The normality of Σ -products and the perfect κ -normality of Cartesian products

By Yukinobu YAJIMA

(Received March 3, 1983) (Revised Nov. 29, 1983)

§ 0. Introduction.

Corson [3] introduced the concept of Σ -products, which are quite important subspaces of Cartesian products of topological spaces. He studied there the normality of Σ -products. On the other hand, Blair [2], Ščepin [16] and Terada [19] independently introduced the concept of perfect κ -normality (or Oz) which is analogous to that of normality. The former two studied there when Cartesian products of topological spaces are perfectly κ -normal. In these connections, the following two results (I) and (II) seem to be most remarkable:

- (I) A Σ -product of metric spaces is (collectionwise) normal.
- (II) A Cartesian product of metric spaces is perfectly κ -normal. The former was proved by Gul'ko [4] and Rudin [9]. The latter was given by Ščepin [16]. Subsequently, Kombarov [8] obtained a nice extension of (I) as follows:
- (III) For a Σ -product Σ of paracompact p-spaces, (a) Σ is normal, (b) Σ is collectionwise normal and (c) Σ has countable tightness are equivalent.

As another generalized metric spaces, Okuyama [13] introduced the concept of σ -spaces. Subsequently, Nagami [11] introduced the class of Σ -spaces which contains both ones of σ -spaces and paracompact p-spaces. These generalized metric spaces play important roles in this paper.

Recently, the author [21] has proved that for a Σ -product Σ of paracompact Σ -spaces the implication (c) \Rightarrow (b) in (III) is true. The first purpose of this paper is to prove that for such a Σ -product Σ the implication (a) \Leftrightarrow (b) is true. We also discuss the countable paracompactness of Σ -products. The second purpose of this paper is to obtain an extension of (II) for a Cartesian product of paracompact σ -spaces, the form of which is resemble to that of (c) \Rightarrow (a) in (III). In process of proving this result, we consider the union of \aleph 0-cubes in a Cartesian product of σ -spaces. This is closely related to a certain question of R. Pol and E. Pol [14] though it has been already solved by Klebanov [5].

All spaces considered here are assumed to be Hausdorff. The letters n, i, j,

690 Y. Yajima

k and r denote non-negative integers. The letter \mathfrak{m} denotes an infinite cardinal number. For a set A, the cardinality of A is denoted by |A|. For a subset T of a space S, the closure of T in S is denoted by ClT.

§ 1. Main theorems.

Let $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ be a Cartesian product of spaces. Take a point $s = \{s_{\lambda}\} \in X$. For each $x = \{x_{\lambda}\} \in X$, let $\mathrm{Supp}(x) = \{\lambda \in \Lambda : x_{\lambda} \neq s_{\lambda}\}$. The subspace $\Sigma = \{x \in X : |\mathrm{Supp}(x)| \leq \aleph_0\}$ of X is called a Σ -product [3] of spaces X_{λ} , $\lambda \in \Lambda$. Such an $s \in \Sigma$ is called the *base point* of Σ , which is often omitted. For a finite subset $\{\lambda_1, \dots, \lambda_n\}$ of Λ , the finite product $\sum_{i=1}^n X_{\lambda_i}$ is called a *finite subproduct* of X or Σ .

A space S is called a Σ -space [11] if there exists a sequence $\{\mathcal{F}_n\}_{n=1}^{\infty}$ of locally finite closed covers of S such that each sequence $\{x_n\}_{n=1}^{\infty}$ of S, with $x_n \in \bigcap \{F: x \in F \in \mathcal{F}_n\}$ for each $n \ge 1$ and some $x \in S$, has a cluster point.

A space S is called a σ -space [13] if it has a σ -locally finite closed net.

A space S has $tightness \le m$ if for any $T \subset S$ and $x \in ClT$ there exists some $A \subset T$ such that $|A| \le m$ and $x \in ClA$. In particular, we say that the space S has countable tightness if $m = \aleph_0$.

Normal spaces and collectionwise normal spaces are quite well-known. A space S is said to be *perfectly* κ -normal [16] (or Oz [2], [19]) if for each disjoint open sets V_1 and V_2 in S there exist disjoint cozero-sets U_1 and U_2 in S such that $V_k \subset U_k$ (k=1, 2).

The author [21] has proved the following theorem, which causes the motivations for our main theorems.

Theorem 0. Let Σ be a Σ -product of paracompact Σ -spaces. If (each finite subproduct of) Σ has countable tightness, then it is collectionwise normal.

The first main theorem is

Theorem 1. Let Σ be a Σ -product of paracompact Σ -spaces. Then Σ is collectionwise normal if and only if it is normal.

The proof is performed in § 2.

REMARK 1. There exists a non-normal Σ -product of compact spaces (cf. [6]). The normality of Σ -products of paracompact Σ -spaces does not imply that they have countable tightness. Because there are two Lašnev spaces S and T such that $S \times T$ has not countable tightness (cf. [1, p. 68]).

The second main theorem is

Theorem 2. Let X be a Cartesian product of paracompact σ -spaces. If each finite subproduct of X has countable tightness, then X is perfectly κ -normal.

The proof is obtained in the final part of § 4. It may be interesting to compare the forms of Theorems 0 and 2.

REMARK 2. Since perfect κ -normality is hereditary with respect to dense subspaces (cf. [2], [19]), the "Cartesian product" in Theorem 2 can be replaced by the " Σ -product".

REMARK 3. Ščepin [17] introduced the concept of κ -metrizability, in terms of which he obtained an extension of his result (II) in the introduction. Of course, the form of it is quite different from that of Theorem 2.

§ 2. Proof of Theorem 1.

LEMMA 1 ([11]). Let S be a (strong) Σ -space. Then there exists a sequence $\{\mathcal{F}_n\}_{n=1}^{\infty}$ of locally finite closed covers of S, satisfying the following conditions:

- (1) $\mathfrak{F}_n = \{F(\alpha_1 \cdots \alpha_n) : \alpha_1, \cdots, \alpha_n \in \Omega\} \text{ for each } n \geq 1.$
- (2) Each $F(\alpha_1 \cdots \alpha_n)$ is the sum of all $F(\alpha_1 \cdots \alpha_n \alpha_{n+1})$, $\alpha_{n+1} \in \Omega$.
- (3) For each $x \in S$ there exists a sequence $\alpha_1, \alpha_2, \dots \in \Omega$, satisfying
 - (i) $\bigcap_{n=1}^{\infty} F(\alpha_1 \cdots \alpha_n)$ contains x (and is compact),
- (ii) if $\{K_n\}_{n=1}^{\infty}$ is a decreasing sequence of non-empty closed sets in S such that $K_n \subset F(\alpha_1 \cdots \alpha_n)$ for each $n \ge 1$, then $\bigcap_{n=1}^{\infty} K_n \ne \emptyset$.

The above sequence $\{\mathcal{F}_n\}_{n=1}^{\infty}$ is called a *spectral* (strong) Σ -net of S. Moreover, we say that the above sequence $\{F(\alpha_1 \cdots \alpha_n)\}_{n=1}^{\infty}$ in (3) is a *local* Σ -net of x. Note that paracompact Σ -spaces and σ -spaces are strong Σ -spaces and that the classes of paracompact Σ -spaces and strong Σ -spaces are countably productive (cf. [11]).

The idea of the proof of Theorem 1 is essentially due to that of Theorem 0. So we use again the following notations which have been used in [21].

Notations for Σ : Let Σ be a Σ -product of spaces X_{λ} , $\lambda \in \Lambda$. For the set Λ , let Λ_{ω} be the set of all non-empty countable subsets of Λ . Let Ξ be an index set such that $R_{\xi} \in \Lambda_{\omega}$ is assigned for each $\xi \in \Xi$. Then a countable subproduct $\prod_{\lambda \in R_{\xi}} X_{\lambda}$ of Σ is abbreviated by X_{ξ} and the projection of Σ onto X_{ξ} is denoted by p_{ξ} for each $\xi \in \Xi$. For a collection \mathcal{A} of subsets of Σ , $\bigcup \mathcal{A}$ denotes $\bigcup \{A : A \in \mathcal{A}\}$.

Notations for a $n \times n$ matrix $\xi = (\alpha_{ij})_{i,j \le n}$: The $k \times k$ matrix $(\alpha_{ij})_{i,j \le k}$ is denoted by ξ_k for $1 \le k \le n$. In particular, ξ_{n-1} is often abbreviated by ξ_- and ξ_0 implies the 0×0 matrix which is the empty matrix (\emptyset) .

PROOF OF THEOREM 1. Let Σ be a Σ -product of paracompact Σ -spaces X_{λ} , $\lambda \in \Lambda$, with a base point $s \in \Sigma$. Assume that Σ is normal. Let \mathcal{D} be a discrete collection of closed sets in Σ .

Now, for each $n \ge 0$ we construct a collection U_n of open sets in Σ and an

692 Y. YAJIMA

index set \mathcal{E}_n of $n \times n$ matrices such that $R_{\xi} \in \Lambda_{\omega}$, $\Omega(\xi)$, $E(\xi) \subset \Sigma$, $G(\xi) \subset \Sigma$, $\mathcal{D}(\xi) \subset \mathcal{D}$ and $\{x(\xi, D) : D \in \mathcal{D}(\xi)\} \subset \Sigma$ are given for each $\xi \in \mathcal{E}_n$, satisfying the following conditions (1)-(7):

- (1) Each \mathcal{U}_n is locally finite in Σ such that for each $U \in \mathcal{U}_n$ ClU intersects at most one member of \mathcal{D} .
- (2) For each $\xi \in \mathcal{Z}_n$, $\{F(\alpha_1 \cdots \alpha_k) : \alpha_1, \cdots, \alpha_k \in \Omega(\xi)\}$, $k \ge 1$, is a spectral Σ -net of X_{ξ} .
- (3) For each $\xi = (\alpha_{ij})_{i,j \leq n} \in \mathcal{E}_n$ and $1 \leq k \leq n$, $\xi_{k-1} \in \mathcal{E}_{k-1}$ and $\alpha_{k1}, \dots, \alpha_{kn} \in \Omega(\xi_{k-1})$.
- (4) $\{G(\xi): \xi \in \Xi_n\}$ is a locally finite collection of open sets in Σ such that for each $\xi = (\alpha_{ij})_{i,j \le n} \in \Xi_n$

$$E(\xi) = \bigcap_{i=1}^{n} p_{\xi_{i-1}}^{-1}(F(\alpha_{i1} \cdots \alpha_{in})) \subset G(\xi)$$

and $p_{\xi_{-}}^{-1}p_{\xi_{-}}(G(\xi)) = G(\xi)$.

(5) Let $\mu=(\alpha_{ij})_{i,j\leq n-1}\in \mathcal{Z}_{n-1}$, $\alpha_{in}\in \mathcal{Q}(\mu_{i-1})$ and $\alpha_{nj}\in \mathcal{Q}(\mu)$ for $1\leq i,\ j\leq n$. Then

$$\bigcap_{i=1}^n p_{\mu_{i-1}}^{-1}(F((\alpha_{i_1}\cdots\alpha_{i_n}))\cap(\bigcup\mathcal{D})\not\subset\bigcup\mathcal{U}_n$$

implies $(\alpha_{ij})_{i,j \leq n} \in \mathcal{E}_n$.

- (6) For each $\xi \in \mathcal{Z}_n$, $n \ge 1$, $\mathcal{D}(\xi)$ is an infinite countable subcollection of \mathcal{D} with $x(\xi, D) \in E(\xi) \cap D$ for each $D \in \mathcal{D}(\xi)$.
 - (7) For each $\xi \in \mathcal{Z}_n$, $n \ge 1$,

$$R_{\xi} = R_{\xi} \cup \bigcup \{ \operatorname{Supp}(x(\xi, D) : D \in \mathcal{D}(\xi) \} .$$

Let $\mathcal{E}_0 = \{\xi_0\}$ and $\mathcal{U}_0 = \{\emptyset\}$. Let $E(\xi_0) = G(\xi_0) = \Sigma$. Take an arbitrary $R_{\xi_0} \in \Lambda_\omega$. Assume that the above construction has been already performed for no greater than n. Take a $\xi \in \mathcal{E}_n$. Since $\xi_i \in \mathcal{E}_i$ and $\Omega(\xi_i)$ for $0 \le i \le n$ have been already constructed, we set

$$\Xi(\xi) = \{ \eta = (\alpha_{ij})_{i, j \le n+1} : \eta_- = \xi, \alpha_{in+1} \in \Omega(\xi_{i-1}) \}$$

and
$$\alpha_{n+1j} \in \Omega(\xi)$$
 for $1 \le i$, $j \le n+1$.

Moreover, for each $\eta = (\alpha_{ij})_{i,j \le n+1} \in \mathcal{E}(\xi)$ we set

$$E(\eta) = \bigcap_{i=1}^{n+1} p_{\xi_{i-1}}^{-1}(F(\alpha_{i1} \cdots \alpha_{in+1})).$$

Then we have

$$p_{\xi}(E(\eta)) = \bigcap_{i=1}^{n+1} p_{\xi} p_{\xi_{i-1}}^{-1}(F(\alpha_{i1} \cdots \alpha_{i\,n+1})).$$

By (2), $\{p_{\xi}(E(\eta)): \eta \in \Xi(\xi)\}\$ is locally finite in X_{ξ} . Since X_{ξ} is paracompact and $E(\eta) \subset E(\xi) \subset G(\xi)$, there exists a locally finite collection $\{G(\eta): \eta \in \Xi(\xi)\}\$ of open

sets in Σ such that

$$E(\eta) \subset G(\eta) \subset G(\xi)$$
 and $p_{\xi}^{-1} p_{\xi}(G(\eta)) = G(\eta)$

for each $\eta \in \mathcal{E}(\xi)$. We set

 $\mathcal{Z}_{+}(\xi) = \{ \eta \in \mathcal{Z}(\xi) : E(\eta) \text{ intersects at most finitely many members of } \mathcal{D} \}$

and $\mathcal{Z}_{-}(\xi) = \mathcal{Z}(\xi) \setminus \mathcal{Z}_{+}(\xi)$. Since Σ is normal, for each $\eta \in \mathcal{Z}_{+}(\xi)$ there exists a finite collection $\mathcal{U}(\eta)$ of open sets in Σ such that

- (i) for each $U \in \mathcal{U}(\eta)$, ClU intersects exactly one member of \mathcal{D} ,
- (ii) $E(\eta) \cap (\bigcup \mathcal{D}) \subset \bigcup \mathcal{U}(\eta)$,
- (iii) $\bigcup \mathcal{U}(\eta) \subset G(\eta)$.

Here, running $\xi \in \mathcal{Z}_n$, we set

$$U_{n+1} = \bigcup \{U(\eta) : \eta \in \mathcal{Z}_+(\xi) \text{ and } \xi \in \mathcal{Z}_n\}$$

and $\mathcal{Z}_{n+1} = \bigcup \{\mathcal{Z}_{-}(\xi) : \xi \in \mathcal{Z}_n\}$. Then (1), (3), (4) and (5) are satisfied. By the choices of $\mathcal{Z}_{-}(\xi)$ and \mathcal{Z}_{n+1} , for each $\eta \in \mathcal{Z}_{n+1}$ we can take some $\mathcal{Q}(\eta) \subset \mathcal{Q}$ and $\{x(\eta, D) : D \in \mathcal{Q}(\eta)\}$, satisfying (6). Moreover, we define $R_{\eta} \in \Lambda_{\omega}$ as it satisfies (7). Since X_{η} is a Σ -space, it follows from Lemma 1 that there exists a spectral Σ -net of X_{η} with an index set $\mathcal{Q}(\eta)$, which satisfies (2). Thus, we have inductively accomplished the desired construction.

Set $U=\bigcup_{n=1}^{\infty}U_n$. Then, by (1), U is a σ -locally finite collection of open sets in Σ such that the closure of each member of U intersects at most one member of \mathcal{D} . In order to prove that Σ is collectionwise normal, it suffices to prove that U covers $\bigcup \mathcal{D}$. Assume the contrary and pick some $y \in \bigcup \mathcal{D} \setminus \bigcup U$. By (2) and (5), we can inductively choose a sequence $(\alpha_{ij})_{i,j=1,2,\dots}$ such that for each $n \ge 1$ $\xi^n = (\alpha_{ij})_{i,j\le n} \in \mathcal{E}_n$ and $\{F(\alpha_{n1} \cdots \alpha_{nk})\}_{k=1}^{\infty}$ is a local Σ -net of $p_{\xi^{n-1}}(y)$ in $X_{\xi^{n-1}}$, where $\alpha_{nk} \in \mathcal{Q}(\xi^{n-1})$ and $\xi^0 = (\emptyset)$. By (6), we can also choose a sequence $\{D_n\}_{n=1}^{\infty}$ of distinct members of \mathcal{D} such that $D_n \in \mathcal{D}(\xi^n)$ for each $n \ge 1$. Let $x_n = x(\xi^n, D_n)$ for each $n \ge 1$. Moreover, for each $n \ge 1$, we set $L_{nk} = \{p_{\xi^n}(x_i) : i \ge k\}$. Then we have

$$\operatorname{Cl} L_{nk} \subset F(\alpha_{n1} \cdots \alpha_{nk})$$
 and $\operatorname{Cl} L_{nk+1} \subset \operatorname{Cl} L_{nk}$.

In the same way as the both proofs of [6, Theorem 1] and [21, Theorem 1], one can find a point x_{∞} of Σ such that each basic open neighborhood of x_{∞} in Σ contains infinitely many x_n 's. This verification is a standard one. So the detail of it is left to the reader. Thus the infinite subcollection $\{D_n : n \ge 1\}$ of \mathcal{D} is not discrete at x_{∞} in Σ . This is a contradiction. The proof of Theorem 1 is complete.

Recall that a space S is said to be *collectionwise Hausdorff* if for each closed discrete set D in S there exists a disjoint collection $\{V_x : x \in D\}$ of open sets

694 Y. Yajima

such that each V_x contains x.

THEOREM 3. A Σ -product of paracompact Σ -spaces is collectionwise Hausdorff. In the proof of Theorem 1, we consider a discrete closed set D and the regularity of Σ instead of the above $\mathcal D$ and the normality of it, respectively. Then the proof of Theorem 3 is quite parallel to that of Theorem 1.

For a Cartesian product $X = \prod_{\lambda \in A} X_{\lambda}$ of spaces, the subspace $\Sigma_{\mathfrak{m}} = \{x \in X : |\operatorname{Supp}(x)| \leq \mathfrak{m}\}$ is called a $\Sigma_{\mathfrak{m}}$ -product [7] (with a base point $s \in \Sigma_{\mathfrak{m}}$). We can also obtain the following result which is more general than Theorem 1.

THEOREM 4. Let $\Sigma_{\mathfrak{m}}$ be a $\Sigma_{\mathfrak{m}}$ -product of paracompact Σ -spaces. Then $\Sigma_{\mathfrak{m}}$ is collectionwise normal if and only if it is normal.

Using [12, Theorem 2.7], one will notice that the proof is also quite parallel to that of Theorem 1.

§ 3. The countable paracompactness of Σ -products.

Until now, the countable paracompactness of Σ -products has been hardly discussed. Because, as in [3], the normality of Σ -products often yields the countable paracompactness of them as a corollary. Here, for a Σ -product which may be non-normal, we consider when it is a P-space (in the sense of Morita [10]). In the sequel, such a Σ -product is countably paracompact if it is normal.

We use a certain characterization of P-spaces in [18]: A space S is called a P-space if for each finite decreasing sequence $\{K_1, \dots, K_r\}$ of closed sets in S one can assign a closed set $\Phi(K_1, \dots, K_r)$ in S, satisfying

- (i) $\Phi(K_1, \dots, K_r) \cap K_r = \emptyset$,
- (ii) for each decreasing sequence $\{K_r\}_{r=1}^{\infty}$ of closed sets in S with $\bigcap_{r=1}^{\infty} K_r = \emptyset$, $\{\Phi(K_1, \dots, K_r) : r \ge 1\}$ covers S.

THEOREM 5. A Σ -product of strong Σ -spaces is a P-space.

PROOF. Let Σ be a Σ -product of strong Σ -spaces X_{λ} , $\lambda \in \Lambda$, with a base point $s \in \Sigma$. We also use the notations in § 2.

Let $\{K_1, \dots, K_r\}$ be a finite decreasing sequence of closed sets in Σ . For each $0 \le n \le r$, we construct two index sets Ξ_n and Ξ_n^* of $n \times n$ matrices with $\Xi_n^* \subset \Xi_n$ such that for each $\xi \in \Xi_n$ $E(\xi) \subset \Sigma$ is given and for each $\xi \in \Xi_n^*$ $R_{\xi} \in \Lambda_{\omega}$, $\Omega(\xi)$ and $x_{\xi} \in \Sigma$ are given, satisfying the following conditions (1)-(6):

- (1) For each $\xi \in \mathcal{Z}_n^*$, $\{F(\alpha_1 \cdots \alpha_k) : \alpha_1, \cdots, \alpha_k \in \mathcal{Q}(\xi)\}$, $k \ge 1$, is a spectral strong Σ -net of X_{ξ} .
- (2) For each $\xi = (\alpha_{ij})_{i, j \le n} \in \mathcal{Z}_n$ and $1 \le k \le n$, $\xi_{k-1} \in \mathcal{Z}_{k-1}^*$ and $\alpha_{k1}, \dots, \alpha_{kn} \in \Omega(\xi_{k-1})$.
 - (3) For each $\xi = (\alpha_{ij})_{i,j \leq n} \in \mathcal{Z}_n$, $E(\xi) = \bigcap_{i=1}^n p_{\xi_{i-1}}^{-1}(F(\alpha_{i1} \cdots \alpha_{in}))$.

- (4) If $\mu = (\alpha_{ij})_{i,j \leq n-1} \in \mathcal{Z}_{n-1}^*$, $\alpha_{in} \in \Omega(\mu_{i-1})$ and $\alpha_{nj} \in \Omega(\mu)$ for $1 \leq i, j \leq n$, then $\xi = (\alpha_{ij})_{i,j \leq n} \in \mathcal{Z}_n$. If $\xi \in \mathcal{Z}_n$ and $E(\xi) \cap K_n \neq \emptyset$, then $\xi \in \mathcal{Z}_n^*$.
 - (5) For each $\xi \in \mathbb{Z}_n^*$, $n \ge 1$, $x_{\xi} \in E(\xi) \cap K_n$.
 - (6) For each $\xi \in \mathcal{Z}_n^*$, $n \ge 1$, $R_{\xi} = R_{\xi} \cup \text{Supp}(x_{\xi})$.

The above construction is rather easier than that of the proof of Theorem 1. So the detail is left to the reader.

Now, we set

$$\Phi(K_1, \dots, K_r) = \bigcup \{E(\xi) : \xi \in \Xi_n \setminus \Xi_n^* \text{ and } n \leq r\}$$
.

Since it follows from (1) and (3) that $\{E(\xi): \xi \in \mathcal{Z}_n\}$ is locally finite in Σ , $\Phi(K_1, \dots, K_r)$ is closed in Σ . Moreover, by (4), $\Phi(K_1, \dots, K_r)$ is disjoint from K_r . Let $\{K_r\}_{r=1}^{\infty}$ be a decreasing sequence of closed sets in Σ with the empty intersection. It suffices to show that $\{\Phi(K_1, \dots, K_r)\}_{r=1}^{\infty}$ covers Σ . Assuming the contrary, pick some $y \in \Sigma \setminus_{r=1}^{\infty} \Phi(K_1, \dots, K_r)$. By (1) and (4), we can inductively choose a sequence $(\alpha_{ij})_{i,j=1,2,\dots}$ such that for each $n \ge 1$ $\xi^n = (\alpha_{ij})_{i,j\le n} \in \mathcal{Z}_n^*$ and $\{F(\alpha_{n1} \cdots \alpha_{nk})\}_{k=1}^{\infty}$ is a local strong Σ -net of $p_{\xi^{n-1}}(y)$ in $X_{\xi^{n-1}}$, where $\alpha_{nk} \in \Omega(\xi^{n-1})$ and $\xi^0 = (\emptyset)$. For each n, k with $1 \le n \le k$, we set $L_{nk} = \{p_{\xi_n^n}(x_{\xi^i}): i \ge k\}$. In the same way as the both proofs of [6, Theorem 1] and [21, Theorem 1], one can find a point $x_\infty \in \Sigma$ such that each basic open neighborhood of x_∞ in Σ intersects all K_r 's. This implies $x_\infty \in \bigcap_{r=1}^{\infty} K_r$, which is a contradiction. The proof is complete.

Immediately, we have

COROLLARY 1. A (normal) Σ -product of strong Σ -spaces is countably meta-compact (paracompact).

§ 4. Subsets of Cartesian products of σ -spaces.

Let $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ be a Cartesian product of spaces. For a subset R of Λ , the subproduct $\prod_{\lambda \in R} X_{\lambda}$ of X is denoted by X_R and the projection of X onto X_R is denoted by p_R . A subset of the form $\prod_{\lambda \in \Lambda} K_{\lambda}$, where $K_{\lambda} \subset X_{\lambda}$ for each $\lambda \in \Lambda$, is called an \mathfrak{m} -cube in X if $|\{\lambda \in \Lambda : K_{\lambda} \neq X_{\lambda}\}| \leq \mathfrak{m}$. In particular, we call it an \aleph_0 -cube if $\mathfrak{m} = \aleph_0$.

R. Pol and E. Pol [14] raised the question of whether, for a Cartesian product of completely metric spaces, a closed union of \aleph_0 -cubes in it is a G_{δ} -set. Recently, Klebanov [5] gave an affirmative answer to this question, showing that, for a Cartesian product of metric spaces, the closure of union of \aleph_0 -cubes in it is a zero-set. Here, we prove the following result, which yields an extension of his one in the sequel (see our Theorem 2' below).

THEOREM 6. Let X be a Cartesian product of σ -spaces. Then a closed set in X is a G_{δ} -set if and only if it is a union of \aleph_0 -cubes.

PROOF. Let X be a Cartesian product of σ -spaces X_{λ} , $\lambda \in \Lambda$. Let K be a closed set in X which is a union of \aleph_0 -cubes.

As before, let Λ_{ω} be the set of all non-empty countable subset of Λ . In the below, for an $R(F) \in \Lambda_{\omega}$, the subproduct of $X_{R(F)}$ of X and the projection $p_{R(F)}$ are abbreviated by X_F and p_F , respectively.

For each $n \ge 0$, we construct two collections \mathcal{F}_n and \mathcal{F}_n^* of closed sets in X, a function ϕ of \mathcal{F}_{n+1} into \mathcal{F}_n^* and two functions x and R of \mathcal{F}_n^* into X and Λ_{ω} , respectively, satisfying the following conditions (1)-(5) for each $n \ge 0$:

- (1) \mathcal{F}_n is σ -locally finite in X, where $\mathcal{F}_0 = \{X\}$.
- $(2) \quad \mathcal{G}_n^* = \{ F \in \mathcal{G}_n : F \cap K \neq \emptyset \}.$
- (3) For each $F \in \mathcal{G}_n$, $p_{F_-}(F)$ is a closed set in X_{F_-} and $p_{F_-}^{-1}p_{F_-}(F) = F$, where $F_- = \phi(F)$.
- (4) For each $F \in \mathcal{G}_n^*$, $\{p_F(H) : H \in \mathcal{G}_{n+1} \text{ with } \phi(H) = F\}$ forms a closed net of the closed set $p_F(F)$ in X_F .
 - (5) For each $F \in \mathcal{F}_n^*$, $x(F) \in F \cap K$, $R(\phi(F)) \subset R(F)$ and $p_F^{-1}p_F(x(F)) \subset K$.

For the case of n=0, the construction is easily performed. Assume that the construction has been already performed for no greater than n. Fix an $F \in \mathcal{F}_n^*$ with $\phi(F) = E$. It should be noted by (3) that $p_E(F)$ is closed in X_E and $p_F(F) = p_F p_E^{-1} p_E(F)$. Since X_F is a σ -space (cf. [13, Theorem 2.2]), so is $p_F(F)$. There exists a σ -locally finite closed net $\mathcal{I}_{n+1}(F)$ of $p_F(F)$. We set $\mathcal{I}_{n+1}(F) = \{p_F^{-1}(N) : N \in \mathcal{I}_{n+1}(F)\}$. Here, running $F \in \mathcal{I}_n^*$, we set $\mathcal{I}_{n+1} = \bigcup \{\mathcal{I}_{n+1}(F) : F \in \mathcal{I}_n^*\}$ and define the function ϕ of \mathcal{I}_{n+1} into \mathcal{I}_n^* as $\phi(\mathcal{I}_{n+1}(F)) = \{F\}$ for each $F \in \mathcal{I}_n^*$. Moreover, \mathcal{I}_{n+1}^* is defined as in (2). Then \mathcal{I}_{n+1} , \mathcal{I}_{n+1}^* and ϕ satisfy (1)-(4). For each $H \in \mathcal{I}_{n+1}^*$, pick any point x(H) of $H \cap K$. Since x(H) is a point of some \Re_0 -cube contained in K, we can take some $R(H) \in \Lambda_\omega$ satisfying (5). Thus we have inductively accomplished the desired construction.

Now, we set $G = \bigcup \{F \in \mathcal{F}_n : F \cap K = \emptyset \text{ and } n \geq 0\}$. It follows from (1) that G is an F_{σ} -set disjoint from K. Assume $G \neq X \setminus K$. Pick a point y of $X \setminus (G \cup K)$ and take a basic open neighborhood U of y in X, disjoint from K. Then we can inductively choose a sequence $\{F_n\}_{n=0}^{\infty}$ such that for each $n \geq 0$

- (i) $F_n \in \mathcal{F}_n^*$ with $\phi(F_n) = F_{n-1}$,
- (ii) $p_{F_n}(y) \in p_{F_n}(F_{n+1}) \subset p_{F_n}(U)$.

Indeed, assume that F_i , $i \le n$, have been already chosen. By (ii) and (3), we have $p_{F_n}(y) \in p_{F_n}(F_n)$. By (4), we can choose some $F_{n+1} \in \mathcal{F}_{n+1}$, satisfying (i) and (ii). Again by (3), we have $y \in F_{n+1}$. So $F_{n+1} \notin \mathcal{F}_{n+1}^*$ implies $y \in F_{n+1} \subset G$, which is a contradiction. Hence $F_{n+1} \in \mathcal{F}_{n+1}^*$.

We set $R_{\infty} = \bigcup_{n=0}^{\infty} R(F_n)$. Since $\{R(F_n)\}_{n=0}^{\infty}$ is non-decreasing, we can take

some $k \ge 1$ such that

$$p_{F_{k-1}}(U) \times \prod \{X_{\lambda} : \lambda \in R_{\infty} \setminus R(F_{k-1})\} \times p_{A \setminus R_{\infty}}(U) = U$$
.

We take the point z of X defined by $p_{R_{\infty}}(z) = p_{R_{\infty}}(x_k)$, where $x_k = x(F_k)$, and $p_{A \setminus R_{\infty}}(z) = p_{A \setminus R_{\infty}}(y)$. Then we have $z \in U \subset X \setminus K$. On the other hand, by (5), we have

$$z \in p_{R_{\infty}}^{-1} p_{R_{\infty}}(x_k) \subset p_{F_k}^{-1} p_{F_k}(x_k) \subset K$$
.

This is a contradiction. Hence K is a G_{δ} -set in X. Since the converse is obvious, the proof is complete.

Recall that a space S is said to be *perfect* if each closed set in S is a G_{δ} -set.

COROLLARY 2. Let Y be a space which is a closed continuous image of a Cartesian product of σ -spaces. Then Y is perfect if and only if each point of Y is a G_{δ} -set.

PROOF. Let X be a Cartesian product of σ -spaces and f a closed continuous map of X onto Y. Assume that each $y \in Y$ is a G_{δ} -set. Let F be a closed set in Y. Since $f^{-1}(F)$ is a closed set in X which is a union of G_{δ} -sets, it is a union of G_{δ} -set. It follows from Theorem 6 that $f^{-1}(F)$ is a G_{δ} -set. Since f is a closed map, F is also a G_{δ} -set.

Next, we show a generalization of [14, Corollary 2].

THEOREM 7. Let X be a Cartesian product of spaces, each finite subproduct of which has tightness $\leq m$. If Y is a union of m-cubes in X, then ClY is also a union of m-cubes.

PROOF. Let $X = \prod_{\lambda \in \Lambda} X_{\lambda}$. Pick a point y of ClY. We construct two sequences $\{A_n\}_{n=0}^{\infty}$ and $\{R_n\}_{n=0}^{\infty}$ of subsets of Y and Λ , respectively, satisfying for each $n \ge 0$

- $(1) |A_n| \leq \mathfrak{m}, |R_n| \leq \mathfrak{m},$
- (2) $p_{R_{n-1}}(y) \in \operatorname{Cl} p_{R_{n-1}}(A_n)$,
- (3) $p_{R_n}^{-1} p_{R_n}(A_n) \subset Y$ and $R_n \subset R_{n+1}$.

Assume that the construction has been already performed for no greater than n. It follows from [9, Remark 3] and (1) that X_{R_n} has tightness $\leq \mathfrak{m}$. Since $p_{R_n}(y) \in \operatorname{Cl} p_{R_n}(Y)$, we can take some $A_{n+1} \subset Y$ satisfying (1) and (2). For each $a \in A_{n+1}$, there exists some $R_a \subset A$ such that $|R_a| \leq \mathfrak{m}$ and $p_{R_a}^{-1} p_{R_a}(a) \subset Y$. Here, we set $R_{n+1} = \bigcup \{R_a : a \in A_{n+1}\} \cup R_n$. Then R_{n+1} and A_{n+1} satisfy (1) and (3). The construction has been accomplished.

Now, we set $R = \bigcup_{n=0}^{\infty} R_n$. Then $|R| \leq m$ is clear. We show that the m-cube $p_{R}^{-1}p_{R}(y)$ is contained in ClY. Pick any point x of $p_{R}^{-1}p_{R}(y)$ and take any basic open neighborhood U of x in X. We can take some $k \geq 1$ such that

$$p_{R_k}(U) \times \prod \{X_{\lambda} : \lambda \in R \setminus R_k\} \times p_{\Lambda \setminus R}(U) = U$$
.

698 Y. YAJIMA

Since $p_{R_k}(y) = p_{R_k}(x) \in p_{R_k}(U)$, by (2), there exists some $a \in R_{k+1}$ such that $p_{R_k}(a) \in p_{R_k}(U)$. So we take the point z of X defined by $p_R(z) = p_R(a)$ and $p_{\Lambda \setminus R}(z) = p_{\Lambda \setminus R}(x)$. Then we have $z \in U$. On the other hand, by (3), we have $z \in Y$. Hence U intersects Y, which implies $x \in ClY$. The proof is complete.

In the case of $\mathfrak{m} = \aleph_0$, we have

COROLLARY 3. Let X be a Cartesian product of spaces, each finite subproduct of which has countable tightness. Then the closure of a union of \aleph_0 -cubes in X is also a union of \aleph_0 -cubes.

Let's complete the proof of Theorem 2 in § 1. Note that a perfectly κ -normal space is equivalently a space whose regular closed sets are always zero-sets (cf. [2], [16]). So, in order to prove Theorem 2, it suffices to show the following result, which is barely more general than it.

THEOREM 2'. Let X be a Cartesian product of paracompact σ -spaces. If each finite subproduct of X has countable tightness, then the closure of a union of \aleph_0 -cubes in X is a zero-set.

PROOF. Let $X = \prod_{\lambda \in A} X_{\lambda}$. Let Σ be a Σ -product of the spaces X_{λ} , $\lambda \in A$. It follows from Theorem 0 and [20, Theorem 1] that Σ is normal and C-embedded. Let F be the closure of a union of \aleph_0 -cubes in X. By Corollary 3, F is a closed union of \aleph_0 -cubes. Moreover, by Theorem 6, F is a G_{δ} -set. Hence it follows from [14, Proposition 2] that F is a zero-set. The proof is complete.

References

- [1] A. V. Arhangel'skii, Structure and classification of topological spaces and cardinal invariants, Russian Math. Surveys, **33** (1978), 33-96.
- [2] R. L. Blair, Spaces in which special sets are z-embedded, Canad. J. Math., 28 (1976), 673-690.
- [3] H. H. Corson, Normality in subsets of product spaces, Amer. J. Math., 81 (1959), 785-796.
- [4] S. P. Gul'ko, On the properties of subsets of Σ -products, Soviet Math. Dokl., 18 (1977), 1438-1442.
- [5] B. S. Klebanov, Remarks on subsets of Cartesian products of metric spaces, Comment. Math. Univ. Carolinae, 23 (1982), 767-784.
- [6] A. P. Kombarov, On Σ -products of topological spaces, Soviet Math. Dokl., 12 (1971), 1101-1104.
- [7] A. P. Kombarov, On the normality of $\Sigma_{\mathfrak{m}}$ -products, Soviet Math. Dokl., 14 (1973), 1050-1054.
- [8] A. P. Kombarov, On tightness and normality of Σ -products, Soviet Math. Dokl., 19 (1978), 403-407.
- [9] V. I. Malyhin, On tightness and Souslin number in $\exp X$ and in a product of spaces, Soviet Math. Dokl., 13 (1972), 496-499.
- [10] K. Morita, Products of normal spaces with metric spaces, Math. Ann., 154 (1964),

365-382.

- [11] K. Nagami, Σ -spaces, Fund. Math., **65** (1969), 169–192.
- [12] K. Nagami, Countable paracompactness of inverse limits and products, Fund. Math., 73 (1972), 261-270.
- [13] A. Okuyama, Some generalizations of metric spaces, their metrization theorems and product spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 9 (1967), 236-254.
- [14] R. Pol and E. Pol, Remarks on Cartesian products, Fund. Math., 93 (1976), 57-69.
- [15] M. E. Rudin, Book Review, Bull. Amer. Math. Soc., 84 (1978), 271-272.
- [16] V. E. Ščepin, On topological products, groups and a new class of spaces more general than metric spaces, Soviet Math. Dokl., 17 (1976), 152-155.
- [17] V. E. Ščepin, Topology of limit spaces of uncountable inverse spectra, Russian Math. Surveys, 31 (1976), 155-191.
- [18] R. Telgársky, A characterization of P-spaces, Proc. Japan Acad., 51 (1975), 802-807.
- [19] T. Terada, Note on z-, C*-, and C-embedding, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 13 (1975), 129-132.
- [20] M. G. Tkačenko, The notion of o-tightness and C-embedded subspaces of products, Topology and Appl., 15 (1983), 93-98.
- [21] Y. Yajima, On Σ -products of Σ -spaces, Fund. Math., to appear.

Yukinobu YAJIMA Department of Mathematics Kanagawa University Yokohama 221, Japan