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1. Introduction.

The aim of this paper is to give a complete classification of type I $AW^{*}-$

algebras using Boolean valued analysis. The structure theory of type I $AW^{*}-$

algebras was instituted by Kaplansky [6] as a purely algebraic generalization of
type I von Neumann algebras. The structure theory of type I von Neumann
algebras leads an essentially unique direct sum decomposition into homogeneous
von Neumann algebras. Thus a complete system of $*$-isomorphism invariants
for such an algebra is obtained as a set of cardinals together with partition of
unity consisting of central projections up to automorphism of the center. Kap-
lansky’s theory of type I $AW^{*}$-algebras succeeded in decomposing every type I
$AW^{*}$-algebra into homogeneous $AW^{*}$-algebras, but his theory was not completed
as he stated [6; p. 460], “One detail has resisted complete solution thus far: the
uniqueness of the cardinal number attached to a homogeneous $AW^{*}$-algebra of
type I.”

In this paper, we shall show that the solution of the above cardinal unique-
ness problem is negative, as conjectured by Kaplansky [7; p. 843, footnote].

This means that we cannot insure the uniqueness of the direct sum decomposi-
tion of type I $AW^{*}$-algebras into homogeneous algebras. Thus the structure of
$*$-isomorphism invariants for type I $AW^{*}$-algebras is supposed to be more com-
plicated. However, as we shall show in this Paper, it is a surprising fact that
we can find $*$-isomorphism invariants for such algebras in the objects already
studied in the field of mathematical logic. Precisely, we shall show that cardinal
numbers in Scott-Solovay’s Boolean valued universe of sets constitute $*$-isomor-
phism invariants of type I $AW^{*}$-algebras.

Boolean valued analysis is our method which bl idges the gap between the
results of mathematical logic and the problems of analysis. This new method
of analysis was introduced by D. Scott and R. Solovay when they reformulated
the theory of P. J. Cohen’s forcing in terms of Boolean valued models of set
theory in 1966. Recently, Boolean valued analysis was developed by G. Takeuti
in operator theory, harmonic analysis and operator algebras ([12], [13], [14],
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[15]) and by the author in multiplicity theory [8]. In particular, Professor
Takeuti introduced in [14] a useful machinery into the theory of operator alge-
bras which reduces the problems of abelian von Neumann algebras to Hilbert
spaces and von Neumann algebras to factors as a transfer principle. This
machinery is refined in [8], the relation with multiplicity theory is obtained and
in [15] it is applied to $C^{*}$-algebras. Our main tools in this paper are also along
with these lines. However, the Boolean valued analysis developed so far has
made a limitation on Boolean algebras to be measure algebras. For our present
purpose, we have to eliminate such a limitation. The required counterexample
for the cardinal uniqueness problem will be constructed from a Boolean algebra
which is not a measure algebra but constructed from a notion of forcing. Thus
we shall develop Boolean valued analysis in its full generality in this paper.

In Section 2, necessary preliminaries on Scott-Solovay’s Boolean valued uni-
verse $V^{(B)}$ of set theory are given, where $B$ is a complete Boolean algebra. In
Section 3, representations of real numbers and complex numbers in $V^{(B)}$ are
obtained. In particular, the bounded part of complex numbers in $V^{(B)}$ is a com-
mutative $AW^{*}$-algebra such that $B$ is isomorphic to the complete Boolean alge-
bra of its projections, and conversely every commutative $AW^{*}$-algebra $Z$ is
$*$-isomorphic to the bounded part of complex numbers in $V^{(B)}$ , where $B$ is the
complete Boolean algebra of projections in $Z$. In the following, let $B$ be the
comPlete Boolean algebra of projections in a commutative $AW^{*}$-algebra $Z$. In
Sections 4 and 5, it is shown that the bounded part of every Hilbert space in
$V^{(B)}$ is an $AW^{*}$-module over $Z$ and conversely every $AW^{*}$-module $X$ over $Z$

corresponds to a Hilbert space in $V^{(B)}$ whose bounded part is isomorphic to $X$.
The above correspondence is a functor which is an equivalence between tbe
category of $AW^{*}$-modules over $Z$ and bounded Z-linear maps and the category
of Hilbert spaces in $V^{(B)}$ and linear operators in $V^{(B)}$ with operator bounds in
$Z$. Combining the result obtained in [8], we can show that if $Z$ is a $W^{*}$-algebra
then the above category of $AW^{*}$-modules over $Z$ is also equivalent to the cate-
gory of non-degenerate normal $*$-representations of $Z$ on Hilbert spaces and
bounded intertwining operators. In Section 6, we shall obtain a complete system

of isomorphism invariants for $AW^{*}$-modules. It is shown that there is a one-
to-one correspondence between isomorphism classes of $AW^{*}$-modules over $Z$ and
cardinals in $V^{(B)}$ . In this section, we shall also settle the cardinal uniqueness
problem of homogeneous $AW^{*}$-algebras negatively. Precisely, we shall prove
that for any infinite cardinals $\alpha$ and $\beta$ with $\alpha<\beta$ , there is an $AW^{*}$-algebra
which is $\gamma$-homogeneous simultaneously for all cardinal $\gamma$ such that $\alpha\leqq\gamma\leqq\beta$ . In
Section 7, we shall obtain a complete system of $*$-isomorphism invariants for
type I $AW^{*}$-algebras. Every automorphism of $B$ can be extended canonically to
an automorphism of $V^{(B)}$ . We say that two cardinals in $V^{(B)}$ are congruent if
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there is an automorphism of $B$ whose canonical extension shifts one to another.
Then we shall show that there is a one-to-one correspondence between $*$-iso-
morphism classes of type I $AW^{*}$-algebras with center isomorphic to $Z$ and con-
gruence classes of cardinals in $V^{(B)}$ . The exact relation between such invari-
ants and direct sum decompositions of type I $AW^{*}$-algebras into homogeneous
algebras will be also established.

The author wishes to express his gratitude to Professor G. Takeuti for his
stimulating communications and warm encouragement for this work. He is also
grateful to Professor H. Umegaki for his useful comments and constant encour-
agement.

2. Preliminaries.

Let $B$ be a complete Boolean algebra. Scott-Solovay’s Boolean valued modeI
$V^{(B)}$ of set theory is defined in the following way [16; p. 59, p. 121]. For an
ordinal $\alpha$, we define $V_{\alpha}^{(B)}$ by transfinite induction as follows:

(1) $V_{0}^{(B)}=\emptyset$ ,

(2) $V_{a}^{(B)}=$ {$u|u$ : dom $(u)arrow B$ and dom $(u) \subseteqq_{\beta}\bigcup_{<\alpha}V_{\beta}^{(B)}$ }.

Then we define $V^{(B)}= \bigcup_{\alpha\in On}V_{\alpha}^{(B)}$ , where On is the class of all ordinal numbers.

We call elements of $V^{(B)}$ B-valued sets. For $u,$
$v\in V^{(B)}$ , the truth values $[u\in v\ovalbox{\tt\small REJECT}$

and $\ovalbox{\tt\small REJECT} u=v\ovalbox{\tt\small REJECT}$ are defined as functions from $V^{(B)}\cross V^{(B)}$ to $B$ satisfying the follow-
ing properties:

(1) $[u \in v\ovalbox{\tt\small REJECT}=\sup_{y\in dom(v)}(v(y)\wedge[u=y\ovalbox{\tt\small REJECT})$ ,

(2) $\ovalbox{\tt\small REJECT} u=v\ovalbox{\tt\small REJECT}=\inf_{x\in dom(u)}(u(x)\Rightarrow[x\in v\ovalbox{\tt\small REJECT})A\inf_{y\in dom(v)}(v(y)\Rightarrow\ovalbox{\tt\small REJECT} y\in u\ovalbox{\tt\small REJECT})$ ,

where $(b_{\iota}\Rightarrow b_{2})=(7b_{1})\vee b_{2}$ for any $b_{1},$ $b_{2}\in B$. Let $\varphi$ be a formula in set theory
with predicate symbols $\in$ and $=$ . If $\varphi$ contains no free variables and all the
constants in $\varphi$ are members in $V^{(B)}$ , we define the truth value [ $\varphi\ovalbox{\tt\small REJECT}$ of $\varphi$ by the
following recursive rules.

(1) $[7\varphi\ovalbox{\tt\small REJECT}=7\ovalbox{\tt\small REJECT}\varphi\ovalbox{\tt\small REJECT}$ ,

(2) [ $\varphi_{1}\Lambda\varphi_{2}\ovalbox{\tt\small REJECT}=[\varphi_{1}\ovalbox{\tt\small REJECT}$ A $[\varphi_{2}\ovalbox{\tt\small REJECT}$ ,

(3) $\ovalbox{\tt\small REJECT}\varphi_{1}\vee\varphi_{2}\ovalbox{\tt\small REJECT}=[\varphi_{1}\ovalbox{\tt\small REJECT}\vee\ovalbox{\tt\small REJECT}\varphi_{2}\ovalbox{\tt\small REJECT}$ ,

(4)
$[( \forall x)\varphi(x)\ovalbox{\tt\small REJECT}=\inf_{u\in\gamma^{\langle B)}}\ovalbox{\tt\small REJECT}\varphi(u)\ovalbox{\tt\small REJECT}$

,

(5)
$[( \exists x)\varphi(x)\ovalbox{\tt\small REJECT}=\sup_{u\in V^{(B)}}\ovalbox{\tt\small REJECT}\varphi(u)\ovalbox{\tt\small REJECT}$

.

The basic theorem of Scott-Solovay’s Boolean valued model theory is the follow-
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ing [16].

THEOREM 2.1 (Scott-Solovay). If $\varphi$ is a theorem of $ZFC$, then [ $\varphi\ovalbox{\tt\small REJECT}=1$ is
also a theorem of $ZFC$.

The original universe $V$ of ZFC can be embedded in $V^{(B)}$ by the following
operation v dePned by the $\in$ -recursion: For $y\in V,\check{y}=\{\check{x}|x\in y\}\cross\{1\}$ . We say
conventionally that an element $u\in V^{(B)}$ satisfying some property exists uniquely
if there is another $u’$ satisfying the same property then $\ovalbox{\tt\small REJECT} u=u’J=1$ . A family
$\{b_{a}\}$ of elements of $B$ is called a partition of unity if $\sup_{\alpha}b_{a}=1$ and $b_{\alpha}\wedge b_{\beta}=0$

for any $\alpha\neq\beta$ . Let $\{b_{a}\}$ be a partition of unity and let $\{u_{\alpha}\}$ be a family of B-
valued sets in $V^{(B)}$ . Then there is a unique element $u\in V^{(B)}$ such that $\ovalbox{\tt\small REJECT} u=u_{\alpha}\ovalbox{\tt\small REJECT}$

$\geqq b_{\alpha}$ for any $\alpha$ . We denote this $u$ by $\sum u_{\alpha}b_{\alpha}$ or $u_{1}b_{1}\oplus\cdots\oplus u_{n}b_{n}$ if $\alpha$ varies
over $\{$ 1, 2, $\cdots$ , $n\}$ .

Let $\varphi(x)$ be a formula with only $x$ as a free variable and such that there is
$v_{0}\in V^{(B)}$ with [ $\varphi(v_{0})\ovalbox{\tt\small REJECT}=1$ . Let $X=\{x|\varphi(x)\}$ . We define the interpretation $X^{(B)}$

of $X$ with respect to $V^{(B)}$ as
$X^{(B)}=\{\dot{u}\in V^{(B)}|[\varphi(x)\ovalbox{\tt\small REJECT}=1\}$ ,

where $\dot{u}$ is some representative from the equivalence class $\{v\in V^{(B)}|[u=v\ovalbox{\tt\small REJECT}=1\}$ .
In the sequel, we shall omit the symbol in $\dot{u}$ , conventionally. Then it is known
[12; p. 14] that

$[( \forall x\in X)\psi(x)J=\inf_{u\in X^{(B)}}[\psi(u)$ ,

$\ovalbox{\tt\small REJECT}(\exists x\in X)\psi(x)\ovalbox{\tt\small REJECT}=\sup_{u\in X^{B)}}\ovalbox{\tt\small REJECT}\psi(u)\ovalbox{\tt\small REJECT}$ .

If $X$ is a set in $V^{(B)}$ then $X^{(B)}\cross\{1\}\in V^{(B)}$ and [ $X=X^{(B)}\cross\{1\}\ovalbox{\tt\small REJECT}=1$ . Let $X\in V^{(B)}$

be definite. Then it is easy to see that $X^{(B)}= \{\sum u_{a}b_{\alpha}|\{b_{\alpha}\}$ is a partition of
unity and $u_{\alpha}\in dom(X)$ }.

Let $\varphi(x, y)$ be a formula with only $x$ and $y$ as free variables such that (i)
\langle $\exists x,$ $y$ ) $\varphi(x, y)$ , and (ii) $(\forall x, y, z)\varphi(x, y)\wedge\varphi(x, z)\Rightarrow y=z$ hold. Let $F=\{\langle x, y\rangle|$

$\varphi(x, y)\}$ and dom $(F)=\{x|(\exists y)\varphi(x, y)\}$ . We define the interpretation $F(\cdot)_{B}$ of
the function $F$ with respect to $V^{(B)}$ as follows: For any $u\in dom(F)^{(B)},$ $F(u)_{B}$

is a unique $v\in V^{(B)}$ such that [ $\varphi(u, v)\ovalbox{\tt\small REJECT}=1$ or equivalently $F(\cdot)_{B}$ : dom $(F)^{(B)}arrow V^{(B)}$

such that [$F(u)_{B}=F(u)J=1$ for any $u\in dom(F)^{(B)}$ . Let $d\subseteqq V^{(B)}$ . A function
$g:darrow V^{(B)}$ is called extensional if for any $x,$ $x’\in d,$ $\ovalbox{\tt\small REJECT} x=x’leqq[g(x)=g(x’)J$ . A
B-valued set $u\in V^{(B)}$ is called definite if for any $x\in dom(u),$ $u(x)=1$ . Then it
is known [16] that for definite $u,$

$v\in V^{(B)}$ , there is a bijective correspondence
between functions $f$ in $V^{(B)}$ such that [$f:uarrow vJ=1$ and extensional maps
$g$ : dom $(u)arrow v^{(B)}$ . The correspondence is given by the relation $[f(x)=g(x)J=1$

for any $x\in dom(u)$ . In this case, dom $(u)\subseteqq dom(f)^{(B)}$ and $g(x)=f(x)_{B}$ for any
$x\in dom(u)$ .
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LEMMA 2.2. Let $R$ be a ring with unit in $V^{(B)},$ $i.e.,$ $\ovalbox{\tt\small REJECT} R$ is a ring with unit]
$=1$ . Then $R^{(B)}$ is a ring with unit and there is an embedding $j$ from $B$ into the
center of $R^{(B)}$ such that

(1) $j(b)x=xb\oplus O(7b)$ ,

(2) $j(b)j(c)=J(b\wedge c)$ ,

(3) $j(b)+j(c)=j(b\vee c)+j(b\wedge c)$ ,

(4) $j(7b)=1-j(b)$ , for any $x\in R^{(B)},$ $b,$ $c\in B$.
PROOF. It is easy to see that $R^{(B)}$ is a ring. For any $b\in B$, consider the

partition $\langle b, 7b\rangle$ of unity and the family \langle I, $0\rangle$ in $R^{(B)}$ , where $I$ is the unit of
$R^{(B)}$ and $0$ is the zero of $R^{(B)}$ , and let $j(b)=Ib\oplus O(7b)$ . Then it is easy to see
that $j:Barrow R^{(B)}$ has the required properties. QED

A subset $S$ of an $R^{(B)}$ -module is called B-convex if $bx+(1-b)y\in S$ for any
$b\in B$ and $x,$ $y\in S$ .

LEMMA 2.3. Let $M$ and $N$ be unital R-modules in $V^{(B)}$ . Then $M^{(B)}$ and
$N^{(B)}$ are unital $R^{(B)}$ -modules. If $M$ is definite and if dom $(M)$ is B-convex then
every mapping $f$ from dom $(M)$ into $N^{(B)}$ such that $f(bx+(1-b)y)=bf(x)+$

$(1-b)f(y)$ for any $x,$ $y\in dom(M),$ $b\in B$ is extensional.
PROOF. It is obvious that $M^{(B)}$ and $N^{\langle B)}$ are unital $R^{(B)}$ -modules. Let

$f$ : dom $(M)arrow N^{(B)}$ satisfy the required properties. Let $x,$ $y\in dom(M)$ and $b\in B$.
Then it is easy to see that $bx+(1-b)y=xb\oplus y(7b)$ and that $bf(x)+(1-b)f(y)$

$=f(x)b\oplus f(y)(7b)$ . Thus by [8; Theorem 2.3] $f$ is extensional. QED

3. Real and complex numbers in $V^{(B)}$ .
Let $B$ be a complete Boolean algebra and $V^{(B)}$ be Scott-Solovay’s Boolean

valued universe of ZFC. It is known that natural numbers $N$ and rational num-
bers $Q$ are absolute in $V^{(B)},$ $i$ . $e.,$ [ $N=\check{N}\ovalbox{\tt\small REJECT}=1$ and [ $Q=\check{Q}\ovalbox{\tt\small REJECT}=1$ . In this section,
we shall consider real numbers and complex numbers in $V^{(B)}$ .

We define a real number to be the lower half line of a Dedekind cut with-
out the end point. That is, the formula $a$ is a real number’ is expressed as
follows:

$a\subseteqq Q\wedge(\exists s\in Q)[s\in a]\Lambda(\exists s\in Q)[s\not\in a]$

A $(\forall s\in Q)[s\in a\Leftrightarrow(\exists t\in Q)[s<t\wedge t\in a]]$ .

Denote by $R$ and $C$ the sets of all real numbers and complex numbers, respec-
tively. Let $R^{(B)}$ be the interpretation of $R$ in $V^{(B)},$ $i$ . $e.$ ,

$R^{(B)}=(u\in V^{(B)}|$ [ $u$ is a real number] $=1$ },

and let $C^{(B)}$ be the interpretation of $C$ in $V^{(B)},$ $i$ . $e.$ ,
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$C^{(B})=$ { $u\equiv V^{(B)}|\ovalbox{\tt\small REJECT} u$ is a complex $number\ovalbox{\tt\small REJECT}=1$ }.

Then $C^{(B)}=R^{(B)}+iR^{(B)}\vee$ .
Let $L$ be a normed linear space in $V^{(B)}$ . Denote by $L^{(B)}$ the interpretation

of $L$ . The bounded part $L_{\infty}^{(B)}$ of $L^{(B)}$ is defined as follows:

$L_{\infty}^{(B)}=\{u\in L^{(B)}|\exists M\in R, [\Vert u\Vert<\check{M}\ovalbox{\tt\small REJECT}=1\}$ .
LEMMA 3.1. $\ovalbox{\tt\small REJECT} L_{\infty}^{(B_{J}}\cross\{1\}=L\ovalbox{\tt\small REJECT}=1$ .
PROOF. Obviously, $\ovalbox{\tt\small REJECT} L^{(B)}\cross\{1\}=L\ovalbox{\tt\small REJECT}=1$ and we have only to show that

$\ovalbox{\tt\small REJECT} L_{\infty}^{(B)}\cross\{1\}\supseteqq L^{(B)}\cross\{1\}\ovalbox{\tt\small REJECT}=1$ . Let $x\in L^{(B)}$ . Then $\ovalbox{\tt\small REJECT}(\exists n\in N)n\leqq\Vert x\Vert<n\perp 1\ovalbox{\tt\small REJECT}=1$ , and
hence $\{b_{n}\}$ is a partition of unity of $B$ where

$b_{n}=\ovalbox{\tt\small REJECT}\check{n}\leqq\Vert x\Vert<(n+1)^{\vee}\ovalbox{\tt\small REJECT}$ ,

for any $n\in N$ Let $\mathfrak{r}_{n}$ be such that $x_{n}=xb_{n}\oplus 0(7b_{n})$ . Then it is easy to see
that $x= \sum_{n\in N}x_{n}b_{n}$ and $x_{n}\in L_{\infty}^{(B)}$ . Thus the conclusion follows immediately. QED

Now we shall obtain representations of $R^{(B)},$ $R_{\infty}^{(B)},$ $C^{(B)}$ and $C_{\infty}^{(B)}$ coherent
with the representations of $B$. Let $\Omega$ be a topological space and $B$ the complete
Boolean algebra of all regular open subsets of $\Omega$ . In the sequel, we shall use
the following notations for any subset $A$ of $\Omega$ : $A^{c}=\Omega-A,$ $A^{-}=the$ closure of
$A,$ $A^{O}=the$ interior of $A$ . We shall say that a subset $A$ of $\Omega$ is congruent with
a subset $B$ of $\Omega$ and write $A\sim B$ if $(A-B)\cup(B-A)$ is a meager set.

LEMMA 3.2. Let $\{A_{i}\}$ be a family of open sets. Then $( UA_{i}^{-0})^{-}=(\bigcup_{i}A_{i})^{-}$ .

PROOF. Since $A_{i}$ is open, $A_{i}\subseteqq A_{i}^{-}’$ and hence $( UA_{i})^{-}\subseteqq(\bigcup_{i}A_{i}^{-0})^{-}$ . Since

$( \bigcup_{i}A_{i}^{-0})^{-}$ is the smallest closed set containing all $A_{i}^{-0}’ s$, the conclusion follows

from the obvious relation - $i_{i}^{-0}\subseteqq(\bigcup_{i}A_{i})^{-}$ for all $i$ . QED

LEMMA 3.3. Let $f$ be an extended real valued lower semicontinuous function
on $\Omega$ and let $a\in V^{(B)}$ . SuPpose that

$\ovalbox{\tt\small REJECT}\check{s}\in a\ovalbox{\tt\small REJECT}=\{\omega\in\Omega|s<f(\omega)\}^{-0}$

for all $s\in Q$ . Then $ue$ have the following:
(1) [ $(\exists s\in Q)s\in a\ovalbox{\tt\small REJECT}=\Omega$ if and only if $\{\omega\in\Omega|f(\omega)=-\infty\}$ is nowhere dense.
(2) [ $(\exists s\in Q)s\not\in a\ovalbox{\tt\small REJECT}=\Omega$ if and only if $\bigcup_{n\in N}\{\omega\in\Omega|\beta(\omega)\leqq n\}^{o}$ is dense.

PROOF. (1): By the easy computations, we have

$\{\omega\in\Omega|f(\omega 1=-\infty\}^{-0}=(\bigcup_{s\in Q}\{\omega\in\Omega|s<f(\omega)\})^{-C}$

$=( \bigcup_{s\in Q}\{\omega\in\Omega|s<f(\omega)\}^{-0})^{-C}$ by Lemma 3.2
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$=\ovalbox{\tt\small REJECT}(\exists s\in Q)s\in aJ^{-c}$

$=[7(\exists s\in Q)s\in aJ$ .
Thus $\{\omega\in\Omega|f(\omega)=-\infty\}$ is nowhere dense if and onlv if $[|(\exists s\in Q)s\in a\ovalbox{\tt\small REJECT}=\Omega$ .
(2): By the easy computations, we have

$\ovalbox{\tt\small REJECT}(\exists s\in Q)s\not\in a\ovalbox{\tt\small REJECT}=(\bigcup_{s\in Q}\{\omega\in\Omega|s<f(\omega)\})^{Co-0})^{-0}$

$=( \bigcup_{s\in Q}\{\omega\in\Omega|s<f(\omega)\}^{Co})^{-0}$ , by Lemma 3.2

$=( \bigcup_{s\in Q}\{\omega\in\Omega|f(\omega)\leqq s\}^{o})^{-0}$

$=( \bigcup_{n\in N}\{\omega\in\Omega|f(\omega)\leqq n\}^{o})^{-0}$

It follows that $\ovalbox{\tt\small REJECT}(\exists s\in Q)s\not\in a\ovalbox{\tt\small REJECT}=\Omega$ if and only if $\bigcup_{n\in N}\{\omega\in\Omega|f(\omega)\leqq s\}^{o}$ is dense.
QED

Let $LC(\Omega)$ be the space of all extended real valued lower semicontinuous
functions on $\Omega$ satisfying that

(1) $\{\omega\in\Omega|f(\omega)=-\infty\}$ is nowhere dense,
(2) $\bigcup_{n\in N}\{\omega\in\Omega|f(\omega)\leqq n\}^{o}$ is dense.

THEOREM 3.4. The relation

(3.1) $[\check{s}\in a\ovalbox{\tt\small REJECT}=\{\omega\in\Omega|s<f(\omega)\}^{-0}$

for all $s\in Q$ , sets up a surjective mapling $\Phi$ : $frightarrow a$ from $LC(\Omega)$ onto $R^{(B)}$ such
that $\Phi(f)=\Phi(g)$ if and only if $\{\omega\in\Omega|f(\omega)\neq g(\omega)\}$ is meager. Moreover, $f$ is
bounded if and only if $\Phi(f)\in R_{\infty}^{(B)}$ .

PROOF. Let $f\in LC(\Omega)$ . Let $a\in V^{(B)}$ be such that $dom(a)=dom(O)$ and that
$a(\check{s})=\{\omega\in\Omega|s<f(\omega)\}^{-0}$ for any $s\in Q$ . Then obviously, $\ovalbox{\tt\small REJECT}\S\in a\ovalbox{\tt\small REJECT}=\{\omega\in\Omega|s<f(\omega)\}^{-0}$

for any $s\in Q$ . Then we have

$\ovalbox{\tt\small REJECT}\check{s}\in a\ovalbox{\tt\small REJECT}=\{\omega\in\Omega|s<f(\omega)\}^{-0}$

$=( \bigcup_{s<t\in Q}\{\omega\in\Omega|t<f(\omega)\})^{-0}$

$=( \bigcup_{s<t\in Q}[t\in a\ovalbox{\tt\small REJECT})^{-0}\vee$ , by Lemma 3.2

$=[(\exists t\in Q)[\check{s}<t\Lambda t\in a]\ovalbox{\tt\small REJECT}$ ,

whence [ $(\forall s\in Q)s\in a\Leftrightarrow(\exists t\in Q)[s<t\Lambda t\in a]\ovalbox{\tt\small REJECT}=\Omega$ . Thus by Lemma 3.3, we have
[a is a real number$=\Omega , and hence there is a unique $\Phi(f)\in R^{(B)}$ satisfying the
relation (3.1). Conversely, let $a\in R^{(B)}$ . Let $f$ : $\Omegaarrow\overline{R}$ be an extended real valued
function such that

$f( \omega)=\sup\{s\in Q|\omega\in\bigcup_{s<t\in Q}\ovalbox{\tt\small REJECT} t\in a\ovalbox{\tt\small REJECT}\}\vee$ ,
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for all $\omega\in Q$ . Then for any $r\in Q$ and $\omega\in\Omega$,

$r<f( \omega)\Leftrightarrow r<\sup\{s\in Q|\omega\in\bigcup_{s<t\in Q}[t\in a\ovalbox{\tt\small REJECT}\}\vee$

$\Leftrightarrow(\exists s, t\in Q)[r<s<t\wedge\omega\in[t\in a\ovalbox{\tt\small REJECT}]\vee$

$\Leftarrow\Rightarrow(\exists t\in Q)[r<t\wedge\omega\in[t\in a\ovalbox{\tt\small REJECT}]\vee$

$= \omega\in\bigcup_{r<t\in Q}\ovalbox{\tt\small REJECT} t\in aJ\vee$ ,

whence $\{\omega\in\Omega|s<f(\omega)\}=\bigcup_{s<t\in Q}[t\in a\ovalbox{\tt\small REJECT}$ . Thus $f$ is lower semicontinuous. Since

$a\in R^{(B)}$ , $\{\omega\in\Omega|s<f(\omega)\}^{-0}=[\check{s}\in a\ovalbox{\tt\small REJECT}$ for any $s\in Q$ . By Lemma 3.3, $f\in LC(\Omega)$ .
It follows that $\Phi$ is surjective. By the relation (3.1), it is obvious that $\Phi(f)=$

$\Phi(g)$ if and only if $\{\omega\in\Omega|f(\omega)\neq g(\omega)\}$ is meager. QED
A topological space $\Omega$ is called a Baire space if every meager open subset

is empty. All locally compact Hausdorff spaces and complete metric spaces are
Baire spaces. Let $\mathcal{B}(\Omega)$ be the space of all complex valued Borel functions on
$\Omega$ and let $\mathfrak{N}(\Omega)$ be the space of all functions in $\mathcal{B}(\Omega)$ vanishing outside a meager
Borel set. Then $\mathcal{B}(\Omega)$ is a $*$-algebra and $\mathfrak{N}(\Omega)$ is a $*$-ideal of $\mathcal{B}(\Omega)$ by the
pointwise operations. Let $B(\Omega)$ be the quotient space $\mathcal{B}(\Omega)/\mathfrak{N}(\Omega)$ . On the other
hand, $C^{(B)}$ is also a $*$-algebra by the operations defined in $V^{(B)}$ .

THEOREM 3.5. Let $\Omega$ be a Baire space. Then there is a $*$-isomorphism
between $B(\Omega)$ and $C^{(B)}$ .

PROOF. Since $C^{(B)}=R^{(B)}+iR^{(B)}$ , we have only to show the existence of an
isomorphism between the real part of $B(\Omega)$ and $R^{(B)}$ . Let $f:\Omegaarrow R$ be a Borel
function. For any $s\in Q$ , let $B_{s}$ be a unique regular open set such that $B_{s}\sim$

$\{\omega\in\Omega|s<f(\omega)\}$ . Let $g:\Omegaarrow R$ be such that

$g( \omega)=\sup\{s\in Q|\omega\in\bigcup_{s<t\in Q}B_{t}\}$ .

Then $\{\omega\in\Omega|s<g(\omega)\}=_{s<t}U_{\in Q}B_{t}$ and $g$ is an extended real valued lower semi-

continuous function. We have

$\{\omega\in\Omega|g(\omega)=-\infty\}^{-0}=(\bigcap_{s\in Q}B_{s}^{c})^{o}$

$\sim\bigcap_{s\in Q}\{\omega\in\Omega|f(\omega)\leqq s\}=\emptyset$ ,

whence $\{\omega\in\Omega|g(\omega)=-\infty\}^{-0}=\emptyset$ by the Baire property of $\Omega$ . We have

$( \bigcup_{n}\{\omega\in\Omega|g(\omega)\leqq n\}^{o})^{-}=(\bigcup_{n}B_{n}^{c\circ})^{-}$

$\sim\bigcup_{n}\{\omega\in\Omega|f(\omega)\leqq n\}=\Omega$ ,

whence, $\bigcup_{n}\{\omega\in\Omega|g^{(}\omega)\leqq\eta\}^{o}$ is dense by the Baire property of $\Omega$ . It follows
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that $g\in LC(\Omega)$ . Conversely, let $g\in LC(\Omega)$ . Then

$\{\omega\in\Omega|g(\omega)=\infty\}=(\bigcup_{n}\{\omega\in\Omega|g(\omega)\leqq n\})^{c}$

$\sim(\bigcup_{n}\{\omega\in\Omega|g(\omega)\leqq n\}^{o})\circ=\emptyset$ ,

whence {$\omega\in\Omega|g(\omega)=\infty$ or $g(\omega)=-\infty$} is a meager Borel set. Thus there is a
real valued Borel function $f$ which differs from $g$ only on a meager set. It
follows that the correspondence $\Phi$ obtained in Theorem 3.4 can be extended to
all real valued Borel functions in such a way that $\Phi(f)=\Phi(g)$ if and only if
$\{\omega\in\Omega|f(\omega)\neq g(\omega)\}$ is meager. Now it is easy to see that this extension induces
an isomorphism between the real part of $B(\Omega)$ and $R^{(B)}$ . QED

A topological space is called a Stonean space if it is a compact Hausdorff
space in which the closure of every open set is open. In Stonean spaces every
regular open set is clopen and the Stone representation space of the complete
Boolean algebra $B$ of regular open subsets is homeomorphic to the original space.
Denote by $C(\Omega)$ the space of all complex valued continuous functions on $\Omega$ . If
$\Omega$ is a Stonean space then $C(\Omega)$ is a commutative $AW^{*}$-algebra. Conversely, the
maximal ideal space $\Omega$ of any commutative $AW^{*}$-algebra $Z$ is a Stonean space
and by the Gelfand isomorphism $Z$ is $*$-isomorphic to $C(\Omega)$ . In this case, the
Stone representation space of the complete Boolean algebra of projections in $Z$

is also homeomorphic to $\Omega$ .
THEOREM 3.6. Let $\Omega$ be a Stonean space. Then there is a $*$-isomorphism

$\Phi$ between $C(\Omega)$ and $C_{\infty}^{(B)}$ satisfying

$\{\omega\in\Omega|s<f(\omega)\}^{-0}=[\S\in\Phi(f)\ovalbox{\tt\small REJECT}$ ,

for all real valued $f\in C(\Omega)$ and $s\in Q$ .
PROOF. It is known [11; p. 104] that every bounded real valued lower

semicontinuous function on a Stonean space coincides with a unique continuous
function except on a meager set. Thus the restriction of $\Phi$ obtained in Theorem
3.4 on bounded real valued continuous functions is one-to-one and onto $R_{\infty}^{(B)}$ . In
this case, obviously $\Phi$ is an isomorphism and its complexification is the required
$*$-isomorphism. QED

COROLLARY 3.7. Every commutative $AW^{*}$-algebra $Z$ is $*$-isomorPhic to $C_{\infty}^{(B)}$ ,

where $B$ is the complete Boolean algebra of projections in $Z$.
PROOF. Immediate from Theorem 3.6. QED

In the sequel, we shall denote by $\hat{Z}$ the $*$-algebra $C^{(B)}$ , where $B$ is the
complete Boolean algebra of projections in a commutative $AW^{*}$-algebra $Z$. Then
$Z$ is a $*$-subalgebra of $\hat{Z}$ and coincides with the bounded part of $\hat{Z}$ .
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4. $AW^{*}$-modules and Hilbert spaces in $V^{(B)}$ .
Let $Z$ be a commutative $AW^{*}$-algebra and $B$ the complete Boolean algebra

of projections in $Z$. We identify $Z$ with $C_{\infty}^{(B)}$ and $\hat{Z}$ with $C^{(B)}$ ; only notations
$Z$ and $\hat{Z}$ will be used hereafter.

A unital Z-module $X$ is called a pre-C*-module if there is defined on $X$ a
Z-valued inner product such that

(1) $(x, y)=(y, x)^{*}$ ,

(2) $(x, x)\geqq 0$ and is $0$ only for $x=0$ ,

(3) $(ax+y, z)=a(x, z)+(y, z)$ ,

for all $x,$ $y,$ $z\in X$ and $a\in Z$. A pre-C*-module $X$ over $Z$ is called a $C^{*}$-module
if it is complete with respect to the norm $\Vert\cdot\Vert$ on $X$ defined by $\Vert x\Vert=\Vert(x, x)\Vert^{1/2}$

for all $x\in X$. A pre-C*-module $X$ is called self-dual if every bounded Z-linear
map $f$ : $Xarrow Z$ is of the form $f(\cdot)=(\cdot, y)$ for some $y$ in $X$. A $C^{*}$-module $X$

over $Z$ is called an $AW^{*}$-module if for any partition $\{b_{\alpha}\}$ of unity in $B$ and
norm bounded family $\{x_{\alpha}\}$ in $X$ there is in $X$ an element $x$ with $b_{a}x=b_{\alpha}x_{a}$

for any $\alpha$ (cf. [7]). It should be remarked that the condition (a) in the defini-
tion of $AW^{*}$-modules in [7; p. 482] is satisPed automatically for any $pre- C^{*}-$

module over $Z$. It is easily shown that every self-dual pre-C*-module is a $C^{*}-$

module. It is shown in [7; Theorem 5] that every $AW^{*}$-module is self-dual.
Let $X$ and $Y$ be two $C^{*}$-modules over $Z$. Denote by Hom(X, Y) the space

of all bounded Z-linear maps $T$ which possess the bounded adjoints with respect
to Z-valued inner product, and denote Hom(X, $X$ ) by End(X). A Z-linear map
$T$ is called unitary if it preserves the Z-valued inner product. It is known [9;

Proposition 3.4] that if $X$ is self-dual then Hom(X, $Y$ ) is the space of all bounded
Z-linear maps. If $X$ is an $AW^{*}$-module then End(X) is a type I $AW^{*}$-algebra
with center isomorphic to $Z$ and every type I $AW^{*}$-algebra with center isomor-
phic to $Z$ arises in this way [7].

Let $H$ be a Hilbert space in $V^{(B)},$ $i.e.,$ [ $H$ is a Hilbert $space\ovalbox{\tt\small REJECT}=1$ . Denote
by $(\cdot, )_{B}$ the inner product on $H$ in $V^{(B)}$ and by $\Vert$ . IB the norm on $H$ in $V^{(B)}$ .
Let $H^{(B)}$ be the interpretation of $H$ and $H_{\infty}^{(B)}$ the bounded part of $H^{(B)}$ . Then

$H^{(B)}=\{x\in V^{(B)}|[x\in H\ovalbox{\tt\small REJECT}=1\},$

$H_{\infty}^{(B)}=\{x\in H^{(B)} 111x\Vert_{B}\in Z\}$ ,

and for any $x,$ $y\in H^{(B)},$ $(x, y)_{B}\in\hat{Z}$ and $\Vert x\Vert_{B}\in\hat{Z}$ . By Lemma 3.1, we have
$[H_{\infty}^{(B)}\cross\{1\}=M=1$ .

Let $W$ be another Hilbert space in $V^{(B)}$ . We can identify B-valued sets $f$

such that $\ovalbox{\tt\small REJECT} f$ : $Harrow W\ovalbox{\tt\small REJECT}=1$ with the corresponding extensional maps $P$ : $H^{(B)}arrow W^{(B)}$
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such that $\ovalbox{\tt\small REJECT}\tilde{f}(x)=f(x)=1$ for all $x\in H^{(B)}$ . Let $\mathcal{L}(H, W)^{(B)}$ be the set of all
bounded linear maps $f$ : $Harrow W$ in $V^{(B)}$ . Denote by $\Vert f\Vert_{B}$ the operator bound of
$f\in X(H, W)^{(B)}$ in $V^{(B)}$ . Then it is easy to see that

$\Vert f\Vert_{B}=\inf$ {$a\in R^{(B)}|\Vert f(x)\Vert_{B}\leqq a\Vert x\Vert_{B}$ for all $x$ in $H^{(B)}$ }.

Let $X(H, W)_{\infty}^{(B)}$ be the set of all $f\in \mathcal{L}(H, W)^{(B)}$ such that $\Vert f\Vert_{B}\in Z$.
THEOREM 4.1. Let $H$ and $W$ be Hilbert spaces in $V^{(B)}$ . Then we have the

following.
(1) $H_{\infty}^{(B)}$ (and $W_{\infty}^{(B)}$ ) is an $AW^{*}$-module.
(2) Every bounded Z-linear map $f:H_{\infty}^{(B)}arrow W_{\infty}^{(B)}$ can be uniquely extended to

$f\in X(H, W)_{\infty}^{(B)}$ and every $f\in \mathcal{L}(H, W)_{\infty}^{(B)}$ arises in this way.
(3) Under the extension of (2), $Hom(H_{\infty}^{(B)}, W_{\infty}^{(B)})\cong \mathcal{L}(H, W)_{\infty}^{(B)}$ .
PROOF. Let $x,$ $y\in H_{\infty}^{(B)}$ and $a\in Z$. Then $|(x, y)_{B}|\leqq\Vert x\Vert_{B}\Vert y\Vert_{B}$, $\Vert ax\Vert_{B}\leqq$

$|a|_{B}\Vert x\Vert_{B}$ and $\Vert x+y\Vert_{B}\leqq\Vert x\Vert_{B}+\Vert y\Vert_{B}$ by the direct interpretation. Thus it is easy
to see that $H_{\infty}^{(B)}$ is a pre-C*-module. Let $f:H_{\infty}^{(B)}arrow W_{\infty}^{(B)}$ be a bounded Z-linear
map. Then by Lemma 2.3, $f$ is extensional, and hence we have a unique ex-
tension $f;H^{(B)}arrow W^{(B)}$ of $f$ . Since $H_{\infty}^{(B)}$ and $W_{\infty}^{(B)}$ are pre-C*-modules, we have
$(f(x), f(x))_{B}\leqq\Vert f\Vert^{2}(x, x)_{B}$ for any $x$ in $H_{\infty}^{(B)}$ from [9; Theorem 2.8]. Thus it is
easy to see that $f\in \mathcal{L}(H,$ $T\eta_{\infty}^{(B)}$ . Conversely, let $f\in \mathcal{L}(H,$ $\mathfrak{s}\eta_{\infty}^{(B)}$ . Then for
any $x\in H_{\infty}^{(B)}$ , we have $(f(x), f(x))_{B}\leqq\Vert f\Vert_{B}^{2}(x, x)_{B}$ , so that $f(x)\in W_{\infty}^{(B)}$ and $f$ is a
bounded Z-linear map. This concludes (2). Let $f$ : $H_{\infty}^{(B)}arrow Z$ be a bounded Z-linear
map. Then $f\in \mathcal{L}(H, C)_{\infty}^{(B)}$ by (2). Thus by the Riesz Theorem in $V^{(B)}$ , there
is some $y\in H^{(B)}$ such that $f(x)_{B}=(x, y)_{B}$ for any $x$ in $H^{(B)}$ . Since $f$ is bounded,
it is easy to see that $y\in H_{\infty}^{(B)}$ . It follows that $H_{\infty}^{(B)}$ is self-dual and hence it is
a $c*$-module. Since $H_{\infty}^{(B)}$ is self-dual, every bounded Z-linear map has its bounded
adjoint so that we have $Hom(H_{\infty}^{(B)}, W_{\infty}^{(B)})=\mathcal{L}(H,$ $M\eta_{\infty}^{(B)}$ by (2). Thus (3) holds.
Let $\{b_{a}\}$ be a partition of unity in $B$ and $\{x_{\alpha}\}$ be a norm bounded family in
$H^{(B)}$ . Let $x= \sum_{\alpha}x_{\alpha}b_{\alpha}$ . Then it is easily seen that $b_{\alpha}x=b_{\alpha}x_{\alpha}$ for any $\alpha$. Let

$r\in R$ be such that $\sup_{a}\Vert x_{\alpha}\Vert_{B}\leqq r$. Then $\ovalbox{\tt\small REJECT}\Vert x_{\alpha}\Vert\leqq\check{r}\ovalbox{\tt\small REJECT}=1$ and hence $\ovalbox{\tt\small REJECT}\Vert x\Vert\leqq\check{r}I\geqq b_{a}$

for any $\alpha$ . Thus $x\in H_{\infty}^{(B)}$ . Therefore, $H_{\infty}^{(B)}$ is an $AW^{*}$-module and hence (1)

holds. QED

5. Construction of Hilbert spaces in $V^{(B)}$ .
Let $S$ be a set. A kernel $K:S\cross Sarrow C$ is called positive definite if the

following inequality

\langle 5.1) $\sum_{i,j=1}^{n}c_{i}\overline{c_{j}}K(x_{i}, x_{j})\geqq 0$

holds for every choice of $x_{1},$
$\cdots$ , $x_{n}$ in $S$ and for every choice of complex
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numbers $c_{1},$
$\cdots$ , $c_{n}$ . In the sequel, we call a function $K:S\cross Sarrow\hat{Z}$ as a $\hat{Z}$-kernel

and identify it with KG $V^{(B)}$ such that [ $\tilde{K}:\check{S}\cross\check{S}arrow CI=1$ and that $[\tilde{K}(\check{x},\check{y})=$

$K(x, y)J=1$ for any $x,$ $y\in S$ . A $\hat{Z}$-kernel $K$ is called positive definite if the
following inequality

(5.2) $\sum_{i.j=1}^{n}c_{i}\overline{c_{j}}K(x_{i}, x_{j})\geqq 0$

holds for every choice of $x_{1},$
$\cdots$ , $x_{n}\in S$, and for every choice of complex

numbers $c_{1},$
$\cdots$ , $c_{n}$ .

PROPOSITION 5.1. A $\hat{Z}$-kernel $K$ on $S\cross S$ is a positive definite kernel in $V^{(B)}$ ,
$i.e.$ , [ $K;\check{s}\cross.\S_{arrow C}$ is positive $definite\ovalbox{\tt\small REJECT}=1$ , if and only if $K$ is a positive definite
$\hat{Z}$-kernel.

PROOF. The necessity is obvious. To prove the sufficiency, note that a C-
valued kernel is positive definite if the inequality (5.1) holds for rational complex
numbers $c_{1},$

$\cdots$ , $c_{n}$ . Since $\ovalbox{\tt\small REJECT}\check{Q}+i\check{Q}=Q+iQJ=1\vee$ by the absoluteness of rational
numbers, the sufficiency follows from the partition argument ( $i.e.$ , for rational
complex numbers $c_{1},$

$\cdots$ , $c_{n}$ in $V^{(B)}$ there is a partition $\{b_{\alpha}\}$ of unity and
rational complex numbers $\{d_{1\alpha}, \cdots , d_{n\alpha}\}$ for any $\alpha$ such that

$\ovalbox{\tt\small REJECT}\sum_{i,j=1}^{n}c_{i}\overline{c_{j}}K(x_{i}, x_{j})=_{i},F_{=1}^{d_{i\alpha}\overline{d_{ja}}K(X_{i}}nx_{j})I\geqq b_{a}.)$

QED

It should be noticed that the above proposition relaxes the condition for
positive definiteness appeared in [13; Ch. 4, Theorem 1.4].

THEOREM 5.2. Let $K$ be a positive definite $\hat{Z}$-kernel on SX S. For any
$x\in S$, define $\tilde{x}\in V^{(B)}$ by the relations

$dom(\tilde{x})=dom(\check{S})$ and $\tilde{x}(\check{y})=\ovalbox{\tt\small REJECT} K(x, x)+K(y, y)=2\mathcal{R}_{e}K(x, y)\ovalbox{\tt\small REJECT}$

for any $y\in S$. Let $\hat{S}$ be such that $\tilde{S}=\{\tilde{x}|x\in S\}\cross\{1\}$ . Then there is a Hilbert
space $H$ in $V^{(B)}$ such that $\ovalbox{\tt\small REJECT}\hat{S}\subseteqq H\ovalbox{\tt\small REJECT}=1$ and that $(\tilde{x},\tilde{y})_{B}=K(x, y)$ for any $x,$ $y\in S$.

PROOF. Since $\tilde{K}$ is a positive dePnite kernel in $V^{(B)}$ , by the interpretation
of the usual theory of positive definite kernels [1], we have

$\ovalbox{\tt\small REJECT}(\exists H)(\exists J)H$ is a Hilbert space
$\wedge J:\check{S}arrow H\wedge(\forall x, y\in\check{S})\tilde{K}(x, y)=(J(x), J(y))_{B}\ovalbox{\tt\small REJECT}=1$ .

Thus it is sufficient to show that there is a one-to-one correspondence between
$\tilde{S}$ and $\{J(x)|x\in\check{S}\}$ in $V^{(B)}$ . To show this we have only to prove that $[J(\check{x})=$

$J(\check{y})\ovalbox{\tt\small REJECT}=[\tilde{x}=\tilde{y}\ovalbox{\tt\small REJECT}$ for any $x,$ $y\in X$. It is easy to see that

$\tilde{x}(\check{y})=\ovalbox{\tt\small REJECT}(](\check{x})-J(\check{y}), J(\check{x})-J(\check{y}))_{B}--0\ovalbox{\tt\small REJECT}$

$=[J(\check{x})=J(\check{y})\ovalbox{\tt\small REJECT}=0$
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for any $x,$ $y\in S$ . Thus we have

$\ovalbox{\tt\small REJECT} J(\check{x})=J(\check{y})\ovalbox{\tt\small REJECT}$

$=[(\forall z\in\check{S})[J(\check{x})=J(z)\Leftrightarrow J(\check{y})=J(z)]\ovalbox{\tt\small REJECT}$

$= \inf_{z\in S}([J(\check{x})=J(2)\ovalbox{\tt\small REJECT}\Leftrightarrow[J(\check{y})=J(\ovalbox{\tt\small REJECT})\ovalbox{\tt\small REJECT})$

$= \inf_{z\in S}(\tilde{x}(\check{z})\Leftarrow:\tilde{y’}(\check{z}))$

$=[\tilde{x}=\tilde{y}\ovalbox{\tt\small REJECT}$ ,

for any $x,$ $y\in S$ . QED
We call $\tilde{S}\in V^{(B)}$ obtained in the above theorem the Boolean embedding of $S$

with respect to a positive definite $\hat{Z}$-kernel $K$, and $J:Sarrow H$ the embedding map.
Obviously, a Z-valued inner product of a pre-C*-module is a positive definite

$\hat{Z}$-kernel. Applying Theorem 5.2 to it, we have that for any pre-C*-module $X$

there is a Hilbert space $H$ in $V^{(B)}$ such that $\ovalbox{\tt\small REJECT}\tilde{X}\subseteqq H\ovalbox{\tt\small REJECT}=1$ .
THEOREM 5.3. Let $X$ be a self-dual $c*$-module over $Z$ and $\tilde{X}$ be its Boolean

embedding with respect to the Z-valued inner product of X. Then $\tilde{X}$ is a Hilbert
space in $V^{(B)}$ and the relation $U_{X}x=\tilde{x}$ for any $x\in X$ defines a uniiary Z-linear
map $U_{X}$ from $X$ onto $\tilde{X}_{\infty}^{(ff)}$ .

PROOF. Denote by $K$ the Z-valued inner product of $X$. Let $H$ be a Hilbert
space in $V^{(B)}$ obtained in Theorem 5.2. Since $(\tilde{x},\tilde{y})_{B}--K(x, y)$ for any $x,$ $y\in X$,
it is easy to check that the addition and action of $Z$ on $X$ coincide with those
of $\tilde{X}$. Thus, we have [X is a linear subspace of $H\ovalbox{\tt\small REJECT}=1$ , under the operation
defined on $X$. Let $f\in V^{(B)}$ be a bounded linear functional on $\tilde{X}$ in $V^{(B)}$ . Then
there is a partition $\{b_{\alpha}\}$ of unity such that $\Vert b_{\alpha}f\Vert_{B}\in Z$ for any $\alpha$ . It is easy to
see that the function $g:Xarrow Z$ defined by $g(x)=b_{\alpha}f(x)$ for $x\in X$ is a bounded
Z-linear map on $X$. By the self-duality of $X$ there is some $y_{\alpha}\in X$ such that
$g(x)=K(x, y_{\alpha})$ for any $x\in X$. It follows that [ $\tilde{y}_{\alpha}\in\tilde{X}\ovalbox{\tt\small REJECT}=1$ and $[(\forall x\in\tilde{X})f(x)=$

$(x,\tilde{y}_{a})_{B}\ovalbox{\tt\small REJECT}\geqq b_{\alpha}$ for any $\alpha$ . This shows that for $y= \sum_{\alpha}\tilde{y}_{a}b_{\alpha}$ , we have [ $y\in\tilde{X}$ and
$(\forall x\in\tilde{X})f(x)=(x, y)_{B}\ovalbox{\tt\small REJECT}=1$ . Therefore $\tilde{X}$ is a self-dual inner product space in
$V^{(B)}$ and hence [X is a Hilbert space] $=1$ . Since it is obvious that $U_{X}$ is a
unitary Z-linear map from $X$ into $X_{\infty}^{(B)}$ , we have only to show that $U_{X}$ is
surjective. Let $y\in X_{\infty}^{(B)}$ . Then obviously, the function $f$ such that $f(x)=(\tilde{x}, y)_{B}$

for $x\in X$ is a bounded Z-linear map on $X$. Thus there is some $z\in X$ such that
$(\tilde{x}, y)_{B}=K(x, z)=(\tilde{x},\tilde{z})_{B}$ for any $x\in X$. This shows that [ $z=y\ovalbox{\tt\small REJECT}=1$ and hence
$U_{X}$ is surjective. QED

By the above theorem we obtain the following characterization of $AW^{*}arrow$

modules.
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THEOREM 5.4. A pre-C*-module over $Z$ is an $AW^{*}$-module if and only if it
is self-dual.

PROOF. The necessity is proved in [7: Theorem 5]. The sufficiency follows
immediately from Theorem 4.2, (1) and Theorem 5.3. QED

Let $X$ and $Y$ be two $AW^{*}$-modules, $\tilde{X}$ and $\tilde{Y}$ be their Boolean embeddings,
respectively. In general, the set $\tilde{X}_{\infty}^{(B)}$ depends on the selection of the represent-

atives from $\{v\in V^{(B)}|\ovalbox{\tt\small REJECT} u=v\ovalbox{\tt\small REJECT}=1\}$ for $u\in V^{(B)}$ such that $\ovalbox{\tt\small REJECT} u\in\tilde{X}\ovalbox{\tt\small REJECT}=1$ . However,
by the proof of Theorem 5.3, for any $u\in\tilde{X}_{\infty}^{(B)}$ there is exactly one $x\in X$ such
that $\ovalbox{\tt\small REJECT} u=\tilde{x}\ovalbox{\tt\small REJECT}=1$ . Thus we can choose the representatives in such a way that
$\tilde{X}_{\infty}^{(B)}=dom(\tilde{X})$ . By the same reason, we can suppose that $\tilde{Y}_{\infty}^{(B)}=dom(\tilde{Y})$ . Let
$T\in Hom(X, Y)$ and define a map $T_{0}$ : $dom(\tilde{X})arrow dom(\tilde{Y})$ by the relation $T_{0}\tilde{x}=(Tx)^{\sim}$

for any $x\in X$. Then $T_{0}=U_{Y}TU_{X}^{-1}$ and that $T_{0}\in Hom(X_{\infty}^{(B)}, Y_{\infty}^{(B)})$ by Theorem
5.3. Therefore, from Theorem 4.1, (3) there is a unique $\tilde{T}\in-\mathcal{L}^{\cdot}(\tilde{X},\tilde{Y})^{(B)}$ such
that $\ovalbox{\tt\small REJECT}\tilde{T}\tilde{x}=(Tx)^{\sim}\ovalbox{\tt\small REJECT}=1$ for any $x\in X$. We call this $\tilde{T}$ the Boolean embedding of
$T$. By [9; Remark 2.9], we have $\Vert T\Vert=\Vert\Vert\tilde{T}\Vert_{B}\Vert=\inf\{r\in R|\Vert\tilde{T}\Vert_{B}\leqq r\}$ and it is
easy to see that $(T^{*})^{\sim}=(\tilde{T})^{*}$ .

Let $Hilbert_{\infty}^{(B)}$ be the category of Hilbert spaces in $V^{(B)}$ and bounded linear
maps $f$ in $V^{(B)}$ such that $\Vert f\Vert_{B}\in Z$ and let $AW^{*}- mod^{Z}$ be the category of $AW^{*}-$

modules over $Z$ and bounded Z-linear maps. Then the following theorem
summarizes the functorial properties of Boolean embeddings.

THEOREM 5.5. The Boolean embedding $E:Xarrow\tilde{X},$ $E:Tarrow\hat{T}$ is a functor from
$AW^{*}- mod^{Z}$ to $Hilbert_{\infty}^{(B)}$ which is an equivalence of these two categories, and
which satisfies the following properties:

(1) $E(aT+S)=aE(T)+E(S)$ ,

(2) $E(T^{*})=E(T)^{*}$ ,

(3) 11 $E(T)\Vert_{B}\Vert=\Vert T$ il,

(4) $T$ is a unitary Z-linear $7nap$ if and only if
$\ovalbox{\tt\small REJECT} E(T)$ is a unitary transformation] $=1$ ,

for any $a\in Z$ , and $T,$ $S\in Hom(X, Y)$ and $X,$ $Y\in AW^{*}- mod^{Z}$ . Its adjoint functor
is $R:Harrow H_{\infty}^{(B)},$ $R:farrow f|_{H_{\infty}}(B)$ obtained in Theorem 4.1, (3). The natural isomorphism
$RE=1$ on $AW^{*}- mod^{Z}$ is $\{U_{X}|X\in AW^{*}- mod^{Z}\}$ obtained in Theorem 5.3.

Consider the case that a commutative $AW^{*}$-algebra $Z$ is a von Neumann
algebra. As in [10] and [8], we denote by Normod-Z the category of non-
degenerate normal $*$-representations of $Z$ on Hilbert spaces and bounded inter-
twining operators. Then we have the following.

THEOREM 5.6. Let $Z$ be a commutative von Neumann algebra. Then the two
categories $AW^{*}- mod^{Z}$ and Normod-Z are equivalent.
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PROOF. By [8; Theorem 5.5], we have obtained that $Hilbert_{\infty}^{(B)}$ is equivalent
to Normod-Z. Thus the assertion follows immediately from Theorem 5.5. QED

6. A classification of $A$ $W^{*}$-modules.

Let $Z$ be a commutative $AW^{*}$-algebra and $B$ be the complete Boolean algebra
of projections in $Z$ .

For any set $S$ in $V^{(B)}$ , denote by card $(S)_{B}$ the cardinality of $S$ in $V^{(B)}$ .
For any Hilbert space $H$ in $V^{(B)}$ , denote by $\dim(H)_{B}$ the dimension of $H$ in $V^{(B)}$ .
By the direct interpretation, we have that card$(S)_{B}=card(S’)_{B}$ if and only if
[There is a bijection from $S$ to $S’\ovalbox{\tt\small REJECT}=1$ and that $\dim(H)_{B}=\dim(W)_{B}$ if and only
if [There is a unitary transformation from $H$ onto $W\ovalbox{\tt\small REJECT}=1$ .

We say that two $AW^{*}$-modules $X$ and $Y$ over $Z$ are unitarily equivalent if
there is a unitary Z-linear map from $X$ onto $Y$ . Denote by $l^{2}(S)$ the $l^{2}$-space
of $S,$ $i.e.$ , the set of square summable complex valued functions on $S$ . Denote
by $l^{2}(S)^{(B)}$ the interpretation of $l^{2}(S)$ and $l^{2}(S)_{\infty}^{(B)}$ the bounded part of $l^{2}(S)^{(B)},$ $i.e.$ ,

$l^{2}(S)^{(B)}=$ { $x\in V^{(B)}|[x$ : $Sarrow C$ and $\sum_{s\in S}|x(s)|^{2}<\infty\ovalbox{\tt\small REJECT}=1$ },

$l^{2}(S)_{\infty}^{(B)}= \{x\in l^{2}(S)^{(B)}|\exists M\in R, [ \sum_{s\in S}|x(s)|^{2}<\check{M}\ovalbox{\tt\small REJECT}=1\}$ .

By the direct interpretation, $l^{2}(S)^{(B)}$ is a Hilbert space in $V^{(B)}$ and by Theorem
4.2, $l^{2}(S)_{\infty}^{(B)}$ is an $AW^{*}$-module over $Z$.

Now we shall obtain a complete system of unitary invariants of $A7\nu^{7}*$-modules
For any $AW^{*}$-module $X$ over $Z$ , denote by Dim(X) the Z-dimension of $X$

defined by

Dim(X) $=\dim(\tilde{X})_{B}$ ,

where $\tilde{X}$ is the Boolean embedding of $X$ (cf. Theorem 5.2, Theorem 5.3).

THEOREM 6.1. Two $AW^{*}$-modules are unitarily equivalent if and only if
they have the same Z-dimension. For any cardinal $\alpha$ in $V^{(B)}$ , there is an $AW^{*}-$

module $X$ whose Z-dimension is $\alpha$ .
PROOF. Let $X$ and $Y$ be $AW^{*}$-modules over $Z$. Suppose that there is a

unitary Z-linear map $U$ from $X$ onto $Y$. Then it follows from Theorem 5.5,

[ $U$ is a unitary transformation from $\tilde{X}$ onto $\tilde{Y}\ovalbox{\tt\small REJECT}=1$ ,

and hence $\dim(\tilde{X})_{B}=\dim(\tilde{Y})_{B}$ . Thus Dim(X) $=Dim(Y)$ . Conversely, suppose that
Dim(X) $=Dim(Y)$ . Then we have

[ $(\exists U)U$ is a unitary transformation from $\tilde{X}$ onto $\tilde{Y}\ovalbox{\tt\small REJECT}=1$ .
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Let $T$ be such that $T=U|_{x_{\infty}^{(B)}}$ . Then by Theorem 5.5, we have that $U_{Y}^{-1}TU_{X}$ is a
unitary Z-linear map from $X$ onto $Y$. Thus $X$ and $Y$ are unitarily equivalent.
The rest of the assertions follows immediately from the fact that $Dim(l^{2}(\alpha)_{\infty}^{(B)})=\alpha$

for any cardinal $\alpha$ in $V^{(B)}$ . QED

A base of an $AW^{*}$-module Xover $Z$ is a family $\{e_{i}\}$ such that (1) $\langle e_{i}, e_{i}\rangle=1$

for any $i,$ (2) $\langle e_{i}, e_{j}\rangle=0$ if $i\neq j,$ (3) for any $x\in X$, if $\langle x, e_{i}\rangle=0$ for any $i$ then
$x=0$ . For a cardinal $\alpha$ , an $AW^{*}$-module is called $\alpha$-homogeneous if it has a
base with cardinality $\alpha$ .

THEOREM 6.2 An $AW^{*}$-module $X$ over $Z$ is $\alpha$-homogeneous if and only if
Dim(X) $=card(\check{\alpha})_{B}$ .

PROOF. Let $X$ be an $\alpha$-homogeneous $AW^{*}$-module over $Z$, and $\{e_{i}\}$ be a
base of $X$ with cardinality $\alpha$ . Consider the Boolean embedding $\tilde{X}$ and the
embedding map $J\in V^{(B)}$ (cf. Theorem 5.2). Denote by $K$ the $\hat{Z}$-valued inner
product of $\tilde{X}$ . Let $e$ be the corresponding family in $V^{(B)}$ to $\{e_{i}\},$ $i.e.,$ $[e;\check{\alpha}arrow$

$\check{X}\ovalbox{\tt\small REJECT}=1$ and [ $e(i)=e_{i}I=1\vee$ for any $i\in\alpha$ . By the proof of Theorem 5.2, $[J:\check{X}arrow$

$\tilde{X}\ovalbox{\tt\small REJECT}=1$ and [ $K(e_{i}, e_{j})=(J(e(i^{\vee})), J(e(j)))J=1\vee$ for any $i,$ $j\in\alpha$ . It follows that $\{J(e(i^{\vee}))\}$

is a base of $\tilde{X}$ indexed by $\check{\alpha}$ in $V^{(B)}$ . Thus [ $\dim(\tilde{X})=card(\check{\alpha})\ovalbox{\tt\small REJECT}=1$ . Conversely,
let $X$ be an $AW^{*}$-module over $Z$ such that Dim(X) $=card(\check{\alpha})_{B}$ . Let $e\in V^{(B)}$ be
a base of $\tilde{X}$ in $V^{(B)}$ . Then it is easy to see that $\{e(i^{\vee})|i\in\alpha\}$ is a base of the
$AW^{*}$-module $\tilde{X}_{\infty}^{(B)}$ with cardinality $\alpha$ . Since $X$ and $\tilde{X}_{\infty}^{(B)}$ are unitarily equivalent,
$X$ is $\alpha$-homogeneous. QED

In [6], Kaplansky showed that the cardinality of the base of an $AW^{*}$-module
over $Z$ is unique if $Z$ satisPes the countable chain condition locally but he
conjectured that the uniqueness may fail otherwise [7; p. 844, footnote]. Now
we shall construct examples in which the uniqueness fails, using some known
results on forcing.

THEOREM 6.3. For any pair of infinite cardinals $\alpha$ and $\beta$ with $\alpha<\beta$ , there
is an $AW^{*}$-module which is $\gamma$-homogeneous for any cardinal $\gamma$ such that $\alpha\leqq\gamma\leqq\beta$ .

PROOF. Let $P$ be the set of all functions $P$ such that
(1) $dom(P)\subseteqq\alpha$ and card$(dom(p))<\alpha$ ,
(2) ran $(p)\subseteqq\beta$ ,

and let $p\leqq q$ if and only if $P$ is an extension of $q$ for $p,$ $q\in P$. For any $p\in P$,

let $[p]$ be such that $[p]=\{q\in P|q\leqq P\}$ , and define the topology on $P$ whose
open base is $\{[p]|p\in P\}$ . Let $B$ be the Boolean algebra of all regular open
subsets of $P$ , and consider the Boolean valued universe $V^{(B)}$ . It is easily seen
that $[p]\in B$ for any $p\in P$, and so we suppose that $P\subseteqq B$ by the identification
$[p]$ with $p$ . Let $F\in V^{(B)}$ be such that $dom(F)=dom(\check{P})$ , and that $F(\beta)=[p]$ for
every $p\in P$ . Then by [4; Theorem 43 $(b)$],

[ $F$ is a generic filter of $P$ over $M\ovalbox{\tt\small REJECT}=1$ ,
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where $M$ is a predicate defined by $M(a)= \sum_{x\in V}[a=\check{x}\ovalbox{\tt\small REJECT}$ . Since [ $M$ is a standard

transitive model of ZFC] $=1$ , interpreting the forcing argument [4; p. 183], we
have

[$UF$ is a function from $\check{\alpha}$ onto $\check{\beta}\ovalbox{\tt\small REJECT}=1$ .

Let $\gamma$ be a cardinal such that $\alpha\leqq\gamma\leqq\beta$ . Then [ $\check{\alpha}\subseteqq\check{\gamma}\subseteqq\check{\beta}J=1$ . It follows that
$\mathbb{I}card(\check{\alpha})=card(\check{\gamma})=card(\check{\beta})\ovalbox{\tt\small REJECT}=1$ . Let $X$ be an $AW^{*}$-module such that $X=l^{2}(\check{\alpha})_{\infty}^{(B)}$ .
Then Dim(X) $=\dim(l^{2}(\check{\alpha}))_{B}=card(\check{\alpha})_{B}=card(\check{\gamma})_{B}$ . Therefore the $AW^{*}$-module $X$ is
$\gamma_{- hom_{\mathfrak{B}^{eneous}}}$ by Theorem 6.2. QED

COROLLARY 6.4. For any pair of infnite cardinals $\alpha$ and $\beta$ with $\alpha<\beta$ ,
there is an $AW^{*}$-algebra which is $\gamma$-homogeneous for any cardinal $\gamma$ such that
$\alpha\leqq\gamma\leqq\beta$ .

PROOF. Since End(X) is an $\aleph$ -homogeneous $AW^{*}$-algebra if $X$ is an $\aleph-$

homogeneous $AW^{*}$-module [7; Theorem 7], the assertion follows immediately
from Theorem 6.3. QED

7. A classification of type I $AW^{*}$-algebras.

Let $A$ be a type I $AW^{*}$-algebra, $Z$ be its center, $B$ be the complete Boolean
algebra of all central projections in $A$ .

Let $\pi$ be an automorphism of $B$. Then $\pi$ can be extended to an automor-
phism $\pi:V^{(B)}arrow V^{(B)}$ such that for every formula $\varphi$ and $u_{1},$

$\cdots$ , $u_{n}\in V^{(B)}$ ,

$\pi([\varphi(u_{1}, \cdots u_{n})\ovalbox{\tt\small REJECT})=[\varphi(\pi(u_{1}), \cdots \pi(u_{n}))\ovalbox{\tt\small REJECT}$ ,

(cf. [16; Theorem 19.3]). In particular, if $\alpha$ is a cardinal in $V^{(B)}$ , then $\pi(\alpha)$

is also a cardinal in $V^{(B)}$ . Two cardinals $\alpha$ and $\beta$ in $V^{(B)}$ are called congruent,
if there is an automorphism $\pi$ of $B$ such that $[\alpha=\pi(\beta)I=1$ .

It was shown by Kaplansky [7] that a type I $AW^{*}$-algebra $A$ with center
isomorphic to $Z$ is isomorphic to End(X) for some $AW^{*}$-module $X$ over $Z$ .
The following theorem provides easily a complete system of $*$-isomorphism
invariants of type I $AW^{*}$-algebras.

THEOREM 7.1. Let $X$ and $Y$ be two $AW^{*}$-modules over Z. Then End(X)

and End$(Y)$ are $*$-isomorPhic if and only if Dim(X) and Dim(Y) are congruent.
PROOF. Suppose that Dim(X) and $Dim(Y)$ are congruent. Then there is a

cardinal $\alpha$ in $V^{(B)}$ and an automorphism $\pi$ of $B$ such that Dim(X) $=\alpha$ and
$Dim(Y)=\pi(\alpha)$ . Thus we have only to show that $X(l^{2}(\alpha))_{\infty}^{(B)}$ and $\mathcal{L}(l^{2}(\pi(\alpha)))_{\infty}^{(B)}$

are $*$-isomorphic. Obviously, $\ovalbox{\tt\small REJECT} \mathcal{L}(l^{2}(\pi(\alpha)))=\pi(X(l^{2}(\alpha)))\ovalbox{\tt\small REJECT}=1$ and hence $\pi$ is a one-
to-one correspondence between $X(l^{2}(\alpha))^{(B)}$ and $X(l^{2}(\pi(\alpha)))^{(B)}$ . It is easy to see
that $\pi(T+S)=\pi(T)+\pi(S)$ , $\pi(TS)=\pi(T)\pi(S)$ , $\pi(\check{c}T)=\check{c}\pi(T)$ , $\pi(T^{*})=\pi(T)^{*}$ and
that $\Vert\pi(T)\Vert_{B}=\pi(\Vert T\Vert_{B})$ , for any $T,$ $S\in \mathcal{L}(l^{2}(\alpha))^{(B)},$ $c\in C$. It follows that $\pi$ is a
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$*$-isomorphism from $\mathcal{L}(l^{2}(\alpha))_{\infty}^{(B)}$ onto $\mathcal{L}(l^{2}(\pi(\alpha)))_{\infty}^{(B)}$ . Conversely, suppose that
End(X) and End$(Y)$ are $*$-isomorphic. Let $\alpha=Dim(X)$ and $\beta=Dim(Y)$ . Then
there is a $*$-isomorphism $\Phi$ from $X(l^{2}(\alpha))_{\infty}^{(B)}$ onto $X(l^{2}(\beta))_{\infty}^{(B)}$ . Then their centers
coincide with the bounded parts of scalar multiplications on $l^{2}$-spaces in $V^{(B)}$ .
Let $\pi$ be an automorphism on $B$ such that $\pi(b)=\Phi(b)$ for any $b\in B$ . Then we
can extend $\pi$ to $V^{(B)}$ , so that $\pi(a)=\Phi(a)$ for any $a\in Z$ . Let $\Psi$ be a map from
$\mathcal{L}(l^{2}(\pi(\alpha)))_{\infty}^{(B)}$ into $X(l^{2}(\beta))_{\infty}^{(B)}$ such that $\Psi(T)=\Phi(\pi^{-1}(T))$ for any $T\in \mathcal{L}(l^{2}(\pi(\alpha)))_{\infty}^{(B)}$ .
Then for any $a\in Z$ and $T\in \mathcal{L}(l^{2}(\pi(\alpha)))_{\infty}^{(B)}$ , we have

$\Psi(aT)=\Phi(\pi^{-1}(aT))=\Phi(\pi^{-1}(a)\pi^{-1}(T))=\Phi(\pi^{-1}(a))\Psi(T)=a\Psi(T)$ .

For any $T,$ $S\in X(l^{2}(\pi(\alpha)))_{\infty}^{(B)}$ , it is easy to see that $\Psi(TS)=\Psi(T)\Psi(S),$ $\Psi(T+S)=$

$\Psi(T)+\Psi(S)$ and that $\Psi(T^{*})=\Psi(T)^{*}$ . Thus $\Psi$ is an extensional map and [ $\Psi$ is
a $*$-isomorphism from $\mathcal{L}(l^{2}(\pi(\alpha)))$ onto $\mathcal{L}(l^{2}(\beta))\ovalbox{\tt\small REJECT}=1$ . Interpreting the theorem
that every $*$-isomorphism of type I factor is spacial, we have $\ovalbox{\tt\small REJECT}\Psi$ is implimented
by a unitary transformation from $l^{2}(\pi(\alpha))$ onto $l^{2}(\beta)\ovalbox{\tt\small REJECT}=1$ . It follows that
[ $\pi(\alpha)=\beta\ovalbox{\tt\small REJECT}=1$ . QED

For any cardinal $\alpha$ , donote by $[\alpha]$ the congruence class of $\alpha,$
$i.e.$ ,

$[\alpha]=\{\pi(\alpha)|\pi\in Aut(B)\}$ .
For any type I $AW^{*}$-algebra $A$ with center isomorphic to $Z$ , denote by $Deg(A\rangle$

the degree of $A$ defined by
$Deg(A)=[Dim(X)]$ ,

where $X$ is an $AW^{*}$-module over $Z$ such that $A$ is $*$-isomorphic to End(X).

By Theorem 7.1, $Deg(A)$ is uniquely dePned.

THEOREM 7.2. Two type $I$ $AW^{*}$-algebras are $*$-isomorphic if and only if
their centers are $*$-isomorPhic and they have the same degree. For any non-zero
cardinal $\alpha$ in $V^{(B)}$ , there is a typeI $AW^{*}$-algebra $A$ with center isomorphjc to $Z$

such that $Deg(A)=[\alpha]$ .
PROOF. Obvious consequence of the previous results. QED

For a cardinal $\alpha$, a type I $AW^{*}$-algebra is $\alpha$-homogeneous if there is a partition
of unity with equivalent abelian projections whose cardinality is $\alpha$ .

THEOREM 7.3. A type $I$ $AW^{*}$-algebra $A$ is $\alpha$-homogeneous if and only if
$Deg[A]=[card(\check{\alpha})_{B}]$ .

PROOF. A type I $AW^{*}$-algebra $A$ is $\alpha$-homogeneous if and only if it is $*-$

isomorphic with End(X) for an $\alpha$-homogeneous $AW^{*}$-module over the center of
$A$ . In this case, Dim(X) $=card(\check{\alpha})_{B}$ . Thus $A$ is $\alpha$-homogeneous if and only if
$Deg(A)=[card(\check{\alpha})_{B}]$ . QED

It is known [6] that every type I $AW^{*}$-algebra admits a direct sum decom-
position into homogeneous subalgebras. Let $A$ be a type I $AW^{*}$-algebra and $B$
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the complete Boolean algebra of central projections of $A$ . A cardinal series of
$A$ is a family $\{\alpha_{i}, b_{i}|i\in\beta\}$ of cardinals $\alpha_{i}$ and central projections $b_{i}$ of $A$

indexed by a cardinal $\beta$ such that
(1) $\alpha_{i}<\alpha_{j}$, for any $i,$ $j\in\beta$ with $i<j$ ,
(2) $\{b_{i}|i\in\beta\}$ is a partition of unity of $B$.
A cardinal series $\{\alpha_{i}, b_{i}|i\in\beta\}$ is called a decomposition series if

(3) $A= \sum^{\oplus}A_{i}$ ,
$t\in\beta$

where $A_{i}$ is an $\alpha_{i}$-homogeneous subalgebra and $b_{i}$ is the unit of $A_{i}$ .
If $A$ satisfies countable chain condition locally, then decomposition series of

$A$ are essentially unique in the following sense: If $\{\alpha_{i}’, b_{i}’|i\in\beta’\}$ is another
decomposition series of $A$ . Then $\beta=\beta’,$ $\alpha_{i}=\alpha_{i}’$ for any $i\in\beta$ and there is an
automorphism $\pi$ of $B$ such that $b_{i}=\pi(b_{i}’)$ for any $i\in\beta$ . In general, the situation
is not so simple as shown in Corollary 6.4. Our next theorem determines all
possible decomposition series of $A$ in terms of our invariants.

THEOREM 7.4. Let $A$ be a type $I$ $AW$-algebra. Then a cardinal series
$\{\alpha_{i}, b_{i}|i\in\beta\}$ of $A$ is a decomposition series of $A$ if and only if

$Deg[A]=[card(\sum_{i\in\beta}\check{\alpha}_{i}b_{i})_{B}]$ .
For the proof of the above theorem, we shall use the following lemma,

although we shall omit its tedious proof (cf. [8; Theorem 6.3]).

LEMMA 7.5. Let $S\in V^{(B)},$ $S_{i}\in V^{(B)}$ for $i\in I$, and $\{b_{i}|i\in I\}$ be a partition of
unity of B. If $[S= \sum_{i\in I}S_{i}b_{i}\ovalbox{\tt\small REJECT}=1$ then

(1) $l^{2}(S)_{\infty}^{(B)} \cong\sum_{i\in I}^{\oplus}l^{2}(S_{i})_{\infty}^{(b_{i}B)}$ ,

(2) $\mathcal{L}(l^{2}(S))_{\infty}^{(B)}\cong\sum_{i\in I}^{\oplus}X(l^{2}(S_{i}))_{\infty}^{(b_{i}B)}$

PROOF OF THEOREM 7.4. Let $\{\alpha_{i}, b_{i}|i\in\beta\}$ be a cardinal series of a type I
$AW^{*}$-algebra $A$ and $B$ the complete Boolean algebra of central projections in $A$ .
Then we have a direct sum decomposition

$A= \sum_{i\in\beta}^{\oplus}A_{i}$ ,

where $A_{l}$ is an $\alpha_{i}$-homogeneous subalgebra and $b_{i}$ is the unit of $A_{i}$ for any
$i\in\beta$ . By Theorem 7.3 and Lemma 7.5, (2), we have

$A \cong\Sigma^{\oplus}\mathcal{L}(l^{2}(\check{\alpha}_{i}))_{\infty}^{(b_{i}B)}\cong \mathcal{L}(l^{2}(\sum_{i\in\beta}\check{\alpha}_{i}b_{i}))_{\infty}^{(B)}$

$i\in\beta$

Thus $Deg[A]=[card(\sum_{i\in\beta}\check{\alpha}_{i}b_{i})_{B}]$ . Conversely, suppose that
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$Deg[A]=[card(\sum_{i\in\beta}\check{\alpha}_{i}b_{i})_{B}]$ .

Then we have by Lemma 7.5, (2),

$A \cong\sum^{\oplus}\mathcal{L}(l^{2}(\alpha_{i}))_{\infty}^{(b_{i}B)}$

$i\in\beta$

Let $A_{i}’$ be the image of $\mathcal{L}(l^{2}(\alpha_{i}))_{\infty}^{(b_{i}B)}$ by the above $*$-isomorphism. Then $A=$

$\sum^{\oplus}A_{i}’$ . In this case $A_{i}’$ is $\alpha_{i}$-homogeneous and there is an automorphism $\pi$ of
$i\in\beta$

$B$ such that the unit of $A_{i}’$ is $\pi(b_{i})$ . Let $\pi^{-1}$ the inverse of $\pi$ . Then by [6;

Theorem 7.1], $\pi^{-1}$ can be extended to $a*$ -automorphism $\lambda$ on $A$ . Let $A_{i}=\lambda(A_{i}’)$ .
Then we obtain the required direct sum decomposition $A= \sum_{i\in\beta}^{\oplus}A_{i}$ , where $A_{i}$ is

$\alpha_{i}$-homogeneous and $b_{i}$ is the unit of $A_{i}$ . QED
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