On Boolean powers of the group \boldsymbol{Z} and (ω, ω)-weak distributivity

By Katsuya EDA* ${ }^{*}$ and Ken-ichi HIbIno

(Received May 23, 1983)
(Revised Oct. 17, 1983)

For a homomorphism from the group \boldsymbol{Z}^{N} to a Boolean power $\boldsymbol{Z}^{(\boldsymbol{B})}$, the first author introduced a property "Infinite linearity" in Section 2 of [2], where \boldsymbol{Z}^{N} is the direct product of countable copies of the group \boldsymbol{Z} of integers and \boldsymbol{B} is a complete Boolean algebra. There it was proved that (ω, ω)-weak distributivity of \boldsymbol{B} implied infinite linearity of every homomorphism from \boldsymbol{Z}^{N} to $\boldsymbol{Z}^{(\boldsymbol{B})}$. In this paper we show that the same thing holds for a countably complete Boolean algebra (ccBa) \boldsymbol{B}. It is known that any $\mathrm{ccBa} \boldsymbol{B}$ is a quotient of a certain countably additive field \boldsymbol{F} of subsets of the Stone space of \boldsymbol{B} by the ideal of subsets of first category. This quotient map induces a homomorphism π from $\boldsymbol{Z}^{(F)}$ to $\boldsymbol{Z}^{(B)}$, where the Boolean power $\boldsymbol{Z}^{(\boldsymbol{F})}$ is isomorphic to the group consisting of all \boldsymbol{F} measurable functions from the Stone space to \boldsymbol{Z} and π corresponds to the quotient homomorphism modulo first category. We show that infinite linearity of $h: \boldsymbol{Z}^{N} \rightarrow \boldsymbol{Z}^{(\boldsymbol{B})}$ is equivalent to the existence of a lifting homomorphism $\tilde{h}: \boldsymbol{Z}^{N} \rightarrow \boldsymbol{Z}^{(\boldsymbol{F})}$ of h, i. e., $h=\pi \cdot \tilde{h}$. Infinite linearity of h also implies the existence of lifting homomorphisms of other quotient homomorphisms onto $\boldsymbol{Z}^{(\boldsymbol{B})}$ with a certain property. Finally we show (ω, ω)-weak distributivity of certain quotient Boolean algebras. According to them we get another proof and an improvement of a result of [6] concerning a lifting problem of homomorphisms.

Our notation and terminology are common with those of [2], so see [2] for undefined notations. All groups in this paper are abelian and homomorphisms are group theoretic ones.

1. Infinite linearity and lifting.

Differing from [2], we only concern proper sequences of countable length. First we restate a few definitions for a countable case and prove some properties of proper sequences of countable length of $\boldsymbol{Z}^{(\boldsymbol{B})}$ for a countably complete Boolean algebra (ccBa) B. B always stands for a ccBa.

[^0]Definition 1. An element x of a Boolean power $\boldsymbol{Z}^{(\boldsymbol{B})}$ is a function from \boldsymbol{Z} to \boldsymbol{B} such that $\bigvee_{a \in \boldsymbol{Z}} x(a)=\mathbf{1}$ and $x(a) \wedge x(b)=\mathbf{0}$ for $a \neq b$. For $x, y \in \boldsymbol{Z}^{(\boldsymbol{B})}, x+y$ is the element of $\boldsymbol{Z}^{(B)}$ such that $x+y(a)=\underset{a=b+c}{\bigvee} x(b) \wedge y(c)$.

A sequence ($x_{n}: n \in N$) is a proper sequence of $\boldsymbol{Z}^{(\boldsymbol{B})}$ if there exists a partition P of $\mathbf{1}$ such that $b \leqq x_{n}(0)$ for almost all n for each $b \in P$, i.e., $V P=\mathbf{1}$, $b \wedge c=\mathbf{0}$ for distinct $b, c \in P$ and $\forall b \in P\left(\exists m \forall n \geqq m\left(b \leqq x_{n}(0)\right)\right)$.

Proposition 1. Let $\left(x_{n}: n \in N\right)$ be a sequence of elements of $\boldsymbol{Z}^{(\boldsymbol{B})}$. ($x_{n}: n \in N$) is a proper sequence iff $\bigvee_{m} \wedge_{n \geqq m} x_{n}(0)=\mathbf{1}$.

Proof. Let $\left(x_{n}: n \in N\right)$ be a proper sequence and P a related partition of 1 . Suppose that $\bigvee_{m} \bigwedge_{n \geq m} x_{n}(0) \neq \mathbf{1}$, then $\mathbf{0} \neq b=-\bigvee_{m} \bigwedge_{n \geq m} x_{n}(0)$. Since $V P=\mathbf{1}$, there exists a $c \in P$ such that $b \wedge c \neq \mathbf{0}$. There exists m_{0} such that $b \wedge c \leqq \bigwedge_{n \leqq m_{0}} x_{n}(0)$, because $c \in P$. Now $\mathbf{0} \neq b \wedge c \leqq\left(-\bigvee_{m} \bigwedge_{n \cong m} x_{n}(0)\right) \wedge_{n \leqq m_{0}} x_{n}(0)=\mathbf{0}$ which is a contradiction.

For the other direction of the proof, we only need a pairwise disjoint refinement of $\left\{\bigwedge_{n \leqq m} x_{n}(0): m \in N\right\}$ and it is easy to get it.

Let $\overline{\boldsymbol{B}}$ be the canonical completion of \boldsymbol{B}, i. e., $\overline{\boldsymbol{B}}$ is a complete Boolean algebra which includes \boldsymbol{B} as a subalgebra and for any non-zero element b of $\overline{\boldsymbol{B}}$ there exists a non-zero element of \boldsymbol{B} that is less than or equal to b.

We remark that $\boldsymbol{Z}^{(\boldsymbol{B})}$ is a subgroup of $\boldsymbol{Z}^{(\overline{\boldsymbol{B}})}$ naturally.
Proposition 2. Let $\left(x_{n}: n \in N\right)$ be a sequence of elements of $\boldsymbol{Z}^{(B)}$. The sequence ($x_{n}: n \in N$) is a proper sequence of $\boldsymbol{Z}^{(\boldsymbol{B})}$ iff it is a proper sequence of $\boldsymbol{Z}^{(\bar{B})}$.

Proof. Since the infinite sums are preserved under the canonical completion, the proposition is clear by Proposition 1.

We use the following notations as in $[2]$. $\llbracket x=\check{a} \rrbracket=x(a)$ for $x \in \boldsymbol{Z}^{(\boldsymbol{B})}$ and $a \in \boldsymbol{Z}$, and $\llbracket x=y \rrbracket=\bigvee_{a \in \boldsymbol{Z}}(x(a) \wedge y(a))$ for $x, y \in \boldsymbol{Z}^{(\boldsymbol{B})}$. This notation is convenient when we use a Boolean extension of the universe.

Proposition 3. Let $\left(x_{n}: n \in N\right)$ be a proper sequence of $\boldsymbol{Z}^{(\boldsymbol{B})}$, then there exists a unique $y \in \boldsymbol{Z}^{(\boldsymbol{B})}$ such that

$$
\bigwedge_{n \geq m} x_{n}(0) \leqq\left[\left[\sum_{k=1}^{m-1} x_{k}=y\right]\right] \quad \text { for every } \quad m \in N .
$$

PRoof. Let $c_{1}=\bigwedge_{n \geq 1} x_{n}(0)$ and $c_{m+1}=\bigwedge_{n \geqq m+1} x_{n}(0)-\bigvee_{k=1}^{m} c_{k}$, then $\underset{m \in N}{\bigvee} c_{m}=\mathbf{1}$ and $c_{m} \wedge c_{n}=\mathbf{0}$ for $m \neq n$. By the countably completeness of \boldsymbol{B} there exists a unique element $y \in \boldsymbol{Z}^{(B)}$ such that $c_{m+1} \leqq \llbracket \sum_{k=1}^{m} x_{k}=y \rrbracket$ where $\sum_{k=1}^{0} x_{k}=0$.

Definition 2. For a proper sequence $\left(x_{n}: n \in N\right)$ of $\boldsymbol{Z}^{(\boldsymbol{B})}, \sum_{n \in N} x_{n}$ is the element of $\boldsymbol{Z}^{(B)}$ given by Proposition 3.

Definition 3. For a homomorphism $h: \boldsymbol{Z}^{N} \rightarrow \boldsymbol{Z}^{(\boldsymbol{B})} h$ is infinitely linear, if $\left(h\left(\boldsymbol{e}_{n}\right): n \in N\right)$ is a proper sequence and $h\left(\sum_{n \in N} a_{n} \boldsymbol{e}_{n}\right)=\sum_{n \in N} a_{n} h\left(\boldsymbol{e}_{n}\right)$.

A $\operatorname{ccBa} \boldsymbol{B}$ has the slender property, if every homomorphism from \boldsymbol{Z}^{N} to $\boldsymbol{Z}^{(\boldsymbol{B})}$ is infinitely linear.

Proposition 4. Let $h: \boldsymbol{Z}^{N} \rightarrow \boldsymbol{Z}^{(\boldsymbol{B})}$ be a homomorphism. Then, the following three propositions are equivalent:
(1) h is infinitely linear ;
(2) $\left(h\left(\boldsymbol{e}_{n}\right): n \in N\right)$ is a proper sequence;
(3) $\bigvee_{m} \wedge_{n \leqslant m} \llbracket h\left(\boldsymbol{e}_{n}\right)=\check{0} \rrbracket=\mathbf{1}$ holds.

This is clear by Proposition 6 of [2], Propositions 2 and 3.
Proposition 5. Let $\left(x_{n}: n \in N\right)$ be a proper sequence of $\boldsymbol{Z}^{(\boldsymbol{B})}$. Then, there exists a unique infinitely linear homomorphism $h: \boldsymbol{Z}^{N} \rightarrow \boldsymbol{Z}^{(\boldsymbol{B})}$ such that $h\left(\boldsymbol{e}_{n}\right)=x_{n}$ for $n \in N$.

Let ω be the least infinite ordinal, i. e., the set $N \cup\{0\}$. A ccBa \boldsymbol{B} satisfies the (ω, ω)-weak distributive law (we abbreviate it by (ω, ω)-WDL), if $\bigwedge_{m<\omega} \bigvee_{n<\omega}^{\bigvee} b_{m n}=\underset{f \in \omega_{\omega}}{\bigvee} \underset{m<\omega}{\wedge} \bigvee_{n \leq f(m)}^{\bigvee} b_{m n}$ holds for any $b_{m n} \in \boldsymbol{B}(m, n<\omega)$.

Theorem 1. If a ccBa \boldsymbol{B} satisfies $(\boldsymbol{\omega}, \boldsymbol{\omega})$-WDL, then \boldsymbol{B} has the slender property.

Proof. Let $h: \boldsymbol{Z}^{N} \rightarrow \boldsymbol{Z}^{(B)}$ be a homomorphism. Then, there exists an element \bar{h} of the Boolean extension $V^{(\overline{\boldsymbol{B}})}$ such that $\mathbb{\square} \bar{h}: \check{\boldsymbol{Z}}^{N} \rightarrow \boldsymbol{Z}$ is a homomorphism $\rrbracket^{(\bar{B})}=\mathbf{1}$ and $\llbracket \bar{h}(\check{x})=h(x) \rrbracket^{(\overline{\boldsymbol{B}})}=\mathbf{1}$ for each $x \in \boldsymbol{Z}^{N}$. Suppose that $\bigvee_{m} \bigwedge_{n ミ m} \llbracket h\left(\boldsymbol{e}_{n}\right)=\check{0} \rrbracket$ $\neq 1$. Since $\underset{n \in N}{\wedge} \bigvee_{a \in \mathcal{Z}} \backslash h\left(\boldsymbol{e}_{n}\right)=\check{a} \rrbracket=1$, there exists a function $f: N \rightarrow N$ such that $\mathbf{0} \neq\left(-\bigvee_{m} \bigwedge_{n \geqq m} \llbracket h\left(\boldsymbol{e}_{n}\right)=\check{0} \rrbracket\right) \wedge \wedge_{n \in N} \bigvee_{|a| \leq f(n)} \llbracket h\left(\boldsymbol{e}_{n}\right)=\check{a} \rrbracket$. This implies that $\mathbf{0} \neq \llbracket \forall m \exists n \geqq m$ $\left(h\left(\boldsymbol{e}_{n}\right) \neq 0\right)$ and $\left.\forall n \in N\left(\left|h\left(\boldsymbol{e}_{n}\right)\right| \leqq \check{f}(n)\right)\right]^{(\overline{\boldsymbol{B}})}$. Apply Lemma 4 of [2] to $\boldsymbol{Z}^{\check{N}}$ in $V^{(\bar{B})}$, then we get a contradiction.

Next we show that infinite linearity is equivalent to the existence of a lifting homomorphism.

For a quotient of a Boolean algebra by its ideal, we refer the reader to [5]. An ideal \boldsymbol{I} of a ccBa \boldsymbol{B} is countably complete, if $\bigvee X \in \boldsymbol{I}$ for any countable subset X of \boldsymbol{I}. Let $\boldsymbol{B} / \boldsymbol{I}$ be the quotient of a $\operatorname{ccBa} \boldsymbol{B}$ by its countably complete ideal \boldsymbol{I} and []: $\boldsymbol{B} \rightarrow \boldsymbol{B} / \boldsymbol{I}$ the quotient map. Then, $\boldsymbol{B} / \boldsymbol{I}$ is a ccBa and [] preserves countable sums, i. e., for any countable subset X of $\boldsymbol{B}[\vee X]=V_{x \in X}[x]$. Let $\left(\boldsymbol{Z}^{(\boldsymbol{B})}\right)_{\boldsymbol{I}}$ be the subgroup of $\boldsymbol{Z}^{(\boldsymbol{B})}$ such that $x \in\left(\boldsymbol{Z}^{(\boldsymbol{B})}\right)_{\boldsymbol{I}}$ iff $-x(0) \in \boldsymbol{I}$, and $\pi: Z^{(\boldsymbol{B})}$
$\rightarrow \boldsymbol{Z}^{(\boldsymbol{B})} /\left(\boldsymbol{Z}^{(\boldsymbol{B})}\right)_{\boldsymbol{I}}$ be the canonical homomorphism. Then, $\boldsymbol{Z}^{(\boldsymbol{B})} /\left(\boldsymbol{Z}^{(\boldsymbol{B})}\right)_{I}$ is isomorphic to $\boldsymbol{Z}^{(\boldsymbol{B} / \boldsymbol{I})}$. Therefore, we identify them.

Lemma 1. If $\left(x_{n}: n \in N\right)$ is a proper sequence of $\boldsymbol{Z}^{(\boldsymbol{B})}$, then $\left(\pi\left(x_{n}\right): n \in N\right)$ is a proper sequence of $\boldsymbol{Z}^{(\boldsymbol{B} / \mathbf{I})}$ and $\pi\left(\sum_{n \in N} x_{n}\right)=\sum_{n \in N} \pi\left(x_{n}\right)$ holds.

Proof. Since $\underset{m}{\bigvee} \bigwedge_{n \geq m} x_{n}(0)=\mathbf{1}$ and $\left[x_{n}(0)\right] \leqq \pi\left(x_{n}\right)(0), \bigvee_{m} \bigwedge_{n \geqq m} \pi\left(x_{n}\right)(0)=\mathbf{1}$ holds. There exists an infinitely linear homomorphism $h: \boldsymbol{Z}^{N} \rightarrow \boldsymbol{Z}^{(\boldsymbol{B})}$ such that $h\left(\boldsymbol{e}_{n}\right)=x_{n}$ for $n \in N$ by Proposition 5. Since ($\pi \cdot h\left(\boldsymbol{e}_{n}\right): n \in N$) is a proper sequence, $\pi\left(\sum_{n \in N} x_{n}\right)=\pi \cdot h\left(\sum_{n \in N} \boldsymbol{e}_{n}\right)=\sum_{n \in N} \pi \cdot h\left(\boldsymbol{e}_{n}\right)=\sum_{n \in N} \pi\left(x_{n}\right)$ by Proposition 4.

DEFINITION 4. For a homomorphism $h: \boldsymbol{Z}^{N} \rightarrow \boldsymbol{Z}^{(\boldsymbol{B} / \boldsymbol{I})}, \tilde{h}: \boldsymbol{Z}^{N} \rightarrow \boldsymbol{Z}^{(\boldsymbol{B})}$ is a lifting homomorphism of h if $h=\pi \cdot \tilde{h}$.

Theorem 2. Let \boldsymbol{B} be a ccBa and I a countably complete ideal of \boldsymbol{B}. If a homomorphism $h: Z^{N} \rightarrow Z^{(\boldsymbol{B} / I)}$ is infinitely linear, then there exists a lifting homomorphism $\tilde{h}: \boldsymbol{Z}^{N} \rightarrow \boldsymbol{Z}^{(\boldsymbol{B})}$ of h. In the case that \boldsymbol{B} has the slender property, a homomorphism $h: \boldsymbol{Z}^{N} \rightarrow \boldsymbol{Z}^{(\boldsymbol{B} / \boldsymbol{I})}$ is infinitely linear iff there exists a lifting homomorphism $\tilde{h}: \boldsymbol{Z}^{N} \rightarrow \boldsymbol{Z}^{(\boldsymbol{B})}$ of h.

Proof. Let $h: \boldsymbol{Z}^{N} \rightarrow \boldsymbol{Z}^{(\boldsymbol{B} / \boldsymbol{I})}$ be an infinitely linear homomorphism and $h\left(\boldsymbol{e}_{n}\right)=\pi\left(x_{n}\right) \quad$ for $\quad n \in N$. Then, $\underset{m}{\bigvee} \bigwedge_{n \geqq m}\left[x_{n}(0)\right]=\bigvee_{m} \bigwedge_{n \geqq m} \pi\left(x_{n}\right)(0)=1$. Hence $-\bigvee_{m} \bigwedge_{n \gtrless m} x_{n}(0)(=b)$ belongs to \boldsymbol{I}. Let $x_{n}^{\prime}(a)=x_{n}(a)-b$ for $a \neq 0$ and $x_{n}^{\prime}(0)=$ $x_{n}(0) \vee b$. Then, $\underset{m}{\vee} \bigwedge_{n \leqslant m} x_{n}^{\prime}(0)=\mathbf{1}$, so ($x_{n}^{\prime}: n \in N$) is a proper sequence. Let $\tilde{h}\left(\sum_{n \in N} a_{n} \boldsymbol{e}_{n}\right)=\sum_{n \in N} a_{n} x_{n}^{\prime}$. Then $\pi \cdot \tilde{h}=h$ holds by infinite linearity of h and Lemma 1 . The second proposition is clear by the first one and Lemma 1.

Definition 5. For a $\operatorname{ccBa} \boldsymbol{B}$ let \boldsymbol{F} be the least countably additive field of subsets of the Stone space of \boldsymbol{B} that contains all clopen subsets and \boldsymbol{I} the ideal of \boldsymbol{B} consisting of all subsets of first category that belong to \boldsymbol{F}.

Then, \boldsymbol{F} is a ccBa and \boldsymbol{I} is countably complete. The group $\boldsymbol{Z}^{(\boldsymbol{F})}$ is isomorphic to the group consisting of all \boldsymbol{F}-measurable functions f from the Stone space to \boldsymbol{Z}, i. e., $f^{-1}(a) \in \boldsymbol{F}$ for $a \in \boldsymbol{Z}$.

Proposition 6 (Theorem 29.1 of [5]). A ccBa \boldsymbol{B} is isomorphic to the quotient algebra $\boldsymbol{F} / \boldsymbol{I}$.

Corollary 1. Let $h: \boldsymbol{Z}^{N} \rightarrow \boldsymbol{Z}^{(\boldsymbol{B})}$ be a homomorphism for a ccBa $\boldsymbol{B}(=\boldsymbol{F} / \boldsymbol{I})$. Then, h is infinitely linear iff there exists a lifting homomorphism $h: \boldsymbol{Z}^{N} \rightarrow \boldsymbol{Z}^{(\boldsymbol{F})}$ of h.

Proof. Since \boldsymbol{F} is a field of sets, \boldsymbol{F} clearly satisfies (ω, ω)-WDL and hence has the slender property. Now the corollary is clear from Theorem 2,

Next we think of the field \boldsymbol{F}^{*} of all Borel subsets of the unit interval $[0,1]$.

There are two typical countably complete ideals of \boldsymbol{F}^{*}. The one is the ideal \boldsymbol{I}_{m} consisting of all Borel subsets of Lebesgue measure zero and the other is the ideal I_{c} consisting of all Borel subsets of first category. Just like a case of the Stone space, $\boldsymbol{Z}^{\left(F^{*)}\right)}$ is isomorphic to the group consisting of all Borel functions from [0,1] to \boldsymbol{Z}. It is well-known that the complete Boolean algebra $\boldsymbol{F}^{*} / \boldsymbol{I}_{m}$ satisfies (ω, ω)-WDL [1]. By Theorems 1 and 2 any homomorphism from \boldsymbol{Z}^{N} to $\boldsymbol{Z}^{\left(F^{*} / I_{m}\right)}$ has a lifting homomorphism. However, we do not know whether the same holds for the ideal \boldsymbol{I}_{c}. Equivalently, does the $\mathrm{cBa} \boldsymbol{F}^{*} / \boldsymbol{I}_{c}$ have the slender property? Equivalently, $\llbracket \forall h: \check{\boldsymbol{Z}}^{N} \rightarrow \boldsymbol{Z}\left(\exists m \forall n \geqq m h\left(\boldsymbol{e}_{n}\right)=0\right) \rrbracket^{(\boldsymbol{B})}=\mathbf{1}$ where $\boldsymbol{B}=\boldsymbol{F}^{*} / \boldsymbol{I}_{c}$?

2. (ω, ω)-weak distributivity of certain Boolean algebras.

In the following κ is a cardinal of uncountable cofinality and I a set of cardinality greater than or equal to κ, where a cardinal is an initial ordinal and an ordinal is the set of all ordinals less than itself. The cofinality of κ is denoted by $\mathrm{cf}(\kappa)$. A cardinal is regular if its cofinality is equal to itself, and singular otherwise. The ideal consisting of all subsets of I which are of cardinality less than κ is denoted by $\boldsymbol{P}_{\boldsymbol{\kappa}}(I)$. Since $\boldsymbol{P}_{\boldsymbol{\kappa}}(I)$ is closed under countable sums the quotient Boolean algebra $\boldsymbol{P}(I) / \boldsymbol{P}_{\boldsymbol{k}}(I)$ is a ccBa. Distributivity scarcely holds for the canonical completion of $\boldsymbol{P}(I) / \boldsymbol{P}_{k}(I)$ [4]. However, it isn't the case for $\boldsymbol{P}(I) / \boldsymbol{P}_{\boldsymbol{k}}(I)$ itself. We investigate the (ω, ω)-weak distributivity of $\boldsymbol{P}(I) / \boldsymbol{P}_{\boldsymbol{\kappa}}(I)$ in this section.

Let $D(\kappa)$ be the assertion: $\boldsymbol{P}(\kappa) / \boldsymbol{P}_{\kappa}(\kappa)$ satisfies (ω, ω)-WDL. Then, the following two propositions are easily shown.

Proposition 7. The $c c B a \boldsymbol{P}(I) / \boldsymbol{P}_{\kappa}(I)$ satisfies ($\left.\boldsymbol{\omega}, \boldsymbol{\omega}\right)$-WDL for any I, if $D(\kappa)$ holds.

Proposition 8. If $2^{\aleph_{0}}<\operatorname{cf}(\kappa)$, then $D(\kappa)$ holds.
Definition 6. Let ${ }^{\omega} \omega$ be the set of all functions from ω to ω. For $f, g \in^{\omega} \omega f \leqq{ }^{*} g$ holds if $f(n) \leqq g(n)$ for almost all n, i. e., $\exists m \forall n \geqq m(f(n) \leqq g(n))$.

Lemma 2. The assertion $D(\kappa)$ does not hold iff there exist subsets $X_{m n}$ of $\kappa(m, n<\omega)$ such that $\bigcap_{m} \bigcup_{n} X_{m n}=\kappa$ and $X_{m n} \cap X_{m n^{\prime}}=\varnothing$ for $n \neq n^{\prime}$ and the cardinality of $\bigcap_{m} \bigcup_{n \leq g(m)} X_{m n}$ is less than κ for any $g \in{ }^{\omega} \omega$.

Since κ is of uncountable cofinality, the proof can be done just as for a homogeneous complete Boolean algebra. Therefore, we omit it.

Lemma 3. $\quad D(\kappa)$ implies $D(\operatorname{cf}(\kappa))$.
Proof. Use Lemma 2.

Lemma 4. Let κ be a cardinal satisfying one of the following conditions: (1) κ is regular; (2) κ is singular and $D(\operatorname{cf}(\kappa))$ holds. Then $D(\kappa)$ does not hold iff there exists a subset S of ${ }^{\omega} \omega$ of cardinality κ such that the cardinality of $\{f: f \in S$ and $\left.f \leqq{ }^{*} g\right\}$ is less than κ for any $g \in^{\omega} \omega$.

Proof. Suppose that $D(\kappa)$ does not hold. Then, there exist $X_{m n}(m, n<\omega)$ that satisfy the conditions in Lemma 2, Let $S=\left\{f: \bigcap_{m} X_{m f(m)} \neq \varnothing\right\}$. Since the cardinality of $\bigcap_{m} X_{m f(m)}$ is less than κ for any $f \in{ }^{\omega} \omega$, the cardinality of S must be κ when κ is regular. Now we deal with the case that κ is singular. Suppose that the cardinality of $\bigcap_{m} X_{m f(m)}\left(f \in{ }^{\omega} \omega\right)$ are not bounded below κ. There exists a subset T of S of cardinality $\operatorname{cf}(\kappa)$ such that for any subset T^{\prime} of T of cardinality $\mathrm{cf}(\kappa)$ the cardinality of $\bigcup_{f \in T^{\prime}} \bigcap_{m} X_{m f(m)}$ is κ. Since $D(\operatorname{cf}(\kappa))$ holds, there exists a $g \in{ }^{\omega} \omega$ such that the cardinality of $\{f: f \in T$ and $f(n) \leqq g(n)$ for all $n\}$ is $\mathrm{cf}(\kappa)$. Then, the cardinality of $\bigcap_{m} \bigcup_{n \leq(m)} X_{m n}$ is κ, which is a contradiction. Hence, the cardinality of $\bigcap_{m} X_{m f(m)}\left(f \in{ }^{\omega} \omega\right)$ are bounded below κ. Therefore, in any case the cardinality of S is κ. Let $\left\{g_{i}: i<\omega\right\}$ be an enumeration of all functions g^{\prime} such that $g^{\prime}(n)=g(n)$ for almost all $n<\omega$. Since $\{f: f \in S$ and $f \leqq * g\}=\bigcup_{i<\omega}\left\{f: f \in S\right.$ and $f(n) \leqq g_{i}(n)$ for all $\left.n\right\}$ and $\operatorname{cf}(\kappa)$ is uncountable, the cardinality of $\left\{f: f \in S\right.$ and $\left.f \leqq{ }^{*} g\right\}$ is less than κ for every $g \in^{\omega} \omega$. The converse is obvious.

Corollary 2. If $D(\operatorname{cf}(\kappa))$ holds and $2^{*_{0}}<\kappa$, then $D(\kappa)$ holds.
This is immediate from Lemma 4. By the way, S. Kamo has shown that the condition " $2^{\aleph_{0}}<\kappa$ " in Corollary 2 cannot be dropped.

Lemma 5. There exists a sequence ($g_{\alpha}: \alpha<\kappa$) that satisfies the following:
(1) κ is regular;
(2) $g_{\alpha} \in{ }^{\omega} \omega$ and $g_{\alpha} \leqq{ }^{*} g_{\beta}$ and not $g_{\beta} \leqq^{*} g_{\alpha}$ for $\alpha<\beta$;
(3) for any $f \in{ }^{\omega} \omega$ there exists $\alpha<\kappa$ such that $g_{\alpha} \leqq * f$ does not hold.

In addition, for such a $\kappa D(\kappa)$ does not hold.
Proof. By axiom of choice there exists a sequence ($f_{\alpha}: \alpha<\lambda$) that satisfies the conditions (2) and (3). Let $\kappa=\mathrm{cf}(\lambda)$ and ($g_{\alpha}: \alpha<\kappa$) be a cofinal subsequence of ($f_{\alpha}: \alpha<\lambda$). Next let $S=\left\{g_{\alpha}: \alpha<\kappa\right\}$ and $X_{m n}=\{f: f \in S$ and $f(m)=n\}$. Then, $\bigcap_{m} \bigcup_{n} X_{m n}=S$ and the cardinality of $\bigcap_{m} \underset{n \leq f(m)}{\cup} X_{m n}$ is less than κ for any $f \in{ }^{\omega} \omega$. Hence, $D(\kappa)$ does not hold.

It is well-known that Martin's axiom implies the following assertion: For any subset $A \subseteq{ }^{\omega} \omega$ of cardinality less than $2^{\aleph_{0}}$, there exists an $f \in{ }^{\omega} \omega$ such that $g \leqq * f$ holds for every $g \in A$ [3].

Lemma 6. (Under Martin's axiom) For any $\kappa<2^{\mathrm{N}_{0}} D(\kappa)$ holds.
Proof. Let $\bigcap_{m} \bigcup_{n} X_{m n}=\kappa$ and $X_{m n} \cap X_{m n^{\prime}}=\varnothing$ for $n \neq n^{\prime}$. For $\alpha<\kappa$ let $f_{\alpha} \in{ }^{\omega} \omega$
be the function such that $f_{\alpha}(m)=n$ iff $\alpha \in X_{m n}$. By Martin's axiom there exists $g^{*} \in^{\omega} \omega$ such that $f \leqq g^{*}$ for all $\alpha<\kappa$. Since $\operatorname{cf}(\kappa)$ is uncountable and there are only countably many $g \in{ }^{\omega} \omega$ such that $g(n)=g^{*}(n)$ for almost all n, there exists $g \in{ }^{\omega} \omega$ such that the cardinality of $\bigcap_{m} \bigcup_{n \leqslant(m)} X_{m n}$ is κ. By Lemma 2, $D(\kappa)$ holds.

Theorem 3. (Under Martin's axiom) For a cardinal κ of uncountable cofnality, $D(\kappa)$ holds iff $\operatorname{cf}(\kappa)$ is not equal to $2^{\aleph_{0}}$.

Proof. Since Martin's axiom implies that $2^{N_{0}}$ is regular, there exists a sequence ($g_{\alpha}: \alpha<2^{*}{ }_{0}$) that satisfies the conditions of Lemma 5 by the above consequence of Martin's axiom. Hence, $D\left(2^{\mathrm{N}_{0}}\right)$ does not hold. Now, the conclusion follows from Lemmas 3, 6 and Corollary 2.

Theorems 2 and 3 imply that $\boldsymbol{P}(I) / \boldsymbol{P}_{\kappa}(I)$ has the slender property for a κ whose cofinality is uncountable but not equal to $2^{N_{0}}$ under Martin's axiom. On the other hand, B. Wald [6] showed the existence of a homomorphism h : $\boldsymbol{Z}^{N} \rightarrow \boldsymbol{Z}^{\left(\boldsymbol{P}(I) / \boldsymbol{P}_{2} \mathbf{x}_{0}(I)\right)}$ whose lift-homomorphism from \boldsymbol{Z}^{N} to $\boldsymbol{Z}^{(\boldsymbol{P}(I))}$ does not exist under Martin's axiom. Therefore,

Corollary 3. (Under Martin's axiom) $\boldsymbol{P}(I) / \boldsymbol{P}_{\kappa}(I)$ has the slender property iff the cofinality of κ is not equal to $2^{\aleph_{0}}$ for a κ of uncountable cofinality.

Our Corollary 3 improves Theorem (a) of [6]. Since Wald deals with a lifting problem under a little different setting, there is a problem in the case that the cofinality of κ is countable. In appendix we shall show the existence of a homomorphism which has no lifting homomorphism for a κ of countable cofinality.

Next we show that in a certain well-known Boolean extension of the universe $D\left(2^{*_{0}}\right)$ holds. Let \boldsymbol{B} be the measure algebra over a product space ${ }^{2} 2$ with a product measure, where $\kappa=\left(2^{\aleph_{0}}\right)^{+}$(p. 250 of [3]).

Proposition 9. The assertion $D\left(2^{\mathrm{N}_{0}}\right)$ holds in $V^{(\boldsymbol{B})}$.
Proof. We work in $V^{(\boldsymbol{B})}$. It is known that for any $f \in{ }^{\omega} \omega$ there exists a $g \in{ }^{\omega}{ }^{\circ} \omega$ such that $f(m) \leqq g(m)$ for every $m<\omega$ [3]. The cardinality of ${ }^{\omega} \omega$ is less than $2^{\aleph_{0}}(=\check{\kappa})$ and $2^{\aleph_{0}}$ is regular. If $\bigcap_{m} \bigcup_{n} X_{m n}=2^{\aleph_{0}}$, then $\bigcup_{g \in \omega_{\omega} \overbrace{m}}^{\bigcap_{n \leq g(m)}} \bigcup_{m n}=$ $\bigcup_{g \in \omega \omega m} \bigcap_{n \leq s(m)} X_{m n}=2^{\aleph_{0}}$. Hence, there exists a $g \in{ }^{\omega} \omega$ such that the cardinality of $\bigcap_{m} \bigcup_{n \leq g(m)} X_{m n}$ is $2^{\aleph_{0}}$. Therefore, $D\left(2^{\aleph_{0}}\right)$ holds in $V^{(B)}$ by Lemma 2.

Proposition 9 and Corollary 3 imply
Corollary 4. It is independent of $Z F C$ set theory that $\boldsymbol{P}(I) / \boldsymbol{P}_{2} \mathrm{~K}_{0}(I)$ has the slender property.

Appendix.

Here we show that there exists a homomorphism from $\boldsymbol{Z}^{\boldsymbol{N}}$ to $\boldsymbol{Z}^{(B)} /\left(\boldsymbol{Z}^{(B)}\right)_{\boldsymbol{I}}$ which has no lifting homomorphism from \boldsymbol{Z}^{N} to $\boldsymbol{Z}^{(\boldsymbol{B})}$ for a certain ideal \boldsymbol{I} of a $\mathrm{ccBa} \boldsymbol{B}$ with the slender property.

Theorem 4. Let \boldsymbol{B} be a ccBa with the slender property and an ideal $\boldsymbol{I}=$ $\bigcup_{n \in N} \boldsymbol{I}_{n}$, where \boldsymbol{I}_{n} is a countably complete ideal for each $n \in N$. If \boldsymbol{I} is not countably complete, then there exists a homomorphism from \boldsymbol{Z}^{N} to $\boldsymbol{Z}^{(B)} /\left(\boldsymbol{Z}^{(B)}\right)_{\boldsymbol{I}}$ which has no lifting homomorphism from \boldsymbol{Z}^{N} to $\boldsymbol{Z}^{(B)}$.

Without loss of generality we may assume that $\boldsymbol{I}_{n} \cong \boldsymbol{I}_{n+1}$ and $\boldsymbol{I}_{n} \neq \boldsymbol{I}_{n+1}$ for each $n \in N$. Then, there exist $b_{n}(n \in N)$ such that $b_{n} \notin \boldsymbol{I}_{n}$ and $b_{n} \in \boldsymbol{I}_{n+1}$ and $b_{m} \wedge b_{n}=\mathbf{0}$ for $m \neq n$. Clearly $\underset{n \in N}{\bigvee} b_{n} \notin \boldsymbol{I}$. Let C be the subgroup of $\boldsymbol{Z}^{(\boldsymbol{B})}$ such that $x \in C$ iff $b_{n} \leqq x(a)$ for some $a \in \boldsymbol{Z}$ for each $n \in N$ and $-\bigvee_{n \in N} b_{n} \leqq x(0)$. Let $\pi: \boldsymbol{Z}^{(\boldsymbol{B})} \rightarrow \boldsymbol{Z}^{(\boldsymbol{B})} /\left(\boldsymbol{Z}^{(\boldsymbol{B})}\right)_{\boldsymbol{I}}$ be the canonical homomorphism.

Lemma 7. If the image of $\pi \cdot h$ is included by the image of the restriction of π to C for a homomorphism $h: \boldsymbol{Z}^{N} \rightarrow \boldsymbol{Z}^{(\boldsymbol{B})}$, then there exists a homomorphism $h^{*}: \boldsymbol{Z}^{N} \rightarrow C$ such that $\pi \cdot h^{*}=\pi \cdot h$.

Proof. Since \boldsymbol{B} has the slender property, there exist $c_{n}(n \in N)$ with the following properties (consider the set $\left\{\wedge_{k \leq m} h\left(\boldsymbol{e}_{k}\right)\left(a_{k}\right) \wedge_{n>m} h\left(\boldsymbol{e}_{n}\right)(0): m \in N\right.$ and $\left.\left.a_{k} \in \boldsymbol{Z}(k \leqq m)\right\}\right)$:
(1) $\bigvee_{n \in N} c_{n}=\mathbf{1}, c_{n} \dot{\gamma} \mathbf{0}$ and $c_{m} \wedge c_{n}=\mathbf{0}$ for $m \neq n$;
(2) For any $m, k \in \mathcal{N}$ there exists an integer a such that $c_{m} \leqq h\left(\boldsymbol{e}_{k}\right)(a)$;
(3) For distinct m, n there exist k, a and b such that $c_{m} \leqq h\left(\boldsymbol{e}_{k}\right)(a), c_{n} \leqq h\left(\boldsymbol{e}_{k}\right)(b)$ and $a \neq b$.

Since $b_{m} \notin \boldsymbol{I}_{m}$ and $b_{m}=\bigvee_{n \in N} b_{m} \wedge c_{n}$, there exists a d_{m} such that $d_{m} \notin \boldsymbol{I}_{m}$ and $d_{m}=b_{m} \wedge c_{n}$ for some n. If $\underset{m \in N}{\bigvee} b_{m}-\bigvee_{m \in N}{ }_{\mathrm{V}}^{m} \in \boldsymbol{I}$, then let h^{*} be the homomorphism from \boldsymbol{Z}^{N} to C such that $d_{m} \leqq h\left(\boldsymbol{e}_{n}\right)(a)$ implies $b_{m} \leqq h^{*}\left(\boldsymbol{e}_{n}\right)(a)$ for every m, n and a. Now, we have gotten the desired homomorphism h^{*}. In the rest we show that $\underset{m \in N}{\bigvee} b_{m}-\bigvee_{m \in N} d_{m} \in I$. Otherwise, there exists an ascending sequence (m_{k} : $k \in N)$ of natural numbers and $d_{m_{k}}^{\prime}$ such that $d_{m_{k}}^{\prime} \wedge \bigvee_{m \in N} d_{m}=\mathbf{0}$ and $d_{m_{k}}^{\prime} \notin \boldsymbol{I}_{k}$ and $d_{m_{k}}^{\prime}=b_{m_{k}} \wedge c_{n}$ for some n by countable completeness of $\boldsymbol{I}_{k}(k \in N)$. We remark the following three facts:
(1) For any k there exist n, a and b such that $a \neq b$ and $d_{m_{k}} \leqq h\left(\boldsymbol{e}_{n}\right)(a)$ and $d_{m_{k}}^{\prime}=h\left(\boldsymbol{e}_{n}\right)(b)$;
(2) Since $\pi \cdot h\left(\boldsymbol{e}_{n}\right)(a) \in \pi(C)$ for every $n \in N,\left\{k: d_{m_{k}} \leqq h\left(\boldsymbol{e}_{n}\right)(a)\right.$ and $d_{m_{k}}^{\prime} \leqq h\left(\boldsymbol{e}_{n}\right)(b)$ for $a \neq b\}$ is finite for every n;
(3) For any $k, d_{m_{k}} \vee d_{m_{k}}^{\prime} \leqq h\left(\boldsymbol{e}_{n}\right)(0)$ for almost all n.

We define natural numbers $n_{i}, n_{i}^{\prime}(i \in N)$ and a subsequence ($p_{i}: i \in N$) of ($m_{k}: k \in N$) by induction.

Step 1: Let $p_{1}=m_{1}$ and n_{1} be a natural number such that $d_{p_{1}} \leqq h\left(\boldsymbol{e}_{n_{1}}\right)(a)$ and $d_{p_{1}}^{\prime} \leqq h\left(\boldsymbol{e}_{n_{1}}\right)(b)$ for some distinct a, b. Let $n_{1}^{\prime} \geqq n_{1}$ be a natural number such that $d_{p_{1}} \vee d_{p_{1}}^{\prime} \leqq h\left(\boldsymbol{e}_{j}\right)(0)$ for any $j>n_{1}^{\prime}$.

We assume that we have defined $p_{1}<\cdots<p_{k}, n_{1} \leqq n_{1}^{\prime}<n_{2} \leqq \cdots \leqq n_{k}^{\prime}$ in such a way that for any $i \leqq k$ and $j>n_{k}^{\prime} d_{p_{i}} \vee d_{p_{i}}^{\prime} \leqq h\left(\boldsymbol{e}_{j}\right)(0)$.

Step $k+1$: Take $p_{k+1}>p_{k}$ so that for any $j \leqq n_{k}^{\prime}$ and $m_{i} \geqq p_{k+1}$ there exists $u \in \boldsymbol{Z} ; d_{m_{i}} \vee d_{m_{i}}^{\prime} \leqq h\left(\boldsymbol{e}_{j}\right)(u)$. There exists n_{k+1} such that $d_{p_{k+1}} \leqq h\left(\boldsymbol{e}_{n_{k+1}}\right)(a)$ and $d_{p_{k+1}}^{\prime} \leqq h\left(\boldsymbol{e}_{n_{k+1}}\right)(b)$ for some distinct a, b. Then $n_{k+1} \geqq n_{k}^{\prime}$ and

$$
d_{p_{k+1}} \leqq h\left(\sum_{i=1}^{k+1} \boldsymbol{e}_{n_{i}}\right)(a), \quad d_{p_{k+1}}^{\prime} \leqq h\left(\sum_{i=1}^{k+1} \boldsymbol{e}_{n_{i}}\right)(b)
$$

for some distinct a, b. Let $n_{k+1}^{\prime} \geqq n_{k+1}$ such that for any $i \geqq n_{k+1}^{\prime}$ and $j \leqq k+1$ $d_{p_{j}} \vee d_{p_{j}}^{\prime} \leqq h\left(\boldsymbol{e}_{i}\right)(0)$. Thus we can continue this construction.

Let $\boldsymbol{a}=\sum_{i \in N} \boldsymbol{e}_{n_{i}}$. By the assumption of the lemma there exists $b \in \boldsymbol{I}$ such that $b_{n} \wedge-b \leqq h(\boldsymbol{a})(u)$ for some u for any $n \in N$. Let k be a natural number such that $b \in \boldsymbol{I}_{k} \subseteq \boldsymbol{I}_{p_{k}}$. Then, $\mathbf{0} \neq d_{p_{k}} \wedge-b \leqq h\left(\sum_{i=1}^{k} \boldsymbol{e}_{n_{i}}\right)(u) \leqq h(\boldsymbol{a})(u)$ and $\mathbf{0} \neq d_{p_{k}}^{\prime} \wedge-b$ $\leqq h\left(\sum_{i=1}^{k} \boldsymbol{e}_{n_{i}}\right)(v) \leqq h(\boldsymbol{a})(v)$ for distinct u and v, but this contradicts the fact that $b_{p_{k}} \wedge-b \leqq h(\boldsymbol{a})(u)$ for some u. Now the proof of Lemma 7 has been completed.

Proof of Theorem 4. Let x be an element of C such that $x(n!)=b_{n}$ and $x(0)=-\bigvee_{n \in N} b_{n}$. Then $\pi(x) \neq 0$ and it is divisible in $\pi(C)$. Therefore, $\pi(C)$ includes a non-trivial divisible subgroup, so there exist $2^{2^{x_{0}}}$-many homomorphisms from Z^{N} to $\pi(C)$. On the other hand there exist only $2^{\mathrm{N}_{0}}$-many homomorphisms from \boldsymbol{Z}^{N} to C, because C is isomorphic to \boldsymbol{Z}^{N}. Hence, there exists a homomorphism from \boldsymbol{Z}^{N} to $\boldsymbol{Z}^{(B)} /\left(\boldsymbol{Z}^{(B)}\right)_{I}$ which has no lifting homomorphism by Lemma 7 .

Corollary 5. Let λ be a cardinal of countable cofinality. Then, there exists a homomorphism from \boldsymbol{Z}^{N} to $\boldsymbol{Z}^{\boldsymbol{\lambda}} /\left(\boldsymbol{Z}^{2}\right)_{\boldsymbol{P}_{\lambda}(\lambda)}$ which has no lifting homomorphism from $\boldsymbol{Z}^{\boldsymbol{N}}$ to $\boldsymbol{Z}^{\boldsymbol{\lambda}}$.

Proof. If λ is the first infinite cardinal ω, the proof is obtained by the same argument as in the proof of Theorem 4 . Otherwise, there exist regular infinite cardinals $\kappa_{n}(n \in N)$ such that λ is the least upper bound of $\kappa_{n}(n \in N)$. Since $\boldsymbol{P}_{\kappa_{n}}(\lambda)$ is countably complete for each $n \in N$ and $\boldsymbol{P}_{\lambda}(\lambda)=\bigcup_{n \in N} \boldsymbol{P}_{\kappa_{n}}(\lambda)$, the conclusion follows from Theorem 4,

References

[1] J. L. Bell, Boolean Valued Models and Independence Proofs in Set Theory, Clarendon Press, Oxford, 1977.
[2] K. Eda, On a Boolean power of a torsion free abelian group, J. Algebra, 82 (1983), 84-93.
[3] K. Kunen, Set Theory, North-Holland Publishing Company, Amsterdam-New York, 1980.
[4] K. Namba, ($\omega_{1}, 2$)-distributive law and perfect sets in generalized Baire space, Comment. Math. Univ. St. Pauli, 10 (1971), 107-126.
[5] R. Sikorski, Boolean Algebras, Springer, Berlin-Heidelberg, 1969.
[6] B. Wald, Martinaxiom und die Beschreibung gewisser Homomorphismen in der Theorie der \aleph_{1}-freien abelschen Gruppen, Manuscr. Math., 42 (1983), 297-309.

Katsuya EDA	Ken-ichi HibINO
Institute of Mathematics	Institute of Mathematics
University of Tsukuba	University of Tsukuba
Ibaraki 305, Japan	Ibaraki 305, Japan

[^0]: *) This author was partially supported by Grant-in-Aid for Scientific Research (No. 58340010), Ministry of Education.

