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A singular quasilinear diffusion equation in $L^{1}$

By Ralph E. SHOWALTER

(Received Dec. 20, 1982)

1. Introduction.

The initial and Dirichlet boundary value problem for the equation $u_{t}-\Delta\alpha(u)$

$+\beta(u)\ni f$ has a unique generalized or integral solution in $L^{1}$ when $\alpha$ and $\beta$ are
maximal monotone graphs in $R$, each containing the origin, and at each point
of their common domain either one of $\alpha$ or $\beta$ is single-valued. Weak Maximum
and Comparison Principles follow from an $L^{\infty}$ estimate on the solution and from
an $L^{1}$ estimate on the difference of solutions, respectively. This $L^{1}$ integral
solution is shown to satisfy the above partial differential equation in the sense
of distributions when $\alpha$ is surjective (or the data is bounded) and $\beta$ is continuous.

We shall consider the initial-boundary-value problem

(1.a) $u_{t}-\Delta v+w=f,$ $v\in\alpha(u),$ $w\in\beta(u)$ in $\Omega$

(1.b) $v=0$ on $\partial G\cross(O, T)$

(1.c) $u=u_{0}$ on $G\cross\{0\}$

where $G$ is a bounded domain in $R^{n},$ $\Omega\equiv G\cross(O, T),$ $\Delta$ is the Laplacian in $R^{n}$ ,
and $\alpha$ and $\beta$ are maximal monotone graphs in $R\cross R$, each containing the origin.
The problem (1) will be regarded as an abstract Cauchy problem of the form

(2.a) $u’(t)+A(u(t))+B(u(t))\ni f(t)$ , $a.e$ . $t\in(O, T)$

(2. b) $u(0)=u_{0}$

in the Banach space $L^{1}(G)$ . An integral solution of (2) in a Banach space $X$ is
a $u\in C(O, T_{j}X)$ such that $u(O)=u_{0}$ and $u(t)\in dom(A+B)$ ,

$\frac{1}{2}\Vert u(t)-x\Vert^{2}\leqq\frac{1}{2}\Vert u(s)-x\Vert^{2}+\int_{s}^{t}\langle f(\tau)-y, u(\tau)-x\rangle d\tau$

for each $y\in(A+B)(x)$ and $0\leqq s\leqq t\leqq T$ . The pairing in the integral is the semi-
scalar-Product

$\langle y, x\rangle\equiv\sup\{(y, x^{*}) : x^{*}\in X^{*}, x^{*}(x)=\Vert x\Vert=\Vert x^{*}\Vert\}$

on the Banach space $X$. A multi-valued operator $A\subset X\cross X$ is called accretive if
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$\Vert x_{1}-x_{2}\Vert\leqq\Vert(x_{1}-x_{2})+\epsilon(y_{1}-y_{2})\Vert$

for all $\epsilon>0,$ $[x_{1}, y_{1}]\in A,$ $[x_{2}, y_{2}]\in A$ . If, in addition, $Rg(I+A)=X$, then $A$ is
called m-accretive. When $A+B$ is m-accretive we have the following important
result [3; 1, p. 124]: if $u_{0}\in\overline{dom(A+B)}$ and $f\in L^{1}(0, T;X)$ then (2) has a unique
integral solution.

In Section 2 we show that the operator $"-\Delta\circ\alpha+\beta$
’ is m-accretive in $L^{1}(G)$ ,

hence (1) has a unique integral solution if, for each $s\in R$ , either $\alpha(s)$ or $\beta(s)$

consists of at most one point. Certain special cases are well-known consequences
of the general theory. For example, if $\beta$ is a continuous monotone function
which is linearly bounded,

$|\beta(s)|\leqq C(1+|s|)$ , $s\in R$ ,

then the operator above is the sum of an m-accretive $A$ and a continuous accre-
tive $B$ $[2, 18]$ . Likewise, if $\beta$ is a (not necessarily monotone) Lipschitz-
continuous function, then the existence and uniqueness of a solution of (2) follow
from either the observation that $A+B+\omega I$ is accretive for some $\omega>0$ or from
a standard fixed-point construction $[7, 9]$ . Next we show that bounded (or non-
negative) data in (1) leads to a bounded (respectively, non-negative) integral
solution. Also, if two sets of data are ordered (pointwise $a.e.$ ) then the cor-
responding $L^{1}$ integral solutions are similarly ordered. These Maximum and
Comparison Principles follow from estimates obtained directly from the existence
theory for (2) and corresponding estimates for the stationary or elliptic counter-
part of (1) [6].

The $L^{1}$ integral solution of (2) is proposed as a “generalized solution” of
the initial-boundary-value problem (1), even though the abstract notion of integral
solution does not imply any differentiability. This occurs even in the case $f=0$ ,
where the solution is given by the nonlinear semigroup generation theory
[1, 7, 13]. Explicit examples (see below) show that $du/dt$ need not exist in $L^{1}(G)$

at any time, even with $\beta=0$ , so the sense in which the partial differential
equation (1.a) is satisfied is an issue. If $\alpha$ is continuous and $u$ is bounded, it
follows that (1.a) holds in $\mathcal{D}^{*}(\Omega)$ [5]. If, in addition, $\alpha$ is strictly monotone
then it is known that $u$ is weak* continuously differentiable into $C_{0}(G)^{*}[15]$ ,
hence, (1.a) holds in $\mathcal{D}^{*}(\Omega)$ . If also $\alpha^{-1}$ is Lipschitz, then $u$ is even (strongly)
differentiable $a.e$ . into $L^{2}(G)[13]$ .

In Section 3 we show that the $L^{1}$ integral solution of (2) satisfies the partial
differential equation (1.a) in $\mathcal{D}^{*}(\Omega)$ whenever the (possibly multi-valued) maximal
monotone $\alpha$ is surjective and $\beta$ is a continuous, monotone and linearly bounded
function. The surjectivity and boundedness hypotheses may be deleted when
the data is bounded. The essential point is to show that the $L^{1}$ integral solution
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is also the $H^{-1}$ strong solution [4]. Since the perturbation $\beta(u)$ prevents the
direct application of the monotone existence theory in $H^{-1}(G)$ , we first obtain
the $L^{1}$ solution and then show it is the $H^{-1}$ solution. These results are obtained
more directly when $\beta$ is Lipschitz continuous, though not necessarily monotone,
and they are of interest even when $\beta\equiv 0$ .

Examples of (1) are easily given to illustrate the extremely varied situations
covered. The “maximal degenerate” case $\alpha\equiv 0$ gives the ordinary initial-value-
problem

$u’(t)+\beta(u(t))\ni f(t)$ , $u(O)=u_{0}$ ,

in which $x\in G$ occurs as a parameter, while the “maximal singular” case
$\alpha(0)=R(i.e., \alpha^{-1}\equiv 0)$ yields the elliptic boundary-value-problem

$-\Delta v=f(x, t)$ , $v|_{\partial G}=0$ ,

in which $t\in(O, T)$ is a parameter. A considerably more interesting and impor-
tant degenerate example is provided by $\alpha(u)=u^{-}+(u-1)^{+}$ , where $x^{+} \equiv\max(x, 0)$

and $x^{-} \equiv\min(x, 0)$ . Then (1) is the weak form of the Stefan free-boundary
problem wherein $u$ corresponds to enthalpy, $v$ to the temperature, and $f,$ $-\beta(u)$

are internally distributed heat sources [9, 14, 17]. A singular example of (1)

arises as a model of diffusion in a partially-saturated medium with $\alpha^{-1}(v)$

$=v^{+}-(v-1)^{+}$ .
Recently, regularity results have been obtained for solutions of (1.a) in $H^{-1}$ ,

and we mention these for completeness. If $\alpha$ is locally absolutely continuous, $\beta$

is uniformly continuous and $u_{0},$ $f$ are bounded, then the component $v$ of the
(possibly degenerate) problem (1) is continuous in $\Omega[10,16,20]$ . Similarly, with
these hypotheses on $\alpha^{-1}$ (instead of $\alpha$) the component $u$ is continuous [11]. The
first two (extreme) examples above show that in neither case should we expect
both of $u,$ $v$ to be continuous. Of more interest is the observation that if $\alpha$ is
permitted to be both singular and degenerate then neither $u$ nor $v$ need be
continuous.

EXAMPLE. Let $\beta=0$ , $f=0$ and $u_{0}(x)=1$ for $x\in G(O, 1)$ . Let $\alpha$ be any
maximal monotone graph with $\alpha(x)=\{1\}$ for $0<x<1$ and $\alpha(0)\supset[0,1]$ . The
solution of (1) is given by $u(x, t)=1$ for $0\leqq t<1/8$ , $\sqrt{2t}<x<1-\sqrt{2t}$ , and
$u(x, t)=0$ otherwise, and $v(x, t)= \min\{x/\sqrt{2t}, 1, (1-x)/\sqrt{2t}\}$ for $0<x<1$ ,
$0<t<1/8$ , and $v(x, t)=0$ otherwise. At the end of Section 3 we shall verify that
this pair of functions is the solution of (1).



180 R. E. SHOWALTER

2. The integral solution.

The Sobolev space $W^{k,p}(G)$ is the Banach space of (equivalence classes of)

functions in $L^{p}(G)$ whose derivatives to order $k$ also belong to $L^{p}(G)$ ; $W_{0}^{k,p}(G)$

denotes the closure of $\mathcal{D}(G)$ in $W^{k,p}(G)$ . The domain of the $L^{1}$-realization of
the Dirichlet-Laplace operator $\Delta$ is given by $D(\Delta)\equiv\{v\in W_{0}^{1.1}(G):\Delta v\in L^{1}(G)\}$ , so
$"-\Delta v=f$ in $L^{1}(G)$ means that $v\in D(\Delta)$ and $-\Delta v=f$ in $\mathcal{D}^{*}(G)$ . Denote by $\mathcal{M}$

the set of all maximal monotone graphs on $R$ which contain the origin. Let
$\alpha\in \mathcal{M}$ be given and define the operator $A$ by $f\in A(u)$ iff $u,$ $f\in L^{1}(G)$ and there
is a (unique) $v\in D(\Delta)$ for which $-\Delta v=f$ in $L^{1}(G)$ and $v(x)\in\alpha(u(x)),$ $a.e$ . $x\in G$ .
Similarly, let $\beta\in \mathcal{M}$ be given and define the operator $B$ by $f\in B(u)$ iff $u,$ $f\in L^{1}(G)$

and $f(x)\in\beta(u(x)),$ $a.e$ . $x\in G$ .
A consequence of the fundamental paper of H. Brezis and W. Strauss [6]

is that $A$ is m-accretive; this holds trivially for $B$ . A crucial estimate from
[6] is the following.

B-S LEMMA. Let $\gamma\in \mathcal{M}$ ; if $\iota;\in D(\Delta),$ $\sigma\in L^{\infty}(G)$ and $\sigma\in\gamma(v)$ , then

$- \int_{G}\Delta v(x)\sigma(x)dx\geqq 0$ .

Whether an operator in $L^{1}(G)$ is accretive can be characterized by the
$L^{1}- L^{\infty}$ duality map involving the graph $sgn\in \mathcal{M}$ given by sgn $(x)=\{x/|x|\}$ for
$x\neq 0$ and sgn(0) $=[-1,1]$ . Thus, a general operator $A$ is $L^{1}$-accretive if and
only if for each selection $f_{j}\in A(u_{j}),$ $j=1,2$, there exists a measurable selection

$\sigma\in sgn(u_{1}-u_{2})$ for which $\int_{G}(f_{1}-f_{2})\sigma\geqq 0$ . The B-S Lemma shows a somewhat

stronger condition holds for the operator $A=-\Delta\alpha$ above.
Our first result is that $A+B$ always satisfies the range condition and that

it is m-accretive when an additional hypothesis holds.

THEOREM 1. There is an m-accretive operator $C$ on $L^{1}(G)$ with $C\subset A+B$ ;
hence, $Rg(I+A+B)=L^{1}(G)$ . Let the pajr $\alpha,$ $\beta$ satisfy the single-valuedness
condition:

(SVC) for each $s\in R$ at least one of the two sets $\alpha(s),$ $\beta(s)$ conststs of at
most one point.

Then $A+B$ is accretive; hence, $C=A+B$ .
PROOF. First, let $\gamma\in \mathcal{M}$ with $\gamma\subset\alpha(I+\beta)^{-1}$ . (For example, let $\alpha_{0}$ denote the

minimal section of $\alpha$ ; $\alpha_{0}(x)=y$ where $y\in\alpha(x)$ and $|y|\leqq|z|$ for all $z\in\alpha(x)$ .
Then take $\gamma$ to be an appropriate extension of the monotone function $\alpha_{0}(I+\beta)^{-1}.)$

From [6] it follows that for each $f\in L^{1}(G)$ there exist $z_{f}\in L^{1}(G)$ and $v_{f}\in D(\Delta)$

such that $z_{f}-\Delta v_{f}=f$ and $v_{f}\in\gamma(z_{f})\subset\alpha((I+\beta)^{-1}(z_{f}))a.e$ . in $G$ . Define $u_{f}$
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$=(I+\beta)^{-1}(z_{f})$ and $w_{f}=z_{f}-u_{f}$ and observe that we have $u_{f},$ $w_{f}\in L^{1}(G),$ $v_{f}\in D(\Delta)$

satisfying $u_{f}-\Delta v_{f}+w_{f}=f$ in $L^{1}(G)$ and $v_{f}\in\alpha(u_{f}),$ $w_{f}\in\beta(u_{f})a.e$ . in $G$ . That
is, $(I+A+B)(u_{f})\ni f$ , so we have $Rg(I+A+B)=L^{1}(G)$ . If we repeat the above
for a second $g\in L^{1}(G)$ and obtain $u_{g},$ $w_{g},$ $v_{g}$ as before, then since $\gamma$ and $\beta$ are
in $\mathcal{M}$ we obtain the estimates

$\Vert u_{f}-u_{g}\Vert_{L^{1}}\leqq\Vert u_{f}+w_{f}-u_{g}-w_{g}\Vert_{L^{1}}\leqq\Vert f-g\Vert_{L^{1}}$ .

Hence, the triple $u_{f},$ $v_{f},$ $w_{f}$ depends uniquely on $f$ .
Define the operator $C$ on $L^{1}(G)$ by $C(u)=$ { $-\Delta v_{f}+w_{f}$ : $u=u_{f}$ for some $f\in L^{1}$ }.

Clearly we have $C\subset A+B$ and $Rg(I+C)=L^{1}(G)$ from our construction. We
shall show $C$ is accretive. Thus let $-\Delta v_{1}+w_{1}\in C(u_{1})$ and $-\Delta v_{2}+w_{2}\in C(u_{2})$ in
the preceding notation and define $\sigma\in L^{\infty}(G)$ by

$\sigma(x)=sgn_{0}(u_{1}(x)-u_{2}(x)+v_{1}(x)-v_{2}(x)+w_{1}(x)-w_{2}(x))$ .

To see $C$ is accretive, we need to check that

$\int_{\sigma}(-\Delta(v_{1}-v_{2})+(w_{1}-w_{2}))\sigma dx\geqq 0$ .

The first term is non-negative by the B-S Lemma since $\sigma\in sgn(v_{1}-v_{2})$ ; the
second is non-negative since $\sigma\in sgn(w_{1}-w_{2})$ . Since $\sigma\in sgn(u_{1}-u_{2})$ this shows
$C$ is accretive.

It is easy to check that SVC is equivalent to requiring that $\alpha(I+\beta)^{-1}$ is
accretive, hence, belongs to $\mathcal{M}$ . To show $A+B$ is $L^{1}$-accretive, it suffices to
check that $(I+\epsilon(A+B))^{-1}$ is a contraction for each $\epsilon>0$ . But $\epsilon\alpha(\cdot)$ and $\epsilon\beta(\cdot)$

belong to $\mathcal{M}$ , so we need only check for $\epsilon=1$ , and this follows from the first
part of the proof, with $\gamma=\alpha(I+\beta)^{-1}$ , where we obtained $\Vert u_{f}-u_{g}\Vert_{L^{1}(G)}\leqq\Vert f-g\Vert_{L1(G)}$ .

COROLLARY 1. If the pazr $\alpha,$ $\beta\in \mathcal{M}$ satisfies the SVC, then for each
$u_{0}\in dom(A+B)$ and $f\in L^{1}(\Omega)$ there exists a unique integral solution of the Cauchy
problem(2) in the Banach space $L^{1}(G)$ .

REMARKS. 1. When SVC does not hold it is easy to construct examples
to show $A(I+B)^{-1}\cong-\Delta\alpha(I+\beta)^{-1}$ is not necessarily accretive. If, for example,
$\alpha,$ $\beta\in \mathcal{M}$ satisfy $\alpha(0)\supset[0,1/8]$ and $\beta(0)\supset[0,1]$ , the problem

$w-Av=1$ in $L^{1}(G)$ , $v\in\alpha((I+\beta)^{-1}(w)),$ $G=(O, 1)$

has many solutions, two of which are given by $w_{1}=1,$ $v_{1}=0$ and $w_{2}=0$ ,
$v_{2}(x)=(1/2)(x-x^{2})$ . Note that these two solutions correspond to monotone re-
strictions $\gamma_{1},$ $\gamma_{2}$ of $\alpha(I+\beta)^{-1}$ which satisfy $\gamma_{1}(x)=0$ for $0\leqq x\leqq 1$ and $\gamma_{2}(0)$

$\supset[0,1/8]$ , respectively. Moreover, for each such $\gamma\in \mathcal{M}$ with $\gamma\subset\alpha(I+\beta)_{;}^{-1}$ there
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is a unique solution of the problem. Finally, note that for any solution $w,$ $v$ of
this problem we have $u\equiv(I+\beta)^{-1}(w)=0$ so the above does not imply that $A+B$

is not accretive.
$2^{o}$ . Let $\alpha,$ $\beta,$ $\gamma\in \mathcal{M}$ be given and consider the abstract Cauchy problem in

$L^{1}(G)$ for the equation

$\frac{d}{dt}\gamma(w(t))-\Delta\alpha(w(t))+\beta(w(t))\ni f(t)$ .

This is equivalent to the Cauchy problem for the equation

$\frac{d}{dt}u(t)-\Delta\alpha(\gamma^{-1}(u(t)))+\beta(\gamma^{-1}(u(t)))\ni f(t)$

and we note that $\alpha\circ\gamma^{-1}$ and $\beta 0\gamma^{-1}$ belong to $\mathcal{M}$ when both pairs $\alpha,$ $\gamma$ and $\beta,$ $\gamma$

satisfy the SVC. In that case, the pair $\alpha\circ\gamma^{-1},$ $\beta\circ\gamma^{-1}$ satisfies SVC if it holds
for $\alpha,$ $\beta$ on dom $(\gamma)$ . Thus the Corollary 1 applies in this situation if for each
$s\in R$ at least two of the three sets $\alpha(s),$ $\beta(s),$ $\gamma(s)$ consist of at most one point.

We turn now to $L^{\infty}$ estimates on integral solutions of (1) and $L^{1}$ estimates
on the difference of two solutions. These comprise a Maximum Principle and
an Order Principle, respectively, and will be obtained from corresponding results
for the stationary problem. The stationary results are obtained exactly as in
[6]; the SVC permits the perturbation $\beta$ .

LEMMA 2. If the pair $\alpha,$ $\beta\in \mathcal{M}$ satisfies the SVC and $u=(I+A+B)^{-1}(f)$ ,

then $\Vert u^{+}\Vert_{L}\infty\leqq\Vert f^{+}\Vert_{L}\infty,$ $\Vert u^{-}\Vert_{L}\infty\leqq\Vert f^{-}\Vert_{L}\infty$ , and $\Vert u\Vert_{L}\infty\leqq\Vert f\Vert_{L}\infty$ .

PROOF. It suffices to prove the first estimate. Let $k\geqq 0$ and define
$\sigma(x)=H_{0}(u(x)+v(x)+w(x)-k-\alpha_{0}(k)-\beta_{0}(k))$ where $v,$ $w$ are given as in the
proof of Theorem 1 and “subscript-O” denotes the minimal section of each graph
in $\mathcal{M}$ . Then $\sigma(x)\in H(u(x)-k)$ is immediate; from the SVC we obtain $\sigma(x)$

$\in H(v(x)-\alpha_{0}(k))$ and $\sigma(x)\in H(w(x)-\beta_{0}(k))$ . Thus, multiply the equation

$(u-k)-\Delta v+(w-\beta_{0}(k))+\beta_{0}(k)=(f-k)$ in $L^{1}(G)$

by $\sigma\in L^{\infty}$, integrate over $G$ , and deduce from the B-S Lemma that

$\int_{G}(u^{+}-k)^{+}+\int_{G}(w^{+}-\beta_{0}(k))^{+}\leqq\int_{G}(f^{+}-k)^{+}$ .

Choosing $k=\Vert f^{+}\Vert_{L}\infty$ gives the desired result.

COROLLARY 2. If $\epsilon>0$ and $u+\epsilon(A(u)+B(u)-g)\ni f$ , then

$|1u^{+}\Vert_{L}\infty\leqq\Vert f^{+}\Vert_{L}\infty+\epsilon\Vert g^{+}\Vert_{L}\infty$ .

LEMMA 3. If the pair $\alpha,$ $\beta\in \mathcal{M}$ satisfies the SVC and for each $j=1,2$ we
have $u_{j}=(I+A+B)^{-1}(f_{j})$ , then $\Vert[u_{1}-u_{2}]^{+}\Vert_{L^{1}}+\Vert[w_{1}-w_{2}]^{+}\Vert_{L^{1}}\leqq\Vert[f_{1}-f_{2}]^{+}\Vert_{L^{1}}$ .
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PROOF. After introducing $v_{j},$ $w_{j}$ for $j=1,2$ as before, we define $\sigma(x)$

$=H_{0}(u_{1}(x)+v_{1}(x)+w_{1}(x)-u_{2}(x)-v_{2}(x)-w_{2}(x))$ . Then $\sigma(x)\in H(u_{1}(x)-u_{2}(x))$ is
immediate and the SVC implies $\sigma(x)\in H(v_{1}(x)-v_{2}(x))$ and $\sigma(x)\in H(w_{1}(x)-w_{2}(x))$ .
We subtract the two equations, multiply by $\sigma$ , and obtain the desired estimate
from the B-S Lemma.

COROLLARY 3. If $\epsilon>0$ and $u_{j}+\epsilon(A(u_{j})+B(u_{j})-g_{j})\ni f_{j}$ for $j=1,2$ , then

$\Vert[u_{1}-u_{2}]^{+}\Vert_{L^{1}}\leqq\Vert[f_{1}-f_{2}]^{+}\Vert_{L^{1}}+\epsilon\Vert[g_{1}-g_{2}]^{+}\Vert_{L^{1}}$ .

PROPOSITION 1. Let $\alpha,$ $\beta\in \mathcal{M}$ satisfy the SVC. Then for each $f\in L^{1}(0,$ $T$ ;
$L^{1}(G))$ and $u_{0}\in\overline{dom(A+B)}$ the integral solution of (2) satisfies

$\Vert u(t)^{+}\Vert_{L}\infty\leqq\Vert u_{0}^{+}\Vert_{L}\infty+\int_{0}^{t}\Vert f(s)^{+}\Vert_{L}\infty ds$ , $0\leqq t\leqq T$ .

PROOF. We may assume $f^{+}\in L^{1}(0, T;L^{\infty})$ and let $\{f_{n}\}$ be a sequence in
$L^{1}(0, T;L^{1})$ converging to $f$ and with $\lim_{narrow\infty}f_{n}^{+}=f^{+}$ in $L^{1}(0, T;L^{\infty})$ . If $u_{n}$ is the

solution of (1) with data $f_{n}$ , then $\lim_{narrow\infty}u_{n}=u$ in $C(O, T;L^{1})$ so the desired estimate

will follow if we can establish it for the special case of a step function $f$ as
above.

Consider such a step function given by $f(t)=g_{i}$ , $t_{i-1}\leqq t<t_{i}$ , where
$\{t_{i} : 0\leqq i\leqq n\}$ is a partition of $[0, T]$ . Let $S_{i}$ be the non-linear semigroup
generated by $-A^{i}$ , where $A^{i}(v)\equiv A(v)+B(v)-g_{i},$ $1\leqq i\leqq n$ . Thus we have [7]

$S_{i}(t)(v)= \lim_{jarrow\infty}[I+\frac{t}{j}A^{i}]^{-j}(v)$ . From Corollary 2 we obtain

$\Vert S_{t}(t)(v)^{+}\Vert_{L}\infty\leqq\Vert v^{+}\Vert_{L}\infty+t\Vert g_{i}^{+}\Vert_{L}\infty$ , $t\geqq 0$ .

Since the integral solution is given by $u(t)=S_{i}(t-t_{i-1})u(t_{i- 1})$ , $i_{i-1}\leqq i\leqq t_{i}$ , we
thereby obtain

$\Vert u(i)^{+}\Vert_{L}\infty\leqq\Vert u(t_{t-1})^{+}\Vert_{L}\infty+(t-t_{i- 1})\Vert g_{i}^{+}\Vert_{L}\infty$

$\leqq\Vert u(t_{0})^{+}\Vert_{L}\infty+(t_{1}-t_{0})\Vert g_{1}^{+}\Vert_{L}\infty+(t_{2}-t_{1})\Vert g_{2}^{+}\Vert_{L}\infty+\cdots+(t-t_{i- 1})\Vert gt\Vert_{L}\infty$ ,

and this is the desired estimate.

COROLLARY. The integral solution satisfies the estimates

$\Vert u(t)^{-}\Vert_{L}\infty\leqq\Vert u_{0}^{-}\Vert_{L}\infty+\int_{0}^{t}\Vert f(s)^{-}\Vert_{L}\infty ds$ ,

$\Vert u(t)\Vert_{L}\infty\leqq\Vert u_{0}\Vert_{L}\infty+\int_{0}^{t}\Vert f(s)\Vert_{L}\infty ds$ , $0\leqq t\leqq T$ .

In a similar manner we may use Corollary 3 to prove the following.
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PROPOSITION 2. Let $\alpha,$ $\beta\in \mathcal{M}$ satisfy the SVC. For $j=1,2$, let $f^{j}\in$

$L^{1}(0, T;L^{1}(G)),$ $u_{0}^{j}\in dom(A+B)$ and denote the corresp0nding integral solution of
(1) by $u_{j}$ . Then

$\Vert[u_{1}(t)-u_{2}(t)]^{+}\Vert_{L^{1}}\leqq\Vert[u_{0}^{1}-u_{0}^{2}]^{+}\Vert_{L^{1}}+\int_{0}^{t}\Vert[f^{1}(s)-f^{2}(s)]^{+}\Vert_{L^{1}}ds$ ,

$0\leqq t\leqq T$ .
Finally, we give an $L^{\infty}$ order estimate which is of independent interest

though not of use for the evolution equation.

PROPOSITION 3. Assume $\alpha$ is Lipschitz continuous: $|\alpha(x)-\alpha(y)|\leqq K|x-y|$

for $x,$ $y\in R$. If for $j=1,2$ we have $u_{j}=(I+A+B)^{-1}(f_{j})$ , then

$\Vert[\alpha(u_{1})-\alpha(u_{2})]^{+}\Vert_{L}\infty\leqq K\Vert[f_{1}-f_{2}]^{+}\Vert_{L}\infty$ .
PROOF. With $w_{j}\in\beta(u_{j})$ as above, we have

$(u_{1}-u_{2})-\Delta(\alpha(u_{1})-\alpha(u_{2}))+(w_{1}-w_{2})=f_{1}-f_{2}$ .
Multiply by $H_{0}(\alpha(u_{1})-\alpha(u_{2})-k)$ for any $k\geqq 0$ and integrate to obtain

$\int_{G}(u_{1}-u_{2})H_{0}(\alpha(u_{1})-\alpha(u_{2})-k)$

$\leqq\int_{G}(f_{1}-f_{2})H(\alpha(u_{1})-\alpha(u_{2})-k)$ .

The left side of this inequality is equal to

$\int_{G}|u_{1}-u_{2}|H_{0}(\alpha(u_{1})-\alpha(u_{2})-k)$

$\geqq(1/K)\int_{G}|\alpha(u_{1})-\alpha(u_{2})|H_{0}(\alpha(u_{1})-\alpha(u_{2})-k)$ .

This leads to

$\int_{G}[[\alpha(u_{1})-\alpha(u_{2})]^{+}-k]^{+}\leqq\int_{G}(K[f_{1}-f_{2}]^{+}-k)$

and the result follows by choosing $k=K\Vert[f_{1}-f_{2}]^{+}\Vert_{L}\infty$ .
Note that if in addition $\alpha$ is strongly monotone: $\alpha(x)-\alpha(y)\geqq k(x-y)$ for

$x,$ $y\in R$, where $k>0$ , then we obtain

$\Vert[u_{1}-u_{2}]^{+}\Vert_{L}\infty\leqq(K/k)\Vert[f_{1}-f_{2}]^{+}\Vert_{L}\infty$ .
Since $-\Delta\alpha$ is not accretive in $L^{p}(G)$ for $p>1$ , unless $\alpha$ is linear so $K=k$ , we
can not expect much more.
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3. The strong solution.

The Laplace operator -A is the Riesz isomorphism of the Hilbert space
$H_{0}^{1}(G)\equiv W_{0}^{1.2}(G)$ onto its dual space $H^{-1}(G)$ . We shall give sufficient conditions
for the Cauchy problem (2) to have a unique strong solution in $H^{-1}(G)$ , even
though $B$ is not accretive on $H^{-1}(G)$ , and this strong solution is the integral
solution in $L^{1}(G)$ . Thus, (2) is consistent on $L^{1}$ and $H^{-1}$ ; recall that $L^{1}\subset H^{-1}$

only if $n\leqq 2$ . The objective is to show the $L^{1}$ integral solution of (2) does
satisfy the original partial differential equation (1.a) in the sense of distributions.

A strong solution of (2) in the Hilbert space $H^{-1}$ is an absolutely continuous
$u:[0, T]arrow H^{-1}(G)$ , therefore differentiable at $a.e$ . $t\in[0, T]$ , which verifies
$u(t)\in dom(A+B)$ and (2.a) at $a.e$ . $t\in[0, T]$ .

THEOREM 2. Let $\alpha,$
$\beta$ be given in $\mathcal{M}$ with $Rg(\alpha)=R$ and $\beta$ a continuous

linearly-bounded function. Define $D\equiv\{w\in L^{1}\cap H^{-1}$ : there is a $v\in H_{0}^{1}$ with $\Delta v\in L^{1}$

and $v(x)\in\alpha(w(x))a.e$ . $x\in G$ } and let $u_{0}$ be given in the closure of $D$ in $L^{1}\cap H^{-1}$ .
Let $f\in L^{1}(\Omega)$ and assume the $L^{1}$-integral solution $u$ of (2) satisfies $f-B(u)\in$

$L^{2}(0, T;H^{-1}(G))$ . Then $u$ is a strong solution in $H^{-1}(G)$ of
(3) $u’(t)+A(u(t))\ni f(t)-B(u(t))$ , $a.e$ . $t\in(O, T)$ ,

and thereby satisfies (1. a) in $\mathcal{D}^{*}(\Omega)$ .

REMARKS. 3. Suppose $u_{0}\in L^{\infty}(G)$ and $f\in L^{1}(0, T;L^{\infty}(G))$ . Then we may

delete the hypotheses that $\alpha$ is surjective and that $\beta$ is linearly bounded. That
is, Proposition 1 shows $k\equiv\Vert u\Vert_{L^{\infty}(\Omega)}$ is finite, so by the standard device of
altering $\alpha$ and $\beta$ off the interval $[-k, k]$ these hypotheses are obtained auto-
matically. The condition on $f-B(u)$ then holds if $f\in L^{2}(0, T;H^{-1}(G))$ .

LEMMA 4. Assume $A$ is m-accretive in the Banach space $X,$ $B$ is continuous
and accretive on $X,$ $f\in L^{1}(0, T;X)$ and $u_{0}\in\overline{dom(A)}$ . Then there exists a unique
integral solution of (3) with $u(O)=u_{0}$ . That is,

$\frac{1}{2}\Vert u(t)-x\Vert^{2}\leqq\frac{1}{2}\Vert u(s)-x\Vert^{2}+\int_{s}^{t}\langle f(\tau)-B(u(\tau))-y, u(\tau)-x\rangle d\tau$

for each $y\in A(x)$ and $0\leqq s\leqq t\leqq T$ .
The proof of Lemma 4 follows by a modification of the main result of [2];

also see [1, pp. 152-156]. It is necessary only to include $f$ . Since $B$ is accretive
it is immediate that this integral solution of (3) is the integral solution of (2).

Define the operator $A_{1}$ on $H^{-1}(G)$ by $f\in A_{1}(u)$ iff $f\in H^{-1},$ $u\in H^{-1}\cap L^{1}$ and
there exists a (unique) $v\in H_{0}^{1}$ such that $v\in\alpha(u)$ and $-\Delta v=f$ . Then $A_{1}$ is m-
accretive, in fact, a subgradient on the Hilbert space $H^{-1}[4]$ and $dom(A_{1})=D$ .

LEMMA 5. For each $\epsilon>0,$ $(I+\epsilon A)^{-1}=(I+\epsilon A_{1})^{-1}$ on $L^{1}\cap H^{-1}$ .
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PROOF. Observe first that $A_{1}$ restricted to $L^{1}$ is just $A\cap A_{1}$ . That is, if
$A_{1}(u)\ni g\in L^{1}\cap H^{-1}$ , then $g\in A(u)$ follows since $H_{0}^{1}\subset W_{0}^{1,1}$ . Thus, if $g\in L^{1}\cap H^{-1}$

and $u_{0}=(I+\epsilon A_{1})^{-1}g$ , then we have $u_{0}=(I+\epsilon A)^{-1}g$ .
In order to prove Theorem 2 we let $u$ be the integral solution of (2) in $L^{1}$ .

Since $B$ is continuous, Lemma 4 implies that $u$ is tbe integral solution in $L^{1}$ of
(3). As such, it is obtained as the limit in $C(O, T;L^{1}(G))$ of the strong solutions
$\{u_{\epsilon}\}$ of

(4.a) $u_{\epsilon}’(t)+A_{\epsilon}(u_{\epsilon}(t))=f(t)-B(u(t))$ , $a.e$ . $t\in[0, T]$

(4. b) $u_{\epsilon}(0)=u_{0}$

where the Lipschitz function $A_{\text{\’{e}}}=(1/\epsilon)[I-(I+\epsilon A)^{-1}]$ is the Yosida approximation
of $A$ for each $\epsilon>0$ . Lemma 5 shows that $A_{\epsilon}$ is also the Yosida approximation
of $A_{1}$ in $H^{-1}$ . Furthermore, since $A_{1}$ is a subgradient it is known [4] that the
Cauchy problem for (3) has a unique strong solution which is obtained as the
limit in $C(O, T;H^{-1}(G))$ of the solutions $\{u_{\epsilon}\}$ of (4). By the uniqueness of
limits, $u$ is that strong solution.

COROLLARY. If $\alpha,$ $\beta,$ $u_{0}$ and $f$ are given as above, then there exists at most
one strong solution $u$ of (3) in $H^{-1}$ with $u(O)=u_{0},$ $f-B(u)\in L^{2}(0, T;H^{-1})$ and
$B(u)\in L^{1}(\Omega)$ .

PROOF. If $u$ is such a strong solution then it is the limit in $C(O, T;H^{-1})$

of solutions $u_{\epsilon}$ of (4). Since $f-B(u)\in L^{1}(\Omega)$ we have $u= \lim_{\epsilonarrow 0}u_{\epsilon}$ also in

$C(O, T;L^{1}(G))$ and $u$ is the $L^{1}$-integral solution of (3) with $u(O)=u_{0}$ . Since $B$

is $L^{1}$-accretive, $u$ is the integral solution of (2).

REMARKS. 4’. Theorem 2 holds when $\beta$ is Lipschitz but not necessarily
monotone. By a standard fixed-point construction in $C(O, T;L^{1}(G))$ there exists
a unique integral solution of (3) with $u(O)=u_{0}$ . Then as above it follows that
$u$ is a strong $H^{-1}$ solution. The uniqueness of the strong $H^{-1}$ solution follows
as in the Corollary.

5. Let $K$ be the Lipschitz constant for $\beta$ , so $\beta+KI$ is monotone. Thus there
is a unique $L^{1}$ integral solution of the Cauchy problem for

$u’(t)+(A+B+K)u(t)\ni f(t)+Ku(t)$ , $0\leqq t\leqq T$ .

Let $\tilde{u}$ be the integral solution of the Cauchy problem for

$\tilde{u}’(t)+A(\tilde{u}(t))\ni f(t)-B(u(t))$ , $0\leqq r\leqq\tau$ ,

and therefore, by accretiveness of $B+KI$ , for

$\tilde{u}’(t)+(A+B+K)\tilde{u}(t)\ni f(t)+(B+K)(\tilde{u}(t))-B(u(t))$ , $0\leqq t\leqq T$ .
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Thus we obtain the estimate

$\Vert u(t)-\tilde{u}(t)\Vert_{L^{1}}^{2}\leqq 2\int_{0}^{t}\langle(B+K)u(\tau)-(B+K)\tilde{u}(\tau), u(\tau)-\tilde{u}(\tau)\rangle d\tau$

which implies $u=\tilde{u}$ , so $u$ is an integral solution of (3). This argument with
$K=0$ in the general setting of Lemma 4 shows when $B$ is accretive and Lipschitz
that integral solutions of (2.a) and (3) are equivalent.

$6^{o}$ . Let $\alpha,$ $\beta,$ $\gamma\in \mathcal{M}$ and consider the Dirichlet-Cauchy problem for the
equation

$\frac{d}{dt}\gamma(w(t))-\Delta\alpha(w(t))+\beta(w(t))\ni f(t)$ .

We have shown it is well-posed in $L^{1}$ if all three pairs $(\alpha, \beta),$ $(\alpha, \gamma)$ and $(\beta, \gamma)$

satisfy the SVC. It has a strong solution in $H^{-1}$ if, in addition, $Rg(\alpha\circ\gamma^{-1})=R$

and $\beta\circ\gamma^{-1}$ is a continuous linearly-bounded function.
Such problems were resolved in [12] in the form

$\frac{d}{dt}\gamma(\alpha^{-1}(u(t)))-\Delta u+\beta(\alpha^{-1}(u(t)))\ni f(t)$

with operator coefficients being monotone in the $H_{0}^{1}- H^{-1}$ duality. To apply
these results we assume the pairs $(\alpha, \beta)$ and $(\alpha, \gamma)$ satisfy the SVC and that
the compositions $r^{Q}\alpha^{-1}$ and $\beta\circ\alpha^{-1}$ are linearly-bounded, hence their domains are
all of $R$ . These hypotheses are not comparable, even with $\gamma=identity$ , but they
are very similar.

EXAMPLE. We consider the Cauchy-Dirichlet problem (1) with $\beta=0$, $f=0$,
$u_{0}(x)\equiv 1$ for $0<x<1$ , and $\alpha$ given by $\alpha(0)=(-\infty, 1$], $\alpha(x)=\{1\}$ for $x>0$ . The
existence of a unique integral (or semigroup) solution $u$ in $L^{1}$ is immediate from
$[6, 7]$ as well as Corollary 1. From Proposition 1 we have $0\leqq u(x, i)\leqq 1a.e$ .
in $\Omega$ , and from Theorem 2 (see Remark 3) it follows that the pair $u,$ $v$ satisfies
(1) in $\mathcal{D}^{*}(\Omega)$ . It is easy to verify that the pair given for $0<t<1/8$ by

$u(x, t)=H(x-\sqrt{2t})-H(x-1+\sqrt{2t})$

$v(x, t)= \min\{x/\sqrt{2t}, 1, (1-x)/\sqrt{2t}\}$

and $u=v=0$ for $t>1/8$ is the strong $H^{-1}$ solution, hence, the $L^{1}$ solution.
For this example, we shall compute the solution directly from the semigroup

formula $u(t)= \lim_{narrow\infty}u_{n}(i)$ , $u_{n}(t)=(I+(t/n)A)^{-n}u_{0}$ . Note first that the resolvent

identity, $u=(I+\epsilon A)^{-1}w$ for $\epsilon>0$ , is characterized by

$u-\epsilon v_{xx}=w$ , $v\in\alpha(u)$ , $v\in W_{0}^{1.1}$ .
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The inclusion of $[u, v]$ in $\alpha$ is equivalent to

$1-v\geqq 0$ , $u\geqq 0$ and $u(1-v)=0$ ,

so the resolvent formula is an elliptic variational inequality for $v$ :

$v\in W_{0}^{1.1}$ , $1-v\geqq 0$ , $w+\epsilon v_{xx}\geqq 0$ and $(1-v)(w+\epsilon v_{xx})=0$ .

When $w$ is of the special form $w(x)=H(x-x_{n-1})H(1-x_{n-1}-x)$ for some
$0\leqq x_{n-1}\leqq 1/2$ we compute directly the solution $v_{n}$ as that function symmetric on
$(0,1)$ given by

$(2x/(\sqrt{x_{n-1}^{2}+2\epsilon}+x_{n- 1})$ , $0\leqq x\leqq x_{n- 1}$ ,

$v_{n}(x)=|1-(x-x_{n})^{2}/2\epsilon 1$

$x_{n- 1}\leqq x\leqq x_{n}$ ,

$x_{n}\leqq x\leqq 1/2$ ,

where $x_{n}=\sqrt{x_{n-1}^{2}+2\epsilon}=\sqrt{2n\epsilon}$ . From the variational inequality we obtain
$u(x)=H(x-x_{n})H(1-x_{n}-x)$ . Thus, the semigroup approximation $u_{n}(t)$ is exactly
the solution $u$ , the free boundary of the approximating problem is exactly that
of (1), and the corresponding approximation $v_{n}$ of $v$ is smoother. The correspond-
ing finite-time-difference approximation leads to a sequence of elliptic variational
inequalities and provides a very efficient numerical procedure for (1).

The Yosida approximation (4) converges in $C(O, T;L^{1}(G)\cap H^{-1}(G))$ to the
solution of (1). The corresponding solutions are characterized by the integral
equation

$u_{\epsilon}(t)=e^{-t/\epsilon}+(1/ \epsilon)\int_{0}^{t}e^{(s- t)/\epsilon}(I+\epsilon A)^{-1}(u(s))ds$ .

The second and major term is just $(1-e^{-i/\epsilon})$ times a weighted average of
$\{(I+\epsilon A)^{-1}(u(s)):0\leqq s\leqq t\}$ , heavily weighted on $t-\epsilon<s<t$ . We shall discuss
elsewhere the characterization of (4) as a free-boundary problem for a “pseudo-
parabolic” partial differential equation.
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