 0)$ . So, the vector
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$\xi’(z)=\frac{1}{t}\eta(z)-z$

satisfies the equalities $\langle\xi’(z), z\rangle=0$ and $\langle\xi’(z), \xi’(z)\rangle=1$ . Hence, we have

$T_{z}N(t)=\{a\in T_{z}H_{1}^{2m+1}|\langle a, \xi’(z)\rangle=0\}$ .

Then, $\xi’(z)$ is a unit vector normal to $N(t)$ at $z$ . Now, if $H’$ denotes the
associated Weingarten map, we have for each $a\in T_{z}N(t)$

$H’a=-\nabla_{a}’\xi’(z)=-D_{a}\xi’(z)$

where $D$ is the usual connection on $C^{m+1}$ . So

(6.2) $H’a=- \frac{1}{t}(a_{0}-a_{1}, a_{0}-a_{1},0, \cdots 0)+a$ .

Now, if $M_{m}^{*}(t)=\pi(N(t))$ is the corresponding real hypersurface of $CH^{m},$ $\xi_{\pi(z)}$

$=(\pi_{*})_{z}\xi’(z)$ provides a unit field normal to $M_{m}^{*}(t)$ . If $H$ is the associated
Weingarten map, we get by using (6.2) and (2.5)

$(HU_{\pi(z)})’=H’(-\sqrt{-1}\xi’(z))+V_{z}=-2\sqrt{-1}\xi^{f}(z)$ .
Hence, $U=-J\xi$ is a principal field corresponding to the principal curvature 2.
Moreover, since from (6.2) $H’$ is the identity map on the orthogonal complement

of the Lorentz plane span $\{V_{z}, \sqrt{-1}\xi’(z)\}\subset T_{z}N(t)$ (note that this orthogonal com-
plement is given by $\{a\in T_{z}N(t)|a_{0}=a_{1}\})$ , then, using the relations (2.5), we have
that $H$ is also the identity map on the orthogonal complement of the line
span $\{U_{\pi(z)}\}\subset T_{\pi(z)}M_{m}^{*}(t)$ .

So, we have seen that $HX=X+f(X)U$ for all $X$ tangent to $M_{m}^{*}(t)$ , and so
$M_{m}^{*}(t)$ is totally $\eta$ -umbilical. By using Corollary 5.3 of [7], we have that $M_{m}^{*}(t)$

is congruent to $M_{m}^{*}(1)=M_{m}^{*}$ for each $t>0$ . In [7], we have shown that $M_{m}^{*}(t)$

is a homogeneous space with isometry group neither semisimple nor soluble
and that it is diffeomorphic to $R^{2m-1}$ .

From Proposition 3.2, the map $\phi_{\tau}$ : $M_{m}^{*}(t)arrow CH^{m}$ has constant rank $2m-1$ for
all $r>0$ . So, every $\phi_{r}$ is an immersion. Moreover, the real hypersurface
$\phi_{r}M_{m}^{*}(t)$ is also totally $\eta$ -umbilical with principal curvatures 1 and 2 as follows
from (5.8) and (5.9). Again by using Corollary 5.3 of [7], we have that $\phi_{r}M_{m}^{*}(t)$

is congruent to $M_{m}^{*}$ (in fact, one can easily prove that $\phi_{r}M_{m}^{*}(t)=M_{m}^{*}(te^{2r})$ ) and,
so, it is also congruent to $M_{m}^{*}(t)$ . For these arguments we will say that $M_{m}^{*}$ is
a “self-tube”.

The equation (2.4) and the previous considerations show that $M_{m}^{*}$ is pseudo-
Einstein with $a=-2$ and $b=2m$ .

REMARK 1. It is easy to note that $M_{m}^{*}(t),$ $t>0$ , provides an isoparametric
family of hypersurfaces of $CH^{m}$ , in such a way that all hypersurfaces of this
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family have constant mean curvature $2m$ . Moreover, from (2.6), this same occurs
for the family $N(t)$ of Lorentz hypersurfaces of $H_{1}^{2m+1}$ . Again from (2.6) the
Weingarten map of each $N(t)$ is not diagonalizable because the Lorentz plane
span $\{V_{z}, \sqrt{-1}\xi’(z)\}\subset T_{z}N(t)$ is irreducible for each $z\in N(t)$ . So, one cannot use
for $N(t)$ the Cartan results in [1]. That is, $N(t)$ is an isoparametric family of
hypersurfaces of $H_{1}^{2m+1}$ which have not an analogue in a Riemannian space form
of negative curvature.

REMARK 2. We will characterize $M_{m}^{*}$ in Corollary 7.5 as the only self-tube
among all complete real hypersurfaces of $CH^{m}$ such that $J\xi$ is principal.

EXAMPLE 6.3. We take $t\in R$ with $t>1$ and let $M(t)$ be the Lorentz hyper-
surface of $H_{1}^{2m+1}$ defined by

$-|z_{0}|^{2}+ \sum_{j=1}^{m}|z_{j}|^{2}=-1$ $|-z_{0}^{2}+ \sum_{j=1}^{m}z_{j}^{2}|^{2}=t$

which is clearly $S^{1}$-invariant. Taking curves on $M(t)$ one can easily see in an
analogous way to the Example 6.2 that

$\xi’(z)=\frac{1}{\sqrt{t(t-1)}}[Q(z)\overline{z}+tz]$

where $Q(z)=-z_{0}^{2}+ \sum_{j=1}^{m}z_{j}^{2}$ , is a unit vector normal to $M(t)$ at $z$ and we can
identify

$T_{z}M(t)=\{a\in C^{m+1}|_{\backslash }’a, z\rangle=\langle a, Q(z)\overline{z}\rangle=0\}$ .
Now, if $H’$ is the Weingarten map associated to $\xi’(z)$ , we have for all

$a\in T_{z}M(t)$

$H’a=-\nabla_{a}’\xi’(z)=-D_{a}\xi’(z)$

where $D$ is the usual connection of $C^{m+1}$ . So

(6.3) $H’a=- \frac{1}{\sqrt{t(t-1)}}[2Q(z, a)\overline{z}+Q(z)\overline{a}+ta]$

with $Q(z, a)=-a_{0}z_{0}+\Sigma_{j=1}^{m}a_{j}z_{j}$ .
Let $M^{h}(t)=\pi(M(t))$ the corresponding real hypersurface of $CH^{m}$ . Then,

since $M(t)$ is $S^{1}$-invariant, $\xi_{\pi(z)}=(\pi_{*})_{z}\xi’(z)$ is a unit vector normal to $M^{h}(t)$ at
$\pi(z)$ . If $H$ denotes its associated Weingarten map, we have, by using (6.3) and
(2.5)

$(HU_{\pi(z)})’=H’(- \sqrt{-1}\xi’(z))+7_{z}^{7}=-2\frac{\sqrt{t-1}}{\sqrt t^{-}}\sqrt{-1}\xi’(z)$ .

So, we have that $U=-J\xi$ is a principal field corresponding to the principal
curvature $2\sqrt{(t-1)}/t$ . Moreover, from (6.3), one can see that $M(t)$ has two
principal curvatures $(\sqrt{t}-1)/\sqrt{t-1}$ and $(\sqrt{t}+1)/\sqrt{t-1}$ both with multiplicities
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$m-1$ on the orthogonal complement of the Lorentz plane span $\{V_{z}, \sqrt{-1}\xi’(z)\}$

$\subset T_{z}M(t)$ for all $z\in M(t)$ . Hence, from (2.6) and the previous considerations, we
have that $M^{h}(t)$ has constant principal curvatures tanh $\gamma$ coth $r$ , 2tanh2r with
multiplicities $m-1,$ $m-1$ and 1 respectively, where we have put $\cosh^{2}2r=t$ .

It is necessary to remark that $2\tanh 2r\neq\tanh r$ for all $r>0$, but that 2tanh2r
$=\coth r$ if and only if $r=\log((1+\sqrt{3})/\sqrt{2})$ , that is, $t=4$ . Hence, $M^{h}(4)$ has
two constant principal curvatures $\sqrt{3}$ and $1/\sqrt{3}$ with multiplicities $m$ and $m-1$

respectively. If $t \frac{arrow-}{}4$ , $M^{h}(t)$ has three constant principal curvatures witb
multiplicities $m-1$ , $m-1$ and 1. So, $M^{h}(t)$ is not totally $\eta$ -umbilical for each
$t>1$ . Moreover, from (2.4) and the comments above, $M^{h}(t)$ is not pseudo-
Einstein.

Now, if $r=(1/2)\arg\cosh\sqrt{t}$ , Proposition 3.2 assures us that $\phi_{r}$ : $M^{h}(t)arrow CH^{m}$

has constant rank $m$ . By using Theorem 4.2, $M^{h}(t)$ is a tube of radius $r$ over
a totally real m-dimensional submanifold of $CH^{m}$ . A convenient use of (5.8) and
(5.9) shows that this submanifold is totally geodesic and, so, it is a real hyper-
bolic space $RH^{m}$ embedded in $CH^{m}$ .

On the other hand, let $SO^{1}(m+1)$ be the identity component of the sub-
group of $GL(m+1, R)$ which preserves the Lorentzian form $-x_{0}^{2}+x_{1}^{2}+ \cdots+x\frac{9}{m}$ on
$R^{m+1}$ . One can see that $SO^{1}(m+1)$ acts transitively on $M^{h}(t)$ and that $M^{h}(t)$ is
diffeomorphic to the homogeneous space $SO^{1}(m+1)/SO(m-1)$ . Since $SO^{1}(m+1)$

has maximal compact subgroups isomorphic to $SO(m),$ $M^{h}(t)$ has the same homo-
topy type as a totally geodesic submanifold which is isometric to the symmetric
space $SO(m)/SO(m-1)$ , that is, to a unit sphere $S^{m-1}$ .

REMARK 3. The relation (2.6) between the Weingarten maps $H$ and $H’$ of
$M^{h}(t)$ and $M(t)$ respectively, asserts that $H’$ is not diagonalizable. So, $M(t)$ is
an isoparametric family of hypersurfaces of $H_{1}^{2m+1}$ which has not an analogue
in a Riemannian space form of negative curvature (see [1]).

REMARK 4. The tube $M^{h}(4)$ of radius $\log((1+\sqrt{3})/\sqrt{2})$ over $RH^{m}\subset CH^{m}$

provides an example of real hypersurface of $CH^{m}$ with two constant principal
curvatures which is not totally $\eta$ -umbilical. This fact is impossible when the
ambient space is the complex projective space (see [10] and [2]).

7. Real hypersurfaces of $CH^{m}$ with at most two principal curvatures
at each point.

Let $M$ be a real hypersurface of $CH^{m}$ with at most two principal curvatures
at each point. The remark after Proposition 5.2 of [2] states

LEMMA 7.1. Let $M$ be a real hypersurface of $CH^{m},$ $m\geqq 3$ , with exactly two
principal curvatures at each Pmnt. Then $J\xi$ is a principal vector.
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For real hypersurfaces of the complex projective space a well-known result
of Maeda, [6], assures that, if $J\xi$ is principal, then the corresponding principal
curvature is locally constant. In this way, we have

LEMMA 7.2. Let $M$ be a real hypersurface of $CH^{m},$ $7n\geqq 3$ , with at most two
pnncipal curvatures at each point. Then the principal curvature $c$orresponding to
$J\xi$ is locally cmstant.

PROOF. From Lemma 7.1, we have $HJ\xi=\mu J\xi$ . Let $x\in M$ such that $\phi H+$

$H\phi=0$ at $x$ . Then, from Lemma 2.1, a), one has $\phi=-H\phi H$ at $x$ . Hence, $x$ is
not umbilical and, so, there exists $X\in T_{x}M$ with $g(X, J\xi)=0$ and $HX=\lambda X$.
Then, $H\phi X=-\lambda\phi X$ and $H\phi X=-(1/\lambda)\phi X$. Thus we get $\lambda^{2}=1$ and $\mu=-\lambda$ .
On the other hand, in the open set consisting of the points of $M$ where $\phi H+$

$H\phi\neq 0$ we have, from Lemma 2.1, b), that $\mu$ is locally constant. So, $\mu$ is locally
constant on $M$.

Now, we need a result that Takagi has shown when the ambient space is
the complex projective space. Slight modiPcations in the computations of Lemma
3.4 in [11] provide us

LEMMA 7.3. If $M$ is a real hypersurface of $CH^{m},$ $m\geqq 3$ , with exactly three
constant Principal curvatures $x,$ $y,$ $z$ at each pmnt where the line span $\{J\xi\}$ is the
$\alpha genspace$ associated to $z$ , then, we have one of the following $P0S\mathfrak{N}bjljrjeS$ :

a) $\phi V_{x}\subset V_{x},$ $\phi V_{y}\subset V_{y},$ $x+y=z$ and $xy=1$ .
b) $\phi V_{x}\subset V_{y},$ $\phi V_{y}\subset V_{x},$ $x+y=4/z$ and $xy=1$ .
Now, we can state

THEOREM 7.4. Let $M$ be a complete and connected real hypersurface of $CH^{m}$ ,
$m\geqq 3$ , wzth at most two Pnncipal curvatures at each pmnt. Then, $M$ is congruent
to one of the following spaces:

a) A geodestc hypersphere $M_{0.m- 1}^{h}(\tanh^{2}r)$ of ra&us $r>0$ .
b) A tube $M_{m-1.0}^{h}(\tanh^{2}r)$ of radius $r>0$ over a complex hyperbolic hyperplane.
c) A self-tube $M_{m}^{*}$ .
d) A tube $M^{h}(4)$ of radius $\log((1+\sqrt{3})/\sqrt{2})$ over a totally real hyPerbolic

hyperplane.
PROOF. From Lemmas 7.1 and 7.2, we know that $HJ\xi=\mu J\xi$ with $\mu\in R_{\wedge}^{-}for$

each unit local field $\xi$ normal to $M$. We will distinguish three cases:
A) We suppose $\mu^{2}>4$ . In this case $M$ is orientable and we choose an

orientation for $M$ such that the associated principal curvature $\mu$ is greater than
2. Then we can put $\mu=2\coth 2r$ for some $r>0$ .

Let $\phi_{\tau}$ : $Marrow CH^{m}$ be as in Section 4. We denote by $\nu$ the least multiplicity
on $M$ of the principal curvature coth $r$ . Then, from Proposition 3.2, the set
$\Omega=$ { $x\in M|$ coth $r$ has multiplicity $\nu$ at $x$ } consists of the points of $M$ where $\phi_{r}$

has maximum rank $2m-2-\nu$ and, so, $\Omega$ is a non-empty open set of $M$.



530 S. MONTIEL

If $x\in\Omega$ , from Theorem 4.1, there exists an open neighbourhood $W$ of $x$

such that $\phi_{r}W=V$ is a complex submanifold embedded in $CH^{m}$ . If we have
$0<\nu<2m-2$ , then, since $\mu=2\coth 2r=\tanh r+\coth r\neq$ coth $\gamma$ we have two prin-
cipal curvatures at $x$ , namely, $\mu=2\coth 2r$ and $\lambda=\coth r$ . Moreover dim $V>0$

and the discussions in Section 5 say that there exists a basis of unit vectors
$N_{1},$ $\cdots$ $N_{\nu+2}$ of $T_{p^{1}}V,$ $p=\phi_{\tau}(x)$ . in such a way that their associated Weingarten
maps $H_{\tau}$ ,:, $i=1,$ $\cdots$ , $\nu+2$ , are related with $H$ as in (5.3). From this and since
$\mu$ is the only principal curvature of $M$ at $x$ with associated eigenspace orthogonal
to $J\xi$ , as it follows from the assumption $\nu<2m-2$ , we have that $H_{r,i}=(\mu\coth r$

-l)/(coth $r-\mu$ ) $I$ where $i=1,$ $\cdots$ , $\nu+2$ and $I$ is the identity map. But $V$ is com-
plex and, so, $H_{\tau.i}=0$ . Hence, $\mu=\tanh r$ which is impossible.

So, if $\nu>0$ , then $\nu=2m-2$ . In this case, as $\mu\neq\coth r$ and $\nu$ is the least
multiplicity of coth $\gamma$ we have that $M$ has two constant principal curvatures
2coth2r and coth $r$ with multiplicities 1 and $2m-2$ at each point. Now, from
Proposition 3.2, $\phi_{\tau}$ : $Marrow CH^{m}$ has constant rank zero and $M$ is a geodesic hy-
persphere $M_{0.m-1}^{h}(\tanh^{2}r)$ from Theorem 4.2.

On the other hand, if $\nu=0$ , then $V$ is a complex hypersurface of $CH^{m}$ . If
the multiplicity of $\mu$ is greater than 1 at $x$ , we could have chosen $W$ with the
same property at each point. Hence, using (5.3), $V$ would have exactly two
principal curvatures at each point. Since $V$ is complex, $V$ would be a complex
Einstein hypersurface of $CH^{m}$ with a principal curvature ($\mu\coth r-$ l)/(coth $r-\mu$ )

as follows from (5.3). The Chern result in [3] asserts that $V$ is totally geodesic
and, so, this principal curvature is zero, that is, $\mu=\tanh r$ , which is impossible.

As conclusion, if $\nu=0$ , then the multiplicity of $\mu$ is 1 on $\Omega$ . If we denote
by $\lambda$ the other principal curvature on $W$ , we have from (5.3) that the complex
hypersurface $V$ of $CH^{m}$ has one principal curvature ($\lambda\coth r-$ l)/(coth $r-\lambda$ ) at
each point. Since $V$ is complex, then $\lambda=\tanh r$ . Hence, $\Omega$ has two constant
principal curvatures 2coth2r and tanh $\gamma$ with multiplicities 1 and $2m-2$ respec-
tively. So, $\Omega$ is closed in $M$ and $\Omega=M$. Now, from Proposition 3.2, Theorem
4.2 and (5.3) we have that $M$ is a tube $M_{m-1,0}^{h}(\tanh^{2}r)$ over a space $CH^{m-1}$

embedded in $CH^{m}$ as a complex totally geodesic hypersurface.
B) We suppose $\mu^{2}=4$ . As in the above case, $M$ is orientable and we cboose

an orientation for $M$ such that the associated principal curvature $\mu$ is 2. We
denote by $\nu$ the least multiplicity on $M$ of the principal curvature 2. We know
that $\nu\geqq 1$ and $\nu\leqq 2m-2$ from Lemma 2.2.

If $\nu>1$ , we take $\gamma$ such that cothr $=2$ , that is, $r=\log\sqrt{3}$ . Then, from
Proposition 3.2, the set $\Omega=$ { $x\in M|2$ has multiplicity $\nu$ at $x$ } consists of the
points of $M$ where the map $\phi_{r}$ : $Marrow CH^{m}$ has maximum rank $2m-\nu$ (note that
$\mu=2\neq 2\coth 2r=5/2)$ . So, $\Omega$ is open in $M$.

By using Theorem 4.1, if $x\in\Omega$ , then there exists an open neighbourhood $W$
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of $x$ such that $\phi_{r}W=V$ is an anti-holomorphic submanifold embedded in $CH^{m}$ .
Since $\nu\leqq 2m-2$ , let $\lambda$ be another principal curvature of $M$ on $W$ . From Lemma
2.1, a), it is easy to see that $\lambda=1$ . Now, from discussions in Section 5, (5.8)

and (5.9), there exists a basis of unit vectors $N_{1},$ $N_{\nu}$ of $T_{p^{1}}V,$ $p=\phi_{r}(x)$ ,

such that their corresponding Weingarten maps satisfy H., $iJN_{t}=2JN_{i}$ and $H_{\tau,i}$

is the identity map on the orthogonal complement of $JN_{i}$ in $T_{p}V,$ $i=1,$ $\cdots$ , $\nu$ .
So, since we suppose $\nu>1$ , we take $i\neq j$ and we have

$H_{r.j}JN_{i}=JN_{i}+g(N_{i}, N_{j})JN_{j}$ .

Now, from Lemma 2.1 of [13], one has $H_{\tau.j}JN_{i}=H_{\tau.i}JN_{j}$ . Hence, $g(N_{i}, N_{j})=1$

which is not possible because $N_{i},$ $N_{j}$ are linearly independent.
As conclusion, we get $\nu=1$ and, so, $\Omega=$ { $x\in M|HX=X+f(X)U$ at $x$ } is

closed in [ $M$. Then $\Omega=M$ and $M$ has two constant principal curvatures 2 and
1 with respective multiplicities 1 and $2m-2$ . From Corollary 5.3 of [7], we
conclude that $M$ is congruent to a self-tube $M_{m}^{*}$ . It is convenient to remark that,
from Proposition 3.2, (5.8) and (5.9), the map $\phi_{\tau}$ : $Marrow CH^{m},$ $r>0$, is always an
immersion and that $\phi_{\tau}M$ has the same principal curvatures as $M$.

C) Finally, we suppose $\mu^{2}<4$ . If $\mu=0$ at some $x\in M$, then, from Lemma
2.1, a), we have $\phi=-H\phi H$. So, we would have three principal curvatures $0$ ,
$\lambda$ and $-(1/\lambda)$ at $x$ , which is impossible from our hypothesis. Hence, we can
take a unit normal field $\xi$ such that its corresponding principal curvature $\mu$ is
2tanh2r for some $r>0$ and $M$ is orientable.

Now, Lemma 2.2, a) asserts that, if $\alpha$ is a principal curvature on $M$ cor-
responding to a principal vector $X$ with $g(X, J\xi)=0$ , then $\alpha’=(1-\alpha\tanh 2r)/$

$(\tanh 2r-\alpha)$ is another principal curvature corresponding to $\phi X$. But $\alpha’=\alpha$ im-
plies the inequality $\tanh^{2}2r\geqq 1$ which is absurd. So, since $M$ has at most two
principal curvatures at each point, there are two principal curvatures $\alpha,$ $\beta$ with
$\alpha’=\beta,$ $\beta’=\alpha$ and $\phi V_{\alpha}=V_{\beta}$ on the orthogonal complement of the line span $\{J\xi\}$

at each point of $M$. Moreover, from our hypothesis, we have $\alpha=\mu$ or $\beta=\mu$ .
So, we can put $\alpha=\mu$ and, hence

\langle 7.1) $\beta=2\tanh 2r-$ coth2r mult$(\beta)=m-1$ mult$(\mu)=m$ .

Now, if $\beta=\coth r$ , then one has $\coth^{2}r=1$ or $\coth^{2}r=1/3$ , which is impossible.
Hence, from Proposition 3.2, the map $\phi_{r}$ : $Marrow CH^{m}$ has constant rank either $m$

(if 2tanh2r $=\coth r$ , that is, $r=\log((1+\sqrt{3})/\sqrt{2})$ ) or $2m-1$ (if $2\tanh 2r\neq\coth r$).

But, if $\phi_{r}$ has constant rank $2m-1$ , then, from (5.8), (5.9) and (7.1), $\phi_{r}M$ would
be a real hypersurface of $CH^{m}$ with three constant principal curvatures $0$ ,
( $\beta$ coth $r-$ l)/(coth $r-\beta$ ), ( $\mu$ coth $r$ -l)/(coth $r-\mu$ ) and this is impossible from
Lemma 7.3.

Hence, if $\mu^{2}<4$ , then we have $\mu=2\tanh 2r$ with $r=\log((1+\sqrt{3})/\sqrt{2})$ . So,
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$\mu=\coth r=\sqrt{3},$ $\beta=\tanh r=1/\sqrt{}\overline{3}$ and $\phi_{\tau}$ has constant rank $m$ . Using Theorem
4.2, (5.8) and (5.9), we have that $M$ is a tube of radius $r$ over a space $RH^{m}$

embedded in $CH^{m}$ as a totally real and totally geodesic submanifold.
This last theorem and discussions in Section 5 enable us to prove the

announced characterization for the space $M_{m}^{*}$ defined in Example 6.2.

COROLLARY 7.5. The only complete and connected self-tube of $CH^{m},$ $m\geqq 3$,
such that $J\xi$ is prjncipal is the space $M_{m}^{*}$ .

REMARK. We will call “self-tube” a real hypersurface of $CH^{m}$ without focal
points and such that all its parallel hypersurfaces are congruent to itself.

PROOF OF COROLLARY. We have $HJ\xi=\mu J\xi$ for some function $\mu$ where $\xi$ is a
local unit field normal to $M$. Since $M$ has no focal points, from Proposition 3.2,
we have $|\mu|\leqq 2$ and all the remaining principal curvatures $\lambda$ of $H$ satisfy $|\lambda|\leqq 1$ .
Moreover, $\phi_{r}M$ is always a real hypersurface of $CH^{m}$ for each $r>0$ , which has
the same principal curvatures at a point $\phi_{\tau}(x)$ as $M$ at the point $x$ . By using
the relations (5.8) and (5.9) between the principal curvatures of $M$ and $\phi_{r}M$, it
is easily seen that $\mu^{2}=4$ and $\lambda^{2}=1$ for another principal curvature of $M$ different
from $\mu$ .

We choose on $M$ a unit normal field $\xi$ such that $HJ\xi=2J\xi$ at each point.
So, $M$ is orientable. Moreover, from Lemma 2.1, a), we have that $\lambda=1$ is a
principal curvature at each point of $M$. Also, taking into account Lemma 7.3,
there are no points of $M$ where $-1$ is a principal curvature. Then one con-
cludes that $M$ has two principal curvatures 2 and 1 with respective multiplicities
1 and $2m-2$ at each point. From the last theorem, one has that $M=M_{m}^{*}$ .

8. Pseudo-Einstein real hypersurfaces of $CH^{m}$ .
A real hypersurface $M$ of $CH^{m}$ is called pseudo-Einstein when its Ricci

tensor $S$ satisfles the equation

(8.1) $S(X, Y)=ag(X, Y)+bf(X)f(Y)$

for all $X,$ $Y$ tangent to $M$ and some functions $a,$
$b$ (see [6]). From (2.3), if $M$

is pseudo-Einstein, then we have

(8.2) $H^{2}X-\alpha HX+(a+2m+1)X+(b-3)f(X)U=0$

for all $X$ tangent to $M$, where $H$ is the Weingarten map associated to a unit
normal vector $\xi=JU$ and $\alpha=trH$.

Now, from (8.2), it is easily seen that, at those points of $Mwhere_{-}^{\vee}b\neq 3_{z}’the$

operator $K=H^{2}-\alpha H$ has two eigenvalues $-(a+2m+1)$ and $-(a+b+2m-2)$ and
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the line span $\{J\xi\}$ is the eigenspace corresponding to the last one. Where $b=3$ ,
$K$ has an only eigenvalue $-(a+2m+1)$ . Hence, if $x\in M$ and $\lambda_{1},$ $\lambda_{2},$ $\cdots$ , $\lambda_{2m- 1}$ are
the principal curvatures of $M$ at $x$ , we have that $\lambda_{i}^{2}-\alpha\lambda_{i}$ is an eigenvalue of $K$

at $x$ . So

(8.3) $\lambda_{i}^{2}-\alpha\lambda_{t}+(a+2m+1)=0$ $i=1,$ $\cdots$ , $2m-1$ if $b(x)=3$ ,

$\lambda_{t}^{2}-\alpha\lambda_{i}+(a+2m+1)=0$ $i=2,$ $\cdots$ $2m-1$ and
(8.4)

$\lambda_{1}^{2}-\alpha\lambda_{1}+(a+b+2m-2)=0$ $V_{\lambda_{1}}=span\{J\xi\}$ if $b(x)\neq 3$ .

After these observations we can state:

THEOREM 8.1. Let $M$ be a complete and connected real hypersurface of $CH^{m}$ ,
$m\geqq 3$, which is pseudo-Einstern. Then $M$ is congruent to one of the following
spaces:

a) A geodesic hypersphere $M_{0.m- 1}^{h}(\tanh^{2}r)$ of radius $r>0$ .
b) A tube $M_{m- 1.0}^{h}(\tanh^{2}r)$ of radius $r>0$ over a complex hyperbolic hyperplane.
c) A self-tube $M_{m}^{*}$ .
PROOF. From (8.3) and (8.4), we know that $M$ has at most three principal

curvatures at each point. If $M$ has at most two principal curvatures at each
point, we conclude from Theorem 7.4 and the fact that the tube $M^{h}(4)$ defined
in Example 6.3 is not pseudo-Einstein. Thus we will suppose that the set $\Sigma$

consisting of the points of $M$ where there are exactly three principal curvatures
$\lambda_{1},$ $\lambda_{2},$ $\lambda_{3}$ is open and non-empty. From (8.3) and (8.4), we have $b\neq 3$ on $\Sigma$ and,
so, $V_{\lambda_{1}}=span\{J\xi\}$ .

Now, if $x\in\Sigma$ and $\phi H+H\phi=0$ at $x$ , then, from Lemma 2.1, a), one has
$\phi=-H\phi H$ and, bence, $\lambda_{i}^{2}=1,$ $i=2,3,$ $\lambda_{2}=-\lambda_{3}$ and $\phi V_{\lambda_{2}}=V_{\lambda_{3}}$ at $x$ . So, $\alpha(x)=$

$trH_{x}=(m-1)(\lambda_{2}+\lambda_{3})+\lambda_{1}=\lambda_{1}$ . Moreover, from (8.4), we have $\alpha(x)=\lambda_{2}+\lambda_{3}=0$ and,
so, we have $\lambda_{1}=0$ at those points of $M$ where $\phi H+H\phi=0$ . Since, from Lemma
2.1, b), $\lambda_{1}$ is locally constant on the open set of $M$ where $\phi H+H\phi\neq 0$ , we con-
clude that $\lambda_{1}$ is locally constant on $\Sigma$ .

Let $y\in\Sigma$ and $\Sigma_{0}$ the component of $\Sigma$ with $y\in\Sigma_{0}$ . We know that $\lambda_{1}$ is
constant on $\Sigma_{0}$ . We will suppose $\lambda_{1}\geqq 0$ by reversing the orientation if necessary.
Let $\Omega$ denote the subset of $\Sigma_{0}$ consisting of the points where the principal cur-
vature coth $r$ appears with its least multiplicity $v$ , for some $r>0$ . Since $\lambda_{1}$ is
constant on $\Sigma_{0}$ , from Proposition 3.2, we have $\Omega=\{x\in\Sigma_{0}|\phi_{r}$ has maximum
rank} and, so, $\Omega$ is open and non-empty. Now, we will distinguish three cases:

A) If $\lambda_{1}>2$, we take $r>0$ with $\lambda_{1}=2\coth 2r$ . Let $x\in\Omega$ and let $W$ be as in
Theorem 4.1. If $\nu=0$ , from Proposition 3.2, we have that $\phi_{r}W=V$ is a com-
plex hypersurface of $CH^{m}$ . Moreover, using (5.3), we have that $V$ has at each
point two principal curvatures ( $\lambda_{i}\coth r-$ l)/(coth $r-\lambda_{i}$ ), $i=2,3$ . Hence, $V$ is
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Einstein and the Chern result in [3] asserts that $V$ is totally geodesic, that
is, $\lambda_{2}=\lambda_{3}=\tanh r$ . But it is impossible.

Hence, we have $0<\nu<2m-2$ and we can put $\lambda_{2}=\coth r$ . Again, from (5.3),

the $(m-1-\nu/2)$ -dimensional complex submanifold $V$ has at each point one prin-
cipal curvature ( $\lambda_{3}\coth r-$ l)/(coth $r-\lambda_{3}$). Since $V$ is complex, this principal cur-
vature vanishes and, so, $\lambda_{3}=\tanh r$ . Thus, there are on $\Omega$ three principal cur-
vatures $2\coth 2r$, coth $r$ and tanh $\gamma$ with multiplicities 1, $\nu$ and $2m-2-v$ respec-
tively. As in Theorem 7.4, $\Omega$ is closed in $M$ and, so, $\Omega=M$. By using Theorem
4.2 and (5.3), we conclude that $M$ is the tube $M_{m- 1-\nu/2.\nu/2}^{h}(\tanh^{2}r),$ $0<\nu/2<m-1$ .
But any tube of this tube is not pseudo-Einstein.

B) If $\lambda_{1}=2$ on $\Sigma_{0}$ , from Lemma 2.1, a), we have $\phi=H\phi+\phi H-H\phi H$. Now,
if $x\in\Sigma_{0}$ and $X\in T_{x}M$ with $HX=\lambda_{i}X,$ $i=2,3$ , we get $(1-\lambda_{i})H\phi X=(1-\lambda_{i})\phi X$.
So, either $\lambda_{i}=1$ or $\phi X$ is a principal vector corresponding to the principal cur-
vature 1. In any case, we can put $\lambda_{2}=1$ and $\phi V_{\lambda_{3}}\subset V_{\lambda_{2}}$ at $x$ .

Let $P$ denote the multiplicity of $\lambda_{3}$ at $x$ . We have $0<p\leqq m-1$ . So, $\alpha(x)=$

tr$H_{x}=p\lambda_{3}+2m-p$ . On the other hand, from (8.4), one has $\alpha(x)=1+\lambda_{3}$ . Hence,
$(p-1)\lambda_{3}=1+p-2m$ . Since $m\geqq 3$ , then $p\neq 1$ and, finally, one has $\lambda_{3}=(1+p-2m)/$

$(p-1)$ . So, $\lambda_{3}$ is locally constant and we can apply Lemma 7.3. In this way,
one sees that $\lambda_{1}=2$ is also impossible.

C) Finally, if $\lambda_{1}<2$ , then, by using Lemma 2.1, a), it can be easily seen that,
for $x\in\Sigma_{0},$ $X\in T_{x}M$ with $HX=\lambda_{i}X,$ $i=2,3,$ $\phi X$ is a principal vector correspond-
ing to the principal curvature $\lambda_{i}’=(2-\lambda_{1}\lambda_{i})/(\lambda_{1}-2\lambda_{i})$ . But $\lambda_{i}’=\lambda_{i}$ implies $\lambda_{1}^{2}\geqq 4$

which is not possible. Hence, we have

(8.5) $\lambda_{3}=(2-\lambda_{1}\lambda_{t})/(\lambda_{1}-2\lambda_{i})$ and $\phi V_{\lambda_{2}}=V_{\lambda_{3}}$ .

Now, from (8.4) and (8.5), we have $(m-2)(\lambda_{2}+\lambda_{3})=-\lambda_{1}$ . So, $\lambda_{2}+\lambda_{3}$ is con-
stant on $\Sigma_{0}$ . Again from (8.5), we get $2\lambda_{2}\lambda_{3}=\lambda_{1}(\lambda_{2}+\lambda_{3})-2$ and $\lambda_{2}\lambda_{3}$ is also con-
stant on $\Sigma_{0}$ . Then, we can use Lemma 7.3 and we can put $\lambda_{1}=2\tanh 2r$, $\lambda_{2}=$

coth $r$ and $\lambda_{3}=\tanh r$ for some $r>0$ . Moreover, $\nu=m-1$ and $\Omega=\Sigma_{0}$ is closed in
$M$. Thus, $\Omega=M$. Now, we apply Theorem 4.2, (5.8) and (5.9) and we have
that $M$ is the tube $M^{h}(\cosh^{2}2r)$ defined in Example 6.3. But any tube of this
type is pseudo-Einstein. So, the proof is concluded.

We found in Section 6 that the function $b$ of (8.1) is the constant $2m$ for all
spaces appearing in Theorem 8.1. So, it is immediate

COROLLARY 8.2. There are no Einstein real hypersurfaces in $CH^{m},$ $m\geqq 3$ .
Moreover, taking into account Corollary 5.3 of [7], we can state

COROLLARY 8.3. A complete and connected real hypersurface of $CH^{m},$ $m\geqq 3$ ,
is pseudo-Einstein if and only if it is totally $\eta$ -umbilical.
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