
J. Math. Soc. Japan
Vol. 37, No. 1, 1985

The first eigenvalue of Laplacians on
minimal surfaces in $S^{3}$

Dedicated to Professor Naomi Mitsutsuka on his 60th birthday

By Hiroshi MORI

(Received Dec. 26, 1983)

1. Introduction.

There are many complete surfaces with constant mean curvature in the
Euclidean 3-space $R^{3}$ and in the hyperbolic 3-space $H^{3}$ (see [2], [4]). But in the
Euclidean 3-sphere $S^{8}$ there have been few results on such surfaces except
umbilic ones and flat tori (cf. [5]).

In this paper, we shall construct a one-parameter family of complete, rota-
tional surfaces in $S^{3}$ with constant mean curvature, including a flat torus as an
initial one. In particular, there is a one-parameter family of complete, rotational,

minimal surfaces in $S^{3}$ , including the Clifford torus. And we shall show that
none of closed, rotational, minimal surfaces in $S^{3}$ is embedded and the first
eigenvalues of some ones relative to the Laplacian are smaller than two except
for the Clifford torus.

2. Preliminaries.

In this section, we shall review rotational surfaces in $S^{3}$ . At first, we note
that $S^{3}$ is realized as a hypersurface of the Euclidean 4-space $R^{4}$ :

$S^{3}= \{(x_{1}, \cdots x_{4})\in R^{4} ; \sum_{J}x_{j}^{2}=1\}$ .
In what follows, we denote by $S^{2}(c)$ the Euclidean 2-sphere of constant

Gaussian curvature $c$ (or equivalently, the 2-sphere in $R^{3}$ of radius $1/\sqrt{c}$), and
by $S^{1}(r)$ the circle in $R^{2}$ of radius $r$ . And we put $S^{1}=S^{1}(1)$ and $R=S^{1}(\infty)$ for
convenience’s sake. We note that $S^{1}(r)\equiv R/2\pi rZ$ for a positive number $r$ , where
$Z$ is the set of all integers.

Up to an isometry of $S^{3}$ , an umbilic surface and a flat torus in $S^{8}$ are
represented as follows. For each real number $H$, the isometric embedding
$f$ : $S^{2}(H^{2}+1)arrow S^{3},$ $f(x, y, z)=(x, y, z, H/\sqrt{(H^{2}+1)})$ of $S^{2}(H^{2}+1)$ into $S^{3}$ defines
an umbilic surface $M^{2}(H)$ in $S^{3}$ with constant mean curvature $H$, and for $a=$

$\sqrt{[\{1-H/\sqrt{(H^{2}+1)}\}/2]}$ and $b=\sqrt{(1-a^{2})}$ , the isometric embedding $f$ : $S^{1}(a)\cross S^{1}(b)$

$arrow S^{3},$ $f((x, y),$ $(u, v))=(x, y, u, v)$ of $S^{1}(a)\cross S^{1}(b)$ into $S^{3}$ defines a flat torus
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$T^{2}(H)$ in $S^{3}$ with constant mean curvature $H$.
We shall construct rotational surfaces in $S^{3}$ . Let $\gamma:Jarrow S^{3},$ $\gamma(s)=(x(s), y(s)$ ,

$z(s),$ $0$), be any $C^{2}$-curve in $S^{3}$ which is parametrized by arc length, whose
domain of definition $J$ is an open interval including zero, and for which :the
following relations hold on $J$.
(i) $x(s)^{2}+y(s)^{2}+z(s)^{2}=1$ ,

(ii) $x’(s)^{2}+y’(s)^{2}+z^{f}(s)^{2}=1$ .
We now consider the $C^{2}$-mapping $f:J\cross S^{1}arrow S^{3}$ ,

$f(s, \theta)=(x(s), y(s),$ $z(s)$ cos $\theta,$ $z(s)$ sin $\theta$ ).

It can be easily shown that the first and the second fundamental forms of $\beta$

are given by
$I=ds^{2}+z^{2}d\theta^{2}$ ,

$II=\{x’(yz’-y’z)+y’(zx’-z’x)+z’(xy’-x’y)\}ds^{2}$

$-z(xy’-x’y)d\theta^{2}$ .

3. Rotational surfaces in $S^{3}$ with constant mean curvature.

From the previous section we see that the $C^{2}$-mapping $f$ is an immersion
and is of constant mean curvature $H$ if and only if on the interval $J$, the fol-
lowing relations hold.

(1) $x^{2}+y^{2}+z^{2}=1$ ,

(2) $x^{\prime 2}+y^{\prime 2}+z^{\prime 2}=1$ ,

(3) $z^{2}(x’y’-x’y’)-zz^{f}(xy’-x’y)+(zz’-1)(xy’-x’y)=2Hz$ ,

(4) $0<z$ .
We now try to solve the above system explicitly. From (1) we may put $x$

and $y$ by

(5) $x=\sqrt{(1-z^{2})}\cdot\cos\phi(s)$ ,

(6) $y=\sqrt{(1-z^{2})}$ . sin $\phi(s)$ ,

and then determine the function $\phi=\phi(s)$ satisfying (2).
A short computation shows that

(7) $\phi^{\prime 2}=(1-z^{2}-z^{\prime 2})(1-z^{2})^{-2}$ .

We assume that
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(8) $1-z^{2}-z^{;2}>0$ on $J$.
From (7) and (8) we may put $\phi(s)$ as

(9) $\phi(s)=\int_{0}^{s}[1-z(t)^{2}-z’(t)^{2}]^{1/2}[1-z(t)^{2}]^{-1}dt$ .

Putting (5), (6) and (9) into (3) we can show (cf. [3]) that

(10) $zz’’+z^{\prime 2}+2z^{2}-1=2Hz(1-z^{2}-z^{f2})^{1/2}$ .
Defining $u(s)$ by

(11) $u(s)=z(s)^{2}-1/2$ ,

we can show (cf. [4]) that the equation (10) with the conditions (4) and (8) is
equivalent to the equation

(12) $u^{f2}=-4(H^{2}+1)u^{2}+8aHu+1-4a^{2}$

with the conditions

(13) $|u|<1/2$ , and

(14) $a-Hu>0$ , $a$ : constant.

From (12) we may define $u(s)$ by

(15) $u(s)=(1+H^{2})^{-1}[aH+\sqrt{(\frac{1+H^{2}}{4}a^{2})}\cdot\cos 2\sqrt{(1+H^{2})}s]$ ,

provided

(16) $a^{2}\leqq(1+H^{2})/4$ .
It follows from (15) that $J$, the domain of definition of $u(s)$ , may be extended
to $S^{1}(r),$ $r=1/2\sqrt{(1+H^{2})}$ . $Denote_{-}’the$ extended function by the same symbol.
Then, $for_{d}^{\pi}$ the extended function $u(s)$ we see that the conditions (13), (14) and
(16) are equivalent to the following inequality

(17) $|H|<2a\leqq\sqrt{(1+H^{2})}$ .
Putting (15) into (11), (9), (5) and (6) we have the triple of solutions of the
system (1), (2), (3) and (4).

Reversing the above argument, replacing the constant $a$ by $\sqrt{[(1+H^{2})}/4-a^{2}$],

and taking the completeness into consideration we have the following result.

THEOREM 1. Let $H$ be a constant, and for each constant $a,$ $0\leqq a<1/2$ , we
define the function $z(s)$ by

$z(s)=\sqrt{[\frac{1}{2}+\{H\sqrt{((1+H^{2})/4-a^{2})}+a\cos 2\sqrt{(1+H^{2})}s\}/(1+H^{2})]}$ , $s\in R$,
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and the function $\phi(s)$ by (9). We define $r$ by $r=\sqrt{[\{1-H/\sqrt{(1+H^{2})}\}/2]}$ for
$a=0$ , or, $r= \inf$ { $k/2\sqrt{(1+H^{2})}$ ; $k$ and $\phi(k\pi/\sqrt{(1+H^{2})})/2\pi$ are posztive integers}
for $a>0$ . Then the analytic mappzng $f:S^{1}(r)\cross S^{1}arrow S^{3}$ ,

$f(s, \theta)=(\sqrt{(1-z(s)^{2})}\cdot\cos\phi(s), \sqrt{(1-z(s)^{2})}\cdot\sin\phi(s),$ $z(s)$ cos $\theta,$ $z(s)$ sin $\theta$),

defines a complete, rotational surface $M(a, H)$ in $S^{3}$ with constant mean curva-
ture $H$.

Putting $H=0$ in the theorem we have the following result.

COROLLARY. For each constant $a,$ $0\leqq a<1/2$ , we defne the function $\phi(s, a)$ by

$\phi(s, a)=\sqrt{(\frac{1}{4}a^{2})}\int_{0}^{s}(\frac{1}{2}+a$ cos 2 $t)^{-1/2}( \frac{1}{2}-a$ cos 2 $t)^{-1}dt$ , $s\in R$ .

We define $r_{a}$ by $r_{a}=1/\sqrt{2}$ for $a=0$ , or, $r_{a}= \inf\{k/2;k$ and $\phi(k\pi, a)/2\pi$ are
positive integers} for $a>0$ . Then the analytic mapping $f:S^{1}(r_{a})\cross S^{1}arrow S^{3}$ ,

$f(s, \theta)=(\sqrt{(\frac{1}{2}}$a $\cos 2s)\cdot\cos\phi(s, a)$ , $\sqrt{(\frac{1}{2}a\cos 2s)}\cdot\sin\phi(s, a)$ ,

$\sqrt{(\frac{1}{2}+a\cos 2s)}\cdot\cos\theta$ , $\sqrt{(\frac{1}{2}+a\cos 2_{S})}\cdot\sin\theta)$ ,

defines a complete, rotational, minimal surface $M_{a}$ in $S^{3}$ .
REMARK 1. For $a=0$ , the surface $M(a, H)$ (resp. $M_{a}$ ) is nothing but the

flat torus $T^{2}(H)$ (resp. the Clifford torus). In case where $\phi(\pi/\sqrt{(1+H^{2})})/\pi$

(resp. $\phi(\pi,$ $a)/\pi$ ) is irrational for $a>0,$ $r$ (resp. $r_{a}$ ) is defined to be infinity and
$S^{1}(r)=R$ (resp. $S^{1}(r_{a})=R$). From the proof of Theorem 2 below we can show
that for different $a,$

$b$ in $[0,1/2$), $M_{a}$ is not isometric to $M_{b}$ . It follows from
Lemma 1 below that there exists a countable set of numbers $a$ such that $M_{a}$ is
a closed minimal surface in $S^{3}$ .

4. Geometric properties of $M_{a}$ .
In this section we shall prove the following results.

THEOREM 2. Let $M_{a}$ be a closed, rotational, minimal surface in $S^{3}$ as in
Corollary. If $0<a<1/2$ , then $M_{a}$ is not embedded in $S^{3}$ and whose Gaussian
curvature varies in a nerghborhood of zero in $R$ .

THEOREM 3. Let $M_{a}$ be as in Theorem 2. There exis $ts$ a constant $\delta$ in
\langle $0,1/2$) such that if $0<a<\delta$ , then the first eigenvalue of the closed surface $M_{a}$

relative to the Laplacian is smaller than two.
We shall prepare the following lemmas for proving the above theorems.

LEMMA 1. Let $\phi(s, a)$ be as in Corollary and put $\sigma g(a)=\phi(\pi, a),$ $0\leqq a<$

$1/2$ . Then it follows that $g(a)$ is strictly $decrea\alpha ng$ and continuous in $a$ , and that
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$\pi<g(a)<g(O)=\sqrt{2}\pi$ for $a,$ $0<a<1/2$ .
REMARK 2. We can show that $g(a)arrow c\leqq\pi^{2}/3,$ $(aarrow 1/2)$ .
PROOF. Putting $b=2a$ and changing variables by $t=2s$ we have that for

each $b,$ $0\leqq b=2a<1$ ,

$h(b)\equiv g(a)$

(18) $:= \sqrt{[2(1-b^{2})]}\int_{0}^{\pi/2}\{(1-b$ cos $t)^{-1}(1+b$ cos $t)^{-1/2}$

$+(1+b$ cos $t)^{-1}(1-b$ cos $t)^{-1/2}$ } $dt$ .
Since $0\leqq b<1$ we get the following expansion of absolutely convergent series

$(1-b$ cos $t)^{-1}(1+b$ cos $t)^{-1/2}$

$= \sum_{k=0}^{\infty}$ $(b$ cos t $)^{k} \sum_{m=0}^{\infty}\frac{(-1)^{m}(2m-1)!!}{(2m)!!}(b$ cos $t)^{m}$

$= \sum_{m=0}^{\infty}(\sum_{k=0}^{m}\frac{(-1)^{k}(2k-1)!!}{(2k)!!})(b$ cos $t)^{m}$ .

From this and the same expansion for the second term of the integrand in (18)

we obtain that

\langle 19) $h(b)= \sqrt{[8(1-b^{2})]}\int_{0}^{\pi/2}\sum_{m=0}^{\infty}S_{m}(b\cos t)^{2m}dt$

$= \frac{81-b^{2}}{[()]}\sum_{m=0}^{\infty}b^{2m}S_{m}\frac{(2m-1)!!}{(2m)!!}\frac{\pi}{2}$ ,

where $S_{m}= \sum_{\succ 0}^{2m}(-1)^{k}(2k-1)$ ! $!/(2k)$ !!. It can be easily seen that

(20) $S_{0}=1$ , $S_{m}<1$ $(m\geqq 1)$ .

And, from the fact that for each constant $c,$ $0<c\leqq 1$ , the sequence $S_{m}(c)=$

$\sum_{k=0}^{2m}((2k-1) ! ])/(2k)$ ! $!$ ) $(-c)^{k}$ is strictly decreasing and converges to $1/\sqrt{(1+c)}$

it follows that

(21) $1/\sqrt{2}<S_{m}$ $(m\geqq 0)$ .

From the fact that for each $b,$ $0\leqq b<1$ , $\sum_{m=0}^{\infty}((2m-1) ! !/(2m) ! !)b^{2m}=1/\sqrt{(1-b^{2})}$

together with (19), (20) and (21) we see that

(22) $\pi<h(b)\leqq\sqrt{2}\pi$ for $0\leqq b<1$ .

We shall now prove that $h(b)$ is strictly decreasing and continuous in $b$ ,
$0\leqq b<1$ . For each non-negative integer $m$ we denote $(2m-1)$ ! $!S_{m}/(2m)$ !! by
$T_{m}$ and consider the function

(23) $g(x)= \sqrt{(1-x)}\cdot\sum_{m=0}^{\infty}T_{m}x^{m}$ , $|x|<1$ .

We notice that the series $\sum_{m=0}^{\infty}T_{m}x^{m}$ is absolutely convergent in $x,$ $|x|<1$ ,
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from which $g(x)$ is a $C^{\infty}$ function of $x$ and its derivative $g’(x)$ is given by

$g^{f}(x)=-1/2 \sqrt{(1-x)}\cdot\sum_{m=0}^{\infty}T_{m}x^{m}+\sqrt{(1-x)}\cdot\sum_{m=0}^{\infty}mT_{m}x^{m-1}$

(24) $=1/2 \sqrt{(1-x)}\cdot\sum_{m=0}^{\infty}[2(m+1)T_{m+1}-(2m+1)T_{m}]x^{m}$ .

From the fact that $2(m+1)T_{m+1}-(2m+1)T_{m}=(2m+1)$ ! ! $(S_{m+1}-S_{m})/(2m)!!<0$ to-
gether with (24) we see that the function $g(x)$ is strictly decreasing in $x$ ,

$0\leqq x<1$ . From this together with (18), (19), (22) and (23) we see that our
assertion is valid.

We shall review a distance on the set $\mathfrak{M}$ of all $C^{\infty}$ Riemannian metrics on
a closed n-manifold $M$ (see [6] for detail) for proving Lemma 2 below. For
each point $x$ in $M$, let $P_{x}$ (resp. $S_{x}$ ) be the set of all symmetric positive definite
(resp. merely symmetric) bilinear forms on $T_{x}M\cross T_{x}M$, where $T_{x}M$ is the
tangent space of $M$ at $x$ . We can define a distance $\rho_{x}$ on $P_{x},$ $\chi\in M$, by

$\rho_{x}(\phi, \psi)=\inf\{\delta>0 ; \exp(-\delta)\cdot\phi<\psi<\exp\delta\cdot\phi\}$ ,

where, for $\phi,$ $\psi$ in $S_{x},$ $\phi<\psi$ means that $\psi-\phi\in S_{x}$ is positive definite on $T_{x}M$

$\cross T_{x}M$ And we can define a distance $\rho$ on $\mathfrak{M}$ by

$\rho(g, h)=\sup\{\rho_{x}(g_{x}, h_{x}) ; x\in M\}$ , $g,$
$h\in \mathfrak{M}$ .

For each $g$ in $\mathfrak{M}$ we denote by $\lambda_{m}(g)$ the m-th eigenvalue of $(M, g)$ relative to
the Laplacian $\Delta_{g}$ . Here the eigenvalues are counted repeatedly as many times
as their multiplicities:

$0=\lambda_{0}(g)<\lambda_{1}(g)\leqq\lambda_{2}(g)\leqq\ldots\leqq\lambda_{m}(g)\leqq$ $\uparrow\infty$ .

S. Bando and H. Urakawa have proved the following result.

PROPOSITION 1. Let $M$ and $\mathfrak{M}$ be as above. Let $g$ be in $\mathfrak{M}$ and $\delta$ a posrtive
number. Then $h\in \mathfrak{M},$ $\rho(h, g)<\delta$ implies $|\lambda_{m}(h)-\lambda_{m}(g)|\leqq\{\exp((n+1)\delta)-1\}\lambda_{m}(g)$ ,

for $m\geqq 0$ .
We shall use this proposition in the foIlowing situation. For each natural

number $k$ we may regard the closed 2-manifold $T^{2}(k):=S^{1}(k/2)\cross S^{1}$ with the
Riemannian metric $I_{a}=ds^{2}+$ ($1/2+a$ cos $2s$ ) $d\theta^{2},$ $|a|<1/2$ , as the k-fold Riemannian
covering manifold of the torus $S^{1}(1/2)\cross S^{1}$ with the metric $I_{a}$ .

LEMMA 2 Let $T^{2}(k)$ and $I_{a}$ be as above. There exists a constant $\delta,$ $0<\delta<$

$1/2$ , which is independent of $k$ , such that if $|a|<\delta$ and $k\geqq 2$ , then the first eigen-
value $\lambda_{1.k}(a)$ of $(T^{2}(k), I_{a})$ relative to the Laplacian is smaller than two.

PROOF. At Prst, it is known (see [1]) that the first eigenvalue of the
Laplacian for the Riemannian product metric of $T^{2}(k)$ is $4/k^{2}$ , namely,

(25) $\lambda_{1.k}(0)=4/k^{2}$ for $k\geqq 2$ .
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Next, we shall compute the distance $\rho(I_{a}, I_{b}),$ $a,$ $b\in(-1/2,1/2)$ , explicitly.
Let $a,$ $b$ be in $(-1/2,1/2)$ and $(s, \theta)$ a point in $T^{2}(k)$ . Then it can be easily
shown that at the point $(s, \theta)$ the condition that $\exp(-\delta)I_{a}<I_{b}<\exp\delta\cdot I_{a}$ is
equivalent to the condition that $|\log$ [($1+2b$ cos $2s)/(1+2a$ cos 2 $s)$] $|<\delta$ . lt follows
from this fact that

\langle 26) $\rho_{(s.\theta)}(I_{a}, I_{b})=|\log$ [$(1+2b$ cos $2s)/(1+2a$ cos $2s)$] $|$ .

From $S^{1}(k/2)\equiv R/k\pi Z$ and (26) we see that

$\rho(I_{a}, I_{b})$ $:= \sup\{\rho_{(s,\theta)}(I_{a}, I_{b}) ; (s, \theta)\in T^{2}(k)\}$

\langle 27) $= \sup\{|\log[(1+2b)/(1+2a)]|, |\log[(1-2b)/(1-2a)]|\}$ .

It follows from Proposition 1, (25) and (27) that there exists a constant $\delta,$ $0<\delta$

$<1/2$ , which is independent of $k$ , such that

$\lambda_{1,k}(a)<2$ for $a,$ $|a|<\delta$ , and $k\geqq 2$ .
This completes the proof.

PROOF OF THEOREM 2. From the minimality of $M_{a}$ in $S^{3}$ and the equation
of Gauss it follows that at each point $(s, \theta)$ in $S^{1}(r_{a})\cross S^{1}$ , the domain of defini-
tion of the immersion $f$ , the Gaussian curvature $K_{a}$ of $M_{a}$ is

(28) $K_{a}$ =4a(acos2 $2s+\cos 2s+a$) $(1+2a\cos 2s)^{-2}$ .

Using (28) we can easily show that the range of $K_{a}$ is the closed interval
$[-4a/(1-2a), 4a/(1+2a)]$ which implies that the second assertion of this theorem
is true.

Next, we notice that

\langle 29) $\phi(k\pi, a)=k\phi(\pi, a)$ for $a,$ $0\leqq a<1/2$, $k$ : integer.

From (29) and Lemma 1 we can easily show that $r_{a}=k/2$ for some integer
$k\geqq 3$, or $r_{a}=\infty$ , where $r_{a}$ is defined to be as in Corollary. And it is easily
seen that for such $r_{a}$ , the mapping $\phi(\cdot, a):S^{1}(r_{a})arrow R,$ $sarrow\phi(s, a)$ , is not one-to-
one. This implies that the first assertion of this theorem is true.

PROOF OF THEOREM 3. From the proof of Theorem 2 we see that the
closed, rotational, minimal surface $M_{a}$ in $S^{3}$ is isometric to $T^{2}(k)=S^{1}(k/2)\cross S^{1}$

with the Riemannian metric $I_{a}=ds^{2}+$ ($1/2+a$ cos $2s$ ) $d\theta^{2}$ for some integer $k\geqq 3$ .
From this observation together with Lemmas 1 and 2 it follows that our asser-
tion is true.
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