# The first eigenvalue of Laplacians on minimal surfaces in $S^3$

Dedicated to Professor Naomi Mitsutsuka on his 60th birthday

By Hiroshi MORI

(Received Dec. 26, 1983)

## 1. Introduction.

There are many complete surfaces with constant mean curvature in the Euclidean 3-space  $\mathbb{R}^3$  and in the hyperbolic 3-space  $\mathbb{H}^3$  (see [2], [4]). But in the Euclidean 3-sphere  $\mathbb{S}^3$  there have been few results on such surfaces except umbilic ones and flat tori (cf. [5]).

In this paper, we shall construct a one-parameter family of complete, rotational surfaces in  $S^3$  with constant mean curvature, including a flat torus as an initial one. In particular, there is a one-parameter family of complete, rotational, minimal surfaces in  $S^3$ , including the Clifford torus. And we shall show that none of closed, rotational, minimal surfaces in  $S^3$  is embedded and the first eigenvalues of some ones relative to the Laplacian are smaller than two except for the Clifford torus.

## 2. Preliminaries.

In this section, we shall review rotational surfaces in  $S^3$ . At first, we note that  $S^3$  is realized as a hypersurface of the Euclidean 4-space  $R^4$ :

$$S^3 = \{(x_1, \dots, x_4) \in \mathbb{R}^4; \sum_j x_j^2 = 1\}.$$

In what follows, we denote by  $S^2(c)$  the Euclidean 2-sphere of constant Gaussian curvature c (or equivalently, the 2-sphere in  $\mathbb{R}^3$  of radius  $1/\sqrt{c}$ ), and by  $S^1(r)$  the circle in  $\mathbb{R}^2$  of radius r. And we put  $S^1=S^1(1)$  and  $\mathbb{R}=S^1(\infty)$  for convenience's sake. We note that  $S^1(r)\equiv \mathbb{R}/2\pi r\mathbb{Z}$  for a positive number r, where  $\mathbb{Z}$  is the set of all integers.

Up to an isometry of  $S^3$ , an umbilic surface and a flat torus in  $S^3$  are represented as follows. For each real number H, the isometric embedding  $f: S^2(H^2+1) \to S^3$ ,  $f(x, y, z) = (x, y, z, H/\sqrt{(H^2+1)})$  of  $S^2(H^2+1)$  into  $S^3$  defines an umbilic surface  $M^2(H)$  in  $S^3$  with constant mean curvature H, and for  $a = \sqrt{[\{1-H/\sqrt{(H^2+1)}\}/2]}$  and  $b = \sqrt{(1-a^2)}$ , the isometric embedding  $f: S^1(a) \times S^1(b) \to S^3$ , f((x, y), (u, v)) = (x, y, u, v) of  $S^1(a) \times S^1(b)$  into  $S^3$  defines a flat torus

 $T^{2}(H)$  in  $S^{3}$  with constant mean curvature H.

We shall construct rotational surfaces in  $S^3$ . Let  $\gamma: J \to S^3$ ,  $\gamma(s) = (x(s), y(s), z(s), 0)$ , be any  $C^2$ -curve in  $S^3$  which is parametrized by arc length, whose domain of definition J is an open interval including zero, and for which the following relations hold on J.

(i) 
$$x(s)^2 + y(s)^2 + z(s)^2 = 1$$
,

(ii) 
$$x'(s)^2 + y'(s)^2 + z'(s)^2 = 1$$
.

We now consider the  $C^2$ -mapping  $f: \mathbf{J} \times \mathbf{S}^1 \rightarrow \mathbf{S}^3$ ,

$$f(s, \theta) = (x(s), y(s), z(s) \cos \theta, z(s) \sin \theta)$$
.

It can be easily shown that the first and the second fundamental forms of f are given by

$$I = ds^{2} + z^{2}d\theta^{2},$$

$$II = \{x''(yz' - y'z) + y''(zx' - z'x) + z''(xy' - x'y)\} ds^{2}$$

$$-z(xy' - x'y)d\theta^{2}.$$

## 3. Rotational surfaces in $S^3$ with constant mean curvature.

From the previous section we see that the  $C^2$ -mapping f is an immersion and is of constant mean curvature H if and only if on the interval J, the following relations hold.

$$(1) x^2 + y^2 + z^2 = 1,$$

$$(2) x'^2 + y'^2 + z'^2 = 1,$$

(3) 
$$z^{2}(x'y''-x''y')-zz'(xy''-x''y)+(zz''-1)(xy'-x'y)=2Hz,$$

$$(4)$$
 0

We now try to solve the above system explicitly. From (1) we may put x and y by

(5) 
$$x = \sqrt{(1-z^2)} \cdot \cos \phi(s).$$

(6) 
$$y = \sqrt{(1-z^2)} \cdot \sin \phi(s),$$

and then determine the function  $\phi = \phi(s)$  satisfying (2).

A short computation shows that

(7) 
$$\phi'^2 = (1-z^2-z'^2)(1-z^2)^{-2}.$$

We assume that

(8) 
$$1-z^2-z'^2>0$$
 on **J**.

From (7) and (8) we may put  $\phi(s)$  as

(9) 
$$\phi(s) = \int_0^s [1-z(t)^2-z'(t)^2]^{1/2} [1-z(t)^2]^{-1} dt.$$

Putting (5), (6) and (9) into (3) we can show (cf. [3]) that

(10) 
$$zz'' + z'^2 + 2z^2 - 1 = 2Hz(1 - z^2 - z'^2)^{1/2}.$$

Defining u(s) by

(11) 
$$u(s) = z(s)^2 - 1/2,$$

we can show (cf. [4]) that the equation (10) with the conditions (4) and (8) is equivalent to the equation

$$(12) u'^2 = -4(H^2+1)u^2 + 8aHu + 1 - 4a^2$$

with the conditions

(13) 
$$|u| < 1/2$$
, and

(14) 
$$a-Hu>0$$
,  $a:$  constant.

From (12) we may define u(s) by

(15) 
$$u(s) = (1+H^2)^{-1} \left[ aH + \sqrt{\left(\frac{1+H^2}{4} - a^2\right)} \cdot \cos 2\sqrt{(1+H^2)} s \right],$$

provided

(16) 
$$a^2 \leq (1+H^2)/4$$
.

It follows from (15) that J, the domain of definition of u(s), may be extended to  $S^1(r)$ ,  $r=1/2\sqrt{(1+H^2)}$ . Denote the extended function by the same symbol. Then, for the extended function u(s) we see that the conditions (13), (14) and (16) are equivalent to the following inequality

$$|H| < 2a \le \sqrt{(1+H^2)}.$$

Putting (15) into (11), (9), (5) and (6) we have the triple of solutions of the system (1), (2), (3) and (4).

Reversing the above argument, replacing the constant a by  $\sqrt{[(1+H^2)/4-a^2]}$ , and taking the completeness into consideration we have the following result.

THEOREM 1. Let H be a constant, and for each constant a,  $0 \le a < 1/2$ , we define the function z(s) by

$$z(s) = \sqrt{\left[\frac{1}{2} + \left\{H\sqrt{((1+H^2)/4 - a^2)} + a\cos 2\sqrt{(1+H^2)}s\right\}/(1+H^2)\right]}, \quad s \in \mathbb{R},$$

and the function  $\phi(s)$  by (9). We define r by  $r = \sqrt{[\{1-H/\sqrt{(1+H^2)}\}/2]}$  for a=0, or,  $r=\inf\{k/2\sqrt{(1+H^2)}\}$ ; k and  $\phi(k\pi/\sqrt{(1+H^2)})/2\pi$  are positive integers for a>0. Then the analytic mapping  $f: S^1(r) \times S^1 \to S^3$ ,

$$f(s, \theta) = (\sqrt{(1-z(s)^2)} \cdot \cos \phi(s), \sqrt{(1-z(s)^2)} \cdot \sin \phi(s), z(s) \cos \theta, z(s) \sin \theta),$$

defines a complete, rotational surface M(a, H) in  $S^3$  with constant mean curvature H.

Putting H=0 in the theorem we have the following result.

COROLLARY. For each constant a,  $0 \le a < 1/2$ , we define the function  $\phi(s, a)$  by

$$\phi(s, a) = \sqrt{\left(\frac{1}{4} - a^2\right)} \int_0^s \left(\frac{1}{2} + a \cos 2t\right)^{-1/2} \left(\frac{1}{2} - a \cos 2t\right)^{-1} dt, \quad s \in \mathbb{R}.$$

We define  $r_a$  by  $r_a=1/\sqrt{2}$  for a=0, or,  $r_a=\inf\{k/2; k \text{ and } \phi(k\pi, a)/2\pi \text{ are positive integers}\}$  for a>0. Then the analytic mapping  $f: S^1(r_a) \times S^1 \to S^3$ ,

$$f(s, \theta) = \left(\sqrt{\frac{1}{2} - a\cos 2s} \cdot \cos \phi(s, a), \sqrt{\frac{1}{2} - a\cos 2s} \cdot \sin \phi(s, a), \sqrt{\frac{1}{2} + a\cos 2s} \cdot \sin \phi(s, a), \sqrt{\frac{1}{2} + a\cos 2s} \cdot \sin \theta\right),$$

defines a complete, rotational, minimal surface  $M_a$  in  $S^3$ .

REMARK 1. For a=0, the surface M(a, H) (resp.  $M_a$ ) is nothing but the flat torus  $T^2(H)$  (resp. the Clifford torus). In case where  $\phi(\pi/\sqrt{(1+H^2)})/\pi$  (resp.  $\phi(\pi, a)/\pi$ ) is irrational for a>0, r (resp.  $r_a$ ) is defined to be infinity and  $S^1(r)=R$  (resp.  $S^1(r_a)=R$ ). From the proof of Theorem 2 below we can show that for different a, b in [0, 1/2),  $M_a$  is not isometric to  $M_b$ . It follows from Lemma 1 below that there exists a countable set of numbers a such that  $M_a$  is a closed minimal surface in  $S^3$ .

## 4. Geometric properties of $M_a$ .

In this section we shall prove the following results.

THEOREM 2. Let  $M_a$  be a closed, rotational, minimal surface in  $S^3$  as in Corollary. If 0 < a < 1/2, then  $M_a$  is not embedded in  $S^3$  and whose Gaussian curvature varies in a neighborhood of zero in R.

THEOREM 3. Let  $\mathbf{M}_a$  be as in Theorem 2. There exists a constant  $\delta$  in (0, 1/2) such that if  $0 < a < \delta$ , then the first eigenvalue of the closed surface  $\mathbf{M}_a$  relative to the Laplacian is smaller than two.

We shall prepare the following lemmas for proving the above theorems.

LEMMA 1. Let  $\phi(s, a)$  be as in Corollary and put  $g(a) = \phi(\pi, a)$ ,  $0 \le a < 1/2$ . Then it follows that g(a) is strictly decreasing and continuous in a, and that

$$\pi < g(a) < g(0) = \sqrt{2} \pi$$
 for a,  $0 < a < 1/2$ .

REMARK 2. We can show that  $g(a) \rightarrow c \le \pi^2/3$ ,  $(a \rightarrow 1/2)$ .

PROOF. Putting b=2a and changing variables by t=2s we have that for each b,  $0 \le b = 2a < 1$ ,

(18) 
$$h(b) \equiv g(a)$$

$$:= \sqrt{[2(1-b^2)]} \int_0^{\pi/2} \{ (1-b\cos t)^{-1} (1+b\cos t)^{-1/2} + (1+b\cos t)^{-1} (1-b\cos t)^{-1/2} \} dt .$$

Since  $0 \le b < 1$  we get the following expansion of absolutely convergent series

$$\begin{split} &(1-b\cos t)^{-1}(1+b\cos t)^{-1/2}\\ &=\sum_{k=0}^{\infty}(b\cos t)^k\sum_{m=0}^{\infty}\frac{(-1)^m(2m-1)\,!!}{(2m)\,!!}(b\cos t)^m\\ &=\sum_{m=0}^{\infty}\Big(\sum_{k=0}^{m}\frac{(-1)^k(2k-1)\,!!}{(2k)\,!!}\Big)(b\cos t)^m. \end{split}$$

From this and the same expansion for the second term of the integrand in (18) we obtain that

(19) 
$$h(b) = \sqrt{[8(1-b^2)]} \int_0^{\pi/2} \sum_{m=0}^{\infty} S_m(b \cos t)^{2m} dt$$
$$= \sqrt{[8(1-b^2)]} \sum_{m=0}^{\infty} b^{2m} S_m \frac{(2m-1)!!}{(2m)!!} \frac{\pi}{2},$$

where  $S_m = \sum_{k=0}^{2m} (-1)^k (2k-1)!!/(2k)!!$ . It can be easily seen that

(20) 
$$S_0=1$$
,  $S_m<1$   $(m \ge 1)$ .

And, from the fact that for each constant c,  $0 < c \le 1$ , the sequence  $S_m(c) = \sum_{k=0}^{2m} ((2k-1)!!)/(2k)!!)(-c)^k$  is strictly decreasing and converges to  $1/\sqrt{(1+c)}$  it follows that

$$(21) 1/\sqrt{2} < S_m (m \ge 0).$$

From the fact that for each b,  $0 \le b < 1$ ,  $\sum_{m=0}^{\infty} ((2m-1)!!/(2m)!!) b^{2m} = 1/\sqrt{(1-b^2)}$  together with (19), (20) and (21) we see that

(22) 
$$\pi < h(b) \leq \sqrt{2} \pi \quad \text{for } 0 \leq b < 1.$$

We shall now prove that h(b) is strictly decreasing and continuous in b,  $0 \le b < 1$ . For each non-negative integer m we denote  $(2m-1)!!S_m/(2m)!!$  by  $T_m$  and consider the function

(23) 
$$g(x) = \sqrt{(1-x)} \cdot \sum_{m=0}^{\infty} T_m x^m, \quad |x| < 1.$$

We notice that the series  $\sum_{m=0}^{\infty} T_m x^m$  is absolutely convergent in x, |x| < 1,

from which g(x) is a  $C^{\infty}$  function of x and its derivative g'(x) is given by

$$g'(x) = -1/2\sqrt{(1-x)} \cdot \sum_{m=0}^{\infty} T_m x^m + \sqrt{(1-x)} \cdot \sum_{m=0}^{\infty} m T_m x^{m-1}$$

(24) 
$$= 1/2\sqrt{(1-x)} \cdot \sum_{m=0}^{\infty} [2(m+1)T_{m+1} - (2m+1)T_m] x^m.$$

From the fact that  $2(m+1)T_{m+1}-(2m+1)T_m=(2m+1)!!(S_{m+1}-S_m)/(2m)!!<0$  together with (24) we see that the function g(x) is strictly decreasing in x,  $0 \le x < 1$ . From this together with (18), (19), (22) and (23) we see that our assertion is valid.

We shall review a distance on the set  $\mathfrak{M}$  of all  $C^{\infty}$  Riemannian metrics on a closed *n*-manifold M (see [6] for detail) for proving Lemma 2 below. For each point x in M, let  $P_x$  (resp.  $S_x$ ) be the set of all symmetric positive definite (resp. merely symmetric) bilinear forms on  $T_xM\times T_xM$ , where  $T_xM$  is the tangent space of M at x. We can define a distance  $\rho_x$  on  $P_x$ ,  $x\in M$ , by

$$\rho_x(\phi, \phi) = \inf\{\delta > 0 \text{ ; } \exp(-\delta) \cdot \phi < \psi < \exp\delta \cdot \phi\}$$
 ,

where, for  $\phi$ ,  $\psi$  in  $S_x$ ,  $\phi < \psi$  means that  $\psi - \phi \in S_x$  is positive definite on  $T_xM$   $\times T_xM$ . And we can define a distance  $\rho$  on  $\mathfrak{M}$  by

$$\rho(g, h) = \sup \{ \rho_x(g_x, h_x) ; x \in M \}, \quad g, h \in \mathfrak{M}.$$

For each g in  $\mathfrak{M}$  we denote by  $\lambda_m(g)$  the m-th eigenvalue of (M, g) relative to the Laplacian  $\Delta_g$ . Here the eigenvalues are counted repeatedly as many times as their multiplicities:

$$0=\lambda_0(g)<\lambda_1(g)\leq\lambda_2(g)\leq\cdots\leq\lambda_m(g)\leq\cdots\uparrow\infty$$
.

S. Bando and H. Urakawa have proved the following result.

PROPOSITION 1. Let M and  $\mathfrak{M}$  be as above. Let g be in  $\mathfrak{M}$  and  $\delta$  a positive number. Then  $h \in \mathfrak{M}$ ,  $\rho(h, g) < \delta$  implies  $|\lambda_m(h) - \lambda_m(g)| \le \{\exp((n+1)\delta) - 1\} \lambda_m(g)$ , for  $m \ge 0$ .

We shall use this proposition in the following situation. For each natural number k we may regard the closed 2-manifold  $T^2(k) := S^1(k/2) \times S^1$  with the Riemannian metric  $I_a = ds^2 + (1/2 + a\cos 2s)d\theta^2$ , |a| < 1/2, as the k-fold Riemannian covering manifold of the torus  $S^1(1/2) \times S^1$  with the metric  $I_a$ .

LEMMA 2. Let  $T^2(k)$  and  $I_a$  be as above. There exists a constant  $\delta$ ,  $0 < \delta < 1/2$ , which is independent of k, such that if  $|a| < \delta$  and  $k \ge 2$ , then the first eigenvalue  $\lambda_{1,k}(a)$  of  $(T^2(k), I_a)$  relative to the Laplacian is smaller than two.

PROOF. At first, it is known (see [1]) that the first eigenvalue of the Laplacian for the Riemannian product metric of  $T^2(k)$  is  $4/k^2$ , namely,

(25) 
$$\lambda_{1,k}(0) = 4/k^2 \quad \text{for} \quad k \ge 2.$$

Next, we shall compute the distance  $\rho(I_a, I_b)$ ,  $a, b \in (-1/2, 1/2)$ , explicitly. Let a, b be in (-1/2, 1/2) and  $(s, \theta)$  a point in  $T^2(k)$ . Then it can be easily shown that at the point  $(s, \theta)$  the condition that  $\exp(-\delta)I_a < I_b < \exp\delta \cdot I_a$  is equivalent to the condition that  $|\log[(1+2b\cos 2s)/(1+2a\cos 2s)]| < \delta$ . It follows from this fact that

(26) 
$$\rho_{(s,\theta)}(I_a, I_b) = |\log[(1+2b\cos 2s)/(1+2a\cos 2s)]|.$$

From  $S^{1}(k/2) \equiv R/k\pi Z$  and (26) we see that

$$\rho(\mathbf{I}_{a}, \mathbf{I}_{b}) := \sup \{ \rho_{(s, \theta)}(\mathbf{I}_{a}, \mathbf{I}_{b}) ; (s, \theta) \in \mathbf{T}^{2}(k) \}$$

$$= \sup \{ |\log[(1+2b)/(1+2a)]|, |\log[(1-2b)/(1-2a)]| \}.$$

It follows from Proposition 1, (25) and (27) that there exists a constant  $\delta$ ,  $0 < \delta < 1/2$ , which is independent of k, such that

$$\lambda_{1,k}(a) < 2$$
 for  $a, |a| < \delta$ , and  $k \ge 2$ .

This completes the proof.

PROOF OF THEOREM 2. From the minimality of  $M_a$  in  $S^3$  and the equation of Gauss it follows that at each point  $(s, \theta)$  in  $S^1(r_a) \times S^1$ , the domain of definition of the immersion f, the Gaussian curvature  $K_a$  of  $M_a$  is

(28) 
$$K_a = 4a(a\cos^2 2s + \cos 2s + a)(1 + 2a\cos 2s)^{-2}$$

Using (28) we can easily show that the range of  $K_a$  is the closed interval [-4a/(1-2a), 4a/(1+2a)] which implies that the second assertion of this theorem is true.

Next, we notice that

(29) 
$$\phi(k\pi, a) = k\phi(\pi, a) \quad \text{for } a, \ 0 \le a < 1/2, \quad k : \text{ integer.}$$

From (29) and Lemma 1 we can easily show that  $r_a=k/2$  for some integer  $k \ge 3$ , or  $r_a = \infty$ , where  $r_a$  is defined to be as in Corollary. And it is easily seen that for such  $r_a$ , the mapping  $\phi(\cdot, a): S^1(r_a) \to R$ ,  $s \to \phi(s, a)$ , is not one-to-one. This implies that the first assertion of this theorem is true.

PROOF OF THEOREM 3. From the proof of Theorem 2 we see that the closed, rotational, minimal surface  $M_a$  in  $S^3$  is isometric to  $T^2(k) = S^1(k/2) \times S^1$  with the Riemannian metric  $I_a = ds^2 + (1/2 + a\cos 2s)d\theta^2$  for some integer  $k \ge 3$ . From this observation together with Lemmas 1 and 2 it follows that our assertion is true.

ACKNOWLEDGEMENT. The present author would like to express his hearty thanks to Professor S. Tanno for his useful comments.

#### References

- [1] M. Berger, P. Gauduchon and E. Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Math., 194, Springer-Verlag, 1971.
- [2] K. Kenmotsu, Surfaces of revolution with prescribed mean curvature, Tôhoku Math. J., 32 (1980), 147-153.
- [3] H. Mori, Minimal surfaces of revolution in  $H^3$  and their global stability, Indiana Univ. Math. J., 30 (1981), 787-794.
- [4] H. Mori, Stable complete constant mean curvature surfaces in  $\mathbb{R}^3$  and  $\mathbb{H}^3$ , Trans. Amer. Math. Soc., 28 (1983), 671-687.
- [5] K. Nomizu and B. Smyth, A formula of Simons' type and hypersurfaces with constant mean curvature, J. Diff. Geom., 3 (1969), 367-377.
- [6] S. Bando and H. Urakawa, Generic properties of the eigenvalue of the Laplacian for compact Riemannian manifolds, Tôhoku Math. J., 35 (1983), 155-172.

Hiroshi MORI
Department of Mathematics
Faculty of Education
Toyama University
Toyama 930
Japan