On the structure of polarized manifolds with total deficiency one, III

By Takao FUJITA

(Received Jan. 8, 1983)

Introduction.

In this article we will study polarized manifolds (M, L) with $d(M, L)=$ $\Delta(M, L)=1$, as a continuation of [F4]. But the arguments are completely independent of part II of it, and little knowledge of part I is required here. Moreover we consider here positive characteristic cases too, with the help of [F5].

In $\S 13$, the first section of this part III, we study the structure of the rational mapping defined by $|L|$. It follows that $g=g(M, L) \geqq 1$. In $\S 14$, assuming $\operatorname{char}(\mathbb{R}) \neq 2$ for the ground field \mathbb{R} from this time on throughout in this paper, we establish a precise structure theorem for (M, L) with $g=1$. When $g \geqq 2$, in general, we do not have so precise a result as in the case $g=1$. So we consider the case in which any curve $C=D_{1} \cap \cdots \cap D_{n-1}$ obtained by taking general members D_{1}, \cdots, D_{n-1} of $|L|$ successively is a hyperelliptic curve. Such (M, L) will be said to be sectionally hyperelliptic (note that this is always the case when $g=2$). In $\S 15$, they are classified into three types $(-),(\infty)$ and $(+)$. Precise structures of them are described in $\S 16, \S 17$ and $\S 18$ respectively. In particular, it turns out that $n=\operatorname{dim} M=2$ in case of type $(+), n \leqq g+1$ in case of type (∞), and (M, L) is a weighted hypersurface of degree $4 g+2$ in $\boldsymbol{P}(2 g+1,2,1, \cdots, 1)$ in case of type (-). In any case M is simply connected if $\Omega=\boldsymbol{C}$. Moreover, all the (M, L) of the same type $((-),(\infty)$ or $(+))$ and with the same n and g form a single deformation family. It is easy to calculate the number of moduli of it.

Thus, when char $(\Re) \neq 2$, the classification theory of polarized manifolds (M, L) with $\Delta(M, L)=1$ is complete except the case $d(M, L)=1, g(M, L) \geqq 3$ and (M, L) is not sectionally hyperelliptic. In particular, all the Del Pezzo manifolds are completely classified.

This work was almost completed when the author was a Miller Fellow at the University of California, Berkeley. He would like to express his hearty thanks to people there, especially to Professors R. Hartshorne and A. Ogus.

§ 13. General case.

The notation in this part III is the same as in [F5], and is almost the same as in [F4] except that the ground field Ω may be of any characteristic. We will study the structure of polarized manifolds (M, L) such that $d(M, L)=$ $\Delta(M, L)=1, n=\operatorname{dim} M \geqq 2$ and $g(M, L)=g$.
(13.1) Since $h^{0}(M, L)=n, \rho_{|L|}$ is a rational mapping to $\boldsymbol{P}^{n-1}=P$. So $X=$ $\mathrm{Bs}|L| \neq \varnothing$. On the other hand, $\operatorname{dim} X \leqq 0$ by [F5; (2.1)]. Therefore, if D_{1}, D_{2}, \cdots, D_{n} are general members of $|L|$ and if we let $V_{i}=\bigcap_{j>i}^{n} D_{j}$, then $\operatorname{dim} V_{i}=i$ and $\left\{V_{i}\right\}$ give a ladder of (M, L). Of course $X=V_{0}$, which is a simple point on M, because $D_{1} \cdots D_{n}=d(M, L)=1$. Therefore D_{j} 's meet transversally at the point X. In particular, V_{i} is non-singular at X. Hence, if $\operatorname{char}(\Re)=0$, we can take $\left\{D_{j}\right\}$ so that V_{i} 's are non-singular by Bertini's theorem.
(13.2) By virtue of $[\mathbf{F} 5 ;(4.16)]$, we infer that $g \geqq 1$. So $\left\{V_{i}\right\}$ must be a regular ladder of (M, L) by [F5; (3.6)].
(13.3) Let $\pi: M^{*} \rightarrow M$ be the blowing-up with center X and let E be the exceptional divisor lying over X. Let H_{j} be the proper transform of D_{j} on M^{*}. Then, $H_{1} \cap \cdots \cap H_{n}=\varnothing$ by (13.1). So Bs $\left|\pi^{*} L-E\right|=\varnothing$. Thus we get a morphism $f=\rho_{\left|\pi^{*} L-E\right|}: M^{*} \rightarrow P \cong \boldsymbol{P}_{\xi}^{n-1}$. Clearly E is a section of f, and M^{*} is identified with the graph of $\rho_{|L| \cdot}$
(13.4) For every point x on P, the fiber $C_{x}=f^{-1}(x)$ is an irreducible reduced curve. Indeed, the mapping $C_{x} \rightarrow \pi\left(C_{x}\right)$ is a finite morphism since $C_{x} \cap E$ is a point. So L is ample on C_{x}. On the other hand, $L-E=H_{\xi}=0$ in $\operatorname{Pic}\left(C_{x}\right)$. Hence the restriction of E to C_{x} is an ample divisor. So C_{x} is an irreducible reduced curve, because $E C_{x}=1$.

Consequently f is flat.
(13.5) We easily see that V_{1} is isomorphic to $H_{2} \cap \cdots \cap H_{n}$, which is a fiber of f. We have $h^{1}\left(V_{1}, O\right)=g\left(V_{1}, L\right)=g$. Since f is flat, every fiber of f is a curve of arithmetic genus g.
(13.6) Combining the preceding observations, we obtain :

THEOREM. Let (M, L) be a polarized manifold with $n=\operatorname{dim} M, d(M, L)=$ $\Delta(M, L)=1$. Then $X=\mathrm{Bs}|L|$ consists of one simple point. Let $\pi: M^{*} \rightarrow M$ be the blowing-up of M with center X and let E be the exceptional divisor over X. Then $\mathrm{Bs}\left|\pi^{*} L-E\right|=\varnothing$. This linear system defines a flat morphism from M^{*} onto $P \cong \boldsymbol{P}_{\xi}^{n^{-1}}$. E is a section of f, and every fiber of f is an irreducible reduced curve of arithmetic genus $g=g(M, L) \geqq 1$.

REMARK. If char $(\Re)=0$, any general fiber of f is smooth by Bertini's theorem.
(13.7) Conversely, suppose that there is a flat morphism $f: N^{*} \rightarrow P \cong \boldsymbol{P}_{\hat{\delta}}^{n-1}$
which satisfies the following conditions:
a) Every fiber of f is an irreducible reduced curve of arithmetic genus $g \geqq 1$.
b) There exists a section E of f, such that E can be blown down to a smooth point on another manifold N.

Then we get a polarized manifold (N, L) with $d(N, L)=\Delta(N, L)=1$ and $g(N, L)=g$ in the following way.

By the condition b), we have $E \cong P$ and $[E]_{E}=-H$, where H is the hyperplane section bundle $\mathcal{O}(1)$. Set $L^{*}=f^{*} H_{\xi}+E \in \operatorname{Pic}\left(N^{*}\right)$. Then $L_{E}^{*}=0$. So L^{*} is the pull-back of a line bundle on N, which is denoted by L. We have $L^{n}-1$ $=\left(L^{*}-E\right)^{n}=0$ and $h^{0}(N, L)=h^{0}\left(N^{*}, L^{*}\right)=h^{0}\left(N^{*}, f^{*} H\right)=n$ because $g \geqq 1$ implies that E is a fixed part of $\left|L^{*}\right|$. So $d(N, L)=\Delta(N, L)=1$. It is easy to see that (N, L) has a ladder $\left\{V_{j}\right\}$ such that V_{1} is isomorphic to a fiber of f. Therefore $g(N, L)=g\left(V_{1}\right)=g$. Now, it is enough to show the ampleness of L.

Similarly as in [F3; (5.7)], it suffices to prove that L_{Z} is strictly effective for any subvariety Z of N^{*} which is not contained in E. Clearly $L_{z}=H_{Z}+E_{Z}$ is effective. If it is not strict, we must have $H_{z}=E_{Z}=0$. The former implies that Z is (contained in) a fiber of f, which is impossible if $E_{Z}=0$ because E is a section of f. Thus L_{Z} is strictly effective, as required.

Remark. Similar construction is possible without the assumption $g \geqq 1$. If $g=0$, we have $h^{0}(N, L)>n$ and $\Delta \leqq 0$. Hence ($\left.N, L\right) \cong\left(\boldsymbol{P}^{n}, \mathcal{O}(1)\right.$).
§ 14. The case $g=1$.
(14.1) Let the notation be as in (13.6). In this section we make a detailed analysis of the case $g=1$, assuming $\operatorname{char}(\Re) \neq 2$. As we saw in [F5; (5.7)], (M, L) is a Del Pezzo manifold, while we do not need this result in the sequel.
(14.2) Let $\mathscr{D}=\mathcal{O}_{M^{*}}(2 L)$ and set $\mathscr{F}=f_{*} \mathscr{D}$. Since every fiber C_{x} of f over x $\in P$ is an irreducible reduced curve of arithmetic genus one, the restriction \mathscr{D}_{x} of \mathscr{D} to C_{x} is generated by global sections and $h^{0}\left(C_{x}, \mathscr{D}_{x}\right)=2$. Therefore \mathscr{T} is locally free of rank two, and the natural homomorphism $f^{*} \mathscr{F} \rightarrow \mathscr{D}$ is surjective. This gives a morphism $\rho: M^{*} \rightarrow \boldsymbol{P}(\mathscr{F})$ such that $\rho^{*} O(1)=\mathscr{D} . \quad V=\boldsymbol{P}(\mathscr{F})$ is a \boldsymbol{P}^{1} bundle over $P . \quad \rho$ is a finite morphism of degree two, because so is $\rho_{x}: C_{x} \rightarrow V_{x}$ $\cong \boldsymbol{P}^{1}$ for every $x \in P$. By virtue of $[\mathbf{F 4} ;(2.3)]$ and $[\mathbf{F 6} ;(2.6)]$, we infer that ρ makes M^{*} a double covering of V with branch locus B, which is a nonsingular divisor on V. So $M^{*} \cong R_{B}(V)$ in the notation of [F4] and [F6],
(14.3) E is a component of the ramification divisor R of ρ. Indeed, for every $x \in P, E_{x}=E \cap C_{x}$ is a ramification point of ρ_{x}, because ρ_{x} is the rational mapping defined by $\left|2 L_{x}\right|$ and $L_{x}=E_{x}$ in $\operatorname{Pic}\left(C_{x}\right)$. Hence $S=\rho(E)$ is a component of B. Note that S is a section of $p: V \rightarrow P$, because E is a section of f.
(14.4) Let H_{ζ} be the tautological line bundle $\mathcal{O}(1)$ on $V=\boldsymbol{P}(\mathscr{F})$. Then $\left[H_{\zeta}\right]_{s}$
$=0$ since $2 L_{E}=0, \rho^{*} H_{\zeta}=2 L$ and $E \cong S$. So, taking p_{*} of $0 \rightarrow \mathcal{O}_{V}\left[H_{\zeta}-S\right] \rightarrow \mathcal{O}_{V}\left[H_{\zeta}\right]$ $\rightarrow \mathcal{O}_{S}\left[H_{\zeta}\right] \rightarrow 0$, we get an exact sequence $0 \rightarrow \mathcal{O}_{P}\left[t H_{\xi}\right] \rightarrow \mathscr{G} \rightarrow \mathcal{O}_{P} \rightarrow 0$ on P, where t is an integer. The normal bundle of S in V is $H_{\zeta}-t H_{\xi}=\Theta_{S}(-t)$. On the other hand, we have $[B]_{s} \cong[2 R]_{E}=[2 E]_{E}=\mathcal{O}(-2)$. Thus we get $t=2$. Hence the above exact sequence on P splits for any $n \geqq 2$. In particular $\mathscr{T} \cong 2 H_{\xi} \oplus[0]$ and $S \in\left|H_{\zeta}-2 H_{\xi}\right|$.
(14.5) Set $B_{2}=B-S$ and $\left[B_{2}\right]=a H_{\zeta}+b H_{\xi}$ in $\operatorname{Pic}(V) . \quad B_{2} \cap S=\varnothing$ because B is non-singular. This implies $b=0$. We have also $a=B_{2} V_{x}=3$, because B_{x} is the branch locus of ρ_{x}. Thus we have $B_{2} \in\left|3 H_{\zeta}\right|$. Moreover, we easily see $H^{1}\left(V,-3 H_{\zeta}\right)=0$, which implies that B_{2} is connected.
(14.6) The preceding arguments altogether prove the following

Theorem. Let things be as in (13.6) and suppose in addition that $g=1$ and $\operatorname{char}(\Omega) \neq 2$. Then M^{*} is a double branched covering of $V=\boldsymbol{P}\left(2 H_{\xi} \oplus[0]\right)$. Let H_{ζ} be the tautological line bundle on V. Then the branch locus B of $\rho: M^{*} \rightarrow V$ consists of two connected components B_{1} and B_{2}, where B_{1} is the unique member S of $\left|H_{\zeta}-2 H_{\xi}\right|$ and B_{2} is a non-singular member of $\left|3 H_{\zeta}\right|$. Furthermore, S is the image of E via the morphism ρ, and is a section of $p: V \rightarrow P \cong \boldsymbol{P}_{\xi}^{n-1}$.
(14.7) Sectionally hyperelliptic polarized manifolds of type (-) defined in the next section turn out to have similar structures as above. So, further investigations of such (M, L) will be done in $\S 16$.

§ 15. Sectionally hyperelliptic cases.

(15.1) Let things be as in (13.6) and assume further that $g \geqq 2$. Let ω be the canonical dualizing sheaf of M^{*} and set $\mathfrak{I}_{t}=f_{*}\left(\omega^{\otimes t}\right)$ for each positive integer t. The restriction of ω to every fiber C_{x} of f over $x \in P$ is the dualizing sheaf of C_{x}. Hence $h^{0}\left(C_{x}, \omega_{x}^{\otimes t}\right)$ is independent of x. This implies that \mathscr{I}_{t} is a locally free sheaf on P. Furthermore, since ω_{x} is generated by global sections, the natural homomorphism $f * \mathscr{I}_{1} \rightarrow \omega$ is surjective. This induces a morphism $\rho: M^{*}$ $\rightarrow \boldsymbol{P}\left(\mathscr{I}_{1}\right)$ such that the restriction ρ_{x} of ρ to C_{x} is the canonical mapping. Let V be the image of ρ, and we regard ρ as a mapping onto V.
(15.2) Since $g\left(C_{x}\right)=g \geqq 2$ and ρ_{x} is the canonical mapping, the following conditions are equivalent to each other (cf., e.g., [F6; (1.4)]).
a) $V_{x} \cong \boldsymbol{P}^{1}$ and ρ_{x} is a double covering.
b) ω_{x} is not very ample.
c) The natural mapping $\mathrm{S}^{3}\left(H^{0}\left(C_{x}, \omega_{x}\right)\right) \rightarrow H^{0}\left(C_{x}, \omega_{x}^{\otimes 3}\right)$ is not surjective.
d) $x \in \operatorname{Supp}\left(\operatorname{Coker}\left(\mathrm{~S}^{3} \mathscr{I}_{1} \rightarrow \mathscr{I}_{3}\right)\right.$).

By the condition d), the set of points on P satisfying these conditions is Zariski closed.
(15.3) Definition. (M, L) is said to be sectionally hyperelliptic if any
general fiber of f satisfies the conditions in (15.2). If so, every fiber C_{x} of f is a hyperelliptic curve (which may be singular).

From now on, we suppose (M, L) to be sectionally hyperelliptic.
(15.4) V_{x} is a Veronese curve of degree $g-1$ embedded in $\boldsymbol{P}\left(\mathscr{I}_{1}\right)_{x} \cong \boldsymbol{P}^{g-1}$ for every $x \in P$. Hence $p: V \rightarrow P$ is a \boldsymbol{P}^{1}-bundle. $\rho: M^{*} \rightarrow V$ is a finite morphism of degree two, since so is ρ_{x} for every x.
(15.5) Let S be the image $\rho(E)$ of E in V. Then S is a section of p. Set $[S]_{s}=\mathcal{O}(-e)$ for some integer e. Then the exact sequence $0 \rightarrow \mathcal{O}_{V}\left[e H_{\xi}\right] \rightarrow \mathcal{O}_{V}[S$ $\left.+e H_{\xi}\right] \rightarrow \mathcal{O}_{S}\left[S+e H_{\xi}\right] \rightarrow 0$ descends via p_{*} to the exact sequence $0 \rightarrow \mathcal{O}_{P}(e) \rightarrow \mathcal{E} \rightarrow$ $\mathcal{O}_{P} \rightarrow 0$, where \mathcal{E} is the locally free sheaf $p_{*} \mathcal{O}_{V}\left[S+e H_{\xi}\right]$ of rank two on P. It is easy to see $V \cong \boldsymbol{P}(\mathcal{E})$, and $S \in\left|H_{\zeta}-e H_{\xi}\right|$, where H_{ζ} is the tautological line bundle on $\boldsymbol{P}(\mathcal{E})$.
(15.6) From now on, we assume $\operatorname{char}(\Omega) \neq 2$ throughout in this article. Then, by virtue of $\left[\mathbf{F 6} ;\right.$ (2.6)] (or $[\mathbf{F 4} ;(2.3)]$ in case $\mathscr{\Omega}=\boldsymbol{C}$), we have $M^{*} \cong R_{B}(V)$ for some non-singular divisor B on V. Let i be the involution of M^{*} such that $V \cong M^{*} / i$. Then there are following three possibilities:
a) $i(E)=E$.
b) $i(E) \cap E=\varnothing$.
c) $i(E) \neq E$ and $i(E) \cap E \neq \varnothing$.
(15.7) Definition. A sectionally hyperelliptic polarized manifold (M, L) is said to be of type (-) (resp. (∞), (+)) if the above condition a) (resp. b), c)) is satisfied.
§ 16. Type (-).
We employ the same notation as in $\S 15$ and (M, L) is assumed to be sectionally hyperelliptic of type (-).
(16.1) The restriction of the involution i to E is the identity map because $f=f \circ i$ and E is a section of f. Hence E is a component of the ramification locus of ρ, and $S=\rho(E)$ is a component of the branch locus B of ρ. By the same argument as in (14.4), we infer $e=2, V \cong \boldsymbol{P}\left(2 H_{\xi} \oplus[0]\right)$ and $S \in\left|H_{\zeta}-2 H_{\xi}\right|$. Set $B=S+B_{2}$. Then, as in (14.5), we see $B_{2} \in\left|(2 g+1) H_{\zeta}\right|$ and B_{2} is connected. Thus we obtain:
(16.2) Theorem. Let (M, L) be a polarized manifold with $n=\operatorname{dim} M \geqq 2$, $d(M, L)=\Delta(M, L)=1$, and let $f: M^{*} \rightarrow P \cong \boldsymbol{P}_{\xi}^{n-1}$ be as in (13.6). Suppose in addition that $\operatorname{char}(\Re) \neq 2$ and that (M, L) is sectionally hyperelliptic of type (-) with $g(M, L)=g$. Then $M^{*} \cong R_{B}(V)$, where V is the \boldsymbol{P}^{1}-bundle $\boldsymbol{P}\left(2 H_{\xi} \oplus[0]\right)$ over $P, B=B_{1}+B_{2}$ is a divisor on V, B_{1} is the unique member of $\left|H_{\zeta}-2 H_{\xi}\right|$ with H_{ζ} being the tautological line bundle on V, and B_{2} is a non-singular connected member of $\left|(2 g+1) H_{\zeta}\right|$. Moreover, B_{1} is the image of E via $\rho: M^{*} \rightarrow V$.
(16.3) Because of the similarity of (14.6) and (16.2), (M, L) may be said to be of type (-) when $g(M, L)=1$. So the results in this section are valid in case $g=1$ too.
(16.4) Theorem. Let things be as in (16.2) or (14.6). Then $\mathrm{Bs}|2 L|=\varnothing$ and the image $W=\rho_{12 L}(M)$ is a projective cone over a Veronese manifold $\left(\boldsymbol{P}^{n-1}, 2 H\right)$.

Proof. We have $\rho^{*} H_{\xi}=\rho^{*}\left(S+2 H_{\xi}\right)=2 E+2 H_{\xi}=2 L$ in $\operatorname{Pic}\left(M^{*}\right)$. Since $\mathrm{Bs}\left|H_{\zeta}\right|=\varnothing$ on V, we have $\mathrm{Bs}|2 L|=\varnothing$ on M^{*}, which implies Bs $|2 L|=\varnothing$ on M. Moreover, because $H^{0}(M, 2 L) \cong H^{0}\left(M^{*}, 2 L\right) \cong H^{0}\left(V, H_{\zeta}\right), W$ is the image of V by the rational mapping defined by $\left|H_{\zeta}\right|$. This is nothing but the contraction of S to a normal point, and the resulting variety is the cone over $\left(\boldsymbol{P}_{\xi}^{n-1}, 2 H_{\xi}\right)$.
(16.5) In the above situation, $M \rightarrow W$ is a finite morphism of degree two which is ramified over the image D of B_{2} via the contraction $V \rightarrow W$ and over the vertex of W.

Conversely, given any such smooth divisor D on W, we can construct a polarized manifold (M, L) with $d(M, L)=\Delta(M, L)=1$ which is sectionally hyperelliptic of type (-). Indeed, as in [F6; (4.5)], we lift D to a divisor B_{2} on V and set $B=S+B_{2}$. Let $M^{*}=R_{B}(V)$ and let E be the component of the ramification locus lying over S. Then we can apply the method in (13.7).
(16.6) By the above observation we see that the results in [F6; (4.6)] apply in the present case too. In particular we have:

1) $K^{M}=(2 g-n-1) L$.
2) $H^{q}(M, t L)=0$ for any $t \in \boldsymbol{Z}, 0<q<n$.
3) For any general member Y of $|2 L|, Y$ is a double covering of \boldsymbol{P}^{n-1} with branch locus being a smooth hypersurface of degree $4 g+2$ and L_{Y} is the pull-back of the hyperplane bundle of P^{n-1}.
4) $b_{j}(M)=b_{j}\left(\boldsymbol{P}^{n}\right)$ if $j<n$. Moreover, if $\mathbb{R}=\boldsymbol{C}, H^{2 i}(M ; \boldsymbol{Z})$ is generated by $c_{1}(L)^{i}$ if $2 i<n$.
5) $\operatorname{Pic}(M)$ is generated by L if $n \geqq 3$.
6) $\pi_{1}^{(p)}(M)=\{1\}$ if $p=\operatorname{char}(\Re)>0$. When $\Omega=\boldsymbol{C}, M$ is topologically simply connected.
(16.7) Theorem. Let (M, L) be a polarized manifold with $d(M, L)=\Delta(M, L)$ $=1$. Then the following conditions are equivalent to each other.
a) (M, L) is sectionally hyperelliptic of type (-).
b) $\mathrm{Bs}|2 L|=\varnothing$.
c) $h^{0}(M, 2 L)>n(n+1) / 2$.
d) (M, L) is a weighted hypersurface of degree $4 g+2$ in the weighted projective space $\boldsymbol{P}(2 g+1,2,1, \cdots, 1)$.

Remark. The condition d) implies also $d(M, L)=\Delta(M, L)=1$.
Proof. We use the notation in (13.6). We have a) \Rightarrow d) by $[\mathbf{F 6}$; (4.6.7)]
and (16.2). d$) \Rightarrow \mathrm{c}$) is obvious. To prove c$) \Rightarrow \mathrm{b}$), assume $\mathrm{Bs}|2 L| \neq \varnothing$. Then E must be a fixed component of $\pi^{*}|2 L|$. So $H^{\circ}\left(M^{*}, 2 L-E\right) \cong H^{\circ}\left(M^{*}, 2 L\right)$. The restriction of $2 L-E$ to each fiber C_{x} of f is E_{x}. Clearly E_{x} is a fixed part of $\left|E_{x}\right|$ because $g \geqq 1$. Hence E is a fixed component of $|2 L-E|$, so $H^{0}\left(M^{*}, 2 L-E\right) \cong H^{0}\left(M^{*}, 2 L-2 E\right) \cong H^{0}\left(M^{*}, 2 H_{\xi}\right) \cong H^{0}\left(P, 2 H_{\xi}\right)$ because $f_{*} \mathcal{O}_{M}=\mathcal{O}_{P}$. Thus we infer $h^{0}(M, 2 L)=h^{0}\left(M^{*}, 2 L\right)=h^{0}(P, 2 H)=n(n+1) / 2$, contradicting c).

To show b$) \Rightarrow \mathrm{a}$), let x be any point on P. The restriction of $2 L$ to C_{x} is $2 E_{x}$. Hence $\operatorname{Bs}\left|2 E_{x}\right|=\varnothing$. This linear system defines a morphism onto \boldsymbol{P}^{1} of degree two. Consequently C_{x} is hyperelliptic. Moreover, E_{x} is a ramification point of this morphism. Hence (M, L) is sectionally hyperelliptic and E is a component of the ramification locus of $M^{*} \rightarrow V$. Thus we obtain a).
(16.8) Now, similarly as in [F6; §7], we will study deformations of (M, L).

Theorem. Let $(\mathcal{M}, T, \pi, \mathcal{L})$ be a deformation family of prepolarized manifolds, that means, $\pi: \mathscr{M} \rightarrow T$ is a proper smooth morphism between manifolds \mathcal{M}, T which may not be complete, and \mathcal{L} is a line bundle on \mathcal{M}. Suppose that there is a point 0 on T such that $\left(M_{0}, L_{0}\right)$, the fiber $M_{0}=\pi^{-1}(o)$ together with the restriction L_{o} of \mathcal{L} to M_{o}, is a sectionally hyperelliptic polarized manifold of type (-) with $d\left(M_{0}, L_{0}\right)=\Delta\left(M_{0}, L_{o}\right)=1$ and $n=\operatorname{dim} M_{o} \geqq 2$. Then there exists a Zariski open neighborhood U of o such that $\left(M_{t}, L_{t}\right)$ is a sectionally hyperelliptic polarized manifold of the same type (-) for every $t \in U$.

Proof. By [EGA ; Chap. III, (4.7.1)], we find a neighborhood U_{1} of o such that L_{t} is ample on M_{t} for every $t \in U_{1}$. By $(16.6 ; 2)$ and by the upper-semicontinuity theorem, there is a neighborhood U_{2} of o such that $H^{1}\left(M_{t}, L_{t}\right)=H^{1}\left(M_{t}\right.$, $2 L_{t}$) $=0$ for every t on U_{2}. Then, as is well known (cf. [EGA ; Chap. III] or [H; Chap. III, § 12]), $h^{0}\left(M_{t}, L_{t}\right)$ and $h^{0}\left(M_{t}, 2 L_{t}\right)$ are constant functions of $t \in U_{2}$. Thus, for every point t on $U=U_{1} \cap U_{2}$, the criterion (16.7; c) applies.
(16.9) QUestion. Let (M, L) be a polarized manifold of the type (16.7). Then, does any small deformation of M carry a family of line bundles so that it becomes a deformation family of (M, L)?

When $n=\operatorname{dim} M \geqq 3$, we have $H^{2}(M, \mathcal{O})=0$ by $(16.6 ; 2)$ and there is no obstruction for extending L as a family of line bundles. When $n=2$ and $\Omega=\boldsymbol{C}$, let $\left\{\lambda_{t} \in H^{2}\left(M_{t} ; \boldsymbol{Z}\right)\right\}$ be the locally constant family of cohomology classes which extends $c_{1}(L)$. Since $K^{M}=(2 g-3) L$ by $(16.6 ; 1)$, we have $c_{1}\left(K_{t}\right)=(2 g-3) \lambda_{t}$ for every t, where K_{t} is the canonical line bundle of any small deformation M_{t} of M. This implies that the image of λ_{t} in $H^{2}\left(M_{t}, \mathcal{O}\right)$ vanishes. Hence $\lambda_{t}=c_{1}\left(L_{t}\right)$ for some $L_{t} \in \operatorname{Pic}\left(M_{t}\right)$. Such a line bundle L_{t} is unique since $h^{1}\left(M_{t}, \mathcal{O}\right)=h^{1}(M, \mathcal{O})$ $=0$. So $\left\{L_{t}\right\}$ form a family of line bundles.

Let us consider this problem from another viewpoint. By the observation (16.5), we see that polarized manifolds of the type (16.7) are parametrized by smooth members of $\left|(2 g+1) H_{\zeta}\right|$. Our question is equivalent to asking whether
this family is complete in the sense of Kodaira-Spencer [KS] as a deformation family of the complex manifold M. So, a positive answer follows from their criterion and the result below.
(16.10) Theorem. Let U be the open subset of $H^{\circ}\left(V,(2 g+1) H_{\zeta}\right)$ corresponding to non-singular members of $\left|(2 g+1) H_{\zeta}\right|$ and let $\left\{\left(M_{u}, L_{u}\right)\right\}$ be the induced family of polarized manifolds of type (-) parametrized by U. Then, at any point u on U, the characteristic mapping $T_{u}^{U}\left(\cong H^{0}\left(V,(2 g+1) H_{\zeta}\right)\right) \rightarrow H^{1}\left(M_{u}, \Theta_{u}\right)$ is surjective if $n=\operatorname{dim} M_{u} \geqq 2$, where Θ_{u} is the sheaf of vector fields on M_{u}.

In the following proof, we omit the subscript u for the sake of brevity of notation, for most objects lie over u. Thus we use the notation in (16.2). Note first that the characteristic mapping factors through $H^{1}\left(M^{*}, \Theta^{*}\right)$, where Θ^{*} is the sheaf of vector fields on M^{*}.
(16.11) Let τ^{+}(resp. τ^{-}) be the eigen space belonging to the eigenvalue 1 (resp. -1) of the action on $H^{1}\left(M^{*}, \Theta^{*}\right)$ of the involution i of M^{*} covering M^{*} $\rightarrow V$. Then, as in $[\mathbf{F 6} ;(7.9)], \tau^{-} \cong H^{1}\left(V, T^{V}[-F]\right)$ for $F=(g+1) H_{\zeta}-H_{\xi}$, and there is an exact sequence $H^{0}\left(V, T^{V}\right) \rightarrow H^{0}(B,[B]) \rightarrow \tau^{+} \rightarrow H^{1}\left(V, T^{V}\right) \rightarrow H^{1}(B,[B])$.
(16.12) The relative tangent bundle of $p: V \rightarrow P \cong \boldsymbol{P}_{\xi}^{n-1}$ is $2 H_{\zeta}-2 H_{\xi}$. Therefore we have the following exact sequences:
(1) $0 \rightarrow\left[2 H_{\zeta}-2 H_{\xi}\right] \rightarrow T^{V} \rightarrow T_{V}^{P} \rightarrow 0$, and
(2) $0 \rightarrow \mathcal{O}_{V} \rightarrow H^{0}\left(P, H_{\xi}\right)^{V} \otimes\left[H_{\xi}\right] \rightarrow T_{V}^{P} \rightarrow 0$.

From (2) we get an exact sequence $H^{1}(V,[-F]) \rightarrow H^{0}\left(P, H_{\xi}\right) \vee \otimes H^{1}\left(V, H_{\xi}-F\right)$ $\rightarrow H^{1}\left(V, T_{V}^{P}[-F]\right) \rightarrow H^{2}(V,-F) \rightarrow H^{0}\left(P, H_{\xi}\right){ }^{\vee} \otimes H^{2}\left(V, H_{\xi}-F\right)$. It is easy to see $h^{1}(V,-F)=0, h^{1}\left(V, H_{\xi}-F\right)=1$ and further $h^{2}(V,-F)=0$ unless $n=2$. When $n=2$, the last mapping is the dual of the surjective mapping $H^{0}\left(P, H_{\xi}\right) \otimes H^{0}(V$, $\left.K^{V}+F-H_{\xi}\right) \rightarrow H^{0}\left(V, K^{V}+F\right)$. So, in any case, we obtain $h^{1}\left(V, T_{V}^{P}[-F]\right)=n$. On the other hand, we see $H^{1}\left(V,(1-g) H_{\zeta}-H_{\xi}\right)=0$ by Serre duality. Now, in view of (1), we infer $\operatorname{dim} \tau^{-}=h^{1}\left(V, T^{V}[-F]\right) \leqq h^{1}\left(V, T_{V}^{P}[-F]\right)=n$.
(16.13) We claim that the mapping $H^{0}(B,[B]) \rightarrow \tau^{+}$in (16.11) is surjective. When $n \geqq 3$, we obtain $H^{1}\left(V, T^{V}\right)=0$ by similar arguments as in (16.12). So the assertion is clear. Any way, it suffices to show that $H^{1}\left(V, T^{V}\right) \rightarrow H^{1}(S,[S])$ is injective, for the latter is a direct sum component of $H^{1}(B,[B])$. Using the exact sequences (1) and (2), we infer $H^{1}\left(V, T^{V}[-S]\right)=0$ since $[S]=H_{\zeta}-2 H_{\xi}$. This implies that the natural mapping $H^{1}\left(V, T^{V}\right) \rightarrow H^{1}\left(S, T_{S}^{V}\right)$ is injective. On the other hand, since S is a section of $p: V \rightarrow P$, we see that $T_{S}^{V} \rightarrow T_{S}^{P} \cong T^{S}$ gives a splitting of the exact sequence $0 \rightarrow T^{S} \rightarrow T_{S}^{V} \rightarrow[S]_{S} \rightarrow 0$. So $H^{1}\left(S, T_{S}^{V}\right) \cong$ $H^{1}(S,[S])$, because $H^{1}\left(S, T^{S}\right)=0$. Combining these facts we prove our claim.
(16.14) Let us consider a general situation where M^{*} is the blowing-up of a manifold M with center being a submanifold C in M. Let E be the exceptional divisor lying over C. Then $E \cong \boldsymbol{P}\left(N^{\vee}\right)$ for the conormal bundle N^{\vee} of C in M and the tautological line bundle $\mathcal{O}_{E}(1)$ is the restriction of $[-E] \in \operatorname{Pic}\left(M^{*}\right)$.
$\mathcal{O}_{E}(-1)$ is naturally a subbundle of N_{E}, the pull-back of the normal bundle N of C. Let Q be the quotient bundle $N_{E} / \mathcal{O}_{E}(-1)$.

We have a natural homomorphism $\theta: \Theta^{*} \rightarrow \pi^{*} \Theta$, where Θ^{*} (resp. Θ) denotes the sheaf of vector fields on $M^{*}($ resp. $M)$. It is easy to see that θ is injective and $\mathcal{C}=\operatorname{Coker}(\theta)$ is supported on E. Moreover $\mathcal{C} \cong \mathcal{O}_{E}[Q]$. Using Leray spectral sequence for $E \rightarrow C$, we infer $H^{q}(\mathcal{C}) \cong H^{q}(C, N)$ for any $q \in Z$. Thus we get a long exact sequence $0 \rightarrow H^{0}\left(M^{*}, \Theta^{*}\right) \rightarrow H^{0}(M, \Theta) \rightarrow H^{0}(C, N) \rightarrow H^{1}\left(M^{*}, \Theta^{*}\right) \rightarrow$ $H^{1}(M, \Theta) \rightarrow H^{1}(C, N) \rightarrow \cdots$.
(16.15) In our particular case, $C=X=\mathrm{Bs}|L|$ is a point on M, which is an isolated fixed point of the involution of M induced by that of M^{*} over V. Therefore $h^{0}(C, N)=n$ and the image of $\delta: H^{0}(C, N) \rightarrow H^{1}\left(M^{*}, \Theta^{*}\right) \cong \tau^{+} \oplus \tau^{-}$lies in τ^{-}. Any vector field on M, as an infinitesimal automorphism of M, preserves the line bundle L because $H^{1}\left(M, \mathcal{O}_{M}\right)=0$. Hence it does not move $C=\mathrm{Bs}|L|$. So $H^{0}(M, \Theta) \rightarrow H^{0}(C, N)$ is a zero map. This implies that δ is injective. By (16.12) we infer that $\operatorname{Im}(\delta)=\tau^{-}$. This implies that $\tau^{+} \rightarrow H^{1}(M, \Theta)$ is bijective.

On the other hand, $H^{0}(V,[B]) \rightarrow H^{0}(B,[B])$ is surjective because $H^{1}\left(V, \mathcal{O}_{V}\right)$ $=0$. So, combining with (16.13), we infer that $H^{0}(V,[B]) \rightarrow H^{1}(M, \Theta)$ is surjective, proving (16.10).
§ 17. Type (∞).
We employ the same notation as in $\S 15$ and (M, L) is assumed to be sectionally hyperelliptic of type (∞).
(17.1) In the case of type (∞) we have $i(E) \cap E=\varnothing$ and $\rho^{-1}(S)=E \cup i(E)$. So $S \cap B=\varnothing$, hence $e=1$. In particular $V \cong \boldsymbol{P}\left(H_{\xi} \oplus \mathcal{O}_{P}\right)$ and the rational mapping σ defined by $\left|H_{\zeta}\right|$ makes V a blowing-up of \boldsymbol{P}_{ξ}^{n} with center being a point y to which S is contracted.
(17.2) Since $B \cap S=\varnothing$ and $B V_{x}=2 g+2$ for any $x \in P$, we infer $B \in$ $\left|(2 g+2) H_{\zeta}\right|$. So $B^{\prime}=\boldsymbol{\sigma}(B)$ is a hypersurface on $\boldsymbol{P}_{\zeta}^{n}$ of degree $2 g+2$ and $B^{\prime} \cong B$. Let M^{\prime} be the double covering $R_{B^{\prime}}\left(\boldsymbol{P}_{\zeta}^{n}\right)$ of $\boldsymbol{P}_{\zeta}^{n}$ and let y_{1}, y_{2} be points on M^{\prime} lying over y. Then M^{*} is the blowing-up of M^{\prime} at these points and the exceptional divisors over them are E and $i(E)$. So M is the blowing-up of M^{\prime} at one of y_{1} and y_{2}. The choice between these points does not affect the isomorphism class of M, because they are interchangeable by the involution of M^{\prime}. Since $L=H_{\xi}+E=H_{5}-i(E),(M, L)$ is determined by the pair $\left(B^{\prime}, y\right)$.
(17.3) For any line l_{x} on $\boldsymbol{P}_{\zeta}^{n}$ passing through y, there exists a point on $l_{x} \cap B^{\prime}$ at which they meet in odd order.

Indeed, otherwise, the fiber C_{x} of $f: M^{*} \rightarrow P$ over the point $x \in P$ corresponding to l_{x} would be isomorphic to $R_{B^{\prime} \cap l_{x}}\left(l_{x}\right)$ and hence not irreducible.
(17.4) Conversely, for any pair (B^{\prime}, y) as in (17.2) satisfying the condition (17.3), we can construct a sectionally hyperelliptic polarized manifold (M, L) of
type (∞) by reversing the preceding process. The condition (17.3) is necessary to prove the ampleness of L.
(17.5) Given any (n, g), the set of pairs $\left(B^{\prime}, y\right)$ satisfying the condition (17.3) forms a Zariski open subset of the space parametrizing all the pairs as in (17.2). However, this open set may be empty. In fact we have the following

Lemma. Let B be a smooth hypersurface of degree $2 g+2$ in $\boldsymbol{P}_{\zeta}^{n}$ and let y be a point on $\boldsymbol{P}_{\zeta}^{n}$ off B. Then, if $n \geqq g+2$, there exists a line l passing y such that the intersection multiplicity of l and B at every point on $l \cap B$ is even.

Such a line l will be said to be evenly in contact with B. A proof of this lemma will be given below, ending in (17.12).
(17.6) Given a vector bundle E on a space T, let $E^{\vee}\left(\right.$ resp. $\left.\mathrm{S}^{k} E\right)$ denote the dual bundle (resp. k-th symmetric product) of E. For every $t \in T$, the fiber $\left(S^{k} E\right)_{t}$ is canonically identified with the space of homogeneous polynomial functions of degree k on $\left(E^{\vee}\right)_{t}$. Hence, taking m-powers at each point t of T, we get a mapping $\mathrm{S}^{k} E \rightarrow \mathrm{~S}^{m h} E$ for each positive integer m. Of course, usually, this is not a homomorphism of vector bundles. Any way, this induces a morphism $\mu_{m}: \boldsymbol{P}\left(\left(S^{k} E\right)^{\vee}\right) \rightarrow \boldsymbol{P}\left(\left(\mathrm{S}^{m k} E\right)^{\vee}\right)$. Denoting by H_{k} and $H_{m k}$ the tautological line bundles on these spaces, we have $\mu_{m}^{*} H_{m k}=m H_{k}$ by definition of μ_{m}.
(17.7) To prove the lemma (17.5), let V be the blowing-up of \boldsymbol{P}_{ξ}^{n} with center y and let S be the exceptional divisor over y. Then $\left(V, H_{\zeta}\right) \cong(\boldsymbol{P}(E), \mathcal{O}(1))$ for the vector bundle $E=H_{\xi} \oplus \mathcal{O}$ on $\boldsymbol{P}_{\xi}^{n-1}$. S is the unique member of $\left|H_{\zeta}-H_{\xi}\right|$. The fibers of $p: V \rightarrow \boldsymbol{P}_{\xi}^{n-1}=P$ are in one to one correspondence with the lines on $\boldsymbol{P}_{\zeta}^{n}$ passing through $y . \quad B$ is defined by a section of $H^{0}\left(\boldsymbol{P}_{\zeta}^{n}, \mathcal{O}(2 g+2)\right) \cong$ $H^{0}\left(V,(2 g+2) H_{\zeta}\right) \cong H^{0}\left(P, \mathrm{~S}^{2 g+2} E\right)$. This section of $\mathrm{S}^{2 g+2} E$ does not vanish at any point x on P because B does not contain the fiber V_{x} over x. Hence this defines a subbundle of $\mathrm{S}^{2 g+2} E$ isomorphic to \mathcal{O}_{P}. Correspondingly, we have a section b of the bundle $\boldsymbol{P}\left(\left(\mathrm{S}^{2 g+2} E\right)^{\vee}\right)$ over P.

On the other hand, as we saw in (17.6), there is a natural morphism μ : $\boldsymbol{P}\left(\left(S^{g+1} E\right)^{\vee}\right)=G \rightarrow \boldsymbol{P}\left(\left(S^{2 g+2} E\right)^{\vee}\right)$ defined by square. By definition of μ, the line l_{x} corresponding to $x \in P$ is evenly in contact with B if and only if $b(x) \in \mu(G)$. Therefore, we should show $b(P) \cap \mu(G) \neq \varnothing$.
(17.8) First we consider the case $n=g+2$. Then $\operatorname{dim} b(P)=n-1=\operatorname{codim} \mu(G)$. We will calculate the intersection number $I=b(P) \mu(G)$ in the Chow ring of $\boldsymbol{P}\left(\left(\mathrm{S}^{2 g+2} E\right)^{\vee}\right)$ and show $I>0$.
(17.9) The section b defines a subbundle N of $\mathrm{S}^{2 g+2} E \cong \bigoplus_{j=0}^{2 g+2} \mathcal{O}_{P}(j)$. The direct sum component \mathcal{O}_{P} corresponds to the quotient sheaf $p_{*}\left(\mathcal{O}_{S}\left[(2 g+2) H_{\zeta}\right]\right)$ of $p_{*}\left(\mathcal{O}_{V}\left[(2 g+2) H_{\zeta}\right]\right) \cong \mathcal{O}_{P}\left[S^{2 g+2} E\right]$. Since $B \cap S=\varnothing$, we infer that N maps bijectively

the quotient $\mathcal{O}_{P}(j)$ of $\mathrm{S}^{2 g+2} E$ defines a divisor $D_{j} \in\left|H_{\sigma}+j H_{\xi}\right|$ on $\boldsymbol{P}\left(\left(S^{2 g+2} E\right)^{\vee}\right)$, where H_{σ} denotes the tautological line bundle. Clearly $b(P)=D_{1} \cap \cdots \cap D_{2 g+2}$. So $I=\left(H_{\sigma}+H_{\xi}\right) \cdots\left(H_{\sigma}+(2 g+2) H_{\xi}\right) \mu(G)=\left(2 H_{\tau}+H_{\xi}\right) \cdots\left(2 H_{\tau}+(2 g+2) H_{\xi}\right)_{G}$, where H_{τ} is the tautological line bundle on $G=\boldsymbol{P}\left(\left(\mathrm{S}^{g+1} E\right)^{\vee}\right)$, because $\mu^{*} H_{\sigma}=2 H_{\tau}$ by (17.6).
(17.10) For the convenience of calculation, we introduce the following notation. Let $\boldsymbol{P}^{1} \subset \boldsymbol{P}^{2} \subset \cdots \subset \boldsymbol{P}^{n} \subset \boldsymbol{P}^{n+1} \subset \cdots$ be an infinite sequence of linear embeddings and let $P^{\infty}=\bigcup_{n 21} \boldsymbol{P}^{n}$. There is a line bundle H on P^{∞} such that its restriction to each \boldsymbol{P}^{n} is $\mathcal{O}(1)$. The Chow ring of P^{∞} is defined to be the projective limit of $\mathrm{Ch}\left(\boldsymbol{P}^{n}\right)$, which turns out to be the ring $\boldsymbol{Z}[[h]]$ of formal power series in $h=$ $c_{1}(H)$ with integral coefficients. For $\varphi \in \boldsymbol{Z}[[h]]$, we denote the coefficient of h^{d} by $[\varphi]_{d}$.

Now, for any totally decomposable vector bundle E on P^{∞}, the total Chern class $c(E)$ of E is well-defined by the following axioms: $c\left(E_{1} \oplus E_{2}\right)=c\left(E_{1}\right) c\left(E_{2}\right)$ and $c(t H)=1+t h$. Similarly total Segre classes are defined by the axioms $s\left(E_{1} \oplus E_{2}\right)=s\left(E_{1}\right) s\left(E_{2}\right)$ and $s(t H)=\sum_{j=0}^{\infty}(t h)^{j}$. So $c(E) s\left(E^{\vee}\right)=1$ for any E. We denote $[c(E)]_{d}$ and $[s(E)]_{d}$ by $c_{d}(E)$ and $s_{d}(E)$ respectively.
(17.11) Under the above notation, it is easy to see $I=\sum_{j=0}^{2 g+2} 2^{j} c_{2 g+2-j}(H \oplus 2 H$ $\oplus \cdots \oplus(2 g+2) H) H_{\tau}^{j} H_{\xi}^{2 g+2-j}\{G\}$. On the other hand, since $n-1=g+1$ and $\left(S^{g+1} E\right)^{\vee} \cong \bigoplus_{j=0}^{g+1}\left[-j H_{\xi}\right]$, we have $H_{\tau}^{g+1+r} H_{\xi}^{g_{\xi}+1-r}=s_{r}\left(\oplus_{j=0}^{g+1}[-j H]\right)$ if $r \geqq 0$, and $=0$ if $r<0$. Therefore $I=\sum_{r=0}^{g+1} 2^{g+1+r} s_{r}\left(\oplus_{j=0}^{g+1}[-j H]\right) c_{g+1-r}\left({ }_{j=1}^{2 g+2}[j H]\right)=2^{g+1}\left[s\left(\bigoplus_{j=1}^{g+1}[-2 j H]\right)\right.$ $c\left(\oplus_{j=1}^{g+1}[(2 j H]) c\left(\oplus_{j=1}^{g+1}[(2 j-1) H]\right)\right]_{g+1}=2^{g+1} c_{g+1}\left(\bigoplus_{t=0}^{g}[(2 t+1) H]\right)=2^{g+1} \prod_{t=0}^{g}(2 t+1)>0$. Thus we prove the assertion in case $n=g+2$.
(17.12) In general, we can calculate the intersection number $I=b\left(\boldsymbol{P}^{n-1}\right) \mu(G)$ H_{ξ}^{n-g-2} and show that $I>0$, which implies $b(P) \cap \mu(G) \neq \varnothing$ as required. Alternately, taking a general hyperplane section passing through y, we can prove the lemma (17.5) by induction on n. Details are left to the reader.
(17.13) Remark. When $n \leqq g+1$, it is not difficult to see that any general pair $\left(B^{\prime}, y\right)$ as in (17.2) satisfies the condition (17.3).
(17.14) Putting things together, we get the following

Theorem. Let (M, L) be a polarized manifold with $d(M, L)=\Delta(M, L)=1$. Suppose that $\operatorname{char}(\Re) \neq 2$ and that (M, L) is sectionally hyperelliptic of type (∞). Then, there exist a non-singular hypersurface B of degree $2 g(M, L)+2$ on \boldsymbol{P}^{n} and a point y^{\prime} on $M^{\prime}=R_{B}\left(\boldsymbol{P}^{n}\right)$ off the ramification locus of $M^{\prime} \rightarrow \boldsymbol{P}^{n}$ such that M is isomorphic to the blowing-up of M^{\prime} with center y^{\prime} and $L=H-E^{\prime}$ for the exceptional divisor E^{\prime} over y^{\prime}. Furthermore, if y is the image of y^{\prime} on \boldsymbol{P}^{n}, any line on \boldsymbol{P}^{n} passing through y is not evenly in contact with B. In particular
$n=\operatorname{dim} M \leqq g(M, L)+1$.
(17.15) Corollary. Polarized manifolds of the above type form a single deformation family for any fixed $n=\operatorname{dim} M$ and $g=g(M, L)$. This family is complete in the sense of Kodaira-Spencer [KS] unless $n=g=2$ and M^{\prime} is a K3surface.

This follows from the observation (16.14) and the result $[\mathbf{F 6} ;(7.7)]$. From the results on M^{\prime} in $[\mathbf{F 6} ; \S 4]$, we obtain also the results below.
(17.16) Corollary. Let (M, L) be as in (17.14). Then $\pi_{1}^{(p)}(M)=\{1\}$ for $p=\operatorname{char}(\mathbb{R})$ and $\pi_{1}(M)=\{1\}$ if $\mathbb{R}=\boldsymbol{C}$.
(17.17) Corollary. Let j be an integer such that $0<j<2 n$ and $j \neq n$. Then $b_{j}(M)=0$ if j is odd and $b_{j}(M)=2$ if j is even. If $\mathbb{R}=\boldsymbol{C}, h^{p, q}(M)=0$ unless $p=q$ or $p+q=n$.
(17.18) Corollary. If $n \geqq 3, \operatorname{Pic}(M)$ is generated by L and E^{\prime}.
(17.19) Remark. The conclusion of (17.14) is valid also in case $n=2$ and $g=1$. In this case (M, L) is a Del Pezzo surface with $d=1$.
§ 18. Type (+).
We employ the same notation as in $\S 15$ and (M, L) is assumed to be sectionally hyperelliptic of type (+).
(18.1) We have $\rho^{-1}(S)=E \cup i(E)$ and $S \cap B \neq \varnothing$. Hence B_{S} must be of the form $2 Y, Y$ being an effective divisor on $S \cong \boldsymbol{P}^{n-1}$. Set $\delta=\operatorname{deg} Y>0$.
(18.2) We claim $\delta-1=-e$. Indeed, the pull-back of Y by the morphism $E \rightarrow S$ is $i(E)_{E}$. Hence, restricting $[E+i(E)]=[S]$ to E and considering the degrees, we get the desired equality.
(18.3) Lemma. $n=2$.

Proof. We have natural exact sequences $0 \rightarrow T^{S} \rightarrow T_{S}^{V} \rightarrow[S] \rightarrow 0$ on S and $0 \rightarrow T^{B} \rightarrow T_{B}^{V} \rightarrow[B] \rightarrow 0$ on B. Restrict them to $Y=B \cap S$. Since $B_{S}=2 Y$, the intersection of B and S along Y is not transversal. So, at each point y on Y, the subspaces T_{y}^{S} and T_{y}^{B} of T_{y}^{V} coincide with each other. This implies [S] $]_{Y}$ $\cong[B]_{Y}$. Hence, if $n>2$, we have $-e=\operatorname{deg}[S]_{S}=\operatorname{deg}[B]_{S}=2 \delta$. Then $\delta-1=2 \delta$ by (18.2), which is absurd because δ is positive. Thus we prove $n=2$.
(18.4) V is isomorphic to a Hirzebruch surface $\Sigma_{k} \cong \boldsymbol{P}\left(k H_{\xi} \oplus \mathcal{O}\right)$ for some $k \geqq 0$. Let H_{α} be the tautological line bundle on Σ_{k}. Note that $H_{\alpha}^{2}=k$, and that, if $k>0, C^{2}=-k$ for the unique member C of $\left|H_{\alpha}-k H_{\xi}\right|$. Set $[B]=2 a H_{\alpha}+$ $2 b H_{\xi}$ and $[S]=H_{\alpha}+\sigma H_{\xi}$. Then $-e=S^{2}=k+2 \sigma, 2 \delta=B S=2 a k+2 b+2 a \sigma$ and $2 a$ $=B H_{\xi}=2 g+2$. So, from (18.2), we obtain

$$
g k+(g-1) \sigma+b=1 .
$$

(18.5) Assume that $k>0$ and let C be the curve as above. Since $S^{2}=-e$ $=\delta-1 \geqq 0$, we see $S \neq C$, which implies $\sigma=S C \geqq 0$. We have also $2 b=B C \geqq-k$ since B is smooth. So (\#) yields $2 \geqq 2(g k+b) \geqq(2 g-1) k \geqq 2 g-1$. This contradicts the assumption $g \geqq 2$. Thus we infer $k=0$. Hence $V \cong \boldsymbol{P}_{\alpha}^{1} \times \boldsymbol{P}_{\xi}^{1}$.
(18.6) We claim $b>0$. Indeed, otherwise, B consists of $2 a$ fibers of ρ_{α} : $V \rightarrow \boldsymbol{P}_{\alpha}^{1}$ since $b=0$. So $M^{*} \cong \boldsymbol{P}_{\boldsymbol{\xi}}^{1} \times T$ for some hyperelliptic curve T of genus g. The mapping $M^{*} \rightarrow V \rightarrow \boldsymbol{P}_{\alpha}^{1}$ factors through T. Hence the image of E is a point because E is rational. So S maps to a point on $\boldsymbol{P}_{\alpha}^{1}$ via ρ_{α}. Then $S \subset B$ or $S \cap B=\varnothing$, contradicting the assumption.
(18.7) Now, by (\#) and (18.5), we infer $b=1$ and $\sigma=0$. In particular, S is: a fiber of ρ_{α} and $e=0$. We also have $\delta=1$ and $B \in\left|(2 g+2) H_{\alpha}+2 H_{\xi}\right|$. So B is ample on V and hence connected. $\rho_{\alpha}(S)$ is a branch point of the double covering $B \rightarrow \boldsymbol{P}_{\alpha}^{1}$.
(18.8) Since every fiber of $f: M^{*} \rightarrow \boldsymbol{P}_{\xi}^{1}$ is irreducible and reduced, B satisfies the following condition:
(\#\#) For every fiber V_{x} of $V \rightarrow \boldsymbol{P}_{\xi}^{1}$, there exists a point on V_{x} at which B and V_{x} intersect with odd multiplicity.
(18.9) Conversely, suppose that we have a non-singular member B of $\mid(2 g$ $+2) H_{\alpha}+2 H_{\xi} \mid$ on $V \cong \boldsymbol{P}_{\alpha}^{1} \times \boldsymbol{P}_{\xi}^{1}$, which satisfies the above condition (\#\#). Take a branch point z of the double covering $B \rightarrow \boldsymbol{P}_{\alpha}^{1}$ and let S be the fiber of $V \rightarrow \boldsymbol{P}_{\alpha}^{1}$ over z. Then $B_{S}=2 Y$ for some effective divisor Y on S. Let $M^{*}=R_{B}(V)$ and let $\rho: M^{*} \rightarrow V$ be the natural morphism. Then $\rho^{*} S=S_{1}+S_{2}$ for some divisors S_{1}, S_{2} on $M^{*} . \quad S_{1} S_{2}=\operatorname{deg} Y=1, S_{1}^{2}=S_{2}^{2}=-1$ and both S_{1} and S_{2} are sections of the mapping $f: M^{*} \rightarrow \boldsymbol{P}_{\xi}^{1}$. The condition (\#\#) implies that every fiber of f is irreducible and reduced. So, we can apply (13.7) to obtain a polarized manifold (M, L) with $d(M, L)=\Delta(M, L)=1$ by contracting either S_{1} or S_{2} to a point. Clearly (M, L) is sectionally hyperelliptic of type $(+)$.

The isomorphism class of (M, L) is determined by the pair (B, z) and is independent of the choice between S_{1} and S_{2}, because they are interchangeable by the involution i of M^{*}.
(18.10) It is not difficult to see that the above condition (\#\#) is satisfied by any general member of $\left|(2 g+2) H_{\alpha}+2 H_{\xi}\right|$. So, as in the case of type (∞), (M, L)'s of type $(+)$ form a single deformation family for each fixed $g=g(M, L)$. However, this family is not complete in the sense of Kodaira-Spencer [KS]. In fact, for a general small deformation $\left(M_{t}, L_{t}\right)$ of (M, L), we have $h^{0}\left(M_{t}, L_{t}\right)<2$, whence $\Delta\left(M_{t}, L_{t}\right)>1$. Note that $h^{1}(M, L)>0$ in case of type $(+)$, unlike the cases of type (-) and (∞).
(18.11) Combining the preceding arguments, we obtain the following.

Theorem. Let (M, L) be a polarized manifold with $d(M, L)=\Delta(M, L)=1$. Suppose that $\operatorname{char}(\Re) \neq 2$ and that (M, L) is sectionally hyperelliptic of type (+).

Then $\operatorname{dim} M=2$ and $M^{*} \cong R_{B}\left(\boldsymbol{P}_{\alpha}^{1} \times \boldsymbol{P}_{\xi}^{1}\right)$ for a non-singular member B of $\mid(2 g+2) H_{\alpha}$ $+2 H_{\xi} \mid$, where M^{*} is as in (13.6). The image of E on $V=\boldsymbol{P}_{\alpha}^{1} \times \boldsymbol{P}_{\xi}^{1}$ is a fiber over a branch point of the double covering $B \rightarrow \boldsymbol{P}_{\alpha}^{1}$. All the polarized surfaces of this type with fixed $g=g(M, L)$ form a single deformation family.
(18.12) Corollary. M is a rational surface.

Indeed, the mapping $M^{*} \rightarrow \boldsymbol{P}_{\alpha}^{1}$ gives a \boldsymbol{P}^{1}-ruling.

Appendix 1. Table of numerical invariants of (M, L) with $n=\operatorname{dim} M$, $g=g(M, L)$.

	type (-)	type (∞)	type (+)
range of n	any n	$n \leqq g+1$	$n=2$
$\kappa(M)=n \quad$ if	$n<2 g-1$	$n<g$	-
$=0 \quad$ if	$n=2 g-1$	$n=g$	-
$<0 \quad$ if	$n>2 g-1$	$n=g+1$	always
$\pi_{1}^{(p)}(M)$	$\{1\}$	$\{1\}$	$\{1\}$
$b_{2}(M) \quad(n \geqq 3)$	1	2	-
$p_{g}(M) \quad(n=2)$	$g(g-1)$	$g(g-1) / 2$	0
$c_{1}(M)^{2} \quad(n=2)$	$(2 g-3)^{2}$	$2 g^{2}-8 g+7$	$3-4 g$

Appendix 2. Here we present a proof of the following
Theorem. Let M be a Kähler threefold whose cohomology ring $H^{\circ}(M ; \boldsymbol{Z})$ is isomorphic to $H^{\circ}\left(\boldsymbol{P}^{3} ; \boldsymbol{Z}\right)$. Suppose that $c_{1}(M)$ is positive. Then M is analytically isomorphic to \boldsymbol{P}^{3}.

Proof. M is projective since $H^{2}\left(M, \mathcal{O}_{M}\right)=0$. So $\operatorname{Pic}(M)$ is generated by an ample line bundle H such that $H^{3}=1$. Set $K^{M}=k H . \quad k$ is negative by assumption and is even because $2 g(M, H)-2=\left(K^{M}+2 H\right) H^{2}=k+2$. If $k \leqq-4$, we can apply [K0]. So we should consider the case $k=-2$. Then (M, H) is a Del Pezzo manifold and our theorem (14.6) applies. Hence it suffices to show the following

Lemma. Let (M, L) be as in (14.6). Then the topological Euler number $e(M)$ of M is -38 .

Proof. Given any manifold X, we denote the tangent bundle of X by T^{x}. We have two exact sequences $0 \rightarrow\left[2 H_{\xi}-2 H_{\xi}\right] \rightarrow T^{V} \rightarrow T_{V}^{P} \rightarrow 0$ and $0 \rightarrow \mathcal{O}_{V} \rightarrow H_{\xi} \oplus$ $H_{\xi} \oplus H_{\xi} \rightarrow T_{V}^{P} \rightarrow 0$ on V as in (16.12). We have also $0 \rightarrow T^{B_{2}} \rightarrow T_{B_{2}}^{V} \rightarrow\left[3 H_{\zeta}\right]_{B_{2}} \rightarrow 0$
on B_{2}. Using them we express the total Chern class $c\left(T^{B_{2}}\right)$ in terms of $c_{1}\left(H_{\zeta}\right)$ and $c_{1}\left(H_{\xi}\right)$. Calculating intersection numbers we obtain $e\left(B_{2}\right)=c_{2}\left(B_{2}\right)=45$. Therefore $e(B)=e\left(B_{1}\right)+e\left(B_{2}\right)=48, e(V)=6$ and $e\left(M^{*}\right)=2 e(V)-e(B)=-36$. On the other hand we have $e\left(M^{*}\right)=e(M)+e(E)-1=e(M)+2$. Hence $e(M)=-38$.

Remark. By a similar method we can calculate the Euler numbers of polarized manifolds studied in this paper.

References

[F1] T. Fujita, On the structure of polarized varieties with Δ-genera zero, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 22 (1975), 103-115.
[F2] T. Fujita, Defining equations for certain types of polarized varieties, Complex Analysis and Algebraic Geometry, 165-173, Iwanami, Tokyo, 1977.
[F3] T. Fujita, On the hyperplane section principle of Lefschetz, J. Math. Soc. Japan, 32 (1980), 153-169.
[F4] T. Fujita, On the structure of polarized manifolds with total deficiency one, I and II, J. Math. Soc. Japan, 32 (1980), 709-725 and 33(1981), 415-434.
[F5] T. Fujita, On polarized varieties of small Δ-genera, Tôhoku Math. J., 34 (1982), 319-341.
[F6] T. Fujita, On hyperelliptic polarized varieties, Tôhoku Math. J., 35(1983), 1-44.
[F7] T. Fujita, Classification of projective varieties of Δ-genus one, Proc. Japan Acad., 58 (1982), 113-116.
[G] (referred also as [EGA]) A. Grothendieck, Eléments de géométrie algébrique, Publ. Math. I. H. E. S., 4, 8, 11, 17.
[H] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math., 52, Springer, 1977.
[KO] S. Kobayashi and T. Ochiai, Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ., 13(1973), 31-47.
[KS] K. Kodaira and D. C. Spencer, A theorem of completeness for complex analytic fiber spaces, Acta Math., 100 (1958), 281-294.
[M] S. Mori, On a generalization of complete intersections, J. Math. Kyoto Univ., 15 (1975), 619-646.

Takao Fujita
Department of Mathematics College of General Education University of Tokyo
Komaba, Meguro, Tokyo 153 Japan

Note added in proof.

Professor Y. Miyaoka points out to the author that the answer to the Question (16.9) is affirmative in positive characteristic cases too. His method uses etale cohomology.

