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\S 1. Introduction.

Let $F$ be a real quadratic field embedded in the real number field $R$ . Let
$M$ be a finite abelian extension of $F$ in which exactly one of the two infinite
primes of $F$, corresponding to the prescribed embedding of $F$ into $R$ , splits.
Let $f$ be the conductor of $M/F$. Denote by $H_{F}(f)$ the group consisting of all
narrow ray classes of $F$ defined modulo $f$ Let $G$ be the subgroup of $H_{F}(f)$ cor-
responding to $M$ by class field theory. Take a totally positive integer $\nu$ of $F$

satisfying $\nu+1\in f$, and denote by the same letter $\nu$ the narrow ray class modulo
$f$ represented by the principal ideal (v). For each $c\in H_{F}(f)$ , set $\zeta_{F}(s, c)=\sum_{\mathfrak{a}}1V(\mathfrak{a})^{-S}$ ,

where $\mathfrak{a}$ runs over all integral ideals of $F$ belonging to the ray class $c$ . It is
known that $\zeta_{F}(s, c)$ is holomorphic on the whole complex plane except for a
simple pole at $s=1$ .

The Stark-Shintani ray class invariant $X_{f}(c)$ is defined by

(1) $X_{f}(c)=\exp(\zeta_{F}’(0, c)-\zeta_{F}’(0, c\nu))$ $(c\in H_{F}(f))$

(see Stark [7] and Shintani [5], the notation $X_{f}(c)$ is due to [5]). Obviously,
$X_{f}(c\nu)=X_{f}(c)^{-1}$ . In his paper [5], T. Shintani expressed this invariant $X_{f}(c)$ as
a product of certain special values of the double gamma function of E.W. Barnes.
In particular, he proved that $X_{f}(c)$ is a positive real number. Put $X_{f}(c, G)=$

$\prod_{g\in G}X_{f}(cg)$ . Then $X_{f}(c, G)$ depends onIy on $c\in H_{F}(f)/G$ . In [7] and [8],

H. M. Stark presented a striking conjecture on the arithmetic nature of the invariant
$X_{f}(c, G)$ . Shintani found it independently and reformulated it in [5] into a more
precise form.

CONJECTURE 1. For some positive rational integer $m,$ $X_{f}(c, G)^{m}$ is a unit of
$M(\forall c\in H_{F}(f)/G)$ . Moreover, $\{X_{f}(c, G)^{m}\}^{\sigma(c_{0})}=X_{f}(cc_{0}, G)^{m}(\forall c_{0}\in H_{F}(f)/G)$ , where $\sigma$

is the Artin isomorphism of $H_{F}(f)/G$ onto the Galois group Gal $(M/F)$ .
Shintani introduced in [5] another invariant $Y_{f}(c, G)$ to prove Conject.ire 1

in some special non-trivial cases (for the definition of $Y_{f}(c, G)$ , see (18) and (20)
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of [5]). We may state the same conjecture for $Y_{f}(c, G)$ instead of $X_{f}(c, G)$ , and
call it Conjecture 1’. Denote by $M^{+}$ the maximal totally real subfield of $M$.
Then Shintani proved the following theorem in [5].

THEOREM A (Shintani). If $M^{+}$ is abelian over the rational number field $Q$ ,

then Conjecture 1 and Conjecture 1’ are true.
For a number field $k$ , denote by $E(k)$ and $h(k)$ the group of units of $k$ and

the class number of $k$ respectively. Then T. Arakawa proved the following
relation between the relative class number of $M/M^{+}$ and the invariants $Y_{f}(c, G)$

([1]).

THEOREM $B$ (Arakawa). Assume that Conjecture 1i is true, then $u^{\}}e$ have

$h(llf)/h(M^{+})=[E(M):E_{Y,m}(M)]/2^{2n- 1}m^{n}$ ,

where $n=[M^{arrow} : F]$ and $E_{Y,m}(M)$ is the subgroup of $E(M)$ generated by $E(M^{+})$

and $Y_{f}(c, G)^{m}(c\in H_{F}(f)/G)$ .
If we can take $m=1$ in Conjecture 1’, then the formula in Theorem $B$ becomes

a better one. In this direction, Stark presented the following conjecture in [7].

CONJECTURE 2. Conjecture 1 holds with $m=1$ .
Let $p$ be a prime number and let $M_{\infty}= \bigcup_{n\geq 0}M_{n}$ be the cyclotomic $Z_{p^{-}}exten-$

sion of $M([M_{n} : M]=p^{n})$ . Arakawa pointed out in [1] that Conjecture 1 is
true for each $M_{n}$ if $M^{+}$ is abelian over $Q$ . But it was not known whether or
not the integer $m$ could be taken constantly in the tower of fields. In this paper,
we assume that $M^{+}$ is abelian over $Q$ , and we study the integer $m$ which makes
$X_{f}(c, G)^{m}(c\in H_{F}(f)/G)$ into units of $M$. In particular, we study it in the tower
of fields of cyclotomic $Z_{p}$-extensions of $M$. Now we state one of the main
results of this paper (cf. Propositions 8, 9, 10 and 13).

THEOREM 1. Let $\alpha$ be an integer of $F$ such that $\alpha>0$ and $\alpha’<0(\alpha’$ is the
conjugate Of $\alpha$), and let $M=F(\wedge\alpha$ . Let $P$ be an odd prime and let $M_{\infty}= \bigcup_{n\geq 0}M_{n}$

be the cyclotomic $Z_{p}$-extension of $M([M_{n} : M]=p^{n})$ . If no prime divisor of $p$

in $F$ splits in $M$, then $X_{f_{n}}(c, G_{n})$ is a unit of $M_{n}$ for each $c\in H_{F}(f_{n})/G_{n}(\forall n\geqq 0)$ ,
where $f_{n}$ is the conductor of $M_{n}/F$ and $G_{n}$ is the subgroup of $H_{F}(f_{n})$ correspond-
ing to $M_{n}$ .

Stark presented more general conjectures on special values of L-functions
for totally real fields (see [7] and [9]). He also formulated in [6] conjectures
on special values of non-abelian Artin L-functions (cf. Tate [10]). T. Chinburg
made computations confirming the existence of expected units in tetrahedral
cases over $Q$ ([2]). He also studied how the expected units lie in the tower of
fields of cyclotomic $Z_{p}$-extensions of certain non-abelian fields. Let $K$ be the fixed
field of an odd, irreducible two dimensional Galois representation $\rho$ : Gal $(\overline{Q}/Q)arrow$
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$GL_{2}(C)$ . Let $P$ be an odd prime and let $K(n)$ be the field obtained by adjoining
to $K$ the $p^{n+1}th$ roots of unity. Then Chinburg proved in [2] that the expected
units in $K( \infty)(=\bigcup_{n\geqq 0}K(n))$ satisfy distribution and norm relation assuming the

Stark conjecture for each $K(n)$ . On the other hand, we have really constructed
certain cyclotomic $Z_{p}$-extensions $M_{\infty}= \bigcup_{n\geqq 0}M_{n}$ such that the Stark-Shintani in-

variants for $M_{n}$ are units of $M_{n}$ for each $n\geqq 0$ .
In our subsequent paper, we shall discuss some consequences of Theorem $B$

and the results of this paper, and we shall study the image of $X_{f_{n}}(c, G_{n})s$ in
the completion of $M_{\infty}$ at a prime over $P$ by using a result of Coleman [3].

The base field $M$ of our cyclotomic $Z_{p}$-extension is abelian over a real
quadratic field, but not abelian over $Q$ . Moreover, $M$ is neither a totally real
field nor a totally imaginary quadratic extension of a totally real field. It seems
that few things are known about such $Z_{p}$-extensions except what the general
theory of $Z_{p}$-extensions tells, and investigation of those Iwasawa invariants
seems to be an interesting problem. For example, it is conjectured by Iwasawa
that the Iwasawa invariant $\mu$ vanishes in any cyclotomic $Z_{p}$-extension, and it
was proved by Ferrero and Washington in the case of any abelian base field.
Now we should try to prove it in our cases.

\S 2. Some results of Stark [9].

In this section, we summarize some results of Stark [9] for later applica-
tions. Let $k$ be an imaginary quadratic field embedded in the complex number
field $C$ . Let $c$ be an integral ideal of $k$ with $c\neq(1)$ . Denote by $H_{k}(\mathfrak{c})$ the group
consisting of all ray classes of $k$ defined modulo $\mathfrak{c}$ . Let $H$ be a subgroup of
$H_{k}(\mathfrak{c})$ , and let $K$ be the class field over $k$ corresponding to $H$. Denote by $\sigma_{k}$

the Artin isomorphism of $H_{k}(c)/H$ onto Gal $(K/k)$ . Denote by $n’(K)$ the number
of roots of unity contained in $K$.

LEMMA 2 (Stark). For each $c\in H_{k}(\mathfrak{c})/H$, there exists an afgebraic integer
$E_{c}(c, H)$ of $K$ with the following three Properties:

i) Far any character $\chi$ of the group $H_{k}(\mathfrak{c})$ with $\chi(H)=1$ ,

$L_{k}’(0, \chi)=-(1/w(K))\sum_{\epsilon\in H_{k}(c)/H}\chi(c)$ logl $E_{c}(c, H)_{1}$} $2$

ii) $E_{c}(1, H)^{\sigma_{k}(C)}=E_{c}(c, H)$ , for any $c\in H_{k}(c)/H$.
iii) If $\mathfrak{q}$ is a prime ideal of $k$ belmging to the class $c$ uith $(\mathfrak{q}, \mathfrak{c}w(K))=1$ ,

then $E_{c}(c, H)/E_{c}(1, H)^{N(q)}$ is a $w(K)th$ power of a number of $K$.
Shintani introduced in [5] a certain ray class invariant $Z_{c}(c)$ for each $c\in$

$H_{k}(\mathfrak{c})$ (for the definition of $Z_{c}(c)$ , see (4) and (6) of [5]). We now clarify the
relation between $E_{c}(c, H)$ and $Z_{c}(c)$ . For each $c\in H_{k}(c)$ , set $\zeta_{k}(s, c)=\sum_{\mathfrak{a}}N(\mathfrak{a})^{-S}$ ,
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where $\mathfrak{a}$ runs over all integral ideals of $k$ belonging to the ray class $c$ . It follows
from Proposition 1 of [5] that

(2) $\omega(c)\zeta_{k}’(0, c)=-\log Z_{c}(c)$ ,

where $\omega(\mathfrak{c})$ is the cardinality of the group of units of $k$ which are congruent to
1 modulo $\mathfrak{c}$ . Put $Z_{c}(c, H)= \prod_{h\in H}Z_{c}(ch)$ . Then $Z_{c}(c, H)$ depends only on $c\in$

$H_{k}(\mathfrak{c})/H$. In view of (2), we obtain

$L_{k}’(0, \chi)=-(1/\omega(\mathfrak{c}))\sum_{c\in H_{k}(c)/H}\chi(c)$ log $Z_{c}(c, H)$

for any character $\chi$ of the group $H_{k}(\mathfrak{c})$ with $\chi(H)=1$ . Comparing the above
equality with that of Lemma 2, we obtain

(3) Z. $(c, H)=|E_{c}(c, H)|^{2\omega(c)/w(K)}$ $(\mathfrak{c}\neq(1))$ .

Following Shintani [5], we are going to introduce another invariant $W_{c}(c, H)$

$(c\in H_{k}(\mathfrak{c})/H)$ which is closely related to the invariant $Z_{c}(c, H)$ (cf. (8) and (9) of
[5]). Denote by $\mathfrak{P}(\mathfrak{c})$ the set of prime divisors of $c$ . For each subset $S$ of $\mathfrak{P}(\mathfrak{c})$ ,

denote by $c(S)$ the intersection of all divisors of $c$ which are prime to any $\mathfrak{p}\in$

$\mathfrak{P}(\mathfrak{c})-S$ . In other words, if $\mathfrak{c}=\prod_{\mathfrak{p}\in \mathfrak{P}^{(c)}}\mathfrak{p}^{a(\mathfrak{p})}$
, then $\mathfrak{c}(S)=\prod_{\mathfrak{p}\in S}\mathfrak{p}^{a(\mathfrak{p})}$ . Denote by $c\sim$ (resp.

$\tilde{H})$ the image of $c$ (resp. $H$ ) under the natural homomorphism of $H_{k}(\mathfrak{c})$ onto
$H_{k}(c(S))$ . Further, put

(4) $n(S, H)=\omega(c(S))[H_{k}(c):H]/[H_{k}(\mathfrak{c}(S)):\tilde{H}]$ .

For each $c\in H_{k}(c)/H$, set

(5) $W_{c}(c, H)= \prod_{s}Z_{c(S)}(\tilde{c} \prod_{\mathfrak{p}\in \mathfrak{P}(c)- S} (\mathfrak{p})^{-1},\tilde{H})^{1/n(S,H)}$

where $S$ runs over all subsets of $\mathfrak{P}(\mathfrak{c})$ with $\tilde{H}\neq H_{k}(c(S))$ . In Lemma 2, we as-
sumed $\mathfrak{c}\neq(1)$ , but $Z_{c}(c),$ $Z_{c}(c, H)$ and $W_{c}(c, H)$ are defined for any integral ideal
$c$ of $k$ . So we formally define $|E_{\mathfrak{c}}(c, H)|$ by (3) for $\mathfrak{c}=(1)$ . Under this nota-
tion, $W_{c}(c, H)$ is described in terms of $E_{c}(c, H)s$ as follows:

(6) $T?^{r_{C}}(c, H)=\prod_{S}|E_{c(S)}(\tilde{c} \prod_{\mathfrak{p}\in \mathfrak{P}(c)- S} (\mathfrak{p})^{-1},\tilde{H})|^{2/w(K_{S})[KK_{S}]}$ ,

where $K_{S}$ is the intersection of $K$ with the ray class field modulo $\mathfrak{c}(S)$ over $k$ ,

and $S$ runs over all subsets of $\mathfrak{P}(\mathfrak{c})$ with $K_{S}\neq k$ .

\S 3. Investigation of $m$ for $Y_{f}(c, G)$ .
Let $F$ be a real quadratic field embedded in $R$ . Let $M$ be a finite abelian

extension of $F$ in which exactly one of the two inPnite primes of $F$, correspond-
ing to the prescribed embedding of $F$ into $R$ , splits. We assume that $M$ is also
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embedded in $R$ . Let $f$ be a multiple of the conductor of $M/F$. Let $G$ be the
subgroup of $H_{F}(f)$ corresponding to $M$. For each $x\in F$, denote by $x’$ the con-
jugate of $x$ . Take a totally positive integer $\nu$ of $F$ with $v+1\in f$ Let $\mu$ be an
integer of $F$ satisfying $\mu<0,$ $\mu’>0$ and $\mu-1\in f$ Denote by $\nu(f)$ (resp. $\mu(f)$ ) the
element of $H_{F}(f)$ represented by the principal ideal (v) (resp. $(\mu)$ ). Sometimes
we write simply as $\nu$ and $\mu$ instead of $\nu(f)$ and $\mu(f)$ . Then the order of $\nu$ in
$H_{F}(t)$ is 2 and the order of $\mu$ is at most 2. Further, it follows from our as-
sumption on $M$ that $G$ contains $\mu$ but does not contain $\nu$ .

In \S 1, we introduced the invariant $X_{f}(c, G)$ for each $c\in H_{F}(f)/G$ . Shintani
introduced in [5] another invariant $Y_{f}(c, G)$ which does not depend on a special
choice of $f$ (cf. Lemma 2 of [5]). Denote by $\mathfrak{P}(f)$ the set of prime divisors of $f$ .
For each subset $S$ of $\mathfrak{P}(f)$ , denote by $f(S)$ the intersection of all divisors of $f$

which are prime to any $p\in \mathfrak{P}(f)-S$ . Denote by $c\sim$ (resp. $\tilde{G}$ ) the image of $c$ (resp.
$G)$ under the natural homomorphism of $H_{F}(f)$ onto $H_{F}(\mathfrak{f}(S))$ . Further, denote by
$M_{S}$ the intersection of $M$ with the narrow ray class field modulo $f(S)$ over $F$.
So $M_{S}$ coincides with the class field over $F$ corresponding to $\tilde{G}$ . Since $X_{f}(C^{\backslash }I)$

$=X_{\mathfrak{f}}(c)^{-1}$ , we obtain the following formula:

(7) $Y_{f}(c, G)= \prod_{S}X_{f^{(S)}}(c\sim\prod_{\mathfrak{p}\in \mathfrak{P}^{(f)- S}}(\mathfrak{p})^{-1},\tilde{G})^{1/[M:M_{S}]}$ ,

where $S$ runs over all subsets of $\mathfrak{P}(f)$ with $M_{S}\not\subset M^{+}$ . In particular, if $M$ is a
quadratic extension of $F$, and if $f$ is the conductor of $M/F$, then $Y_{f}(c, G)=$

$X_{f}(c, G)(\forall c\in H_{F}(f)/G)$ .
In the remaining part of this paper, we assume that $M^{+}$ is abelian over $Q$ .

We may assume that $f$ is a self conjugate integral ideal of $F$. In fact, if $f’\neq \mathfrak{f}$,
we may replace $f$ by $f\cap f’$ and $G$ by its inverse image under the natural homo-
morphism of $H_{F}(f\cap \mathfrak{f}’)$ onto $H_{F}(f)$ . Denote by $\iota$ the non-trivial automorphism of
$F$. Then $\iota$ acts naturally on the group $H_{F}(f)$ . We put $\iota(c)=c’$ for any $c\in H_{F}(f)$ .
Then it follows from Lemma 3 of [5] that $\nu=\mu\mu’$ in $H_{F}(f)$ . Since $M^{+}$ is abelian
over $Q$ , there exists a subgroup $G_{1}$ of $G$ with index 2 which is invariant under
$\iota$ and satisfies the following conditions (see p. 141 of [5]):

(8) The group $G$ is generated by $G_{1}$ and $\mu$ ;

(9) $[H_{F}(\mathfrak{f})/G_{1} : (H_{F}(t)/G_{1})_{0}]=2$ ,

where
$(H_{F}(f)/G_{1})_{0}=\{c\in H_{F}(f)/G_{1} ; \iota(c)=c\}$ .

Let $K$ be the class field over $F$ corresponding to $G_{1}$ . Then $K$ is the normal
closure of $M$ over $Q$ , and $[K:M]=2$ . Let $L$ be the class field over $F$ corre-
sponding to $\langle G_{1}, \nu\rangle$ , where $\langle G_{1}, \nu\rangle$ is the subgroup of $H_{F}(f)$ generated by $G_{1}$

and $v$ . Then $L$ is the maximal absolutely abelian subfield of $K$, and $[K:L]=2$ .
We assume that $K$ is embedded in $C$ by extending the prescribed embedding of
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$M$ into $R$ . Denote by $\sigma_{F}$ the Artin isomorphism of $H_{F}(f)/G_{1}$ onto $Ga1(K/F)$ .
Let $L_{0}$ be the subfield of $\sigma_{F}((H_{F}(t)/G_{1})_{0})- fixed$ elements of $K$. In view of (9),
$L_{0}$ is a quadratic extension of $F$. Further, it follows from Lemma 4 of [5]

that $L_{0}$ is a composition of $F$ with a suitable imaginary quadratic Peld $k$ , and
$K$ is abelian over $k$ . We note that any one of the two imaginary quadratic
fields contained in $L_{0}$ can be taken for $k$ . Let $\mathfrak{c}$ be the conductor of $K/k$ and
let $H$ be the subgroup of $H_{k}(\mathfrak{c})$ corresponding to $K$. Since $K$ is normal over $Q$ ,

both $\mathfrak{c}$ and $H$ are invariant under the non-trivial automorphism $\kappa$ of $k$ . Set

$(H_{k}(\mathfrak{c})/H)_{0}=\{c\in H_{k}(\mathfrak{c})/H ; \kappa(c)=c\}$ .
It follows from Lemma 6 of [5] that the subfield of $\sigma_{k}((H_{k}(\mathfrak{c})/H)_{0})- fixed$ elements
of $K$ coincides with $L_{0}$ , and $\sigma_{k}^{-1}\sigma_{F}$ induces an isomorphism of the group
$(H_{F}(f)/G_{1})_{0}$ onto the group $(H_{k}(c)/H)_{0}$ . For each $c\in(H_{F}(t)/G_{1})_{0}$ , put

\langle 10) $\dot{c}=\sigma_{k}^{-1}\sigma_{F}(c)$ .

The following lemma plays a key role in our argument.

LEMMA 3. If $c\neq(1)$ , then

$|E_{c}(\dot{c}\dot{\nu}, H)/E_{c}(\dot{c}, H)|^{2/w(K)}\in M$ , for $\forall c\in(H_{F}(f)/G_{1})_{0}$ .

PROOF. Let $q$ be a prime ideal of $k$ belonging to the class $\dot{\nu}$ with $(q, cw(K))$

$=1$ . It follows from Lemma 2 that $E_{c}(\dot{c}\dot{\nu}, H)/E_{c}(\dot{c}, H)^{N(B)}$ is a $w(K)th$ power of
a number of $K$. Since $\sigma_{k}(\dot{\nu})(=\sigma_{F}(\nu))$ induces the identity map on $L,$ $\mathfrak{q}$ splits
completely in $L$ . It is easy to see that $N(q)-1$ is a multiple of $w(L)$ , because
it is the order of the multiplicative group of the residue field of $q$ . Since $L$ is
the maximal absolutely abelian subfield of $K$, we have $w(L)=w(K)$ . Hence
$E_{c}(\dot{c}\dot{\nu}, H)/E_{c}(\dot{c}, H)$ is a $w(K)$ th power of a number of $K$. Since $K$ is normal
over $Q$ , the complex conjugation of $E_{c}(\dot{c}\dot{\nu}, H)/E_{c}(\dot{c}, H)$ is also a $w(K)$ th power
of a number of $K$. Since $K\cap R=M$, the lemma follows.

The first half of the next proposition is essentially Proposition 4 of [5]. We
note that $H_{F}(f)/\langle G, \nu\rangle$ is identified with $(H_{F}(f)/G_{1})_{0}/\langle v\rangle$ by the natural homo-
morphisms

$(H_{F}(t)/G_{1})_{0}=H_{F}(t)/G_{1}arrow H_{F}(f)/\langle G, \nu\rangle$ .

PROPOSITION 4. i) For each $c\in(H_{F}(f)/G_{1})_{0}$ ,

$Y_{f}(c, G)= \prod_{s}|E_{\mathfrak{c}(S)}(\dot{c}\dot{\nu}\prod_{\mathfrak{p}\in \mathfrak{P}^{(c)-S}}(\mathfrak{p})^{-1}\sim,\tilde{H})/E_{c(S)}(c\prod_{\mathfrak{p}\in \mathfrak{P}(c)-S}(\mathfrak{p})^{-1}\sim,\tilde{H})|^{2/w(K_{S})[K;K_{S}]}$ ,

where $S$ runs over all subsets of $\mathfrak{P}(c)$ with $K_{S}\not\subset L$ .
ii) Assume that $K_{\emptyset}\subset L$ for a suitable choice of $k$ . If $m$ is a multiple of all

$[K:K_{S}](S\subset \mathfrak{P}(\mathfrak{c}), K_{S}\not\subset L)$ , then $Y_{f}(c, G)^{m}$ is a unit of M. In particular,
$Y_{f}(c, G)^{[M:Q]}$ is a unit of $M$.
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PROOF. By the same way as in the proof of Proposition 4 of [5], we obtain
$Y_{f}(c, G)=W_{\mathfrak{c}}(\dot{c}\dot{v}, H)/W_{c}(\dot{c}, H)$ . In view of (6), we have

$Y_{f}(c, G)= \prod_{s}|E_{c(S)}(\dot{c}\dot{\nu}\sim$
$\prod_{\mathfrak{p}\in \mathfrak{P}(\mathfrak{c})-S}$

$( \mathfrak{p})^{-1},\tilde{H})/E_{c(S)}(\dot{c}\prod_{\mathfrak{p}\in \mathfrak{P}^{(\mathbb{C})- S}}(\mathfrak{p})^{-1}\sim,\tilde{H})|^{2/w(K_{S)[K;K_{S}]}}$

where $S$ runs over all subsets of $\mathfrak{P}(c)$ with $K_{s}\neq k$ . Since $\sigma_{k}(\dot{\nu})$ is the generator
of $Ga1(K/L),$ $K_{S}\subset L$ is equivalent to $\dot{\nu}\in\tilde{H}$. Hence the product is over all sub-
sets $S$ of $\mathfrak{P}(\mathfrak{c})$ with $K_{S}\not\subset L$ . It follows from Lemma 3 and the first half of the
proposition that $Y_{f}(c, G)^{m}$ belongs to $M$ if $m$ is a multiple of all $[K:K_{S}]$ . Hence
Proposition 5 of [5] implies that $Y_{f}(c, G)^{m}$ is a unit of $M$.

The following corollary is a special case of Theorem 3 of [7] but we give
a different proof here.

COROLLARY. If $M$ is a quadratic extension of Fof conductor $f$ , then $X_{f}(c, G)$

is a unit of $M$ for any $c\in H_{F}(f)/G$ .
PROOF. Let $F=Q(\sqrt{d})$ and let $M=F(\sqrt{\alpha})$ , where $d$ is a square free rational

integer with $d>1$ , and $\alpha$ is an integer of $F$ such that $\alpha>0,$ $\alpha’<0$ . Put $\alpha\alpha’=-a$ .
Hence $a$ is a positive rational integer. It is easy to see that $K=F(\sqrt{\alpha}, \sqrt{\alpha’})$ ,
$L=L_{0}=F(\sqrt{-a})$ and $k=Q(\sqrt{-a})$ or $Q(\sqrt{-ad})$ . Since $K/Q$ is a non-abelian
Galois extension of degree 8, and since $M$ is not normal over $Q,$ $Ga1(K/Q)$ is
isomorphic to the dihedral group $D_{4}$ of order 8. Hence the diagram of subPelds
of $K$ is as follows:

Figure 1.

Case 1. $K/Q(\sqrt{-ad})$ is ramified at some primes. Put $k=Q(\sqrt{-ad})$ . Then
it follows from Proposition 4 that $Y_{f}(c, G)$ is a unit of $M$. By the remark
below (7). $I_{f}’(c, G)=X_{f}(c, G)$ .

Case 2. $K/Q(\sqrt{-ad})$ is unramified. Put $k=Q(\sqrt{-a})$ . Let $\mathfrak{d}$ be the con-
ductor of $N/k$ . Then it is easy to see that $\mathfrak{d}\neq(1)$ and the conductor of $N’/k$

is $\mathfrak{d}’$ , where $\mathfrak{d}’$ is the conjugate of $\mathfrak{d}$ . Since $K=NN’$ , the conductor $\mathfrak{c}$ of $K/k$
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is the least common multiple of $\mathfrak{d}$ and $\mathfrak{d}’$ . Hence $\mathfrak{P}(\mathfrak{c})=\mathfrak{P}(\mathfrak{d})\cup \mathfrak{P}(\mathfrak{d}’)$ . If $\mathfrak{P}(\mathfrak{d})=$

$\mathfrak{P}(\mathfrak{d}’)$ , then it follows from Proposition 4 that $Y_{f}(c, G)(=X_{\tilde{i}}(c, G))$ is a unit of
$M$. If $\mathfrak{P}(\mathfrak{d})\neq \mathfrak{P}(\mathfrak{d}’)$ , put $S’=\{\mathfrak{p}’ ; \mathfrak{p}\in S\}$ for each subset $S$ of $\mathfrak{P}(\mathfrak{c})$ . Then it
follows from Proposition 4 that

$Y_{f}(c, G)=|E_{c}(\dot{c}\dot{\nu}, H)/E_{\mathfrak{c}}(\dot{c}, H)|^{2/w(K)}$

$\cross\prod_{\mathfrak{P}(\mathfrak{d})\subseteqq S\subsetneqq \mathfrak{P}(c)}|E_{c(S)}(\overline{\dot{c}\dot{\nu}}\prod_{\mathfrak{p}\in \mathfrak{P}(c)-S}(\mathfrak{p})^{-1},\tilde{H})/E_{c(S)}(\dot{c}\prod_{\mathfrak{p}\in \mathfrak{P}^{(c)- S}}(\mathfrak{p})^{-1}\sim,\tilde{H})|^{2/2w(N)}$

$\cross|E_{\mathfrak{c}(S’)(\dot{c}\dot{\nu}\prod_{\mathfrak{p}\in \mathfrak{P}^{(c)- S’}}(\mathfrak{p})^{-1}}\sim,\tilde{H})/E_{c(S’)}(\dot{c}\prod_{\mathfrak{p}\in \mathfrak{P}(C)-S^{l}}(\mathfrak{p})^{-1}\sim,\tilde{H})|^{2/2w(N’)}$

It is easy to see that $w(N’)=w(N)$ and $\kappa(\dot{c}\sim\dot{\nu}\prod_{\mathfrak{p}\in \mathfrak{P}(c)-S}(\mathfrak{p})^{-1})=\dot{c}\dot{\nu}\coprod_{\mathfrak{p}\in \mathfrak{P}(c)-S’}\sim(\mathfrak{p})^{-1}$ . Lemma

3 and the next lemma now imply that $Y_{f}(c, G)(=X_{f}(c, G))$ is a unit of $M$.

LEMMA 5. For each $c\in H_{k}(\mathfrak{c}),$ $Z_{\kappa(\mathfrak{c})}(\kappa(c))=Z_{c}(c)$ .
PROOF. In view of (2), we have $Z_{c}(c)=\exp(-\omega(c)\zeta_{k}’(0, c))$ . Hence the lemma

follows immediately from the definition of the partial zeta function $\zeta_{k}(s, c)$ .

\S 4. Main results.

We use the same notation and assumption as in the previous section. Let
$\Phi$ be a real abelian field, and put $M^{*}=M\Phi$ . Since $M^{+}$ is abelian over $Q$ ,
$(M^{*})^{+}=M^{+}\Phi$ is also abelian over $Q$ . Hence Conjecture 1 is true for $M^{*}$ by
Theorem A. Let $p$ be an odd prime and let $\zeta_{p^{n+1}}$ be a primitive $p^{n+1}th$ root
of unity. Let $B_{n}$ be the unique subfield of $Q(\zeta_{p^{n+1}})^{+}$ of degree $p^{n}$ over $Q$ .
Then $B_{\infty}=_{n}U_{\geqq 0}B_{n}$ is the unique $Z_{p}$-extension of $Q$ . Put $M_{\infty}=MB_{\infty}$ . Hence $M_{\infty}$

is the cyclotomic $Z_{p}$-extension of $M$. Let $M_{n}$ be the unique subfield of $M$ of
degree $p^{n}$ over $M$. Then the above remark implies that Conjecture 1 is true
for each $M_{n}$ .

First we prove two propositions, and then we prove Theorem 1.

PROPOSITION 6. Let $\alpha$ be an integer of $F$ such that $\alpha>0,$ $\alpha’<0$ . Let
$M=F(\sqrt{\alpha})$ and let $f$ be the conductor of $M/F$. Put $T=\{q$ ; $q$ is an odd prime
and each prime divisor of $q$ in $F$ divides $f$ }. We assume $T\neq\emptyset$ . Let $\Phi$ be a
real abelian field of odd degree such that each prime divisor of the conductor of
$\Phi/Q$ belongs to T. Let $M^{*}=M\Phi$ . Then $X_{\mathfrak{f}}*(c, G^{*})$ is a unit of $M^{*}$ for each
$c\in H_{F}(f^{*})/G^{*}$ , where $\mathfrak{s}*$ is the conductor of $M^{*}/F$ and $G^{*}$ is the subgroup of
$H_{F}(f^{*})$ correspondjng to $M^{*}$ .

PROOF. Let $F=Q(\sqrt{d})$ and put $\alpha\alpha’=-a$ . Then $a$ is a positive rational
integer. We write $(\alpha)=\mathfrak{a}\mathfrak{b}^{2}$ , where $\mathfrak{a}$ is a square free integral ideal of $F$, and
$\mathfrak{b}$ is an integral ideal of $F$. Then a prime divisor $\mathfrak{p}$ of $F$ with $(\mathfrak{p}, 2)=1$ ramifies
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in $M$, if and only if $\mathfrak{p}$ divides $\mathfrak{a}$ . It follows from the assumption on the
conductor of $\Phi/Q$ that $\mathfrak{P}(\mathfrak{f}^{*})=\mathfrak{P}(f)$ . Since $[\Phi : Q]$ is odd, any intermediate field
of $M^{*}/F$ which is not contained in $(M^{*})^{+}$ is a composition of $M$ with a subfield
of $\Phi$ . It follows from (7) that $Y_{f}*(c, G^{*})=X_{f}*(c, G^{*})$ . Put $k=Q(\sqrt{-ad}),$ $K^{*}=$

$K\Phi$ and $L^{*}=L\Phi$ , where $K=F(\sqrt{\alpha}, \sqrt{\alpha’})$ and $L=F(\sqrt{-a})$ . Then $K/k$ is a
cyclic extension of degree 4. Let $\mathfrak{c}$ and $\mathfrak{c}^{*}$ be the conductors of $K/k$ and $K^{*}/k$

respectively. Since $(\alpha)=\mathfrak{a}b^{2},$ $ad=N( \mathfrak{a})N(\mathfrak{b})^{2}d=a_{0}(\prod_{q\in T}q)^{2}N(\mathfrak{b})^{2}$ , where $a_{0}$ is a posi-

tive rational integer which is prime to any $q\in T$ . So $k=Q(\sqrt{-a_{0}})$ , and hence
any $q\in T$ does not ramify in $k$ . On the other hand, it follows from the defini-
tion of $T$ that any $q\in T$ ramifies in $M$, hence in $K$ Since $K/Q$ is normal,
these facts imply that $\emptyset\neq T\subset\{q;q$ is an odd prime and each prime divisor of
$q$ in $k$ divides $\mathfrak{c}$ }. It follows $\mathfrak{c}\neq(1)$ and $\mathfrak{P}(\mathfrak{c}^{*})=\mathfrak{P}(\mathfrak{c})$ . Since $[\Phi : Q]$ is odd, any
intermediate field of $K^{*}/k$ which is not contained in $L^{*}$ is a composition of $K$

with a subfield of $\Phi$ . It follows from Proposition 4 that $Y_{f}*(c, G^{*})=|$ $E.*(\dot{c}\dot{\nu},$ $H^{*}\rangle$

$/E_{c}*(\dot{c}, H^{*})|^{2/w(K^{*})}$ , where $H^{*}$ is the subgroup of $H_{k}(c^{*})$ corresponding to $K^{*}$ .
By Lemma 3, the right hand side of the equality is a unit of $M^{*}$ .

PROPOSITION 7. Let $M,$ $f,$ $T$ and $\Phi$ be as in Proposition6 (we allow $T=\emptyset$ ).

Assume that there is an odd prime $p$ such that $p$ splits in $F$ and one of the two
prime divisors of $p$ in $F$ ramifies and the other remains prime in M. Further,
assume that $p$ splits completely in $\Phi$ . Let $\Psi\neq Q$ be a real abelian field with p-
Power conductor whose degree over $Q$ is prime to $2[\Phi : Q]$ . Put $M_{1}^{*}=M\Phi\Psi$ .
Then $x_{\mathfrak{s}i}(c, G_{1}^{*})$ is a unit of $M_{1}^{*}$ for each $c\in H_{F}(t_{1}^{*})/G_{1}^{*}$ , where $f_{1}^{*}$ is the conductor
of $M_{1}^{*}/F$ and $G_{1}^{*}$ is the subgroup of $H_{F}(t_{1}^{*})$ corresponding to $M_{1}^{*}$ .

PROOF. We use the same notation as in the proof of Proposition 6. We
write $p=\mathfrak{p}\mathfrak{p}’$ with $\mathfrak{p}|f,$ $\mathfrak{p}’\nmid f$ It follows from our assumption on $P$ that $\sigma_{F}(\mathfrak{p}’)$

induces the identity on $(M^{*})^{+}$ though it is not the identity map of $M^{*}$ . Hence
$\mathfrak{p}’=\nu(f^{*})$ in $H_{F}(f^{*})/G^{*}$ . Since $[M:F](=2),$ $[\Phi : Q]$ and $[\Psi:Q]$ are co-prime
with each other, any intermediate field of $M_{1}^{*}/F$ which is not contained in
$(M_{1}^{*})^{+}$ is a composition of $M$ with a subfield of $\Phi$ and a subfield of $\Psi$ . Since
$\mathfrak{P}(f_{1}^{*})=\mathfrak{P}(f^{*})\cup\{\mathfrak{p}’\}$ and $\mathfrak{P}(t^{*})=\mathfrak{P}(f)$ , for such an intermediate field of $M_{1}^{*}/F$ the
set of prime divisors of its conductor over $F$ is either $\mathfrak{P}(\mathfrak{f}_{1}^{*})$ or $\mathfrak{P}(\mathfrak{f}^{*})$ . Now it
follows from (7) that $Y_{f1}^{2}(c, G_{1}^{*})=X_{f_{1}^{l}}(c, G_{1}^{*})\cross X_{f^{r}}(c(\mathfrak{p}’)^{-1}, G^{*})^{1/\zeta M^{*}}1$

: $M^{*}3$ Since $\mathfrak{p}’=$

$\nu(f^{*})$ in $H_{F}(f^{*})/G^{*}$ , we have $X_{\mathfrak{f}}.(c(\mathfrak{p}’)^{-1}, G^{*})=X_{f^{*}}(c, G^{*})^{-1}$ . Further, we have seen
in the proof of Proposition 6 that $Y_{f^{s}}(c, G^{*})=X_{f^{r}}(c, G^{*})$ . Hence we obtain

(11) $x_{\mathfrak{s}_{1}^{*}}(c, G_{1}^{*})=Y_{fi}(c, G_{1}^{*})Y_{f^{*}}(c, G^{*})^{1/[Mi:M^{5}]}$ .

Put $k=Q(\sqrt{-ad})$ . Then we can write $ad=a_{1}pb^{2}$ , where $a_{1}$ is a positive rationaI
integer prime to $P$ and any $q\in T$ . Hence $p$ ramifies in $k$ . So we write $p=\mathfrak{p}_{k}^{2}$ .
Put $K_{1}^{*}=K^{*}\Psi$ and $L_{1}^{*}=L^{*}\Psi$ . Let $\mathfrak{c}_{1}^{*}$ be the conductor of $K_{1}^{*}/k$ and let $H_{1}^{*}$ be
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the subgroup of $H_{k}(\mathfrak{c}_{1}^{*})$ corresponding to $K_{1}^{*}$ . Since the ramification index of $\mathfrak{p}$

in $K/F$ is 2, the ramification index of $p$ in $K/Q$ is also 2. Since $p=\mathfrak{p}_{k}^{2},$
$\mathfrak{p}_{k}$ does

not ramify in $K/k$ , hence $\mathfrak{p}_{k}\nmid c$ . We have seen in the proof of Proposition 6
that $\mathfrak{P}(c^{*})=\mathfrak{P}(\mathfrak{c})$ . Since the conductor of $\Psi/Q$ is a power of $p$ , $\mathfrak{p}_{k}|\mathfrak{c}_{1}^{*}$ and
$\mathfrak{P}(\mathfrak{c}_{1}^{*})=\mathfrak{P}(\mathfrak{c}^{*})\cup\{\mathfrak{p}_{k}\}$ . It follows from our assumption on $[\Psi:Q]$ that any inter-
mediate field of $K_{1}^{*}/k$ which is not contained in $L_{1}^{*}$ is a composition of $K$ with
a subPeld of $\Phi$ and a subfield of $\Psi$ . Thus for such an intermediate field of
$K_{1}^{*}/k$ the set of prime divisors of its conductor over $k$ is either $\mathfrak{P}(c_{1}^{*})$ or $\mathfrak{P}(\mathfrak{c}^{*})$ .
Now it follows from Proposition 4 that

(12) $Y_{fi}(c, G_{1}^{*})=|E_{c}i(\dot{c}\dot{\nu}, H_{1}^{*})/E_{\mathfrak{c}_{1}^{*}}(\dot{c}, H_{1}^{*})|^{2/w(K_{1}^{\subset})}$

$\cross|E_{C^{*}}(\dot{c}\dot{v}(\mathfrak{p}_{k})^{-1}\sim, H^{*})/E_{\mathfrak{c}*}(\dot{c}(\mathfrak{p}_{k})^{-1}\sim, H^{*})|^{2/w(K)[K_{1}^{*}:K^{*}]}$ ,

(13) $Y_{f}.(c, G^{*})=|E_{c}.(\dot{c}\dot{\nu}, H^{*})/E_{\mathfrak{c}^{s}}(\dot{c}, H^{*})|^{2/w(K^{*})}$

It follows from our assumption on $p$ that the number of the prime divisors of
$K$ lying over $p$ is two. This implies that the decomposition field of $\mathfrak{p}_{k}$ in $K/k$

is $L$ . Since $p$ splits completely in $\Phi$ , the decomposition field of $\mathfrak{p}_{k}$ in $K^{*}/k$ is
$L^{*}$ . Hence $\mathfrak{p}_{k}=\dot{\nu}$ in $H_{k}(\mathfrak{c}^{*})/H^{*}$ . Hence the equalities (11), (12) and (13) imply
that

$x_{\mathfrak{s}i(c},$ $G_{1}^{*}$) $=|E_{c}:(\dot{c}\dot{\nu}, H_{1}^{*})/E_{c};(\dot{c}, H_{1}^{*})|^{2/w(K_{1}^{t})}$ .

Since $c_{1}^{*}\neq(1)$ , we can apply Lemma 3, so $X_{t_{1}^{r}}(c, G_{1}^{*})$ is a unit of $M_{1}^{*}$ .
PROOF OF THEOREM 1. Let $f$ be the conductor of $M/F$. About $P$ and $f$,

only the following three cases are possible: Case 1. Each prime divisor of $p$

in $F$ divides $f$ ; Case 2. $p$ splits in $F(p=\mathfrak{p}\mathfrak{p}’),$ $\mathfrak{p}|f$ and $\mathfrak{p}’\nmid t$ ; Case 3. $p$ is prime
to $f$ Case 1 is a special case of Proposition 6 $(\Phi=B_{n})$ . Case 2 is a special
case of Proposition 7 $(\Phi=Q, \Psi=B_{n})$ . The proof of Case 3 goes similarly to
that of Propositions 6 and 7.

In Propositions 6 and 7, we assumed that $[\Phi : Q]$ is odd, so that it was
easy to study the set of prime divisors of the conductor of each intermediate
field of $M^{*}/F$. Now we state a few results on the case of $[\Phi : Q]=2\cross(odd)$

without proofs. They can be proved by repeating the arguments of the proof
of Proposition 7. In the remaining part of this paper, we denote by (P) the
property of $M$ in Theorem 1:

(P) Let $M=_{n}U_{\geqq 0}M_{n}$ be the cyclotomic $Z_{p}$-extension of $M$. Then $X_{f_{n}}(c, G_{n})$

is a unit of $M_{n}$ for each $c\in H_{F}(f_{n})/G_{n}(\forall n\geqq 0)$ , where $f_{n}$ is the conductor of
$M_{n}/F$ and $G_{n}$ is the subgroup of $H_{F}(f_{n})$ corresponding to $M_{n}$ .

PROPOSITION 8. Let 1 be a prime number which is congruent to 5 modulo 8,
and let $F=Q(\sqrt{l})$ . Let $\epsilon(>1)$ be the fundamental unit of $F$, and assume
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$N_{F/Q}(\epsilon)=-1$ . If $p$ is a prime number which is congruent to 3 modulo 4 and
remains prime in $F$, then $M=F(\sqrt{\epsilon}^{-}, \sqrt{p})$ has the pr0perty (P)

PROPOSITION 9. Let $l,$ $F$ and $\epsilon$ be as in Prop0siti0n 8. If $T_{F/Q}(\epsilon)$ is a
quadratic residue modulo 1, then $M=F(\sqrt{\epsilon}, \#\overline{l})$ has the pr0perty (P) with $p=l$ .

PROPOSITION 10. Let $F$ be a real quadratic field. Let $p$ be a prime number
which is congruent to 1 modulo 4 and splits in F. We write $p=\mathfrak{p}\mathfrak{p}’$ . Take an
integer $\alpha$ of $F$ such that $\alpha>0,$ $\alpha’<0,$ $\alpha\in \mathfrak{p},$ $\alpha\not\in \mathfrak{p}^{2}$ and $\alpha\not\in \mathfrak{p}’$ . Put $\alpha\alpha’=-ap$,
so $a$ is a p0sjtive rational integer prime to $p$ . If $a$ is a quadratic residue modulo
$p$ and $T_{F/Q}(\alpha)$ is not, then $M=F(\sqrt{\alpha}, \sqrt{p})$ has the pr0perty (P).

So far, we have constructed cyclotomic $Z_{p}$-extensions with the property
(P). The base field $M$ of such a $Z_{p}$-extension has been a composition of a
quadratic extension of $F$ with a real abelian field. Now we are going to con-
struct certain quartic cyclic extension $M$ of $F$ with the property (P).

LEMMA 11. Let $F$ be a field of characteristic $\neq 2$ . Let $E$ be a quadratic
extension of F. Then $E$ is embedded in a quartic cyclic extension $P$ of $F$, if and
only if $-1\in N_{E/F}(E)$ . If $\beta\in E$ and $N_{E/F}(\beta)=-1$ , then we can take $\alpha\in E$ such
that $\alpha^{t}/\alpha=\beta^{2}$ , where $t$ is the generator of $Ga1(E/F)$ , and $P=F(\sqrt{\alpha})$ is a desired
extenszon of $F$.

This lemma is well-known. For example, see p. 124 of Jacobson [4].

Applying Lemma 11, we obtain the next lemma.

LEMMA 12. Let $b(\geqq 1)$ be an odd integer, and put $d=4+b^{2}$ . Assume that
$d$ is square free. Put $F=Q(\sqrt{}\overline{d})$ and $\epsilon=(b+\sqrt{d})/2$ . Let $\theta$ be a totally positive
integer of $F$, and put $\alpha=\theta(\sqrt{d}+\sqrt{\epsilon\sqrt{d}}),$ $M=F(\sqrt{\alpha})$ . Then $M$ is a quartic
cyclic extension of $F$, and $M^{+}=Q(\epsilon’\sqrt{d})$ is a quartic cyclic extension of $Q$ .
Further, exactly one of the two infinite primes of $F$ splits in $M$.

PROPOSITION 13. Let $F$ and $M$ be as in $Lemma_{A^{-}}^{-}12$ . Let $f$ be the conductor
of $M/F$. Put $T=\{q$ ; $q$ is an odd prime and each prime divisor of $q$ in $F$ divide $s$

$f\}$ . Then each qld belongs to $T$, so $T\neq\emptyset$ .
i) If $p\in T$, then $M$ has the pr0perty (P).
ii) Let $p$ be an odd prime which splits in $F(p=\mathfrak{p}\mathfrak{p}’)$ . If $\mathfrak{p}|f,$ $\mathfrak{p}’\nmid t$ and the

decomp0stti0n field of $\mathfrak{p}’$ in $M/F$ is $M^{+}$, then $M$ has the pr0perty (P).

PROOF. Same as the proof of Propositions 6 and 7.

REMARK. If (i) $p\equiv 3(mod 4)$ or (ii) $p\equiv 5(mod 8)$ and $F=Q(\sqrt{p})$ , then we can
replace $M$ by $M\cdot Q(\zeta_{p})^{+}$ in Theorem 1, Propositions 8, 9 and 13. Similarly, if
$p\equiv 5$ mod 8, we can replace $M$ by $M\cdot Q(\zeta_{p})^{+}$ in Proposition 10.
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