J. Math. Soc. Japan Vol. 37, No. 1, 1985

On (G, Γ, n, q) -translation planes

By Yutaka HIRAMINE

(Received Feb. 28, 1984)

1. Introduction.

Several authors have studied the translation plane π which satisfies the following conditions:

(i) Each component of a spread set Γ of π is a subspace of V(2n, q).

(ii) A collineation group G of π leaves a set Δ of q+1 components of Γ invariant and acts transitively on $\Gamma-\Delta$.

Any translation plane satisfying (i) and (ii) is called a (G, Γ , n, q)-plane and \varDelta as in (ii) is denoted by $\varDelta(\pi)$.

The known classes of (G, Γ, n, q) -planes are (i) the desarguesian planes of square order, (ii) the Hall planes, (iii) the planes of order 5^{2n} with n odd constructed by Narayana Rao and Satyanarayana [9], (iv) the desarguesian planes of cubic order and (v) the LR-16 and JW-16 [7]. Recently we presented a generalization of (ii) and (iii), which are also $(G, \Gamma, 2, q)$ -planes [3]. We note that the "n" are rather small for these examples. In his paper [6] V. Jha has shown n=2 under the additional assumptions that (a) q is a prime, (b) G fixes at least two components of Δ and (c) $O_q(G)$ is a Sylow q-subgroup of G. Moreover the author has proved in [2] that n=2 or 3 if (a) q is a prime and (b) $O_q(G)$ has a nontrivial element which leaves at least two components of Δ fixed.

In this paper we generalize these results. The following theorem is a generalization of Theorem 1 of [2].

THEOREM 1. Let π be a (G, Γ, n, q) -plane with characteristic p. Set $\Delta = \Delta(\pi)$ and $q = p^m$. Then one of the following holds.

(i) $O_p(G)$ is semi-regular on $\Delta - \{A\}$ for some $A \in \Delta$.

(ii) n=2.

(iii) n=3 and $q\equiv 1 \pmod{2}$. Moreover the length of each G-orbit on Δ is divisible by $\theta(n, q)$. Here $\theta(n, q)=\prod_{t\in\Phi}(q+1)_t$ if $q\equiv 1 \pmod{4}$ or $\theta(n, q)=\prod_{t\in\Phi\cup\{2\}}(q+1)_t$ if $q\equiv -1 \pmod{4}$, where Φ is the set of prime p-primitive divisors of $p^{2m}-1$.

In the case $q^n \equiv -1 \pmod{4}$ we prove the following theorem.

THEOREM 2. Let π be a (G, Γ, n, q) -plane with characteristic p. If $q^n \equiv -1 \pmod{4}$ and $O_p(G) \neq 1$, then n=3.

The following theorem is a generalization of Theorem A of [6].

THEOREM 3. Let π be a (G, Γ , n, q)-plane with characteristic p. If $O_p(G) \neq 1$ and G has at least two fixed components of $\Delta(\pi)$, then n=2.

The desarguesian plane of order 27 satisfies the assumption of Theorem 2 and the classes of the planes (ii), (iii) as above satisfy the assumption of Theorem 3.

2. The (G, Γ, n, q) -planes.

In this section we assume that π is a (G, Γ , n, q)-plane with characteristic p. Set $q=p^m$. We use the following notations.

T : the group of translations of π .

T(A): the group of translations with center A.

 n_p : the highest power of a prime p dividing a positive integer n.

F(H): the fixed structure consisting of points and lines of π fixed by a nonempty subset H of G.

Other notations are standard and taken largely from [1], [4] and [8].

Let π be the projective plane associated with π . Throughout the paper we identify Γ with the set of points on the line at infinity of π . All sets and groups in this section are finite.

LEMMA 1. Let p^r be a power of a prime p with r>1 and let t be a prime p-primitive divisor of p^r-1 . If $p^i-1\equiv 0 \pmod{t}$ for some i>1, then $i\equiv 0 \pmod{r}$.

PROOF. Set i=kr+s with $0 \le s < r$. Since $p^{kr+s}-1=p^s(p^{kr}-1)+(p^s-1)$ and $p^{kr}-1\equiv 0 \pmod{t}$, we have $0\equiv p^i-1\equiv p^s-1 \pmod{t}$. Hence s=0 and so $i\equiv 0 \pmod{r}$.

LEMMA 2. Let t be a prime p-primitive divisor of $p^{m(n-1)}-1$ and X a nontrivial t-subgroup of G. If X centralizes a subgroup Y of M and XY fixes a point $A \in \Gamma$, then either (i) $C_{T(A)}(X) \geq C_{T(A)}(Y)$ and $|C_{T(A)}(Y)| \geq q^{n-1}$ or (ii) n=2and X is a group of homologies with axis OA.

PROOF. Set U=T(A). Then U is an elementary abelian p-group of order q^n and XY normalizes U. By Theorem 5.2.3 of [1], $U=C_U(X)\times[U, X]$. If [U, X]=1, then $U=C_U(X)$ and so X is a group of homologies with axis OA. Hence $q^n\equiv 1 \pmod{t}$. By Lemma 1, $mn\equiv 0 \pmod{m(n-1)}$ and (ii) follows. If $[U, X]\neq 1$, then $1\neq C_{U,X}(Y)$ as Y normalizes [U, X]. Hence $C_U(X)\geqq C_U(Y) \geqq C_{U,X}(Y)$ and so X acts nontrivially on $C_U(Y)$. Thus $|C_U(Y)| \geqq q^{n-1}$ and (i) follows.

LEMMA 3. Let t be a prime p-primitive divisor of $p^{m(n-1)}-1$ and let R be a Sylow t-subgroup of G. Then the following hold.

158

(i) Assume $n \neq 3$. Then R fixes a point of Δ .

(ii) Assume $n \neq 2$. Let S be a nontrivial subgroup of R which fixes a point of Γ . Then F(S) is a subplane of order q. Moreover, $F(S) \cap \Gamma = \Delta$ and S is semi-regular on Γ when $M \neq 1$.

(iii) Assume $n \neq 2$. If R fixes a point of Δ , then $F(R) \cap \Gamma = \Delta$ and R is semi-regular on Γ .

PROOF. Assume $F(R) \cap \Delta = \emptyset$. Then $t \mid q+1$. Since $q+1 \mid q^2-1$, $n \leq 3$. If n=2, then $t \mid (q+1, q-1)=1$ or 2, a contradiction. Thus (i) holds.

Let $A \in F(S) \cap \Gamma$. Set U = T(A) and $p^k = |C_U(S)|$. If $p^k = q^n$, then S is a group of homologies with axis OA. Hence $t \mid (q^n - 1, q^{n-1} - 1) = q - 1$ and so n = 2, contrary to the assumption. Therefore $0 \leq k < mn$. By Theorem 5.3.2 of [1], S centralizes no nontrivial element of $U/C_U(S)$. Hence $t \mid |U/C_U(S)| - 1 = p^{mn-k} - 1$. Applying Lemma 1, $mn - k \equiv 0 \pmod{m(n-1)}$ and so k = m. Therefore $|C_U(S)| = q$.

Since $t \nmid |\Gamma - \{A\}| = q^n$, S fixes another point $B \in \Gamma - \{A\}$. By the similar argument as above, $|C_{T(B)}(S)| = q$. Hence F(S) is a subplane of order q. Thus we obtain the former half of (ii). Hence (iii) holds as $F(R) \cap \Gamma = \emptyset$.

To prove the latter half of (ii) we may assume $F(R) \cap \Gamma = \emptyset$ by (iii). Hence n=3 by (i). Since $|F(M) \cap \Delta| \ge 3$ and $F(M) \cap \overline{\Gamma} = \emptyset$, F(M) is a subplane of order at most q and therefore $1 \ne |C_T(M)| \le q^2$. As $F(R) \cap \Gamma = \emptyset$, R does not centralize $C_T(M)$, so that $|C_T(M)| = q^2 (=q^{n-1})$ and F(M) is a subplane of order q with $F(M) \cap \Gamma = \Delta$. By Bruck's theorem (Theorem 3.7 of [4]), M is semi-regular on $\overline{\Gamma}$. From this $|M| \mid |\overline{\Gamma}|_p = q$ and so R centralizes M. Let $A, B \in F(S) \cap \Delta, A \ne B$. Then S centralizes $C_{T(A)}(M)$ and $C_{T(B)}(M)$. Therefore $C_T(S) \ge \langle C_{T(A)}(M), C_{T(B)}(M) \rangle = C_T(M)$ and so F(S) = F(M). Hence S is semi-regular on $\overline{\Gamma}$ by Bruck's theorem. Thus we obtain the latter half of (ii).

LEMMA 4. There exists a prime p-primitive divisor of $p^{m(n-1)}-1$ except in the following cases.

(i) (m, n)=(1, 3) or (2, 2) and p is a Mersenne prime.

(ii) (m, n) = (1, 2) or (6, 2).

(iii) p=2 and (m, n)=(1, 7), (2, 4) or (3, 3). Moreover M is semi-regular on $\Delta - \{A\}$ for some $A \in \Delta$.

PROOF. Suppose false. By Zsigmondy's theorem (Theorem 6.2 of [8]), p=2, m(n-1)=6 and M contains a Baer involution w with $|F(w) \cap \mathcal{L}| \ge 2$. Hence m=2 and n=4.

Let R be a Sylow 7-subgroup of G. Since $|\vec{\Gamma}| = 2^2 \cdot 3^2 \cdot 7 ||G|$, $R \neq 1$. Clearly R fixes Δ pointwise. Let $x \in R - \{1\}$ and assume F(x) is a subplane of order 2^i . Since $F(x) \supset \Delta$ and $2 \leq i \leq 4$, we have i=2 by Bruck's theorem. Hence $F(x) \cap \Gamma = \Delta$. Thus R is semi-regular on $\vec{\Gamma}$ and so $R \cong Z_7$.

Assume $M_{\mathcal{A}} = \{u \in M \mid F(u) \supset \mathcal{A}\} = 1$. Then M is isomorphic to a subgroup of $D_{\mathfrak{s}}$, the dihedral group of order 8. Since $w \in M$ and every nontrivial character-

Y. HIRAMINE

istic subgroup of M is 1/2-transitive and faithful on $\overline{\Gamma}$, one of the following occurs: (a) $M \cong D_8$ and each M-orbit on $\overline{\Gamma}$ is of length 4. (b) $M \cong Z_2 \times Z_2$ and each M-orbit on $\overline{\Gamma}$ is of length 2. Let J be the set of involutions in M. Then $\overline{\Gamma} = \bigcup_{u \in J} (F(u) \cap \overline{\Gamma})$ and $F(u) \cap F(u') \cap \overline{\Gamma} = \emptyset$ for $u, u' \in J, u \neq u'$. Hence $|J| \times \sqrt{2^8} \ge |\overline{\Gamma}| = 4^4 - 4$ and so $|J| > 4^2 - 1$, a contradiction.

Next assume $M_{\mathcal{A}} \neq 1$ and set $N = \mathcal{Q}_1(Z(M_{\mathcal{A}}))$. Since $G \triangleright N \neq 1$, F(N) is a subplane of order 4 and $F(N) \cap \Gamma = \mathcal{A}$. Hence $|C_U(N)| = 4$, where U = T(A), $A \in \mathcal{A}$. If $|N| \leq 4$, then R centralizes N and so $C_U(R) \geq C_U(N) \geq C_{U,R}(N) \neq 1$. This is a contradiction by Theorem 5.2.3 of [1]. Thus $|N| \geq 8$.

Let $B \in \overline{\Gamma}$. Then $F(N_B)$ is a Baer subplane of order 2^4 as $F(N_B) \supset F(N)$. Hence N_B is semi-regular on $\overline{\Gamma} - \overline{\Gamma} \cap F(N_B)$. Thus each N-orbit on $\overline{\Gamma}$ is of length 4 and |N| = 8 or 16. If |N| = 16, then R centralizes an involution $x \in N$. Therefore R acts on $\overline{\Gamma} - \overline{\Gamma} \cap F(x)$, contrary to the semi-regularity of R on $\overline{\Gamma}$. If |N| = 8, then $\overline{\Gamma} = \bigcup_{1 \neq x \in N} F(x) \cap \overline{\Gamma}$ and so $4^4 - 4 = 7(4^2 - 4)$, a contradiction.

LEMMA 5. Assume $n \neq 2$. Let t be a p-primitive divisor of $p^{m(n-1)}-1$ and let R be a Sylow t-subgroup of G. Then

(i) If a subgroup $S \ (\neq 1)$ of R fixes a point of Δ , then F(S) is a desarguesian subplane of π of order q.

(ii) Either M is faithful on Δ or R is semi-regular on Δ .

(iii) Assume n>3. Then $|F(M) \cap OA| \ge q^{n-1}+1$ for some $A \in \mathcal{A}$ and

$$M \leq \operatorname{Aut}(GF(q)) \left\{ \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \middle| x \in GF(q) \right\} \ (\leq \Gamma L(3, q)).$$

PROOF. By Lemma 3 (ii), F(S) is a subplane of π of order q. Let $A, B \in F(S) \cap A$, $A \neq B$ and let I be an affine fixed point of S with $I \notin OA \cup OB$. Set $A=(\infty)$, B=(0), O=(0, 0), I=(1, 1) and let Q be a coordinatizing quasifield relative to O, A, B, I. Set K=Kern(Q). Since Γ is a set of GF(q)-subspaces, $K \ge GF(q)$. To prove (i) we may assume that π is not desarguesian. In particular $|K| < q^{n-1}$. Since $S \le \text{Aut}(Q)$, we have $S \le \text{Aut}_K(Q)$ and K=GF(q). Therefore F(S) is a subplane of order q coordinatized by K, hence (i) holds.

Deny (ii). Then $N=M_{d}\neq 1$ and there exists S which satisfies the assumption of (i). Let A, B, I, Q and K be as above. By Lemma 2, $S \not\leq C_{G}(N)$ and so $|N| \geq q^{n-1}$. In particular π is not desarguesian. By a similar argument as above $S \leq \operatorname{Aut}_{K}(Q)$ and F(S) is a desarguesian plane of order q. $C_{T(A)}(N)$ and $C_{T(B)}(N)$ are S-invariant subgroups of order q as F(N) is a subplane of order q. Hence $C_{T}(S) \geq \langle C_{T(A)}(N), C_{T(B)}(N) \rangle = C_{T}(N)$ and so F(S) = F(N). Therefore $N \leq \operatorname{Aut}_{K}(Q)$. By Proposition 6.12 of [5], (p, m, n) = (2, 1, 4) and $|N| \geq q^{3}$. As $|\overline{\Gamma}| = q(q^{2}+q+1)$, every N-orbit on $\overline{\Gamma}$ is of length at most q. Let $C \in \overline{\Gamma}$. Then $|N_{C}| \geq q^{2}$ and $F(N_{C})$ is a Baer subplane of order q^{2} . Hence N_{C} is semi-regular on $\overline{\Gamma} - \overline{\Gamma} \cap F(N_{C})$. Since N is 1/2-transitive on $\overline{\Gamma}$, this is a contradiction. Thus (ii) holds. To prove (iii) we may assume $M \neq 1$. If $F(M) \cap \Delta = \{A\}$ for some $A \in \Delta$, then $A \in F(R) \cap \Delta$. By (i) and (ii), F(R) is a desarguesian subplane of order q and M is faithful on Δ . By Lemma 3 (iii), $[M, R] \leq (MR)_{\Delta} \cap M \leq M_{\Delta} = 1$. Applying Lemma 2, $|C_{T(\Delta)}(M)| \geq q^{n-1}$. Since M acts on the desarguesian plane F(R) of order q and $|F(M) \cap F(R) \cap OA| \geq p+1 \geq 3$, we have (iii) in this case.

Assume $|F(M) \cap \mathcal{A}| \ge 2$. If $F(M) \cap \Gamma \ne \mathcal{A}$, then $|C_T(M)| < q^2$ and so R centralizes $C_T(M)$. Hence $F(R) \cap \Gamma = \mathcal{A}$ and $M_{\mathcal{A}} = 1$ by (ii) and Lemma 3 (iii). Therefore $[M, R] \le (MR)_{\mathcal{A}} \cap M = M_{\mathcal{A}} = 1$ and so $|C_T(M)| \ge q^{n-1} \ge q^2$ by Lemma 2, a contradiction. Hence $F(M) \cap \Gamma = \mathcal{A}$. By (ii) and Lemma 3 (i), n=3, contrary to the assumption.

LEMMA 6. Assume $n \neq 2$. If there exists a prime p-primitive divisor of $p^{m(n-1)}-1$, then $|F(M) \cap \mathcal{L}| \geq 2$ or M has at least q^{n-1} affine fixed points on OA for some $A \in \mathcal{L}$.

PROOF. Let t be a prime p-primitive divisor of $p^{m(n-1)}-1$ and R a Sylow t-subgroup of G. Assume $F(M) \cap \Delta = \{A\}$ for some $A \in \Delta$. Then $A \in F(R) \cap \Delta$ and by Lemma 3 (iii) R fixes Δ pointwise. Hence, by Lemma 5 (ii), M is faithful on Δ . Therefore $[M, R] \leq (MR)_{\Delta} \cap M \leq M_{\Delta} = 1$. By Lemma 2, $|C_{T(\Delta)}(M)| \geq q^{n-1}$. Thus the lemma holds.

LEMMA 7. Assume $n \neq 2$. If there exists a p-primitive divisor t of $p^{m(n-1)}-1$, then one of the following holds.

(i) M is semi-regular on $\Delta - \{A\}$ for some $A \in \Delta$.

(ii) n=3 and a Sylow t-subgroup of G is semi-regular on Δ .

PROOF. Let R be a Sylow t-subgroup of G. Assume M contains a nontrivial element v such that $|F(v) \cap \mathcal{A}| \ge 2$ and assume $F(S) \cap \mathcal{A} \ne \emptyset$ for a nontrivial subgroup S of R. Then S fixes \mathcal{A} pointwise by Lemma 3 (ii). Applying Lemma 5 (ii), $M_{\mathcal{A}}=1$ and so $[M, S] \le (MS)_{\mathcal{A}} \cap M = M_{\mathcal{A}} = 1$. By Lemma 2, M has at least q^{n-1} affine fixed points on OA for some $A \in \mathcal{A}$. Since $v \in M$ and $|F(v) \cap \mathcal{A}| \ge 2$, F(v) is a subplane whose order is at least q^{n-1} . This contradicts Bruck's theorem. Therefore we have the lemma.

LEMMA 8. Assume $n \neq 2$ and $q \equiv 0 \pmod{2}$. If there exists a prime 2-primitive divisor t of $2^{m(n-1)}-1$, then the following hold.

(i) M is semi-regular on $\Delta - \{A\}$ for some $A \in \Delta$.

(ii) $C_G(M)$ contains a Sylow t-subgroup of G.

(iii) If $M \neq 1$, then every nontrivial t-subgroup fixes Δ pointwise and has no fixed point on $\overline{\Gamma}$.

PROOF. Let R be a Sylow t-subgroup of G. We may assume $M \neq 1$. If $M_d \neq 1$, then $F(M_d)$ is a subplane of order q. By Lemma 7, n=3. Let w be an involution in M_d . Then F(w) is a subplane of order $\sqrt{q^3}$ by Baer's theorem and $F(M_d)$ is a subplane of F(w). It follows from Bruck's theorem that $q^2 \leq \sqrt{q^3}$,

a contradiction. Hence $M_d=1$. If $|F(M) \cap \mathcal{A}| \ge 2$, then F(M) is a subplane whose order is less than q as $M_d=1$. Therefore $|C_T(M)| < q^2$ and R centralizes $C_T(M)$, so that $F(R) \cap \mathcal{A} \neq \emptyset$. This contradicts Lemma 7. Thus $|F(M) \cap \mathcal{A}| = 1$.

Set $F(M) \cap \Delta = \{A\}$. Then R fixes A and therefore M is semi-regular on $\Delta - \{A\}$ by Lemma 7. Moreover, $F(R) \cap \Gamma = \Delta$ and R is semi-regular on $\overline{\Gamma}$ by Lemma 3 (iii). Therefore (i) and (iii) hold. Since $[M, R] \leq (MR)_{\Delta} \cap M = 1$, (ii) holds.

LEMMA 9. Let V be an elementary abelian p-group of order p^r with $p^r \equiv -1 \pmod{4}$ and S a 2-subgroup of the automorphism group of V. If an involution x in S inverts V, then $\langle x \rangle$ is a direct factor of S.

PROOF. Since $p^r \equiv -1 \pmod{4}$, r is odd and $p \equiv -1 \pmod{4}$. We may assume that V = V(r, p) and $S \leq GL(r, p)$. Then x = -E, where E is the unit matrix of degree r. Since r is odd, the determinant of -E is equal to -1. Hence $\langle x \rangle \times SL(r, p)$ is a normal subgroup of GL(r, p) of index (p-1)/2. Since (p-1)/2 is odd, $S \leq \langle x \rangle \times SL(r, p)$ and hence $S = \langle x \rangle \times (S \cap SL(r, p))$. Thus $\langle x \rangle$ is a direct factor of S.

LEMMA 10. Let S be a Sylow 2-subgroup of G.I $f q^n \equiv -1 \pmod{4}$, then the following hold.

(i) S is dihedral or semi-dihedral and $Z(S) = S_{\Gamma} \cong Z_2$.

(ii) $|S| \ge 4(q+1)_2$ and $S_A \cong Z_2 \times Z_2$ for each $A \in \mathcal{A}$.

PROOF. Set $W=S_{\Gamma}$. Since $|\overline{\Gamma}|=q(q^{n-1}-1)||G|$ and $q^2-1|q^{n-1}-1$, $2(q+1)_2||S/W|$. Hence $|S_A|\geq 2|W|$ for some point $A\in \mathcal{A}$ as $|\mathcal{A}|=q+1$. Let $B\in F(S_A)\cap (\mathcal{A}-\{A\})$.

First we show that $W \neq 1$. Assume W=1 and let x be an involution in $Z(S_A)$. Since $q^n \equiv -1 \pmod{4}$, every involution in S is a homology by Baer's theorem. Since $S_B \ge S_A$, we may assume that x is an (A, OB)-homology. Hence $S_A = C_S(x)$. In particular $|S_A| \ge 4$. By Lemma 4.22 of [4], $S_{(B, OA)} = 1$ as W=1. Hence S_A has a unique involution and it inverts T(A). However, by Lemma 9, S_A contains a subgroup isomorphic to $Z_2 \times Z_2$ as $|S_A| \ge 4$, a contradiction. Thus W=1. Since $4 \nmid q^n - 1$, $S_{\Gamma} = W \cong Z_2$. In particular $|S_A| \ge 2|W| = 4$.

Set $\langle z \rangle = W$ and $V = S_A$. If $V_{(A, OB)} = 1$, then V acts fixed point freely on T(A) and z inverts T(A). By Lemma 9, V contains a subgroup isomorphic to $Z_2 \times Z_2$. By Lemma 4.22 of [4], $V_{(A, OB)} \neq 1$, a contradiction. Hence $V_{(A, OB)} \neq 1$ and similarly $V_{(B, OA)} \neq 1$.

Set $\langle u \rangle = V_{(A, OB)}$. Then $\langle u \rangle \cong Z_2$ and $C_S(u) = V$ as $u \in Z(V)$. Assume |V| > 4and set $V = V/\langle u \rangle$. Then V acts on T(B) and z inverts T(B). Hence $V = \langle z \rangle \times U$ for a subgroup U of V with $u \in U$ by Lemma 8. Since $U_{\Gamma} = 1$ and $u \in U$, U acts fixed point freely on T(A) and u inverts T(A). Therefore U contains a subgroup isomorphic to $Z_2 \times Z_2$. This implies that $U_{\Gamma} \neq 1$, a contradiction. Thus |V| = 4. In particular $V \cong Z_2 \times Z_2$. As $V \leq S_B$ and $F(V) \cap \Gamma = \{A, B\}$, we have $V = S_B$. Since $C_S(u) = V$, S is dihedral or semi-dihedral by a lemma of [10]. Therefore any involution in S is S-conjugate to an involution in V. Hence if $S_c \neq 1$ for some $C \in \mathcal{A}$, then $C = A^s$ or B^s for a suitable element $s \in S$. Thus $|S_c| = |V| = 4$ and the lemma holds.

3. Proof of the theorems.

PROOF OF THEOREM 1. Assume $n \neq 2$ and $|F(v) \cap \Delta| \ge 2$ for some $v \in M - \{1\}$. Let \varPhi be the set of prime *p*-primitive divisors of $p^{m(n-1)}-1$. Suppose $\varPhi = \varnothing$. Then (m, n) = (1, 3) and $q^n \equiv -1 \pmod{4}$ by Lemma 4. Applying Lemma 10, the length of each *G*-orbit on Δ is divisible by $(q+1)_2$. Hence (iii) holds. Suppose $\varPhi \neq \varnothing$. By Lemma 8, *q* is odd. Then (iii) follows immediately from Lemmas 7 and 10.

PROOF OF THEOREM 2. Assume $n \neq 3$. By Lemma 10, $|F(M) \cap \mathcal{A}| \ge 2$. Hence there exists a prime *p*-primitive divisor *t* of $p^{m(n-1)}-1$ by Lemma 4. As $q^n \equiv -1 \pmod{4}$, $n \neq 2$. It follows from Lemma 7 that n=3.

PROOF OF THEOREM 3. Let Φ be the set of prime *p*-primitive divisors of $p^{m(n-1)}-1$. Let $A, B \in F(G) \cap \Delta$, $A \neq B$. If Φ is not empty, then n=2 applying Theorem 1. Hence we may assume Φ is empty.

Suppose $n \neq 2$. Then, by Lemma 4, (m, n) = (1, 3) and p is a Mersenne prime. The order of a Sylow 2-subgroup S of G is divisible by 8 as $|\overline{\Gamma}| \mid |G|$. Since $|\mathcal{A} - \{A, B\}| = p - 1 \equiv 2 \pmod{4}$, there is a subgroup T of S of index 2 such that $|F(T) \cap \mathcal{A}| = 5$. As mn = 3, any involution of T is a homology by Baer's theorem. Therefore $|T| \mid |OA - \{O, A\}| = p^3 - 1 \equiv 2 \pmod{4}$ and so $|T| \leq 2$. This implies $|S| \leq 4$, a contradiction. Thus n = 2.

References

- [1] D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
- [2] Y. Hiramine, On weakly transitive translation planes, to appear.
- [3] Y. Hiramine, A generalization of Hall quasifields, to appear.
- [4] D. R. Hughes and F. C. Piper, Projective planes, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- [5] V. Jha, On tangentially transitive translation planes and related systems, Geom. Dedicata, 4 (1975), 457-483.
- [6] V. Jha, On Δ-transitive translation planes, Arch. Math., 37 (1981), 377-384.
- [7] P. Lorimer, A projective plane of order 16, J. Combin. Theory Ser. A, 16 (1974), 334-347.
- [8] H. Lüneburg, Translation planes, Springer-Verlag, Berlin-Heidelberg-New York, 1980.
- [9] M. L. Narayana Rao and K. Satyanarayana, A new class of square order planes, J. Combin. Theory Ser. A, 35 (1983), 33-42
- [10] M. Suzuki, A characterization of simple groups LF(2, F), J. Fac. Sci. Univ. Tokyo Sect. I, 6 (1951), 259-293.

Y. HIRAMINE

Yutaka HIRAMINE

Department of Mathematics College of General Education Osaka University Toyonaka, Osaka 560 Japan