On the Stark-Shintani conjecture and cyclotomic Z_{p}-extensions of class fields over real quadratic fields

By Jin NAKAGAWA

(Received July 29, 1983)

§ 1. Introduction.

Let F be a real quadratic field embedded in the real number field \boldsymbol{R}. Let M be a finite abelian extension of F in which exactly one of the two infinite primes of F, corresponding to the prescribed embedding of F into \boldsymbol{R}, splits. Let \mathfrak{f} be the conductor of M / F. Denote by $H_{F}(\mathfrak{f})$ the group consisting of all narrow ray classes of F defined modulo \mathfrak{f}. Let G be the subgroup of $H_{F}(\mathfrak{f})$ corresponding to M by class field theory. Take a totally positive integer ν of F satisfying $\nu+1 \in \mathfrak{f}$, and denote by the same letter ν the narrow ray class modulo \dagger represented by the principal ideal (ν). For each $c \in H_{F}(\mathfrak{f})$, set $\zeta_{F}(s, c)=\sum_{a} N(\mathfrak{a})^{-s}$, where a runs over all integral ideals of F belonging to the ray class c. It is known that $\zeta_{F}(s, c)$ is holomorphic on the whole complex plane except for a simple pole at $s=1$.

The Stark-Shintani ray class invariant $X_{\mathrm{f}}(c)$ is defined by

$$
\begin{equation*}
X_{\mathrm{F}}(c)=\exp \left(\zeta_{F}^{\prime}(0, c)-\zeta_{F}^{\prime}(0, c \nu)\right) . \quad\left(c \in H_{F}(\mathfrak{f})\right) \tag{1}
\end{equation*}
$$

(see Stark [7] and Shintani [5], the notation $X_{\mathrm{f}}(c)$ is due to [5]). Obviously, $X_{\mathrm{f}}(c \nu)=X_{\mathrm{f}}(c)^{-1}$. In his paper [5], T. Shintani expressed this invariant $X_{\mathrm{F}}(c)$ as a product of certain special values of the double gamma function of E.W. Barnes. In particular, he proved that $X_{\mathrm{f}}(c)$ is a positive real number. Put $X_{\mathrm{f}}(c, G)=$ $\prod_{g \in G} X_{\mathrm{f}}(c g)$. Then $X_{\mathrm{F}}(c, G)$ depends only on $c \in H_{F}(\mathrm{f}) / G$. In [7] and [8], H. M. Stark presented a striking conjecture on the arithmetic nature of the invariant $X_{\mathrm{F}}(c, G)$. Shintani found it independently and reformulated it in [5] into a more precise form.

Conjecture 1. For some positive rational integer $m, X_{\mathrm{F}}(c, G)^{m}$ is a unit of $M\left(\forall c \in H_{F}(\mathfrak{f}) / G\right)$. Moreover, $\left\{X_{\mathrm{f}}(c, G)^{m}\right\}^{\sigma\left(c_{0}\right)}=X_{\mathrm{f}}\left(c c_{0}, G\right)^{m}\left(\forall c_{0} \in H_{F}(\mathfrak{f}) / G\right)$, where σ is the Artin isomorphism of $H_{F}(\mathfrak{f}) / G$ onto the Galois $\operatorname{group} \operatorname{Gal}(M / F)$.

Shintani introduced in [5] another invariant $Y_{\mathrm{f}}(c, G)$ to prove Conjectare 1 in some special non-trivial cases (for the definition of $Y_{\mathrm{f}}(c, G)$, see (18) and (20)
of [5]). We may state the same conjecture for $Y_{\mathrm{f}}(c, G)$ instead of $X_{\mathrm{f}}(c, G)$, and call it Conjecture 1^{\prime}. Denote by M^{+}the maximal totally real subfield of M. Then Shintani proved the following theorem in [5].

Theorem A (Shintani). If M^{+}is abelian over the rational number field \boldsymbol{Q}, then Conjecture 1 and Conjecture 1^{\prime} are true.

For a number field k, denote by $E(k)$ and $h(k)$ the group of units of k and the class number of k respectively. Then T. Arakawa proved the following relation between the relative class number of M / M^{+}and the invariants $Y_{\mathrm{f}}(c, G)$ ([1]).

Theorem B (Arakawa). Assume that Conjecture 1^{\prime} is true, then we have

$$
h(M) / h\left(M^{+}\right)=\left[E(M): E_{Y, m}(M)\right] / 2^{2 n-1} m^{n},
$$

where $n=\left[M^{+}: F\right]$ and $E_{Y, m}(M)$ is the subgroup of $E(M)$ generated by $E\left(M^{+}\right)$ and $Y_{\mathrm{f}}(c, G)^{m}\left(c \in H_{F}(\mathfrak{f}) / G\right)$.

If we can take $m=1$ in Conjecture 1^{\prime}, then the formula in Theorem B becomes a better one. In this direction, Stark presented the following conjecture in [7].

Conjecture 2. Conjecture 1 holds with $m=1$.
Let p be a prime number and let $M_{\infty}=\bigcup_{n \geq 0} M_{n}$ be the cyclotomic Z_{p}-extension of $M\left(\left[M_{n}: M\right]=p^{n}\right)$. Arakawa pointed out in [1] that Conjecture 1 is true for each M_{n} if M^{+}is abelian over \boldsymbol{Q}. But it was not known whether or not the integer m could be taken constantly in the tower of fields. In this paper, we assume that M^{+}is abelian over \boldsymbol{Q}, and we study the integer m which makes $X_{\mathfrak{f}}(c, G)^{m}\left(c \in H_{F}(\mathfrak{f}) / G\right)$ into units of M. In particular, we study it in the tower of fields of cyclotomic \boldsymbol{Z}_{p}-extensions of M. Now we state one of the main results of this paper (cf. Propositions 8, 9, 10 and 13).

Theorem 1. Let α be an integer of F such that $\alpha>0$ and $\alpha^{\prime}<0$ (α^{\prime} is the conjugate of α), and let $M=F(\sqrt{\alpha})$. Let p be an odd prime and let $M_{\infty}=\bigcup_{n \geq 0} M_{n}$ be the cyclotomic \boldsymbol{Z}_{p}-extension of $M\left(\left[M_{n}: M\right]=p^{n}\right)$. If no prime divisor of p in F splits in M, then $X_{\mathfrak{f}_{n}}\left(c, G_{n}\right)$ is a unit of M_{n} for each $c \in H_{F}\left(\mathfrak{f}_{n}\right) / G_{n}(\forall n \geqq 0)$, where \mathfrak{f}_{n} is the conductor of M_{n} / F and G_{n} is the subgroup of $H_{F}\left(\mathfrak{f}_{n}\right)$ corresponding to M_{n}.

Stark presented more general conjectures on special values of L-functions for totally real fields (see [7] and [9]). He also formulated in [6] conjectures on special values of non-abelian Artin L-functions (cf. Tate [10]). T. Chinburg made computations confirming the existence of expected units in tetrahedral cases over $\boldsymbol{Q}([2])$. He also studied how the expected units lie in the tower of fields of cyclotomic \boldsymbol{Z}_{p}-extensions of certain non-abelian fields. Let K be the fixed field of an odd, irreducible two dimensional Galois representation $\rho: \operatorname{Gal}(\overline{\boldsymbol{Q}} / \boldsymbol{Q}) \rightarrow$
$G L_{2}(\boldsymbol{C})$. Let p be an odd prime and let $K(n)$ be the field obtained by adjoining to K the p^{n+1} th roots of unity. Then Chinburg proved in [2] that the expected units in $K(\infty)\left(=\bigcup_{n \geq 0} K(n)\right)$ satisfy distribution and norm relation assuming the Stark conjecture for each $K(n)$. On the other hand, we have really constructed certain cyclotomic Z_{p}-extensions $M_{\infty}=\bigcup_{n \geq 0} M_{n}$ such that the Stark-Shintani invariants for M_{n} are units of M_{n} for each $n \geqq 0$.

In our subsequent paper, we shall discuss some consequences of Theorem B and the results of this paper, and we shall study the image of $X_{\dot{F}_{n}}\left(c, G_{n}\right)$'s in the completion of M_{∞} at a prime over p by using a result of Coleman [3].

The base field M of our cyclotomic \boldsymbol{Z}_{p}-extension is abelian over a real quadratic field, but not abelian over \boldsymbol{Q}. Moreover, M is neither a totally real field nor a totally imaginary quadratic extension of a totally real field. It seems that few things are known about such \boldsymbol{Z}_{p}-extensions except what the general theory of \boldsymbol{Z}_{p}-extensions tells, and investigation of those Iwasawa invariants seems to be an interesting problem. For example, it is conjectured by Iwasawa that the Iwasawa invariant μ vanishes in any cyclotomic Z_{p}-extension, and it was proved by Ferrero and Washington in the case of any abelian base field. Now we should try to prove it in our cases.

§ 2. Some results of Stark [9].

In this section, we summarize some results of Stark [9] for later applications. Let k be an imaginary quadratic field embedded in the complex number field \boldsymbol{C}. Let c be an integral ideal of k with $\mathfrak{c} \neq(1)$. Denote by $H_{k}(\mathfrak{c})$ the group consisting of all ray classes of k defined modulo c. Let H be a subgroup of $H_{k}(\mathrm{c})$, and let K be the class field over k corresponding to H. Denote by σ_{k} the Artin isomorphism of $H_{k}(\mathrm{c}) / H$ onto $\operatorname{Gal}(K / k)$. Denote by $w(K)$ the number of roots of unity contained in K.

Lemma 2 (Stark). For each $c \in H_{k}(c) / H$, there exists an algebraic integer $E_{c}(c, H)$ of K with the following three properties:
i) For any character χ of the group $H_{k}(\mathfrak{c})$ with $\chi(H)=1$,

$$
L_{k}^{\prime}(0, \chi)=-(1 / w(K)){ }_{c \in H_{k}(\mathrm{c}) / H} \chi(c) \log \left|E_{\mathrm{c}}(c, H)\right|^{2} .
$$

ii) $\quad E_{\mathrm{c}}(1, H)^{\sigma_{k}(c)}=E_{\mathrm{c}}(c, H)$, for any $c \in H_{k}(\mathrm{c}) / H$.
iii) If \mathfrak{q} is a prime ideal of k belonging to the class c with $(\mathfrak{q}, \mathfrak{c} w(K))=1$, then $E_{\mathfrak{c}}(c, H) / E_{\mathfrak{c}}(1, H)^{N(9)}$ is a $w(K)$ th power of a number of K.

Shintani introduced in [5] a certain ray class invariant $Z_{c}(c)$ for each $c \in$ $H_{k}(c)$ (for the definition of $Z_{c}(c)$, see (4) and (6) of [5]). We now clarify the relation between $E_{\mathfrak{c}}(c, H)$ and $Z_{\mathfrak{c}}(c)$. For each $c \in H_{k}(\mathfrak{c})$, set $\zeta_{k}(s, c)=\sum_{\mathfrak{a}} N(\mathfrak{a})^{-s}$,
where \mathfrak{a} runs over all integral ideals of k belonging to the ray class c. It follows from Proposition 1 of [5] that

$$
\begin{equation*}
\omega(\mathrm{c}) \zeta_{k}^{\prime}(0, c)=-\log Z_{\mathrm{c}}(c), \tag{2}
\end{equation*}
$$

where $\omega(\mathrm{c})$ is the cardinality of the group of units of k which are congruent to 1 modulo c. Put $Z_{\mathrm{c}}(c, H)=\prod_{n \in H} Z_{\mathrm{c}}(c h)$. Then $Z_{\mathrm{c}}(c, H)$ depends only on $c \in$ $H_{k}(\mathrm{c}) / H$. In view of (2), we obtain

$$
L_{k}^{\prime}(0, \chi)=-(1 / \omega(\mathrm{c}))_{c \in H_{k}} \sum_{k}(\mathrm{c}) / H \mathrm{X}(c) \log Z_{\mathfrak{c}}(c, H)
$$

for any character χ of the group $H_{k}(\mathfrak{c})$ with $\chi(H)=1$. Comparing the above equality with that of Lemma 2 we obtain

$$
\begin{equation*}
Z_{\mathfrak{c}}(c, H)=\left|E_{\mathfrak{c}}(c, H)\right|^{2 \omega(\mathfrak{c}) / w(K)} \quad(\mathfrak{c} \neq(1)) . \tag{3}
\end{equation*}
$$

Following Shintani [5], we are going to introduce another invariant $W_{\mathrm{c}}(c, H)$ ($\left.c \in H_{k}(\mathrm{c}) / H\right)$ which is closely related to the invariant $Z_{c}(c, H)$ (cf. (8) and (9) of [5]). Denote by $\mathfrak{B}(\mathfrak{c})$ the set of prime divisors of c. For each subset S of $\mathfrak{P}(\mathfrak{c})$, denote by $\mathfrak{c}(S)$ the intersection of all divisors of \mathfrak{c} which are prime to any $\mathfrak{p} \in$ $\mathfrak{P}(\mathfrak{c})-S$. In other words, if $\mathfrak{c}=\prod_{p \in \mathfrak{\beta}(c)} \mathfrak{p}^{a(p)}$, then $\mathfrak{c}(S)=\prod_{p \in S} \mathfrak{p}^{a(p)}$. Denote by \tilde{c} (resp. $\tilde{H})$ the image of c (resp. H) under the natural homomorphism of $H_{k}(\mathfrak{c})$ onto $H_{k}(\mathrm{c}(S))$. Further, put

$$
\begin{equation*}
n(S, H)=\omega(\mathfrak{c}(S))\left[H_{k}(\mathfrak{c}): H\right] /\left[H_{k}(\mathfrak{c}(S)): \widetilde{H}\right] . \tag{4}
\end{equation*}
$$

For each $c \in H_{k}(\mathrm{c}) / H$, set

$$
\begin{equation*}
W_{\mathrm{c}}(c, H)=\prod_{S} Z_{\mathfrak{c}(S)}\left(\tilde{c} \tilde{p} \in \mathcal{P}(\mathfrak{c})-S(\mathfrak{p})^{-1}, \widetilde{H}\right)^{1 / n(S, H)}, \tag{5}
\end{equation*}
$$

where S runs over all subsets of $\mathfrak{B}(\mathfrak{c})$ with $\widetilde{H} \neq H_{k}(\mathfrak{c}(S)$). In Lemma 2, we assumed $c \neq(1)$, but $Z_{c}(c), Z_{c}(c, H)$ and $W_{c}(c, H)$ are defined for any integral ideal c of k. So we formally define $\left|E_{\mathrm{c}}(c, H)\right|$ by (3) for $\mathrm{c}=(1)$. Under this notation, $W_{\mathrm{c}}(c, H)$ is described in terms of $E_{\mathrm{c}}(c, H)$'s as follows:

$$
\begin{equation*}
W_{\mathrm{c}}(c, H)=\prod_{S}\left|E_{\mathrm{c}(S)}\left(\tilde{c}_{\mathfrak{p} \in \mathfrak{ß}(\mathrm{c})-S}(\mathfrak{p})^{-1}, \widetilde{H}\right)\right|^{2 / w\left(K_{S}\right)\left[K: K_{S]}\right.}, \tag{6}
\end{equation*}
$$

where K_{S} is the intersection of K with the ray class field modulo $\mathfrak{c}(S)$ over k, and S runs over all subsets of $\mathfrak{P (c)}$ with $K_{S} \neq k$.
§3. Investigation of m for $Y_{\mathrm{f}}(c, G)$.
Let F be a real quadratic field embedded in \boldsymbol{R}. Let M be a finite abelian extension of F in which exactly one of the two infinite primes of F, corresponding to the prescribed embedding of F into \boldsymbol{R}, splits. We assume that M is also
embedded in \boldsymbol{R}. Let \mathfrak{f} be a multiple of the conductor of M / F. Let G be the subgroup of $H_{F}(\mathfrak{f})$ corresponding to M. For each $x \in F$, denote by x^{\prime} the conjugate of x. Take a totally positive integer ν of F with $\nu+1 \in \mathfrak{f}$. Let μ be an integer of F satisfying $\mu<0, \mu^{\prime}>0$ and $\mu-1 \in \mathfrak{f}$. Denote by $\nu(\mathfrak{f})$ (resp. $\mu(\mathfrak{f})$) the element of $H_{F}(\mathfrak{f})$ represented by the principal ideal (ν) (resp. (μ)). Sometimes we write simply as ν and μ instead of $\nu(\mathfrak{f})$ and $\mu(\mathrm{f})$. Then the order of ν in $H_{F}(\mathfrak{f})$ is 2 and the order of μ is at most 2 . Further, it follows from our assumption on M that G contains μ but does not contain ν.

In §1, we introduced the invariant $X_{\mathrm{F}}(c, G)$ for each $c \in H_{F}(\mathrm{f}) / G$. Shintani introduced in [5] another invariant $Y_{\mathrm{f}}(c, G)$ which does not depend on a special choice of \mathfrak{f} (cf. Lemma 2] of [5]). Denote by $\mathfrak{P}(\mathfrak{f})$ the set of prime divisors of \mathfrak{f}. For each subset S of $\mathfrak{P}(\mathfrak{f})$, denote by $\mathfrak{f}(S)$ the intersection of all divisors of \mathfrak{f} which are prime to any $\mathfrak{p} \in \mathfrak{P}(\mathfrak{f})-S$. Denote by \tilde{c} (resp. $\tilde{G})$ the image of c (resp. G) under the natural homomorphism of $H_{F}(\mathfrak{f})$ onto $H_{F}(\mathfrak{f}(S))$. Further, denote by M_{S} the intersection of M with the narrow ray class field modulo $f(S)$ over F. So M_{S} coincides with the class field over F corresponding to \tilde{G}. Since $X_{\mathrm{f}}(c \nu)$ $=X_{\mathrm{F}}(c)^{-1}$, we obtain the following formula:

$$
\begin{equation*}
Y_{\mathrm{f}}(c, G)=\prod_{S} X_{\mathrm{f}(S)}\left(\tilde{c}_{p \in ß(\mathfrak{p})-S} \prod^{\left.(\mathfrak{p})^{-1}, \tilde{G}\right)^{1 /[M: M S]}, ~}\right. \tag{7}
\end{equation*}
$$

where S runs over all subsets of $\mathfrak{P}(\mathfrak{f})$ with $M_{S} \not \subset M^{+}$. In particular, if M is a quadratic extension of F, and if f is the conductor of M / F, then $Y_{\mathrm{f}}(c, G)=$ $X_{\mathrm{f}}(c, G)\left(\forall c \in H_{F}(\mathfrak{\mathrm { f }}) / G\right)$.

In the remaining part of this paper, we assume that M^{+}is abelian over \boldsymbol{Q}. We may assume that \mathfrak{f} is a self conjugate integral ideal of F. In fact, if $\mathfrak{f}^{\prime} \neq \mathfrak{f}$, we may replace \mathfrak{f} by $\mathfrak{f} \cap \mathfrak{f}^{\prime}$ and G by its inverse image under the natural homomorphism of $H_{F}\left(\mathfrak{f} \cap \mathfrak{f}^{\prime}\right)$ onto $H_{F}(\mathfrak{\dagger})$. Denote by c the non-trivial automorphism of F. Then c acts naturally on the group $H_{F}(\mathfrak{f})$. We put $\iota(c)=c^{\prime}$ for any $c \in H_{F}(\mathfrak{f})$. Then it follows from Lemma 3 of [5] that $\nu=\mu \mu^{\prime}$ in $H_{F}(\mathrm{f})$. Since M^{+}is abelian over \boldsymbol{Q}, there exists a subgroup G_{1} of G with index 2 which is invariant under c and satisfies the following conditions (see p. 141 of [5]) :

The group G is generated by G_{1} and μ;

$$
\begin{equation*}
\left[H_{F}(\mathfrak{f}) / G_{1}:\left(H_{F}(\mathfrak{f}) / G_{1}\right)_{0}\right]=2, \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(H_{F}(\mathfrak{\mathrm { f }}) / G_{1}\right)_{0}=\left\{c \in H_{F}(\mathfrak{\mathrm { f }}) / G_{1} ; \iota(c)=c\right\} . \tag{9}
\end{equation*}
$$

Let K be the class field over F corresponding to G_{1}. Then K is the normal closure of M over \boldsymbol{Q}, and $[K: M]=2$. Let L be the class field over F corresponding to $\left\langle G_{1}, \nu\right\rangle$, where $\left\langle G_{1}, \nu\right\rangle$ is the subgroup of $H_{F}(\mathfrak{f})$ generated by G_{1} and ν. Then L is the maximal absolutely abelian subfield of K, and $[K: L]=2$. We assume that K is embedded in \boldsymbol{C} by extending the prescribed embedding of
M into \boldsymbol{R}. Denote by σ_{F} the Artin isomorphism of $H_{F}(\mathfrak{f}) / G_{1}$ onto $\operatorname{Gal}(K / F)$. Let L_{0} be the subfield of $\sigma_{F}\left(\left(H_{F}(\mathfrak{f}) / G_{1}\right)_{0}\right)$-fixed elements of K. In view of (9), L_{0} is a quadratic extension of F. Further, it follows from Lemma 4 of [5] that L_{0} is a composition of F with a suitable imaginary quadratic field k, and K is abelian over k. We note that any one of the two imaginary quadratic fields contained in L_{0} can be taken for k. Let c be the conductor of K / k and let H be the subgroup of $H_{k}(\mathfrak{c})$ corresponding to K. Since K is normal over \boldsymbol{Q}, both c and H are invariant under the non-trivial automorphism κ of k. Set

$$
\left(H_{k}(\mathrm{c}) / H\right)_{0}=\left\{c \in H_{k}(\mathrm{c}) / H ; \kappa(c)=c\right\} .
$$

It follows from Lemma 6 of [5] that the subfield of $\sigma_{k}\left(\left(H_{k}(\mathfrak{c}) / H\right)_{0}\right)$-fixed elements of K coincides with L_{0}, and $\sigma_{k}^{-1} \sigma_{F}$ induces an isomorphism of the group $\left(H_{F}(\mathfrak{f}) / G_{1}\right)_{0}$ onto the group $\left(H_{k}(\mathrm{c}) / H\right)_{0}$. For each $c \in\left(H_{F}(\mathrm{f}) / G_{1}\right)_{0}$, put

$$
\begin{equation*}
\dot{c}=\sigma_{k}^{-1} \sigma_{F}(c) . \tag{10}
\end{equation*}
$$

The following lemma plays a key role in our argument.
Lemma 3. If $\mathfrak{c} \neq(1)$, then

$$
\left|E_{c}(\dot{\nu} \dot{\nu}, H) / E_{c}(\dot{c}, H)\right|^{2 / w(K)} \in M, \quad \text { for } \quad \forall c \in\left(H_{F}(\mathfrak{\dagger}) / G_{1}\right)_{0} .
$$

Proof. Let \mathfrak{q} be a prime ideal of k belonging to the class $\dot{\nu}$ with ($\mathfrak{q}, \mathfrak{c} w(K)$) $=1$. It follows from Lemma 2 that $E_{c}(\dot{c} \dot{\nu}, H) / E_{c}(\dot{c}, H)^{N(q)}$ is a $w(K)$ th power of a number of K. Since $\sigma_{k}(\dot{\nu})\left(=\sigma_{F}(\nu)\right)$ induces the identity map on L, \mathfrak{q} splits completely in L. It is easy to see that $N(\mathfrak{q})-1$ is a multiple of $w(L)$, because it is the order of the multiplicative group of the residue field of \mathfrak{q}. Since L is the maximal absolutely abelian subfield of K, we have $w(L)=w(K)$. Hence $E_{\mathrm{c}}(\dot{\dot{\nu}}, H) / E_{\mathrm{c}}(\dot{c}, H)$ is a $w(K)$ th power of a number of K. Since K is normal over \boldsymbol{Q}, the complex conjugation of $E_{\mathfrak{c}}(\dot{c} \dot{\nu}, H) / E_{\mathfrak{c}}(\dot{c}, H)$ is also a $w(K)$ th power of a number of K. Since $K \cap \boldsymbol{R}=M$, the lemma follows.

The first half of the next proposition is essentially Proposition 4 of [5]. We note that $H_{F}(\mathfrak{f}) /\langle G, \nu\rangle$ is identified with $\left(H_{F}(\mathfrak{f}) / G_{1}\right)_{0} /\langle\boldsymbol{\nu}\rangle$ by the natural homomorphisms

$$
\left(H_{F}(\mathrm{f}) / G_{1}\right)_{0} \subset H_{F}(\mathrm{f}) / G_{1} \longrightarrow H_{F}(\mathrm{f}) /\langle G, \nu\rangle .
$$

Proposition 4. i) For each $c \in\left(H_{F}(\mathfrak{f}) / G_{1}\right)_{0}$,
where S runs over all subsets of $\mathfrak{B}(\mathrm{c})$ with $K_{S} \not \subset L$.
ii) Assume that $K_{\varnothing} \subset L$ for a suitable choice of k. If m is a multiple of all $\left[K: K_{S}\right]\left(S \subset \mathfrak{P}(\mathfrak{c}), K_{S} \not \subset L\right)$, then $Y_{\mathfrak{F}}(c, G)^{m}$ is a unit of M. In particular, $Y_{\mathrm{F}}(c, G)^{[M: Q]}$ is a unit of M.

Proof. By the same way as in the proof of Proposition 4 of [5], we obtain $Y_{\mathrm{f}}(c, G)=W_{\mathrm{c}}(\dot{c} \dot{\nu}, H) / W_{\mathrm{c}}(\dot{c}, H)$. In view of (6), we have
where S runs over all subsets of $\mathfrak{P}(\mathfrak{c})$ with $K_{S} \neq k$. Since $\sigma_{k}(\dot{\nu})$ is the generator of $\operatorname{Gal}(K / L), K_{S} \subset L$ is equivalent to $\dot{\nu} \in \widetilde{H}$. Hence the product is over all subsets S of $\mathfrak{P}(\mathfrak{c})$ with $K_{S} \not \subset L$. It follows from Lemma 3 and the first half of the proposition that $Y_{\mathrm{f}}(c, G)^{m}$ belongs to M if m is a multiple of all $\left[K: K_{S}\right]$. Hence Proposition 5 of [5] implies that $Y_{\mathrm{f}}(c, G)^{m}$ is a unit of M.

The following corollary is a special case of Theorem 3 of [7] but we give a different proof here.

Corollary. If M is a quadratic extension of F of conductor \mathfrak{f}, then $X_{\mathfrak{F}}(c, G)$ is a unit of M for any $c \in H_{F}(\mathfrak{f}) / G$.

Proof. Let $F=\boldsymbol{Q}(\sqrt{d})$ and let $M=F(\sqrt{\alpha})$, where d is a square free rational integer with $d>1$, and α is an integer of F such that $\alpha>0, \alpha^{\prime}<0$. Put $\alpha \alpha^{\prime}=-a$. Hence a is a positive rational integer. It is easy to see that $K=F\left(\sqrt{\alpha}, \sqrt{\alpha^{\prime}}\right)$, $L=L_{0}=F(\sqrt{-a})$ and $k=\boldsymbol{Q}(\sqrt{-a})$ or $\boldsymbol{Q}(\sqrt{-a d})$. Since K / \boldsymbol{Q} is a non-abelian Galois extension of degree 8 , and since M is not normal over $\boldsymbol{Q}, \operatorname{Gal}(K / \boldsymbol{Q})$ is isomorphic to the dihedral group D_{4} of order 8. Hence the diagram of subfields of K is as follows:

Figure 1.
Case 1. $K / \boldsymbol{Q}(\sqrt{-a d})$ is ramified at some primes. Put $k=\boldsymbol{Q}(\sqrt{-a d})$. Then it follows from Proposition 4 that $Y_{f}(c, G)$ is a unit of M. By the remark below (7). $Y_{\mathrm{f}}(c, G)=X_{\mathrm{f}}(c, G)$.

Case 2. $K / \boldsymbol{Q}(\sqrt{-a d})$ is unramified. Put $k=\boldsymbol{Q}(\sqrt{-a})$. Let b be the conductor of N / k. Then it is easy to see that $\mathfrak{b} \neq(1)$ and the conductor of N^{\prime} / k is \mathfrak{b}^{\prime}, where \mathfrak{b}^{\prime} is the conjugate of \mathfrak{d}. Since $K=N N^{\prime}$, the conductor \mathfrak{c} of K / k
is the least common multiple of \mathfrak{b} and \mathfrak{D}^{\prime}. Hence $\mathfrak{P}(\mathfrak{c})=\mathfrak{P}(\mathfrak{b}) \cup \mathfrak{B}\left(\mathfrak{D}^{\prime}\right)$. If $\mathfrak{P}(\mathfrak{D})=$ $\mathfrak{B}\left(\mathfrak{b}^{\prime}\right)$, then it follows from Proposition 4 that $Y_{\mathrm{f}}(c, G)\left(=X_{\mathrm{f}}(c, G)\right)$ is a unit of M. If $\mathfrak{P}(\mathfrak{b}) \neq \mathfrak{P}\left(\mathfrak{b}^{\prime}\right)$, put $S^{\prime}=\left\{\mathfrak{p}^{\prime} ; \mathfrak{p} \in S\right\}$ for each subset S of $\mathfrak{P}(\mathfrak{c})$. Then it follows from Proposition 4 that

$$
\begin{aligned}
& Y_{\mathrm{f}}(c, G)=\left|E_{\mathrm{c}}(\dot{c} \dot{\nu}, H) / E_{\mathrm{c}}(\dot{c}, H)\right|^{2 / w(K)}
\end{aligned}
$$

$$
\begin{aligned}
& \times\left|E_{\mathrm{c}\left(S^{\prime}\right)}\left(\widetilde{c_{\dot{\dot{i}}}} \underset{p \in \mathbb{R}(\mathrm{c})-S^{\prime}}{ }(\mathfrak{p})^{-1}, \widetilde{H}\right) / E_{\mathrm{c}\left(S^{\prime}\right)}\left(\tilde{c}_{p \in \mathbb{R}(c)-S^{\prime}}(\mathfrak{p})^{-1}, \widetilde{H}\right)\right|^{2 / 2 w\left(N^{\prime}\right)} .
\end{aligned}
$$

 3 and the next lemma now imply that $Y_{\mathrm{f}}(c, G)\left(=X_{\mathrm{f}}(c, G)\right)$ is a unit of M.

Lemma 5. For each $c \in H_{k}(\mathfrak{c}), Z_{\kappa(c)}(\kappa(c))=Z_{c}(c)$.
Proof. In view of (2), we have $Z_{c}(c)=\exp \left(-\omega(c) \zeta_{k}^{\prime}(0, c)\right)$. Hence the lemma follows immediately from the definition of the partial zeta function $\zeta_{k}(s, c)$.

§ 4. Main results.

We use the same notation and assumption as in the previous section. Let Φ be a real abelian field, and put $M^{*}=M \Phi$. Since M^{+}is abelian over \boldsymbol{Q}, $\left(M^{*}\right)^{+}=M^{+} \Phi$ is also abelian over \boldsymbol{Q}. Hence Conjecture 1 is true for M^{*} by Theorem A. Let p be an odd prime and let $\zeta_{p^{n+1}}$ be a primitive p^{n+1} th root of unity. Let \boldsymbol{B}_{n} be the unique subfield of $\boldsymbol{Q}\left(\zeta_{p n+1}\right)^{+}$of degree p^{n} over \boldsymbol{Q}. Then $\boldsymbol{B}_{\infty}=\bigcup_{n \geq 0} \boldsymbol{B}_{n}$ is the unique Z_{p}-extension of \boldsymbol{Q}. Put $M_{\infty}=M \boldsymbol{B}_{\infty}$. Hence M_{∞} is the cyclotomic \boldsymbol{Z}_{p}-extension of M. Let M_{n} be the unique subfield of M of degree p^{n} over M. Then the above remark implies that Conjecture 1 is true for each M_{n}.

First we prove two propositions, and then we prove Theorem 1.
Proposition 6. Let α be an integer of F such that $\alpha>0, \alpha^{\prime}<0$. Let $M=F(\sqrt{\alpha})$ and let \mathfrak{f} be the conductor of M / F. Put $T=\{q ; q$ is an odd prime
 real abelian field of odd degree such that each prime divisor of the conductor of Φ / \boldsymbol{Q} belongs to T. Let $M^{*}=M \Phi$. Then $X_{千} *\left(c, G^{*}\right)$ is a unit of M^{*} for each $c \in H_{F}\left(\mathrm{f}^{*}\right) / G^{*}$, where f^{*} is the conductor of M^{*} / F and G^{*} is the subgroup of $H_{F}\left(\mathfrak{f}^{*}\right)$ corresponding to M^{*}.

Proof. Let $F=\boldsymbol{Q}(\sqrt{d})$ and put $\alpha \alpha^{\prime}=-a$. Then a is a positive rational integer. We write $(\alpha)=\mathfrak{a b}^{2}$, where \mathfrak{a} is a square free integral ideal of F, and \mathfrak{b} is an integral ideal of F. Then a prime divisor \mathfrak{p} of F with $(\mathfrak{p}, 2)=1$ ramifies
in M, if and only if \mathfrak{p} divides \mathfrak{a}. It follows from the assumption on the conductor of Φ / \boldsymbol{Q} that $\mathfrak{P}\left(\mathrm{f}^{*}\right)=\mathfrak{P}(\mathfrak{f})$. Since $[\Phi: \boldsymbol{Q}]$ is odd, any intermediate field of M^{*} / F which is not contained in $\left(M^{*}\right)^{+}$is a composition of M with a subfield of Φ. It follows from (7) that $Y_{\mathrm{f}} *\left(c, G^{*}\right)=X_{\mathrm{F}} *\left(c, G^{*}\right)$. Put $k=\boldsymbol{Q}(\sqrt{-a d}), K^{*}=$ $K \Phi$ and $L^{*}=L \Phi$, where $K=F\left(\sqrt{\alpha}, \sqrt{\alpha^{\prime}}\right)$ and $L=F(\sqrt{-a})$. Then K / k is a cyclic extension of degree 4. Let c and c^{*} be the conductors of K / k and K^{*} / k respectively. Since $(\alpha)=\mathfrak{a} \mathfrak{b}^{2}, a d=N(\mathfrak{a}) N(\mathfrak{b})^{2} d=a_{0}\left(\prod_{q \in T} q\right)^{2} N(\mathfrak{b})^{2}$, where a_{0} is a positive rational integer which is prime to any $q \in T$. So $k=\boldsymbol{Q}\left(\sqrt{-a_{0}}\right)$, and hence any $q \in T$ does not ramify in k. On the other hand, it follows from the definition of T that any $q \in T$ ramifies in M, hence in K. Since K / \boldsymbol{Q} is normal, these facts imply that $\varnothing \neq T \subset\{q ; q$ is an odd prime and each prime divisor of q in k divides $c\}$. It follows $\mathrm{c} \neq(1)$ and $\mathfrak{P}\left(\mathrm{c}^{*}\right)=\mathfrak{P}(\mathrm{c})$. Since $[\Phi: \boldsymbol{Q}]$ is odd, any intermediate field of K^{*} / k which is not contained in L^{*} is a composition of K with a subfield of Φ. It follows from Proposition 4 that $Y_{\mathrm{f}} *\left(c, G^{*}\right)=\mid E_{\mathrm{c}} *\left(\dot{c} \dot{\nu}, H^{*}\right)$ $\left|E_{\mathrm{c}} *\left(\dot{c}, H^{*}\right)\right|^{2 / w\left(K^{*}\right)}$, where H^{*} is the subgroup of $H_{k}\left(\mathrm{c}^{*}\right)$ corresponding to K^{*}. By Lemma 3, the right hand side of the equality is a unit of M^{*}.

Proposition 7. Let M, \mathfrak{f}, T and Φ be as in Proposition 6 (we allow $T=\varnothing$). Assume that there is an odd prime p such that p splits in F and one of the two prime divisors of p in F ramifies and the other remains prime in M. Further, assume that p splits completely in Φ. Let $\Psi \neq \boldsymbol{Q}$ be a real abelian field with p power conductor whose degree over \boldsymbol{Q} is prime to $2[\Phi: \boldsymbol{Q}]$. Put $M_{1}^{*}=M \Phi \Psi$. Then $X_{\mathrm{f}_{\mathrm{i}}}\left(c, G_{1}^{*}\right)$ is a unit of M_{1}^{*} for each $c \in H_{F}\left(f_{1}^{*}\right) / G_{1}^{*}$, where f_{1}^{*} is the conductor of M_{1}^{*} / F and G_{1}^{*} is the subgroup of $H_{F}\left(f_{1}^{*}\right)$ corresponding to M_{1}^{*}.

Proof. We use the same notation as in the proof of Proposition 6, We write $p=\mathfrak{p p ^ { \prime }}$ with $\mathfrak{p} \mid \mathfrak{f}, \mathfrak{p}^{\prime} X \mathfrak{f}$. It follows from our assumption on p that $\sigma_{F}\left(\mathfrak{p}^{\prime}\right)$ induces the identity on $\left(M^{*}\right)^{+}$though it is not the identity map of M^{*}. Hence $\mathfrak{p}^{\prime}=\nu\left(\mathfrak{F}^{*}\right)$ in $H_{F}\left(\mathfrak{f}^{*}\right) / G^{*}$. Since $[M: F](=2),[\Phi: Q]$ and $[\Psi: \boldsymbol{Q}]$ are co-prime with each other, any intermediate field of M_{1}^{*} / F which is not contained in $\left(M_{1}^{*}\right)^{+}$is a composition of M with a subfield of Φ and a subfield of Ψ. Since $\mathfrak{P}\left(\mathfrak{f}_{1}^{*}\right)=\mathfrak{P}\left(\mathfrak{f}^{*}\right) \cup\left\{\mathfrak{p}^{\prime}\right\}$ and $\mathfrak{P}\left(\mathfrak{f}^{*}\right)=\mathfrak{P}(\mathfrak{f})$, for such an intermediate field of M_{1}^{*} / F the set of prime divisors of its conductor over F is either $\mathfrak{P}\left(f_{1}^{*}\right)$ or $\mathfrak{P}\left(f^{*}\right)$. Now it follows from (7) that $Y_{\mathrm{f}}{ }^{*}\left(c, G_{1}^{*}\right)=X_{\mathrm{f}_{\mathrm{i}}}\left(c, G_{1}^{*}\right) \times X_{\mathrm{F}}\left(c\left(\mathfrak{p}^{\prime}\right)^{-1}, G^{*}\right)^{1 /\left[M_{\mathrm{i}}^{*}: M^{*}\right]}$. Since $\mathfrak{p}^{\prime}=$ $\nu\left(\mathfrak{f}^{*}\right)$ in $H_{F}\left(\mathrm{f}^{*}\right) / G^{*}$, we have $X_{\mathrm{F}^{*}}\left(c\left(\mathfrak{p}^{\prime}\right)^{-1}, G^{*}\right)=X_{\mathrm{i}}\left(c, G^{*}\right)^{-1}$. Further, we have seen in the proof of Proposition 6 that $Y_{\mathrm{i}^{*}}\left(c, G^{*}\right)=X_{i *}\left(c, G^{*}\right)$. Hence we obtain

$$
\begin{equation*}
X_{\mathrm{fi}^{\mathrm{i}}}\left(c, G_{1}^{*}\right)=Y_{\mathrm{f}_{\mathrm{i}}}\left(c, G_{1}^{*}\right) Y_{\mathrm{f}^{*}}\left(c, G^{*}\right)^{1 /\left[M_{\mathrm{i}}^{*}: M^{*}\right]} . \tag{11}
\end{equation*}
$$

Put $k=\boldsymbol{Q}(\sqrt{-a d})$. Then we can write $a d=a_{1} p b^{2}$, where a_{1} is a positive rational integer prime to p and any $q \in T$. Hence p ramifies in k. So we write $p=p_{k}^{2}$. Put $K_{1}^{*}=K^{*} \Psi$ and $L_{1}^{*}=L^{*} \Psi$. Let c_{1}^{*} be the conductor of K_{1}^{*} / k and let H_{1}^{*} be
the subgroup of $H_{k}\left(c_{1}^{*}\right)$ corresponding to K_{1}^{*}. Since the ramification index of p in K / F is 2 , the ramification index of p in K / \boldsymbol{Q} is also 2 . Since $p=p_{k}^{2}, \mathfrak{p}_{k}$ does not ramify in K / k, hence $\mathfrak{p}_{k} \chi$ c. We have seen in the proof of Proposition 6 that $\mathfrak{P}\left(c^{*}\right)=\mathfrak{P}(\mathfrak{c})$. Since the conductor of Ψ / \boldsymbol{Q} is a power of $p, \mathfrak{p}_{k} \mid \mathrm{c}_{1}^{*}$ and $\mathfrak{P}\left(\mathfrak{c}_{1}^{*}\right)=\mathfrak{B}\left(c^{*}\right) \cup\left\{\mathfrak{p}_{k}\right\}$. It follows from our assumption on $[\Psi: Q]$ that any intermediate field of K_{1}^{*} / k which is not contained in L_{1}^{*} is a composition of K with a subfield of Φ and a subfield of Ψ. Thus for such an intermediate field of K_{1}^{*} / k the set of prime divisors of its conductor over k is either $\mathfrak{P}\left(c_{1}^{*}\right)$ or $\mathfrak{P}\left(c^{*}\right)$. Now it follows from Proposition 4 that

$$
\begin{align*}
& Y_{\mathrm{f}_{1}^{*}}\left(c, G_{1}^{*}\right)=\left|E_{\mathrm{ci}}\left(\dot{c} \dot{\nu}, H_{1}^{*}\right) / E_{\mathrm{ci}}\left(\dot{c}, H_{1}^{*}\right)\right|^{2 / w\left(K_{\mathrm{i}}^{*}\right)} \tag{12}\\
& \times \mid E_{c^{*}}\left(\widetilde{\tilde{c} \dot{\nu}}\left(\mathfrak{p}_{k}\right)^{-1}, H^{*}\right) / E_{c^{*}} \tilde{\left.\tilde{c}\left(p_{k}\right)^{-1}, H^{*}\right)\left.\right|^{2 / w\left(K^{*}\right)\left[K_{1}^{*}: K^{*}\right]},} \\
& Y_{\mathfrak{i}}\left(c, G^{*}\right)=\left|E_{c^{*}}\left(\dot{c} \dot{\nu}, H^{*}\right) / E_{\mathfrak{c}^{*}}\left(\dot{c}, H^{*}\right)\right|^{2 / w\left(K^{*}\right)} . \tag{13}
\end{align*}
$$

It follows from our assumption on p that the number of the prime divisors of K lying over p is two. This implies that the decomposition field of \mathfrak{p}_{k} in K / k is L. Since p splits completely in Φ, the decomposition field of \mathfrak{p}_{k} in K^{*} / k is L^{*}. Hence $\mathfrak{p}_{k}=\dot{\nu}$ in $H_{k}\left(c^{*}\right) / H^{*}$. Hence the equalities (11), (12) and (13) imply that

$$
X_{\mathrm{i} \dot{1}}\left(c, G_{1}^{*}\right)=\left|E_{\mathrm{c}_{1}}\left(\dot{c} \dot{\nu}, H_{1}^{*}\right) / E_{\mathrm{c} 1}\left(\dot{c}, H_{1}^{*}\right)\right|^{2 / w\left(K_{1}^{*}\right)} .
$$

Since $c_{1}^{*} \neq(1)$, we can apply Lemma 3, so $X_{\mathrm{fi}}\left(c, G_{1}^{*}\right)$ is a unit of M_{1}^{*}.
Proof of Theorem 1. Let \mathfrak{f} be the conductor of M / F. About p and \mathfrak{f}, only the following three cases are possible: Case 1 . Each prime divisor of p in F divides \mathfrak{f}; Case 2. p splits in $F\left(p=\mathfrak{p} p^{\prime}\right), \mathfrak{p} \mid \mathfrak{f}$ and $\mathfrak{p}^{\prime} \nmid \mathfrak{f}$; Case 3. p is prime to \mathfrak{f}. Case 1 is a special case of Proposition 6 $\left(\Phi=\boldsymbol{B}_{n}\right)$. Case 2 is a special case of Proposition 7 ($\Phi=\boldsymbol{Q}, \Psi=\boldsymbol{B}_{n}$). The proof of Case 3 goes similarly to that of Propositions 6 and 7.

In Propositions 6 and 7, we assumed that $[\Phi: Q]$ is odd, so that it was easy to study the set of prime divisors of the conductor of each intermediate field of M^{*} / F. Now we state a few results on the case of $[\Phi: Q]=2 \times$ (odd) without proofs. They can be proved by repeating the arguments of the proof of Proposition 7. In the remaining part of this paper, we denote by (P) the property of M in Theorem 1:
(P) Let $M=\bigcup_{n \geq 0} M_{n}$ be the cyclotomic Z_{p}-extension of M. Then $X_{\mathrm{f}_{n}}\left(c, G_{n}\right)$ is a unit of M_{n} for each $c \in H_{F}\left(\mathfrak{f}_{n}\right) / G_{n}(\forall n \geqq 0)$, where \mathfrak{f}_{n} is the conductor of M_{n} / F and G_{n} is the subgroup of $H_{F}\left(\mathfrak{f}_{n}\right)$ corresponding to M_{n}.

Proposition 8. Let l be a prime number which is congruent to 5 modulo 8, and let $F=\boldsymbol{Q}(\sqrt{l})$. Let $\varepsilon(>1)$ be the fundamental unit of F, and assume
$N_{F / Q}(\varepsilon)=-1$. If p is a prime number which is congruent to 3 modulo 4 and remains prime in F, then $M=F(\sqrt{\varepsilon}, \sqrt{p})$ has the property (P)

Proposition 9. Let l, F and ε be as in Proposition 8. If $T_{F / \mathbf{Q}}(\varepsilon)$ is a quadratic residue modulo l, then $M=F(\sqrt{\varepsilon}, \sqrt[4]{l})$ has the property (P) with $p=l$.

Proposition 10. Let F be a real quadratic field. Let p be a prime number which is congruent to 1 modulo 4 and splits in F. We write $p=\mathfrak{p p}^{\prime}$. Take an integer α of F such that $\alpha>0, \alpha^{\prime}<0, \alpha \in \mathfrak{p}, \alpha \notin \mathfrak{p}^{2}$ and $\alpha \notin \mathfrak{p}^{\prime}$. Put $\alpha \alpha^{\prime}=-a p$, so a is a positive rational integer prime to p. If a is a quadratic residue modulo p and $T_{F / Q}(\alpha)$ is not, then $M=F(\sqrt{\alpha}, \sqrt{p})$ has the property (P).

So far, we have constructed cyclotomic \boldsymbol{Z}_{p}-extensions with the property (P). The base field M of such a \boldsymbol{Z}_{p}-extension has been a composition of a quadratic extension of F with a real abelian field. Now we are going to construct certain quartic cyclic extension M of F with the property (P).

Lemma 11. Let F be a field of characteristic $\neq 2$. Let E be a quadratic extension of F. Then E is embedded in a quartic cyclic extension P of F, if and only if $-1 \in N_{E / F}(E)$. If $\beta \in E$ and $N_{E / F}(\beta)=-1$, then we can take $\alpha \in E$ such that $\alpha^{t} / \alpha=\beta^{2}$, where t is the generator of $\operatorname{Gal}(E / F)$, and $P=F(\sqrt{\alpha})$ is a desired extension of F.

This lemma is well-known. For example, see p. 124 of Jacobson [4]. Applying Lemma 11, we obtain the next lemma.

Lemma 12. Let $b(\geqq 1)$ be an odd integer, and put $d=4+b^{2}$. Assume that d is square free. Put $F=\boldsymbol{Q}(\sqrt{d})$ and $\varepsilon=(b+\sqrt{d}) / 2$. Let θ be a totally positive integer of F, and put $\alpha=\theta(\sqrt{d}+\sqrt{\varepsilon \sqrt{d}}), \quad M=F(\sqrt{\alpha})$. Then M is a quartic cyclic extension of F, and $M^{+}=\boldsymbol{Q}(\sqrt{\varepsilon \sqrt{d}})$ is a quartic cyclic extension of \boldsymbol{Q}. Further, exactly one of the two infinite primes of F splits in M.

Proposition 13. Let F and M be as in Lemma 12. Let \mathfrak{q} be the conductor of M / F. Put $T=\{q ; q$ is an odd prime and each prime divisor of q in F divides $\mathfrak{f}\}$. Then each $q \mid d$ belongs to T, so $T \neq \varnothing$.
i) If $p \in T$, then M has the property (P).
ii) Let p be an odd prime which splits in $F\left(p=\mathfrak{p} \mathfrak{p}^{\prime}\right)$. If $\mathfrak{p l f}, \mathfrak{p}^{\prime} \times \mathfrak{f}$ and the decomposition field of \mathfrak{p}^{\prime} in M / F is M^{+}, then M has the property (P).

Proof. Same as the proof of Propositions 6 and 7.
Remark. If (i) $p \equiv 3(\bmod 4)$ or (ii) $p \equiv 5(\bmod 8)$ and $F=\boldsymbol{Q}(\sqrt{p})$, then we can replace M by $M \cdot \boldsymbol{Q}\left(\zeta_{p}\right)^{+}$in Theorem 1, Propositions 8, 9 and 13. Similarly, if $p \equiv 5 \bmod 8$, we can replace M by $M \cdot \boldsymbol{Q}\left(\zeta_{p}\right)^{+}$in Proposition 10 .

References

[1] T. Arakawa, On the Stark-Shintani ray class invariants of real quadratic fields and certain relative class numbers, RIMS Kokuroku, 497 (1983), 116-138 (Japanese).
[2] T. Chinburg, Stark's conjecture for L-functions with first-order zeroes at $s=0, \mathrm{Ad}$ vances in Math., 48 (1983), 82-113.
[3] R. F. Coleman, Division values in local fields, Invent. Math., 53 (1979), 91-116.
[4] N. Jacobson, Lectures in Abstract Algebra, III, Van Nostrand, New York, 1964.
[5] T. Shintani, On certain ray class invariants of real quadratic fields, J. Math. Soc. Japan, 30 (1978), 139-167.
[6] H. M. Stark, L-functions at $s=1$. II. Artin L-functions with rational characters, Advances in Math., 17 (1975), 60-92.
[7] H. M. Stark, L-functions at $s=1$. III. Totally real fields and Hilbert's twelfth problem, Advances in Math., 22 (1976), 64-84.
[8] H. M. Stark, Class fields for real quadratic fields and L-series at $s=1$, Proc. Durham Conf., Academic Press, New York, 1977, 355-374.
[9] H. M. Stark, L-functions at $s=1$. IV. First derivatives at $s=0$, Advances in Math., 35 (1980), 197-235.
[10] J. Tate, On Stark's conjectures on the behavior of $L(s, \chi)$ at $s=0$, J. Fac. Sci. Univ. Tokyo Sect. IA, 28 (1981), 963-978.

Jin Nakagawa
Mathematical Institute
Tôhoku University
Sendai 980, Japan

