On the Stark-Shintani conjecture and cyclotomic Z_p -extensions of class fields over real quadratic fields

By Jin NAKAGAWA

(Received July 29, 1983)

§1. Introduction.

Let F be a real quadratic field embedded in the real number field R. Let M be a finite abelian extension of F in which exactly one of the two infinite primes of F, corresponding to the prescribed embedding of F into R, splits. Let \mathfrak{f} be the conductor of M/F. Denote by $H_F(\mathfrak{f})$ the group consisting of all narrow ray classes of F defined modulo \mathfrak{f} . Let G be the subgroup of $H_F(\mathfrak{f})$ corresponding to M by class field theory. Take a totally positive integer ν of F satisfying $\nu + 1 \in \mathfrak{f}$, and denote by the same letter ν the narrow ray class modulo \mathfrak{f} represented by the principal ideal (ν). For each $c \in H_F(\mathfrak{f})$, set $\zeta_F(s, c) = \sum_{\alpha} N(\alpha)^{-s}$, where α runs over all integral ideals of F belonging to the ray class c. It is known that $\zeta_F(s, c)$ is holomorphic on the whole complex plane except for a

simple pole at s=1.

The Stark-Shintani ray class invariant $X_{f}(c)$ is defined by

(1)
$$X_{\mathfrak{f}}(c) = \exp\left(\zeta'_{F}(0, c) - \zeta'_{F}(0, c\nu)\right) \qquad (c \in H_{F}(\mathfrak{f}))$$

(see Stark [7] and Shintani [5], the notation $X_{\mathfrak{f}}(c)$ is due to [5]). Obviously, $X_{\mathfrak{f}}(c\nu) = X_{\mathfrak{f}}(c)^{-1}$. In his paper [5], T. Shintani expressed this invariant $X_{\mathfrak{f}}(c)$ as a product of certain special values of the double gamma function of E.W. Barnes. In particular, he proved that $X_{\mathfrak{f}}(c)$ is a positive real number. Put $X_{\mathfrak{f}}(c, G) = \prod_{g \in G} X_{\mathfrak{f}}(cg)$. Then $X_{\mathfrak{f}}(c, G)$ depends only on $c \in H_F(\mathfrak{f})/G$. In [7] and [8], H. M. Stark presented a striking conjecture on the arithmetic nature of the invariant $X_{\mathfrak{f}}(c, G)$. Shintani found it independently and reformulated it in [5] into a more precise form.

CONJECTURE 1. For some positive rational integer m, $X_{\mathfrak{f}}(c, G)^m$ is a unit of $M(\forall c \in H_F(\mathfrak{f})/G)$. Moreover, $\{X_{\mathfrak{f}}(c, G)^m\}^{\sigma(c_0)} = X_{\mathfrak{f}}(cc_0, G)^m (\forall c_0 \in H_F(\mathfrak{f})/G)$, where σ is the Artin isomorphism of $H_F(\mathfrak{f})/G$ onto the Galois group $\operatorname{Gal}(M/F)$.

Shintani introduced in [5] another invariant $Y_{\mathfrak{f}}(c, G)$ to prove Conjecture 1 in some special non-trivial cases (for the definition of $Y_{\mathfrak{f}}(c, G)$, see (18) and (20)

J. NAKAGAWA

of [5]). We may state the same conjecture for $Y_{\dagger}(c, G)$ instead of $X_{\dagger}(c, G)$, and call it Conjecture 1'. Denote by M^+ the maximal totally real subfield of M. Then Shintani proved the following theorem in [5].

THEOREM A (Shintani). If M^+ is abelian over the rational number field Q, then Conjecture 1 and Conjecture 1' are true.

For a number field k, denote by E(k) and h(k) the group of units of k and the class number of k respectively. Then T. Arakawa proved the following relation between the relative class number of M/M^+ and the invariants $Y_{\mathfrak{f}}(c, G)$ ([1]).

THEOREM B (Arakawa). Assume that Conjecture 1' is true, then we have

 $h(M)/h(M^+) = [E(M): E_{Y, m}(M)]/2^{2n-1}m^n$,

where $n = [M^+: F]$ and $E_{Y, m}(M)$ is the subgroup of E(M) generated by $E(M^+)$ and $Y_{\mathfrak{f}}(c, G)^m$ $(c \in H_F(\mathfrak{f})/G)$.

If we can take m=1 in Conjecture 1', then the formula in Theorem B becomes a better one. In this direction, Stark presented the following conjecture in [7].

CONJECTURE 2. Conjecture 1 holds with m=1.

Let p be a prime number and let $M_{\infty} = \bigcup_{n \ge 0} M_n$ be the cyclotomic \mathbb{Z}_p -extension of $M([M_n:M]=p^n)$. Arakawa pointed out in [1] that Conjecture 1 is true for each M_n if M^+ is abelian over \mathbb{Q} . But it was not known whether or not the integer m could be taken constantly in the tower of fields. In this paper, we assume that M^+ is abelian over \mathbb{Q} , and we study the integer m which makes $X_{\mathfrak{f}}(c, G)^m$ $(c \in H_F(\mathfrak{f})/G)$ into units of M. In particular, we study it in the tower of fields of cyclotomic \mathbb{Z}_p -extensions of M. Now we state one of the main results of this paper (cf. Propositions 8, 9, 10 and 13).

THEOREM 1. Let α be an integer of F such that $\alpha > 0$ and $\alpha' < 0$ (α' is the conjugate of α), and let $M = F(\sqrt{\alpha})$. Let p be an odd prime and let $M_{\infty} = \bigcup_{n \ge 0} M_n$ be the cyclotomic \mathbb{Z}_p -extension of M ($[M_n:M] = p^n$). If no prime divisor of p in F splits in M, then $X_{\mathfrak{f}_n}(c, G_n)$ is a unit of M_n for each $c \in H_F(\mathfrak{f}_n)/G_n$ ($\forall n \ge 0$), where \mathfrak{f}_n is the conductor of M_n/F and G_n is the subgroup of $H_F(\mathfrak{f}_n)$ corresponding to M_n .

Stark presented more general conjectures on special values of *L*-functions for totally real fields (see [7] and [9]). He also formulated in [6] conjectures on special values of non-abelian Artin *L*-functions (cf. Tate [10]). T. Chinburg made computations confirming the existence of expected units in tetrahedral cases over Q ([2]). He also studied how the expected units lie in the tower of fields of cyclotomic Z_p -extensions of certain non-abelian fields. Let *K* be the fixed field of an odd, irreducible two dimensional Galois representation ρ : Gal $(\overline{Q}/Q) \rightarrow$ $GL_2(\mathbf{C})$. Let p be an odd prime and let K(n) be the field obtained by adjoining to K the p^{n+1} th roots of unity. Then Chinburg proved in [2] that the expected units in $K(\infty)$ (= $\bigcup_{n\geq 0} K(n)$) satisfy distribution and norm relation assuming the Stark conjecture for each K(n). On the other hand, we have really constructed certain cyclotomic \mathbf{Z}_p -extensions $M_{\infty} = \bigcup_{n\geq 0} M_n$ such that the Stark-Shintani invariants for M_n are units of M_n for each $n\geq 0$.

In our subsequent paper, we shall discuss some consequences of Theorem B and the results of this paper, and we shall study the image of $X_{f_n}(c, G_n)$'s in the completion of M_{∞} at a prime over p by using a result of Coleman [3].

The base field M of our cyclotomic Z_p -extension is abelian over a real quadratic field, but not abelian over Q. Moreover, M is neither a totally real field nor a totally imaginary quadratic extension of a totally real field. It seems that few things are known about such Z_p -extensions except what the general theory of Z_p -extensions tells, and investigation of those Iwasawa invariants seems to be an interesting problem. For example, it is conjectured by Iwasawa that the Iwasawa invariant μ vanishes in any cyclotomic Z_p -extension, and it was proved by Ferrero and Washington in the case of any abelian base field. Now we should try to prove it in our cases.

§2. Some results of Stark [9].

In this section, we summarize some results of Stark [9] for later applications. Let k be an imaginary quadratic field embedded in the complex number field C. Let c be an integral ideal of k with $c \neq (1)$. Denote by $H_k(c)$ the group consisting of all ray classes of k defined modulo c. Let H be a subgroup of $H_k(c)$, and let K be the class field over k corresponding to H. Denote by σ_k the Artin isomorphism of $H_k(c)/H$ onto $\operatorname{Gal}(K/k)$. Denote by w(K) the number of roots of unity contained in K.

LEMMA 2 (Stark). For each $c \in H_k(c)/H$, there exists an algebraic integer $E_c(c, H)$ of K with the following three properties:

i) For any character χ of the group $H_k(c)$ with $\chi(H)=1$,

$$L'_{k}(0, \chi) = -(1/w(K)) \sum_{c \in H_{k}(c)/H} \chi(c) \log |E_{c}(c, H)|^{2}.$$

ii) $E_{\mathfrak{c}}(1, H)^{\sigma_k(\mathfrak{c})} = E_{\mathfrak{c}}(\mathfrak{c}, H)$, for any $\mathfrak{c} \in H_k(\mathfrak{c})/H$.

iii) If q is a prime ideal of k belonging to the class c with (q, cw(K))=1, then $E_c(c, H)/E_c(1, H)^{N(q)}$ is a w(K)th power of a number of K.

Shintani introduced in [5] a certain ray class invariant $Z_{\mathfrak{c}}(c)$ for each $c \in H_k(\mathfrak{c})$ (for the definition of $Z_{\mathfrak{c}}(c)$, see (4) and (6) of [5]). We now clarify the relation between $E_{\mathfrak{c}}(c, H)$ and $Z_{\mathfrak{c}}(c)$. For each $c \in H_k(\mathfrak{c})$, set $\zeta_k(s, c) = \sum_{\mathfrak{a}} N(\mathfrak{a})^{-s}$,

where a runs over all integral ideals of k belonging to the ray class c. It follows from Proposition 1 of [5] that

(2)
$$\omega(c)\zeta'_k(0, c) = -\log Z_c(c),$$

where $\omega(\mathfrak{c})$ is the cardinality of the group of units of k which are congruent to 1 modulo \mathfrak{c} . Put $Z_{\mathfrak{c}}(c, H) = \prod_{h \in H} Z_{\mathfrak{c}}(ch)$. Then $Z_{\mathfrak{c}}(c, H)$ depends only on $c \in H_k(\mathfrak{c})/H$. In view of (2), we obtain

$$L_{k}^{\prime}(0, \chi) = -(1/\omega(\mathfrak{c})) \sum_{c \in H_{k}(\mathfrak{c})/H} \chi(c) \log Z_{\mathfrak{c}}(c, H)$$

for any character χ of the group $H_k(\mathfrak{c})$ with $\chi(H)=1$. Comparing the above equality with that of Lemma 2, we obtain

(3)
$$Z_{\mathfrak{c}}(c, H) = |E_{\mathfrak{c}}(c, H)|^{2\omega(\mathfrak{c})/w(K)}$$
 $(\mathfrak{c} \neq (1)).$

Following Shintani [5], we are going to introduce another invariant $W_c(c, H)$ $(c \in H_k(c)/H)$ which is closely related to the invariant $Z_c(c, H)$ (cf. (8) and (9) of [5]). Denote by $\mathfrak{P}(c)$ the set of prime divisors of c. For each subset S of $\mathfrak{P}(c)$, denote by $\mathfrak{c}(S)$ the intersection of all divisors of c which are prime to any $\mathfrak{p} \in \mathfrak{P}(c) - S$. In other words, if $\mathfrak{c} = \prod_{\mathfrak{p} \in \mathfrak{P}(c)} \mathfrak{p}^{\mathfrak{a}(\mathfrak{p})}$, then $\mathfrak{c}(S) = \prod_{\mathfrak{p} \in \mathfrak{P}} \mathfrak{p}^{\mathfrak{a}(\mathfrak{p})}$. Denote by \tilde{c} (resp. \tilde{H}) the image of c (resp. H) under the natural homomorphism of $H_k(\mathfrak{c})$ onto $H_k(\mathfrak{c}(S))$. Further, put

(4)
$$n(S, H) = \omega(\mathfrak{c}(S))[H_k(\mathfrak{c}) : H]/[H_k(\mathfrak{c}(S)) : \widetilde{H}].$$

For each $c \in H_k(\mathfrak{c})/H$, set

(5)
$$W_{\mathfrak{c}}(c, H) = \prod_{S} Z_{\mathfrak{c}(S)} (\widetilde{c} \prod_{\mathfrak{p} \in \mathfrak{P}(\mathfrak{c}) - S} (\mathfrak{p})^{-1}, \widetilde{H})^{1/n(S, H)}$$

where S runs over all subsets of $\mathfrak{P}(\mathfrak{c})$ with $\widetilde{H} \neq H_k(\mathfrak{c}(S))$. In Lemma 2, we assumed $\mathfrak{c} \neq (1)$, but $Z_{\mathfrak{c}}(c)$, $Z_{\mathfrak{c}}(c, H)$ and $W_{\mathfrak{c}}(c, H)$ are defined for any integral ideal \mathfrak{c} of k. So we formally define $|E_{\mathfrak{c}}(c, H)|$ by (3) for $\mathfrak{c}=(1)$. Under this notation, $W_{\mathfrak{c}}(c, H)$ is described in terms of $E_{\mathfrak{c}}(c, H)$'s as follows:

(6)
$$W_{\mathfrak{c}}(c, H) = \prod_{\mathcal{S}} |E_{\mathfrak{c}(\mathcal{S})}(\widetilde{c} \prod_{\mathfrak{p} \in \mathfrak{P}(\mathfrak{c}) - \mathcal{S}} (\mathfrak{p})^{-1}, \widetilde{H})|^{2/w(K_{\mathcal{S}})[K:K_{\mathcal{S}}]},$$

where K_S is the intersection of K with the ray class field modulo $\mathfrak{c}(S)$ over k, and S runs over all subsets of $\mathfrak{P}(\mathfrak{c})$ with $K_S \neq k$.

§3. Investigation of m for $Y_{f}(c, G)$.

Let F be a real quadratic field embedded in R. Let M be a finite abelian extension of F in which exactly one of the two infinite primes of F, corresponding to the prescribed embedding of F into R, splits. We assume that M is also

embedded in **R**. Let \mathfrak{f} be a multiple of the conductor of M/F. Let G be the subgroup of $H_F(\mathfrak{f})$ corresponding to M. For each $x \in F$, denote by x' the conjugate of x. Take a totally positive integer ν of F with $\nu+1\in\mathfrak{f}$. Let μ be an integer of F satisfying $\mu < 0$, $\mu' > 0$ and $\mu-1\in\mathfrak{f}$. Denote by $\nu(\mathfrak{f})$ (resp. $\mu(\mathfrak{f})$) the element of $H_F(\mathfrak{f})$ represented by the principal ideal (ν) (resp. (μ)). Sometimes we write simply as ν and μ instead of $\nu(\mathfrak{f})$ and $\mu(\mathfrak{f})$. Then the order of ν in $H_F(\mathfrak{f})$ is 2 and the order of μ is at most 2. Further, it follows from our assumption on M that G contains μ but does not contain ν .

In §1, we introduced the invariant $X_{\mathfrak{f}}(c, G)$ for each $c \in H_F(\mathfrak{f})/G$. Shintani introduced in [5] another invariant $Y_{\mathfrak{f}}(c, G)$ which does not depend on a special choice of \mathfrak{f} (cf. Lemma 2 of [5]). Denote by $\mathfrak{P}(\mathfrak{f})$ the set of prime divisors of \mathfrak{f} . For each subset S of $\mathfrak{P}(\mathfrak{f})$, denote by $\mathfrak{f}(S)$ the intersection of all divisors of \mathfrak{f} which are prime to any $\mathfrak{p} \in \mathfrak{P}(\mathfrak{f}) - S$. Denote by \tilde{c} (resp. \tilde{G}) the image of c (resp. G) under the natural homomorphism of $H_F(\mathfrak{f})$ onto $H_F(\mathfrak{f}(S))$. Further, denote by M_S the intersection of M with the narrow ray class field modulo $\mathfrak{f}(S)$ over F. So M_S coincides with the class field over F corresponding to \tilde{G} . Since $X_{\mathfrak{f}}(c\nu)$ $=X_{\mathfrak{f}}(c)^{-1}$, we obtain the following formula:

(7)
$$Y_{\mathfrak{f}}(c, G) = \prod_{S} X_{\mathfrak{f}(S)} (\tilde{c} \prod_{\mathfrak{p} \in \mathfrak{P}(\mathfrak{f}) - S} (\mathfrak{p})^{-1}, \widetilde{G})^{1/[M:M_S]},$$

where S runs over all subsets of $\mathfrak{P}(\mathfrak{f})$ with $M_s \not\subset M^+$. In particular, if M is a quadratic extension of F, and if \mathfrak{f} is the conductor of M/F, then $Y_{\mathfrak{f}}(c, G) = X_{\mathfrak{f}}(c, G)$ ($\forall c \in H_F(\mathfrak{f})/G$).

In the remaining part of this paper, we assume that M^+ is abelian over Q. We may assume that \mathfrak{f} is a self conjugate integral ideal of F. In fact, if $\mathfrak{f}' \neq \mathfrak{f}$, we may replace \mathfrak{f} by $\mathfrak{f} \cap \mathfrak{f}'$ and G by its inverse image under the natural homomorphism of $H_F(\mathfrak{f} \cap \mathfrak{f}')$ onto $H_F(\mathfrak{f})$. Denote by ι the non-trivial automorphism of F. Then ι acts naturally on the group $H_F(\mathfrak{f})$. We put $\iota(c) = c'$ for any $c \in H_F(\mathfrak{f})$. Then it follows from Lemma 3 of [5] that $\nu = \mu \mu'$ in $H_F(\mathfrak{f})$. Since M^+ is abelian over Q, there exists a subgroup G_1 of G with index 2 which is invariant under ι and satisfies the following conditions (see p. 141 of [5]):

(8) The group G is generated by G_1 and μ ;

(9)
$$[H_F(\mathfrak{f})/G_1 : (H_F(\mathfrak{f})/G_1)_0] = 2,$$

$$(H_F(\mathfrak{f})/G_1)_0 = \{c \in H_F(\mathfrak{f})/G_1 ; c(c) = c\}$$
.

Let K be the class field over F corresponding to G_1 . Then K is the normal closure of M over Q, and [K:M]=2. Let L be the class field over F corresponding to $\langle G_1, \nu \rangle$, where $\langle G_1, \nu \rangle$ is the subgroup of $H_F(\mathfrak{f})$ generated by G_1 and ν . Then L is the maximal absolutely abelian subfield of K, and [K:L]=2. We assume that K is embedded in C by extending the prescribed embedding of

M into *R*. Denote by σ_F the Artin isomorphism of $H_F(\mathfrak{f})/G_1$ onto $\operatorname{Gal}(K/F)$. Let L_0 be the subfield of $\sigma_F((H_F(\mathfrak{f})/G_1)_0)$ -fixed elements of *K*. In view of (9), L_0 is a quadratic extension of *F*. Further, it follows from Lemma 4 of [5] that L_0 is a composition of *F* with a suitable imaginary quadratic field *k*, and *K* is abelian over *k*. We note that any one of the two imaginary quadratic fields contained in L_0 can be taken for *k*. Let \mathfrak{c} be the conductor of K/k and let *H* be the subgroup of $H_k(\mathfrak{c})$ corresponding to *K*. Since *K* is normal over *Q*, both \mathfrak{c} and *H* are invariant under the non-trivial automorphism κ of *k*. Set

$$(H_k(c)/H)_0 = \{c \in H_k(c)/H ; \kappa(c) = c\}$$
.

It follows from Lemma 6 of [5] that the subfield of $\sigma_k((H_k(c)/H)_0)$ -fixed elements of K coincides with L_0 , and $\sigma_k^{-1}\sigma_F$ induces an isomorphism of the group $(H_F(\mathfrak{f})/G_1)_0$ onto the group $(H_k(c)/H)_0$. For each $c \in (H_F(\mathfrak{f})/G_1)_0$, put

(10)
$$\dot{c} = \sigma_k^{-1} \sigma_F(c) \,.$$

The following lemma plays a key role in our argument.

LEMMA 3. If $c \neq (1)$, then

$$|E_{\mathfrak{c}}(\dot{c}\dot{\nu}, H)/E_{\mathfrak{c}}(\dot{c}, H)|^{2/w(K)} \in M, \quad for \quad \forall c \in (H_F(\mathfrak{f})/G_1)_0.$$

PROOF. Let q be a prime ideal of k belonging to the class $\dot{\nu}$ with (q, cw(K)) = 1. It follows from Lemma 2 that $E_{\mathfrak{c}}(\dot{c}\dot{\nu}, H)/E_{\mathfrak{c}}(\dot{c}, H)^{N(\mathfrak{q})}$ is a w(K)th power of a number of K. Since $\sigma_k(\dot{\nu}) (=\sigma_F(\nu))$ induces the identity map on L, q splits completely in L. It is easy to see that $N(\mathfrak{q})-1$ is a multiple of w(L), because it is the order of the multiplicative group of the residue field of q. Since L is the maximal absolutely abelian subfield of K, we have w(L)=w(K). Hence $E_{\mathfrak{c}}(\dot{c}\dot{\nu}, H)/E_{\mathfrak{c}}(\dot{c}, H)$ is a w(K)th power of a number of K. Since K is normal over Q, the complex conjugation of $E_{\mathfrak{c}}(\dot{c}\dot{\nu}, H)/E_{\mathfrak{c}}(\dot{c}, H)$ is also a w(K)th power of a number of K. Since K of a number of K. Since K is normal over w(L) = w(K) is a since $K \cap R = M$, the lemma follows.

The first half of the next proposition is essentially Proposition 4 of [5]. We note that $H_F(\mathfrak{f})/\langle G, \nu \rangle$ is identified with $(H_F(\mathfrak{f})/G_1)_0/\langle \nu \rangle$ by the natural homomorphisms

$$(H_F(\mathfrak{f})/G_1)_0 \longrightarrow H_F(\mathfrak{f})/G_1 \longrightarrow H_F(\mathfrak{f})/\langle G, \nu \rangle.$$

PROPOSITION 4. i) For each $c \in (H_F(\mathfrak{f})/G_1)_0$,

$$Y_{\mathfrak{f}}(c, G) = \prod_{S} \left| E_{\mathfrak{c}(S)} \left(\widetilde{c} \check{\nu}_{\mathfrak{p} \in \mathfrak{P}(\mathfrak{c}) - S}(\mathfrak{p})^{-1}, \widetilde{H} \right) \right/ E_{\mathfrak{c}(S)} \left(\widetilde{c} \prod_{\mathfrak{p} \in \mathfrak{P}(\mathfrak{c}) - S}(\mathfrak{p})^{-1}, \widetilde{H} \right) \right|^{2/w (K_{S}) [K:K_{S}]},$$

where S runs over all subsets of $\mathfrak{P}(c)$ with $K_s \not\subset L$.

ii) Assume that $K_{\varnothing} \subset L$ for a suitable choice of k. If m is a multiple of all $[K: K_S]$ $(S \subset \mathfrak{P}(c), K_S \not\subset L)$, then $Y_{\mathfrak{f}}(c, G)^m$ is a unit of M. In particular, $Y_{\mathfrak{f}}(c, G)^{[M: Q]}$ is a unit of M.

PROOF. By the same way as in the proof of Proposition 4 of [5], we obtain $Y_{\mathfrak{f}}(c, G) = W_{\mathfrak{c}}(\dot{c}\dot{\nu}, H)/W_{\mathfrak{c}}(\dot{c}, H)$. In view of (6), we have

$$Y_{\mathfrak{f}}(c, G) = \prod_{\mathcal{S}} \left| E_{\mathfrak{c}(S)} \left(\widetilde{c} \widetilde{\nu} \prod_{\mathfrak{p} \in \mathfrak{P}(\mathfrak{c}) - S} (\mathfrak{p})^{-1}, \widetilde{H} \right) \right| E_{\mathfrak{c}(S)} \left(\widetilde{c} \prod_{\mathfrak{p} \in \mathfrak{P}(\mathfrak{c}) - S} (\mathfrak{p})^{-1}, \widetilde{H} \right) \right|^{2/w (K_{\mathcal{S}}) [K:K_{\mathcal{S}}]}$$

where S runs over all subsets of $\mathfrak{P}(\mathfrak{c})$ with $K_S \neq k$. Since $\sigma_k(\dot{\nu})$ is the generator of $\operatorname{Gal}(K/L)$, $K_S \subset L$ is equivalent to $\dot{\nu} \in \widetilde{H}$. Hence the product is over all subsets S of $\mathfrak{P}(\mathfrak{c})$ with $K_S \not\subset L$. It follows from Lemma 3 and the first half of the proposition that $Y_{\mathfrak{f}}(c, G)^m$ belongs to M if m is a multiple of all $[K:K_S]$. Hence Proposition 5 of [5] implies that $Y_{\mathfrak{f}}(c, G)^m$ is a unit of M.

The following corollary is a special case of Theorem 3 of [7] but we give a different proof here.

COROLLARY. If M is a quadratic extension of F of conductor \mathfrak{f} , then $X_{\mathfrak{f}}(c, G)$ is a unit of M for any $c \in H_F(\mathfrak{f})/G$.

PROOF. Let $F=Q(\sqrt{d})$ and let $M=F(\sqrt{\alpha})$, where *d* is a square free rational integer with d>1, and α is an integer of *F* such that $\alpha>0$, $\alpha'<0$. Put $\alpha\alpha'=-a$. Hence *a* is a positive rational integer. It is easy to see that $K=F(\sqrt{\alpha}, \sqrt{\alpha'})$, $L=L_0=F(\sqrt{-a})$ and $k=Q(\sqrt{-a})$ or $Q(\sqrt{-ad})$. Since K/Q is a non-abelian Galois extension of degree 8, and since *M* is not normal over *Q*, Gal(K/Q) is isomorphic to the dihedral group D_4 of order 8. Hence the diagram of subfields of *K* is as follows:

Figure 1.

Case 1. $K/Q(\sqrt{-ad})$ is ramified at some primes. Put $k=Q(\sqrt{-ad})$. Then it follows from Proposition 4 that $Y_{\mathfrak{f}}(c, G)$ is a unit of M. By the remark below (7). $Y_{\mathfrak{f}}(c, G)=X_{\mathfrak{f}}(c, G)$.

Case 2. $K/Q(\sqrt{-ad})$ is unramified. Put $k=Q(\sqrt{-a})$. Let b be the conductor of N/k. Then it is easy to see that $b\neq(1)$ and the conductor of N'/k is b', where b' is the conjugate of b. Since K=NN', the conductor c of K/k

is the least common multiple of \mathfrak{d} and \mathfrak{d}' . Hence $\mathfrak{P}(\mathfrak{c}) = \mathfrak{P}(\mathfrak{d}) \cup \mathfrak{P}(\mathfrak{d}')$. If $\mathfrak{P}(\mathfrak{d}) = \mathfrak{P}(\mathfrak{d}')$, then it follows from Proposition 4 that $Y_{\mathfrak{f}}(c, G) (=X_{\mathfrak{f}}(c, G))$ is a unit of M. If $\mathfrak{P}(\mathfrak{d}) \neq \mathfrak{P}(\mathfrak{d}')$, put $S' = \{\mathfrak{p}'; \mathfrak{p} \in S\}$ for each subset S of $\mathfrak{P}(\mathfrak{c})$. Then it follows from Proposition 4 that

$$Y_{\mathfrak{f}}(c, G) = |E_{\mathfrak{c}}(\dot{c}\dot{\nu}, H)/E_{\mathfrak{c}}(\dot{c}, H)|^{2/w(K)}$$

$$\times \prod_{\mathfrak{P}(\mathfrak{b}) \subseteq S_{\mathfrak{F}}\mathfrak{P}(\mathfrak{c})} \left| E_{\mathfrak{c}(S)}\left(\widetilde{c}\dot{\nu}\prod_{\mathfrak{p} \in \mathfrak{P}(\mathfrak{c}) - S}(\mathfrak{p})^{-1}, \widetilde{H}\right) \middle/ E_{\mathfrak{c}(S)}\left(\widetilde{c}\prod_{\mathfrak{p} \in \mathfrak{P}(\mathfrak{c}) - S}(\mathfrak{p})^{-1}, \widetilde{H}\right) \right|^{2/2w(N)}$$

$$\times \left| E_{\mathfrak{c}(S')}\left(\widetilde{c}\dot{\nu}\prod_{\mathfrak{p} \in \mathfrak{P}(\mathfrak{c}) - S'}(\mathfrak{p})^{-1}, \widetilde{H}\right) \middle/ E_{\mathfrak{c}(S')}\left(\widetilde{c}\prod_{\mathfrak{p} \in \mathfrak{P}(\mathfrak{c}) - S'}(\mathfrak{p})^{-1}, \widetilde{H}\right) \right|^{2/2w(N')}.$$

It is easy to see that w(N') = w(N) and $\kappa \left(\widetilde{c} \widetilde{\nu}_{\mathfrak{p} \in \mathfrak{P}(\mathfrak{c}) - S}(\mathfrak{p})^{-1} \right) = \widetilde{c} \widetilde{\nu}_{\mathfrak{p} \in \mathfrak{P}(\mathfrak{c}) - S'} \prod_{\mathfrak{p} \in \mathfrak{P}(\mathfrak{c}) - S'} (\mathfrak{p})^{-1}$. Lemma 3 and the next lemma now imply that $Y_{\mathfrak{f}}(c, G) = X_{\mathfrak{f}}(c, G)$ is a unit of M.

LEMMA 5. For each $c \in H_k(\mathfrak{c}), Z_{\kappa(\mathfrak{c})}(\kappa(c)) = Z_{\mathfrak{c}}(c)$.

PROOF. In view of (2), we have $Z_{\mathfrak{c}}(c) = \exp(-\omega(\mathfrak{c})\zeta'_k(0, c))$. Hence the lemma follows immediately from the definition of the partial zeta function $\zeta_k(s, c)$.

§4. Main results.

We use the same notation and assumption as in the previous section. Let Φ be a real abelian field, and put $M^*=M\Phi$. Since M^+ is abelian over Q, $(M^*)^+=M^+\Phi$ is also abelian over Q. Hence Conjecture 1 is true for M^* by Theorem A. Let p be an odd prime and let $\zeta_{p^{n+1}}$ be a primitive p^{n+1} th root of unity. Let B_n be the unique subfield of $Q(\zeta_{p^{n+1}})^+$ of degree p^n over Q. Then $B_{\infty}=\bigcup_{n\geq 0}B_n$ is the unique Z_p -extension of Q. Put $M_{\infty}=MB_{\infty}$. Hence M_{∞} is the cyclotomic Z_p -extension of M. Let M_n be the unique subfield of M of degree p^n over M. Then the above remark implies that Conjecture 1 is true for each M_n .

First we prove two propositions, and then we prove Theorem 1.

PROPOSITION 6. Let α be an integer of F such that $\alpha > 0$, $\alpha' < 0$. Let $M = F(\sqrt{\alpha})$ and let \mathfrak{f} be the conductor of M/F. Put $T = \{q ; q \text{ is an odd prime and each prime divisor of <math>q$ in F divides $\mathfrak{f}\}$. We assume $T \neq \emptyset$. Let Φ be a real abelian field of odd degree such that each prime divisor of the conductor of Φ/\mathbf{Q} belongs to T. Let $M^* = M\Phi$. Then $X_{\mathfrak{f}}*(c, G^*)$ is a unit of M^* for each $c \in H_F(\mathfrak{f}^*)/G^*$, where \mathfrak{f}^* is the conductor of M^*/F and G^* is the subgroup of $H_F(\mathfrak{f}^*)$ corresponding to M^* .

PROOF. Let $F = Q(\sqrt{d})$ and put $\alpha \alpha' = -a$. Then *a* is a positive rational integer. We write $(\alpha) = ab^2$, where *a* is a square free integral ideal of *F*, and *b* is an integral ideal of *F*. Then a prime divisor *p* of *F* with (p, 2) = 1 ramifies

in M, if and only if p divides a. It follows from the assumption on the conductor of Φ/Q that $\mathfrak{P}(\mathfrak{f}^*)=\mathfrak{P}(\mathfrak{f})$. Since $[\Phi:Q]$ is odd, any intermediate field of M^*/F which is not contained in $(M^*)^+$ is a composition of M with a subfield of Φ . It follows from (7) that $Y_{\mathfrak{f}}(c, G^*) = X_{\mathfrak{f}}(c, G^*)$. Put $k = Q(\sqrt{-ad}), K^* =$ $K\Phi$ and $L^*=L\Phi$, where $K=F(\sqrt{\alpha}, \sqrt{\alpha'})$ and $L=F(\sqrt{-a})$. Then K/k is a cyclic extension of degree 4. Let c and c* be the conductors of K/k and K^*/k respectively. Since $(\alpha) = \mathfrak{a}\mathfrak{b}^2$, $ad = N(\mathfrak{a})N(\mathfrak{b})^2 d = a_0 \left(\prod_{\alpha \in \pi} q\right)^2 N(\mathfrak{b})^2$, where a_0 is a positive rational integer which is prime to any $q \in T$. So $k = Q(\sqrt{-a_0})$, and hence any $q \in T$ does not ramify in k. On the other hand, it follows from the definition of T that any $q \in T$ ramifies in M, hence in K. Since K/Q is normal, these facts imply that $\emptyset \neq T \subset \{q ; q \text{ is an odd prime and each prime divisor of } \}$ q in k divides c}. It follows $c \neq (1)$ and $\mathfrak{P}(c^*) = \mathfrak{P}(c)$. Since $\lceil \boldsymbol{\Phi} : \boldsymbol{Q} \rceil$ is odd, any intermediate field of K^*/k which is not contained in L^* is a composition of K with a subfield of Φ . It follows from Proposition 4 that $Y_{\mathfrak{f}}(c, G^*) = |E_{\mathfrak{c}}(\dot{z}, H^*)|$ $|E_{\mathfrak{c}}*(\dot{c}, H^*)|^{2/w(K^*)}$, where H^* is the subgroup of $H_k(\mathfrak{c}^*)$ corresponding to K^* . By Lemma 3, the right hand side of the equality is a unit of M^* .

PROPOSITION 7. Let M, \mathfrak{f} , T and Φ be as in Proposition 6 (we allow $T = \emptyset$). Assume that there is an odd prime p such that p splits in F and one of the two prime divisors of p in F ramifies and the other remains prime in M. Further, assume that p splits completely in Φ . Let $\Psi \neq Q$ be a real abelian field with ppower conductor whose degree over Q is prime to $2[\Phi:Q]$. Put $M_1^* = M\Phi\Psi$. Then $X_{\mathfrak{f}_1}(c, G_1^*)$ is a unit of M_1^* for each $c \in H_F(\mathfrak{f}_1^*)/G_1^*$, where \mathfrak{f}_1^* is the conductor of M_1^*/F and G_1^* is the subgroup of $H_F(\mathfrak{f}_1^*)$ corresponding to M_1^* .

PROOF. We use the same notation as in the proof of Proposition 6. We write $p=\mathfrak{p}\mathfrak{p}'$ with $\mathfrak{p}|\mathfrak{f}, \mathfrak{p}'/\mathfrak{f}$. It follows from our assumption on p that $\sigma_F(\mathfrak{p}')$ induces the identity on $(M^*)^+$ though it is not the identity map of M^* . Hence $\mathfrak{p}'=\nu(\mathfrak{f}^*)$ in $H_F(\mathfrak{f}^*)/G^*$. Since [M:F] (=2), $[\Phi:Q]$ and $[\Psi:Q]$ are co-prime with each other, any intermediate field of M_1^*/F which is not contained in $(M_1^*)^+$ is a composition of M with a subfield of Φ and a subfield of Ψ . Since $\mathfrak{P}(\mathfrak{f}^*)=\mathfrak{P}(\mathfrak{f}^*)\cup \mathfrak{p}'$ and $\mathfrak{P}(\mathfrak{f}^*)=\mathfrak{P}(\mathfrak{f})$, for such an intermediate field of M_1^*/F the set of prime divisors of its conductor over F is either $\mathfrak{P}(\mathfrak{f}_1^*)$ or $\mathfrak{P}(\mathfrak{f}^*)$. Now it follows from (7) that $Y_{\mathfrak{f}^*}(c, G_1^*)=X_{\mathfrak{f}^*}(c, G_1^*)=X_{\mathfrak{f}^*}(c, G^*)=X_{\mathfrak{f}^*}(c, G^*)^{-1}$. Further, we have seen in the proof of Proposition 6 that $Y_{\mathfrak{f}^*}(c, G^*)=X_{\mathfrak{f}^*}(c, G^*)$. Hence we obtain

(11)
$$X_{\mathfrak{f}_{1}^{*}}(c, G_{1}^{*}) = Y_{\mathfrak{f}_{1}^{*}}(c, G_{1}^{*})Y_{\mathfrak{f}^{*}}(c, G^{*})^{1/[M_{1}^{*}:M^{*}]}.$$

Put $k = \mathbf{Q}(\sqrt{-ad})$. Then we can write $ad = a_1pb^2$, where a_1 is a positive rational integer prime to p and any $q \in T$. Hence p ramifies in k. So we write $p = \mathfrak{p}_k^2$. Put $K_1^* = K^* \Psi$ and $L_1^* = L^* \Psi$. Let \mathfrak{c}_1^* be the conductor of K_1^*/k and let H_1^* be the subgroup of $H_k(\mathfrak{c}_1^*)$ corresponding to K_1^* . Since the ramification index of \mathfrak{p} in K/F is 2, the ramification index of p in K/Q is also 2. Since $p=\mathfrak{p}_k^2$, \mathfrak{p}_k does not ramify in K/k, hence $\mathfrak{p}_k \nmid \mathfrak{c}$. We have seen in the proof of Proposition 6 that $\mathfrak{P}(\mathfrak{c}^*)=\mathfrak{P}(\mathfrak{c})$. Since the conductor of Ψ/Q is a power of p, $\mathfrak{p}_k|\mathfrak{c}_1^*$ and $\mathfrak{P}(\mathfrak{c}_1^*)=\mathfrak{P}(\mathfrak{c}^*)\cup \{\mathfrak{p}_k\}$. It follows from our assumption on $[\Psi:Q]$ that any intermediate field of K_1^*/k which is not contained in L_1^* is a composition of K with a subfield of Φ and a subfield of Ψ . Thus for such an intermediate field of K_1^*/k the set of prime divisors of its conductor over k is either $\mathfrak{P}(\mathfrak{c}_1^*)$ or $\mathfrak{P}(\mathfrak{c}^*)$. Now it follows from Proposition 4 that

(12)
$$Y_{\mathfrak{f}_{1}^{\bullet}}(c, G_{1}^{*}) = |E_{\mathfrak{c}_{1}^{\bullet}}(\dot{c}\dot{\nu}, H_{1}^{*})/E_{\mathfrak{c}_{1}^{\bullet}}(\dot{c}, H_{1}^{*})|^{2/w(K_{1})} \times |E_{\mathfrak{c}^{\bullet}}(\widetilde{c}\dot{\tilde{\nu}}\mathfrak{p}_{k})^{-1}, H^{*}\rangle/E_{\mathfrak{c}^{\bullet}}(\widetilde{c}(\mathfrak{p}_{k})^{-1}, H^{*})|^{2/w(K^{*})[K_{1}^{*}:K^{*}]},$$
(13)
$$Y_{\mathfrak{f}^{\bullet}}(c, G^{*}) = |E_{\mathfrak{c}^{\bullet}}(\dot{c}\dot{\nu}, H^{*})/E_{\mathfrak{c}^{\bullet}}(\dot{c}, H^{*})|^{2/w(K^{*})}.$$

It follows from our assumption on p that the number of the prime divisors of K lying over p is two. This implies that the decomposition field of \mathfrak{p}_k in K/k is L. Since p splits completely in Φ , the decomposition field of \mathfrak{p}_k in K^*/k is L^* . Hence $\mathfrak{p}_k = \dot{\nu}$ in $H_k(\mathfrak{c}^*)/H^*$. Hence the equalities (11), (12) and (13) imply that

$$X_{\mathfrak{f}_{1}^{*}}(c, G_{1}^{*}) = |E_{\mathfrak{c}_{1}^{*}}(\dot{c}\dot{\nu}, H_{1}^{*})/E_{\mathfrak{c}_{1}^{*}}(\dot{c}, H_{1}^{*})|^{2/w(K_{1}^{*})}$$

Since $c_1^* \neq (1)$, we can apply Lemma 3, so $X_{f_1^*}(c, G_1^*)$ is a unit of M_1^* .

PROOF OF THEOREM 1. Let \mathfrak{f} be the conductor of M/F. About p and \mathfrak{f} , only the following three cases are possible: Case 1. Each prime divisor of p in F divides \mathfrak{f} ; Case 2. p splits in $F(p=\mathfrak{p}\mathfrak{p}')$, $\mathfrak{p}|\mathfrak{f}$ and $\mathfrak{p}'/\mathfrak{f}$; Case 3. p is prime to \mathfrak{f} . Case 1 is a special case of Proposition 6 ($\Phi=B_n$). Case 2 is a special case of Proposition 7 ($\Phi=Q, \Psi=B_n$). The proof of Case 3 goes similarly to that of Propositions 6 and 7.

In Propositions 6 and 7, we assumed that $[\Phi: Q]$ is odd, so that it was easy to study the set of prime divisors of the conductor of each intermediate field of M^*/F . Now we state a few results on the case of $[\Phi: Q]=2\times(\text{odd})$ without proofs. They can be proved by repeating the arguments of the proof of Proposition 7. In the remaining part of this paper, we denote by (P) the property of M in Theorem 1:

(P) Let $M = \bigcup_{n \ge 0} M_n$ be the cyclotomic \mathbb{Z}_p -extension of M. Then $X_{\mathfrak{f}_n}(c, G_n)$ is a unit of M_n for each $c \in H_F(\mathfrak{f}_n)/G_n$ ($\forall n \ge 0$), where \mathfrak{f}_n is the conductor of M_n/F and G_n is the subgroup of $H_F(\mathfrak{f}_n)$ corresponding to M_n .

PROPOSITION 8. Let l be a prime number which is congruent to 5 modulo 8, and let $F=Q(\sqrt{l})$. Let ε (>1) be the fundamental unit of F, and assume

586

 $N_{F/Q}(\varepsilon) = -1$. If p is a prime number which is congruent to 3 modulo 4 and remains prime in F, then $M = F(\sqrt{\varepsilon}, \sqrt{p})$ has the property (P)

PROPOSITION 9. Let l, F and ε be as in Proposition 8. If $T_{F/Q}(\varepsilon)$ is a quadratic residue modulo l, then $M = F(\sqrt{\varepsilon}, \sqrt[4]{l})$ has the property (P) with p = l.

PROPOSITION 10. Let F be a real quadratic field. Let p be a prime number which is congruent to 1 modulo 4 and splits in F. We write $p=\mathfrak{p}\mathfrak{p}'$. Take an integer α of F such that $\alpha>0$, $\alpha'<0$, $\alpha\in\mathfrak{p}$, $\alpha\notin\mathfrak{p}^2$ and $\alpha\notin\mathfrak{p}'$. Put $\alpha\alpha'=-ap$, so a is a positive rational integer prime to p. If a is a quadratic residue modulo p and $T_{F/Q}(\alpha)$ is not, then $M=F(\sqrt{\alpha}, \sqrt{p})$ has the property (P).

So far, we have constructed cyclotomic \mathbb{Z}_p -extensions with the property (P). The base field M of such a \mathbb{Z}_p -extension has been a composition of a quadratic extension of F with a real abelian field. Now we are going to construct certain quartic cyclic extension M of F with the property (P).

LEMMA 11. Let F be a field of characteristic $\neq 2$. Let E be a quadratic extension of F. Then E is embedded in a quartic cyclic extension P of F, if and only if $-1 \in N_{E/F}(E)$. If $\beta \in E$ and $N_{E/F}(\beta) = -1$, then we can take $\alpha \in E$ such that $\alpha^t/\alpha = \beta^2$, where t is the generator of Gal(E/F), and $P = F(\sqrt{\alpha})$ is a desired extension of F.

This lemma is well-known. For example, see p. 124 of Jacobson [4]. Applying Lemma 11, we obtain the next lemma.

LEMMA 12. Let $b (\geq 1)$ be an odd integer, and put $d=4+b^2$. Assume that d is square free. Put $F=Q(\sqrt{d})$ and $\varepsilon=(b+\sqrt{d})/2$. Let θ be a totally positive integer of F, and put $\alpha=\theta(\sqrt{d}+\sqrt{\varepsilon\sqrt{d}})$, $M=F(\sqrt{\alpha})$. Then M is a quartic cyclic extension of F, and $M^+=Q(\sqrt{\varepsilon\sqrt{d}})$ is a quartic cyclic extension of Q. Further, exactly one of the two infinite primes of F splits in M.

PROPOSITION 13. Let F and M be as in Lemma 12. Let \mathfrak{f} be the conductor of M/F. Put $T = \{q ; q \text{ is an odd prime and each prime divisor of } q \text{ in } F \text{ divides } \mathfrak{f}\}$. Then each q|d belongs to T, so $T \neq \emptyset$.

i) If $p \in T$, then M has the property (P).

ii) Let p be an odd prime which splits in $F(p=\mathfrak{pp})$. If $\mathfrak{p}|\mathfrak{f}, \mathfrak{p}'/\mathfrak{f}$ and the decomposition field of \mathfrak{p}' in M/F is M^+ , then M has the property (P).

PROOF. Same as the proof of Propositions 6 and 7.

REMARK. If (i) $p \equiv 3 \pmod{4}$ or (ii) $p \equiv 5 \pmod{8}$ and $F = Q(\sqrt{p})$, then we can replace M by $M \cdot Q(\zeta_p)^+$ in Theorem 1, Propositions 8, 9 and 13. Similarly, if $p \equiv 5 \mod 8$, we can replace M by $M \cdot Q(\zeta_p)^+$ in Proposition 10.

J. NAKAGAWA

References

- [1] T. Arakawa, On the Stark-Shintani ray class invariants of real quadratic fields and certain relative class numbers, RIMS Kokuroku, **497** (1983), 116-138 (Japanese).
- [2] T. Chinburg, Stark's conjecture for L-functions with first-order zeroes at s=0, Advances in Math., 48 (1983), 82-113.
- [3] R. F. Coleman, Division values in local fields, Invent. Math., 53 (1979), 91-116.
- [4] N. Jacobson, Lectures in Abstract Algebra, III, Van Nostrand, New York, 1964.
- [5] T. Shintani, On certain ray class invariants of real quadratic fields, J. Math. Soc. Japan, 30 (1978), 139-167.
- [6] H. M. Stark, L-functions at s=1. II. Artin L-functions with rational characters, Advances in Math., 17 (1975), 60-92.
- [7] H. M. Stark, L-functions at s=1. III. Totally real fields and Hilbert's twelfth problem, Advances in Math., 22 (1976), 64-84.
- [8] H. M. Stark, Class fields for real quadratic fields and L-series at s=1, Proc. Durham Conf., Academic Press, New York, 1977, 355-374.
- $\begin{bmatrix} 9 \end{bmatrix}$ H. M. Stark, L-functions at s=1. IV. First derivatives at s=0, Advances in Math., 35 (1980), 197-235.
- [10] J. Tate, On Stark's conjectures on the behavior of L(s, x) at s=0, J. Fac. Sci. Univ. Tokyo Sect. IA, 28 (1981), 963-978.

Jin NAKAGAWA

Mathematical Institute Tôhoku University Sendai 980, Japan