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Introduction.

In this article we will study polarized manifolds $(M, L)$ with $d(M, L)=$

$\Delta(M, L)=1$ , as a continuation of [F4]. But the arguments are completely in-
dependent of part II of it, and little knowledge of part I is required here.
Moreover we consider here positive characteristic cases too, with the help of [F5].

In \S 13, the first section of this part III, we study the structure of the ra-
tional mapping defined by $|L|$ . It follows that $g=g(M, L)\geqq 1$ . In \S 14, assum-
ing char $(\mathfrak{K})\neq 2$ for the ground field $\mathfrak{K}$ from this time on throughout in this paper,
we establish a precise structure theorem for $(M, L)$ with $g=1$ . When $g\geqq 2$ , in
general, we do not have so precise a result as in the case $g=1$ . So we consider
the case in which any curve $C=D_{1}\cap\cdots\cap D_{n-1}$ obtained by taking general mem-
bers $D_{1},$ $\cdots$ , $D_{n-1}$ of $|L|$ successively is a hyperelliptic curve. Such $(M, L)$ will
be said to be sectionally hyPerelliptic (note that this is always the case when
$g=2)$ . In \S 15, they are classified into three types (–), $(\infty)$ and $(+)$ . Precise
structures of them are described in \S 16, \S 17 and \S 18 respectively. In particular,
it turns out that $n=\dim M=2$ in case of type $(+),$ $n\leqq g+1$ in case of type $(\infty)$ ,

and $(M, L)$ is a weighted hypersurface of degree $4g+2$ in $P(2g+1,2,1, \cdots , 1)$

in case of type (–). In any case $M$ is simply connected if $\mathfrak{K}=C$ . Moreover,
all the $(M, L)$ of the same type $((-), (\infty)$ or $(+))$ and with the same $n$ and $g$

form a single deformation family. It is easy to calculate the number of moduli
of it.

Thus, when char $(\mathfrak{K})\neq 2$ , the classification theory of polarized manifolds $(M, L)$

with $\Delta(M, L)=1$ is complete except the case $d(M, L)=1,$ $g(M, L)\geqq 3$ and $(M, L)$

is not sectionally hyperelliptic. In particular, all the Del Pezzo manifolds are
completely classified.

This work was almost completed when the author was a Miller Fellow at
the University of California, Berkeley. He would like to express his hearty
thanks to people there, especially to Professors R. Hartshorne and A. Ogus.
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\S 13. General case.

The notation in this part III is the same as in [F5], and is almost the same
as in [F4] except that the ground field $\mathfrak{K}$ may be of any characteristic. We
will study the structure of polarized manifolds $(M, L)$ such that $d(M, L)=$

$\Delta(M, L)=1,$ $n=\dim M\geqq 2$ and $g(M, L)=g$ .
(13.1) Since $h^{0}(M, L)=n,$ $\rho_{IL1}$ is a rational mapping to $P^{n- 1}=P$. So $X=$

Bs $|L|\neq\emptyset$ . On the other hand, dim $X\leqq 0$ by [F5; (2.1)]. Therefore, if $D_{1},$ $D_{2}$ ,

, $D_{n}$ are general members of $|L|$ and if we let $V_{i}= \bigcap_{J>i}^{n}D_{j}$ , then dim $V_{i}=i$ and

$\{V_{i}\}$ give a ladder of $(M, L)$ . Of course $X=V_{0}$ , which is a simple point on $M$,
because $D_{1}\cdots D_{n}=d(M, L)=1$ . Therefore $D_{j}’ s$ meet transversally at the point
X. In particular, $V_{i}$ is non-singular at $X$. Hence, if char $(\mathfrak{K})=0$ , we can take
$\{D_{j}\}$ so that $V_{i}’ s$ are non-singular by Bertini’s theorem.

(13.2) By virtue of [F5; (4.16)], we infer that $g\geqq 1$ . So $\{V_{i}\}$ must be a
regular ladder of $(M, L)$ by [F5; (3.6)].

(13.3) Let $\pi;M^{*}arrow M$ be the blowing-up with center $X$ and let $E$ be the
exceptional divisor lying over $X$. Let $H_{j}$ be the proper transform of $D_{j}$ on $M^{*}$ .
Then, $H_{1}\cap\cdots\cap H_{n}=\emptyset$ by (13.1). So $Bs|\pi^{*}L-E|=\emptyset$ . Thus we get a morphism
$f=\rho_{|\pi\cdot L-E|}$ : $M^{*}arrow P\cong P_{\xi}^{n-1}$ . Clearly $E$ is a section of $f$ , and $M^{*}$ is identified
with the graph of $\rho_{1L\}}$ .

(13.4) For every point $x$ on $P$, the fiber $C_{x}=f^{-1}(x)$ is an irreducible reduced
curve. Indeed, the mapping $C_{x}arrow\pi(C_{x})$ is a finite morphism since $C_{x}\cap E$ is a
point. So $L$ is ample on $C_{x}$ . On the other hand, $L-E=H_{\xi}=0$ in Pic $(C_{x})$ .
Hence the restriction of $E$ to $C_{x}$ is an ample divisor. So $C_{x}$ is an irreducible
reduced curve, because $EC_{x}=1$ .

Consequently $f$ is flat.
(13.5) We easily see that $V_{1}$ is isomorphic to $H_{2}\cap\cdots\cap H_{n}$ , which is a fiber

of $f$ . We have $h^{1}(V_{1}, O)=g(V_{1}, L)=g$ . Since $f$ is flat, every fiber of $f$ is a
curve of arithmetic genus $g$ .

(13.6) Combining the preceding observations, we obtain:

THEOREM. Let $(M, L)$ be a polarized manifold with $n=\dim M,$ $d(M, L)=$

$\Delta(M, L)=1$ . Then $X=Bs|L|$ conszsts of one simple point. Let $\pi;M^{*}arrow M$ be
the $blowing\triangleleft\iota P$ of $M$ with center $X$ and let $E$ be the exceptjOnal divisor over $X$.
Then Bsl $\pi^{*}L-E|=\emptyset$ . This linear system defines a flat morphism $f$ from $M^{*}$

onto $P\cong P_{\xi}^{n-1}$ . $E$ is a section of $f$, and every fiber of $f$ is an irreducible reduced
curve of arithmetic genus $g=g(M, L)\geqq 1$ .

REMARK. If char $(\mathfrak{K})=0$ , any general fiber of $f$ is smooth by Bertini’s
theorem.

(13.7) Conversely, suppose that there is a flat morphism $f:N^{*}arrow P\cong P_{\xi}^{n-1}$
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which satisfies the following conditions:
a) Every fiber of $f$ is an irreducible reduced curve of arithmetic genus $g\geqq 1$ .
b) There exists a section $E$ of $f$ , such that $E$ can be blown down to a

smooth point on another manifold $N$.
Then we get a polarized manifold $(N, L)$ with $d(N, L)=\Delta(N, L)=1$ and

$g(N, L)=g$ in the following way.
By the condition b), we have $E\cong P$ and $[E]_{E}=-H$, where $H$ is the hyper-

plane section bundle $O(1)$ . Set $L^{*}=f^{*}H_{\xi}+E\in Pic(N^{*})$ . Then $L_{E}^{*}=0$ . So $L^{*}$ is
the pull-back of a line bundle on $N$, which is denoted by $L$ . We have $L^{n}-1$

$=(L^{*}-E)^{n}=0$ and $h^{0}(N, L)=h^{0}(N^{*}, L^{*})=h^{0}(N^{*}, f^{*}H)=n$ because $g\geqq 1$ implies
that $E$ is a fixed part of $|L^{*}|$ . So $d(N, L)=\Delta(N, L)=1$ . It is easy to see that
$(N, L)$ has a ladder $\{V_{j}\}$ such that $V_{1}$ is isomorphic to a fiber of $f$ . Therefore
$g(N, L)=g(V_{1})=g$ . Now, it is enough to show the ampleness of $L$ .

Similarly as in [F3; (5.7)], it suffices to prove that $L_{Z}$ is strictly effective
for any subvariety $Z$ of $N^{*}$ which is not contained in $E$ . Clearly $L_{Z}=H_{Z}+E_{Z}$

is effective. If it is not strict, we must have $H_{Z}=E_{Z}=0$ . The former implies
that $Z$ is (contained in) a fiber of $f$ , which is impossible if $E_{Z}=0$ because $E$ is
a section of $f$ . Thus $L_{Z}$ is strictly effective, as required.

REMARK. Similar construction is possible without the assumption $g\geqq 1$ . If
$g=0$ , we have $h^{0}(N, L)>n$ and $\Delta\leqq 0$ . Hence $(N, L)\cong(P^{n}, O(1))$ .

\S 14. The case $g=1$ .
(14.1) Let the notation be as in (13.6). In this section we make a detailed

analysis of the case $g=1$ , assuming char $(\mathfrak{K})\neq 2$ . As we saw in [F5; (5.7)],

$(M, L)$ is a Del Pezzo manifold, while we do not need this result in the sequel.
(14.2) Let $\mathcal{D}=O_{M^{*}}(2L)$ and set $\mathcal{F}=f_{*}\mathcal{D}$ . Since every fiber $C_{x}$ of $f$ over $x$

$\in P$ is an irreducible reduced curve of arithmetic genus one, the restriction $\mathcal{D}_{x}$

of $\mathcal{D}$ to $C_{x}$ is generated by global sections and $h^{0}(C_{x}, \mathcal{D}_{x})=2$ . Therefore $\mathcal{F}$ is
locally free of rank two, and the natural homomorphism $f^{*}\mathcal{F}arrow \mathcal{D}$ is surjective.
This gives a morphism $\rho:M^{*}arrow P(\mathcal{F})$ such that $\rho^{*}O(1)=\mathcal{D}$ . $V=P(\mathcal{F})$ is a $P^{1}-$

bundle over P. $\rho$ is a finite morphism of degree two, because so is $\rho_{x}$ : $C_{x}arrow V_{x}$

$\cong P^{1}$ for every $x\in P$. By virtue of [F4; (2.3)] and [F6; (2.6)], we infer that
$\rho$ makes $M^{*}$ a double covering of $V$ with branch locus $B$ , which is a non-
singular divisor on $V$. So $M^{*}\cong R_{B}(V)$ in the notation of [F4] and [F6].

(14.3) $E$ is a component of the ramification divisor $R$ of $\rho$ . Indeed, for
every $x\in P,$ $E_{x}=E\cap C_{x}$ is a ramification point of $\rho_{x}$ , because $\rho_{x}$ is the rational
mapping defined by $|2L_{x}|$ and $L_{x}=E_{x}$ in Pic $(C_{x})$ . Hence $S=\rho(E)$ is a com-
ponent of $B$ . Note that $S$ is a section of $p:Varrow P$, because $E$ is a section of $f$ .

(14.4) Let $H_{\zeta}$ be the tautological line bundle $O(1)$ on $V=P(\mathcal{F})$ . Then $[H_{\zeta}]_{S}$
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$=0$ since $2L_{E}=0,$ $\rho^{*}H_{(}=2L$ and $E\cong S$ . So, taking $p_{*}$ of $0arrow O_{V}[H_{(}-S]arrow O_{V}[H_{\zeta}]$

$arrow O_{S}[H_{\zeta}]arrow 0$ , we get an exact sequence $0arrow O_{P}[tH_{\xi}]arrow \mathcal{F}arrow O_{P}arrow 0$ on $P$, where $t$

is an integer. The normal bundle of $S$ in $V$ is $H_{\zeta}-tH_{\xi}=O_{S}(-t)$ . On the other
hand, we have $[B]_{S}\cong[2R]_{E}=[2E]_{E}=\mathcal{O}(-2)$ . Thus we get $t=2$ . Hence the
above exact sequence on $P$ splits for any $n\geqq 2$ . In particular $\mathcal{F}\cong 2H_{\xi}\oplus[0]$ and
$S\in|H_{\zeta}-2H_{\xi}|$ .

(14.5) Set $B_{2}=B-S$ and $[B_{2}]=aH_{\zeta}+bH_{\xi}$ in Pic(V). $B_{2}\cap S=\emptyset$ because $B$

is non-singular. This implies $b=0$ . We have also $a=B_{2}V_{x}=3$ , because $B_{x}$ is
the branch locus of $\rho_{x}$ . Thus we have $B_{2}\in|3H_{\zeta}|$ . Moreover, we easily see
$H^{1}(V, -3H_{\zeta})=0$ , which implies that $B_{2}$ is connected.

(14.6) The preceding arguments altogether prove the following

THEOREM. Let things be as in (13.6) and suppOse in addition that $g=1$ and
char $(\mathfrak{K})\neq 2$ . Then $M^{*}$ is a double branched covering of $V=P(2H_{\xi}\oplus[0])$ . Let
$H_{\zeta}$ be the tautological line bundle on V. Then the branch locus $B$ of $\rho:M^{*}arrow V$

conststs of two connected components $B_{1}$ and $B_{2}$ , where $B_{1}$ is the unique member
$S$ of $|H_{\zeta}-2H_{\xi}|$ and $B_{2}$ is a non-singular member of $|3H_{\zeta}|$ . Furthermore, $S$ is
the image of $E$ via the morphism $\rho$ , and is a section of $p:Varrow P\cong P_{\xi}^{n- 1}$ .

(14.7) Sectionally hyperelliptic polarized manifolds of type (–) dePned in
the next section turn out to have similar structures as above. So, further in-
vestigations of such $(M, L)$ will be done in \S 16.

\S 15. Sectionally hyperelliptic cases.

(15.1) Let things be as in (13.6) and assume further that $g\geqq 2$ . Let $\omega$ be
the canonical dualizing sheaf of $M^{*}$ and set $\mathcal{F}_{t}=f_{*}(\omega^{\otimes t})$ for each positive integer
$t$ . The restriction of $\omega$ to every fiber $C_{x}$ of $f$ over $x\in P$ is the dualizing sheaf
of $C_{x}$ . Hence $h^{0}(C_{x}, \omega_{x}^{\otimes t})$ is independent of $x$ . This implies that $\mathcal{F}_{t}$ is a locally
free sheaf on $P$. Furthermore, since $\omega_{x}$ is generated by global sections, the
natural homomorphism $f^{*}\mathcal{F}_{1}arrow\omega$ is surjective. This induces a morphism $\rho$ : $M^{*}$

$arrow P(\mathcal{F}_{1})$ such that the restriction $\rho_{x}$ of $\rho$ to $C_{x}$ is the canonical mapping. Let
$V$ be the image of $\rho$ , and we regard $\rho$ as a mapping onto $V$.

(15.2) Since $g(C_{x})=g\geqq 2$ and $\rho_{x}$ is the canonical mapping, the following
conditions are equivalent to each other (cf., $e.g.$ , [F6; (1.4)]).

a) $V_{x}\cong P^{1}$ and $\rho_{x}$ is a double covering.
b) $\omega_{x}$ is not very ample.
c) The natural mapping $S^{3}(H^{0}(C_{x}, \omega_{x}))arrow H^{0}(C_{x}, \omega_{x}^{\otimes 3})$ is not surjective.
d) $x\in Supp(Coker(S^{3}\mathcal{F}_{1}arrow \mathcal{F}_{3}))$ .
By the condition d), the set of points on $P$ satisfying these conditions is

Zariski closed.

(15.3) DEFINITION. $(M, L)$ is said to be sectionally hyPerelliptic if any
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general fiber of $f$ satisPes the conditions in (15.2). If so, every fiber $C_{x}$ of $f$

is a hyperelliptic curve (which may be singular).
From now on, we suppose $(M, L)$ to be sectionally hyperelliptic.
(15.4) $V_{x}$ is a Veronese curve of degree $g-1$ embedded in $P(\mathcal{F}_{1})_{x}\cong P^{g- 1}$

for every $x\in P$. Hence $p:Varrow P$ is a $P^{1}$-bundle. $\rho:M^{*}arrow V$ is a finite mor-
phism of degree two, since so is $\rho_{x}$ for every $x$ .

(15.5) Let $S$ be the image $\rho(E)$ of $E$ in $V$. Then $S$ is a section of $p$ . Set
$[S]_{S}=\mathcal{O}(-e)$ for some integer $e$ . Then the exact sequence $0arrow O_{V}[eH_{\xi}]arrow \mathcal{O}_{V}[S$

$+eH_{\xi}]arrow O_{S}[S+eH_{\xi}]arrow 0$ descends via $p_{*}$ to the exact sequence $0arrow \mathcal{O}_{P}(e)arrow \mathcal{E}arrow$

$O_{P}arrow 0$, where $\mathcal{E}$ is the locally free sheaf $p_{*}o_{V}[S+eH_{\xi}]$ of rank two on $P$. It
is easy to see $V\cong P(\mathcal{E})$ , and $S\in|H_{\zeta}-eH_{\xi}|$ , where $H_{\zeta}$ is the tautological line
bundle on $P(\mathcal{E})$ .

(15.6) From now on, we assume char $(\mathfrak{K})\neq 2$ throughout in this article. Then,
by virtue of [F6; (2.6)] (or [F4; (2.3)] in case $\mathfrak{K}=C$), we have $M^{*}\cong R_{B}(V)$ for
some non-singular divisor $B$ on $V$. Let $i$ be the involution of $M^{*}$ such that
$V\cong M^{*}/i$ . Then there are following three possibilities:

a) $i(E)=E$ .
b) $i(E)\cap E=\emptyset$ .
c) $i(E)\neq E$ and $i(E)\cap E\neq\emptyset$ .
(15.7) DEFINITION. A sectionally hyperelliptic polarized manifold $(M, L)$

is said to be of type (–) (resp. $(\infty),$ $(+)$ ) if the above condition a) (resp. b), $c$))

is satisfied.

\S 16. Type (–).

We employ the same notation as in \S 15 and $(M, L)$ is assumed to be sec-
tionally hyperelliptic of type (–).

(16.1) The restriction of the involution $i$ to $E$ is the identity map because
$f=f\circ i$ and $E$ is a section of $f$ . Hence $E$ is a component of the ramification
locus of $\rho$ , and $S=\rho(E)$ is a component of the branch locus $B$ of $\rho$ . By the
same argument as in (14.4), we infer $e=2,$ $V\cong P(2H_{\xi}\oplus[0])$ and $S\in|H_{\backslash }’-2H_{\xi}|$ .
Set $B=S+B_{2}$ . Then, as in (14.5), we see $B_{2}\in|(2g+1)H_{\zeta}|$ and $B_{2}$ is connected.
Thus we obtain:

(16.2) THEOREM. Let $(M, L)$ be a p0larized manifold with $n=\dim M\geqq 2$ ,
$d(M, L)=\Delta(M, L)=1$ , and let $f:M^{*}arrow P\cong P_{\xi}^{n-1}$ be as in (13.6). Supp0se in ad-
dition that char $(\mathfrak{K})\neq 2$ and that $(M, L)$ is sectionally hyperelliptic of type (–)

with $g(M, L)=g$ . Then $M^{*}\cong R_{B}(V)$ , where $V$ is the $P^{1}$-bundle $P(2H_{\xi}\oplus[0])$

over $P,$ $B=B_{1}+B_{2}$ is a divisor on $V,$ $B_{1}$ is the unique member of $|H_{\zeta}-2H_{\xi}|$ with
$H_{\zeta}$ being the tautological line bundle on $V$, and $B_{2}$ is a non-singular connected
member of $|(2g+1)H_{\zeta}|$ . Moreover, $B_{1}$ is the image of $E$ via $\rho:M^{*}arrow V$.
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(16.3) Because of the similarity of (14.6) and (16.2), $(M, L)$ may be said to
be of type (–) when $g(M, L)=1$ . So the results in this section are valid in case
$g=1$ too.

(16.4) THEOREM. Let things be as in (16.2) or (14.6). Then Bs $|2L|=\emptyset$

and the image $W=\rho_{|2L|}(M)$ is a pr0jective cone over a Veronese manifold $(P^{n-1},2H)$ .
PROOF. We have $\rho^{*}H_{(}=\rho^{*}(S+2H_{\xi})=2E+2H_{\xi}=2L$ in Pic $(M^{*})$ . Since

$Bs|H_{\zeta}|=\emptyset$ on $V$, we have $Bs|2L|=\emptyset$ on $M^{*}$, which implies Bs $|2L|=\emptyset$ on $M$.
Moreover, because $H^{0}(M, 2L)\cong H^{0}(M^{*}, 2L)\cong H^{0}(V, H_{\zeta}),$ $W$ is the image of $V$ by
the rational mapping defined by $|H_{(}|$ . This is nothing but the contraction of $S$

to a normal point, and the resulting variety is the cone over $(P_{\xi}^{n-1},2H_{\xi})$ .
(16.5) In the above situation, $Marrow W$ is a finite morphism of degree two

which is ramified over the image $D$ of $B_{2}$ via the contraction $Varrow W$ and over
the vertex of $W$.

Conversely, given any such smooth divisor $D$ on $W$ , we can construct a
polarized manifold $(M, L)$ with $d(M, L)=\Delta(M, L)=1$ which is sectionally hyper-
elliptic of type (–). Indeed, as in [F6; (4.5)], we lift $D$ to a divisor $B_{2}$ on $V$

and set $B=S+B_{2}$ . Let $M^{*}=R_{B}(V)$ and let $E$ be the component of the rami-
fication locus lying over $S$ . Then we can apply the method in (13.7).

(16.6) By the above observation we see that the results in [F6; (4.6)] apply
in the present case too. In particular we have:

1) $K^{M}=(2g-n-1)L$ .
2) $H^{q}(M, tL)=0$ for any $t\in Z,$ $0<q<n$ .
3) For any general member $Y$ of $|2L|,$ $Y$ is a double covering of $P^{n-1}$

with branch locus being a smooth hypersurface of degree $4g+2$ and $L_{Y}$ is the
pull-back of the hyperplane bundle of $P^{n-1}$ .

4) $b_{j}(M)=b_{j}(P^{n})$ if $j<n$ . Moreover, if $\mathfrak{K}=C,$ $H^{2i}(M;Z)$ is generated by
$c_{1}(L)^{i}$ if $2i<n$ .

5) Pic $(M)$ is generated by $L$ if $n\geqq 3$ .
6) $\pi_{1}^{(p)}(M)=\{1\}$ if $p=char(\mathfrak{K})>0$ . When $\mathfrak{K}=C,$ $M$ is topologically simply

connected.

(16.7) THEOREM. Let $(M, L)$ be a p0larized manifold with $d(M, L)=\Delta(M, L)$

$=1$ . Then the following conditions are equivalent to each other.
a) $(M, L)$ is sectionally hyperelliptic of type (–).
b) $Bs|2L|=\emptyset$ .
c) $h^{0}(M, 2L)>n(n+1)/2$ .
d) $(M, L)$ is a wmghted hypersurface of degree $4g+2$ in the weighted pro-

jective space $P$ $(2g+1,2,1, \cdots , 1)$ .
REMARK. The condition d) implies also $d(M, L)=\Delta(M, L)=1$ .
PROOF. We use the notation in (13.6). We have $a$ ) $\Rightarrow d$ ) by [F6; (4.6.7)]



Polarized manifolds, III 81

and (16.2). $d$) $\Rightarrow c$) is obvious. To prove $c$) $\Rightarrow b$), assume Bs $|2L|\neq\emptyset$ . Then
$E$ must be a fixed component of $\pi^{*}|2L|$ . So $H^{0}(M^{*}, 2L-E)\cong H^{0}(M^{*}, 2L)$ .
The restriction of $2L-E$ to each fiber $C_{x}$ of $f$ is $E_{x}$ . Clearly $E_{x}$ is a fixed
part of $E_{x}|$ because $g\geqq 1$ . Hence $E$ is a fixed component of $|2L-E|$ , so
$H^{0}(M^{*}, 2L-E)\cong H^{0}(M^{*}, 2L-2E)\cong H^{0}(M^{*}, 2H_{\xi})\cong H^{0}(P, 2H_{\xi})$ because $f_{*}o_{M}.=0_{P}$.
Thus we infer $h^{0}(M, 2L)=h^{0}(M^{*}, 2L)=h^{0}(P, 2H)=n(n+1)/2$ , contradicting c).

To show $b$) $\Rightarrow a$), let $x$ be any point on $P$. The restriction of $2L$ to $C_{x}$ is
$2E_{x}$ . Hence Bs $|2E_{x}|=\emptyset$ . This linear system defines a morphism onto $P^{1}$ of
degree two. Consequently $C_{x}$ is hyperelliptic. Moreover, $E_{x}$ is a ramification
point of this morphism. Hence $(M, L)$ is sectionally hyperelliptic and $E$ is a
component of the ramification locus of $M^{*}arrow V$. Thus we obtain a).

(16.8) Now, similarly as in [F6; \S 7], we will study deformations of $(M, L)$ .
THEOREM. Let $(\mathcal{M}, T, \pi, \mathcal{L})$ be a deformation family of prep0larized mani-

folds, that means, $\pi;\mathcal{M}arrow T$ is a pr0per smooth morphism between manifolds $\mathcal{M}$ ,
$T$ which may not be complete, and $\mathcal{L}$ is a line bundle on $\mathcal{M}$ . Supp0se that there
is a pofnt $0$ on $T$ such that $(M_{o}, L_{o})$ , the fiber $M_{o}=\pi^{-1}(0)$ together with the re-
striction $L_{o}$ of $\mathcal{L}$ to $M_{o}$ , is a sectionally hyperelliptic p0larized manifold of type
(–) with $d(M_{o}, L_{o})=\Delta(M_{o}, L_{o})=1$ and $n=\dim M_{o}\geqq 2$ . Then there exists a Zariski
open neighborhood $U$ of $0$ such that $(M_{t}, L_{t})$ is a sectionally hyperelliptic p0larized
manifold of the same type (–) for every $t\in U$ .

PROOF. By [EGA; Chap. III, (4.7.1)], we find a neighborhood $U_{1}$ of $0$ such
that $L_{t}$ is ample on $M_{t}$ for every $t\in U_{1}$ . By (16.6; 2) and by the upper-semicon-
tinuity theorem, there is a neighborhood $U_{2}$ of $0$ such that $H^{1}(M_{t}, L_{t})=H^{1}(M_{t}$ ,
$2L_{t})=0$ for every $t$ on $U_{2}$ . Then, as is well known (cf. [EGA; Chap. III] or
[$H$ ; Chap. III, \S 12]), $h^{0}(M_{t}, L_{t})$ and $h^{0}(M_{t}, 2L_{t})$ are constant functions of $t\in U_{2}$ .
Thus, for every point $f$ on $U=U_{1}\cap U_{2}$ , the criterion (16.7; c) applies.

(16.9) QUESTION. Let $(M, L)$ be a polarized manifold of the type (16.7).

Then, does any small deformation of $M$ carry a family of line bundles so that
it becomes a deformation family of $(M, L)$ ?

When $n=\dim M\geqq 3$ , we have $H^{2}(M, \mathcal{O})=0$ by (16.6; 2) and there is no ob-
struction for extending $L$ as a family of line bundles. When $n=2$ and $\mathfrak{K}=C$,
let $\{\lambda_{t}\in H^{2}(M_{t} ; Z)\}$ be the locally constant family of cohomology classes which
extends $c_{1}(L)$ . Since $K^{M}=(2g-3)L$ by (16.6; 1), we have $c_{1}(K_{t})=(2g-3)\lambda_{t}$ for
every $t$ , where $K_{t}$ is the canonical line bundle of any small deformation $M_{t}$ of
$M$. This implies that the image of $\lambda_{t}$ in $H^{2}(M_{t}, O)$ vanishes. Hence $\lambda_{t}=c_{1}(L_{t})$

for some $L_{t}\in Pic(M_{t})$ . Such a line bundle $L_{t}$ is unique since $h^{1}(M_{t}, O)=h^{1}(M,$ $\mathcal{O}\rangle$

$=0$ . So $\{L_{t}\}$ form a family of line bundles.
Let us consider this problem from another viewpoint. By the observation

(16.5), we see that polarized manifolds of the type (16.7) are parametrized by
smooth members of $|(2g+1)H_{\zeta}|$ . Our question is equivalent to asking whether
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this family is complete in the sense of Kodaira-Spencer [KS] as a deformation
family of the complex manifold $M$. So, a positive answer follows from their
criterion and the result below.

(16.10) THEOREM. Let $U$ be the open subset of $H^{0}(V, (2g+1)H_{\zeta})$ correspOnd-
ing to non-singular members of $|(2g+1)H_{\zeta}|$ and let $\{(M_{u}, L_{u})\}$ be the induced
family of polarized manifolds of type (–) parametrized by U. Then, at any
point $u$ on $U$, the characteristic mapping $T_{u}^{U}(\cong H^{0}(V, (2g+1)H_{\zeta}))arrow H^{1}(M_{u}, \Theta_{u})$

is surjective if $n=\dim M_{u}\geqq 2$ , where $\Theta_{u}$ is the sheaf of vector fields on $M_{u}$ .
In the following proof, we omit the subscript $u$ for the sake of brevity of

notation, for most objects lie over $u$ . Thus we use the notation in (16.2). Note
first that the characteristic mapping factors through $H^{1}(M^{*}, \Theta^{*})$ , where $\Theta^{*}$ is
the sheaf of vector fields on $M^{*}$ .

(16.11) Let $\tau^{+}$ (resp. $\tau^{-}$ ) be the eigen space belonging to the eigenvalue 1
(resp. $-1$ ) of the action on $H^{1}(M^{*}, \Theta^{*})$ of the involution $i$ of $M^{*}$ covering $M^{*}$

$arrow V$. Then, as in [F6; (7.9)], $\tau^{-}\cong H^{1}(V, T^{V}[-F])$ for $F=(g+1)H_{\zeta}-H_{\xi}$, and
there is an exact sequence $H^{0}(V, T^{V})arrow H^{0}(B, [B])arrow\tau^{+}arrow H^{1}(V, T^{V})arrow H^{1}(B, [B])$ .

(16.12) The relative tangent bundle of $p:Varrow P\cong P_{\xi}^{n-1}$ is $2H_{\zeta}-2H_{\xi}$ . There-
fore we have the following exact sequences:

(1) $0arrow[2H_{\zeta}-2H_{\xi}]arrow T^{V}arrow T_{V}^{P}arrow 0$ , and
(2) $0arrow O_{V}arrow H^{0}(P, H_{\xi})^{\vee}\otimes[H_{\xi}]arrow T_{V}^{P}arrow 0$ .
From (2) we get an exact sequence $H^{1}(V, [-F])arrow H^{0}(P, H_{\xi})^{\vee}\otimes H^{1}(V, H_{\xi}-F)$

$arrow H^{1}(V, T_{V}^{P}[-F])arrow H^{2}(V, -F)arrow H^{0}(P, H_{\xi})^{\vee}\otimes H^{2}(V, H_{\xi}-F)$ . It is easy to see
$h^{1}(V, -F)=0$ , $h^{1}(V, H_{\xi}-F)=1$ and further $h^{2}(V, -F)=0$ unless $n=2$ . When
$n=2$, the last mapping is the dual of the surjective mapping $H^{0}(P, H_{\xi})\otimes H^{0}(V$,
$K^{V}+F-H_{\xi})arrow H^{0}(V, K^{V}+F)$ . So, in any case, we obtain $h^{1}(V, T_{V}^{P}[-F])=n$ .
On the other hand, we see $H^{1}(V, (1-g)H_{(}-H_{\xi})=0$ by Serre duality. Now, in
view of (1), we infer dim $\tau^{-}=h^{1}(V, T^{V}[-F])\leqq h^{1}(V, T_{V}^{P}[-F])=n$ .

(16.13) We claim that the mapping $H^{0}(B, [B])arrow\tau^{+}$ in (16.11) is surjective.
When $n\geqq 3$ , we obtain $H^{1}(V, T^{V})=0$ by similar arguments as in (16.12). So the
assertion is clear. Any way, it suffices to show that $H^{1}(V, T^{V})arrow H^{1}(S, [S])$ is
injective, for the latter is a direct sum component of $H^{1}(B, [B])$ . Using tbe
exact sequences (1) and (2), we infer $H^{1}(V, T^{V}[-S])=0$ since $[S]=H_{\zeta}-2H_{\xi}$ .
This implies that the natural mapping $H^{1}(V, T^{V})arrow H^{1}(S, T_{S}^{V})$ is injective. On
the other hand, since $S$ is a section of $p:Varrow P$, we see that $T_{S}^{V}arrow T_{S}^{P}\cong T^{s}$

gives a splitting of the exact sequence $0arrow T^{S}arrow T_{S}^{V}arrow[S]_{S}arrow 0$ . So $H^{1}(S, T_{S}^{V})\cong$

$H^{1}(S, [S])$ , because $H^{1}(S, T^{s})=0$ . Combining these facts we prove our claim.
(16.14) Let us consider a general situation where $M^{*}$ is the blowing-up of

a manifold $M$ with center being a submanifold $C$ in $M$. Let $E$ be the excep-
tional divisor lying over $C$ . Then $E\cong P(N^{\vee})$ for the conormal bundle $N^{\vee}$ of $C$

in $M$ and the tautological line bundle $O_{E}(1)$ is the restriction of $[-E]\in Pic(M^{*})$ .
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$O_{E}(-1)$ is naturally a subbundle of $N_{E}$, the pull-back of the normal bundle $N$ of
$C$. Let $Q$ be the quotient bundle $N_{E}/\mathcal{O}_{E}(-1)$ .

We have a natural homomorphism $\theta$ : $\Theta^{*}arrow\pi^{*}\Theta$ , where $\Theta^{*}$ (resp. $\Theta$ ) denotes
the sheaf of vector fields on $M^{*}$ (resp. $M$). It is easy to see that $\theta$ is injective
and $c=Coker(\theta)$ is supported on $E$ . Moreover $C\cong O_{E}[Q]$ . Using Leray spectral
sequence for $Earrow C$, we infer $H^{q}(C)\cong H^{q}(C, N)$ for any $q\in Z$ . Thus we get a
long exact sequence $0arrow H^{0}(M^{*}, \Theta^{*})arrow H^{0}(M, \Theta)arrow H^{0}(C, N)arrow H^{1}(M^{*}, \Theta^{*})arrow$

$H^{1}(M, \Theta)arrow H^{1}(C, N)arrow\cdots$ .
(16.15) In our particular case, $C=X=Bs|L|$ is a point on $M$, which is an

isolated fixed point of the involution of $M$ induced by that of $M^{*}$ over $V$. There-
fore $h^{0}(C, N)=n$ and the image of $\delta:H^{0}(C, N)arrow H^{1}(M^{*}, \Theta^{*})\cong\tau^{+}\oplus\tau^{-}$ lies in
$\tau^{-}$ . Any vector field on $M$, as an infinitesimal automorphism of $M$, preserves
the line bundle $L$ because $H^{1}(M, O_{M})=0$ . Hence it does not move $C=Bs|L|$ .
So $H^{0}(M, \Theta)arrow H^{0}(C, N)$ is a zero map. This implies that $\delta$ is injective. By
(16.12) we infer that ${\rm Im}(\delta)=\tau^{-}$ . This implies that $\tau^{+}arrow H^{1}(M, \Theta)$ is bijective.

On the other hand, $H^{0}(V, [B])arrow H^{0}(B, [B])$ is surjective because $H^{1}(V, O_{V})$

$=0$ . So, combining with (16.13), we infer that $H^{0}(V, [B])arrow H^{1}(M, \Theta)$ is surjec-
tive, proving (16.10).

\S 17. Type $(\infty)$ .
We employ the same notation as in \S 15 and $(M, L)$ is assumed to be sec-

tionally hyperelliptic of type $(\infty)$ .
(17.1) In the case of type $(\infty)$ we have $i(E)\cap E=\emptyset$ and $\rho^{-1}(S)=E\cup i(E)$ .

So $S\cap B=\emptyset$ , hence $e=1$ . In particular $V\cong P(H_{\xi}\oplus \mathcal{O}_{P})$ and the rational mapping
$\sigma$ defined by $|H_{\zeta}|$ makes $V$ a blowing-up of $P_{\zeta}^{n}$ with center being a point $y$ to
which $S$ is contracted.

(17.2) Since $B\cap S=\emptyset$ and $BV_{x}=2g+2$ for any $x\in P$, we infer $B\in$

$|(2g+2)H_{\zeta}|$ . So $B’=\sigma(B)$ is a hypersurface on $P_{C}^{n}$ of degree $2g+2$ and $B’\cong B$ .
Let $M’$ be the double covering $R_{B’}(P_{\zeta}^{n})$ of $P_{\zeta}^{n}$ and let $y_{1},$ $y_{2}$ be points on $M’$

lying over $y$ . Then $M^{*}$ is the blowing-up of $M’$ at these points and the ex-
ceptional divisors over them are $E$ and $i(E)$ . So $M$ is the blowing-up of $M’$ at
one of $y_{1}$ and $y_{2}$ . The choice between these points does not affect the isomor-
phism class of $M$, because they are interchangeable by the involution of $M’$ .
Since $L=H_{\xi}+E=H_{(}-i(E),$ $(M, L)$ is determined by the pair $(B’, y)$ .

(17.3) For any line $l_{x}$ on $P_{\zeta}^{n}$ passing through $y$ , there exists a point on
$l_{x}\cap B’$ at which they meet in odd order.

Indeed, otherwise, the fiber $C_{x}$ of $f$ : $M^{*}arrow P$ over the point $x\in P$ corre-
sponding to $l_{x}$ would be isomorphic to $R_{B’\cap l_{x}}(l_{x})$ and hence not irreducible.

(17.4) Conversely, for any pair $(B’, y)$ as in (17.2) satisfying the condition
(17.3), we can construct a sectionally hyperelliptic polarized manifold $(M, L)$ of
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type $(\infty)$ by reversing the preceding process. The condition (17.3) is necessary
to prove the ampleness of $L$ .

(17.5) Given any $(n, g)$ , the set of pairs $(B’, y)$ satisfying the condition
(17.3) forms a Zariski open subset of the space parametrizing all the pairs as in
(17.2). However, this open set may be empty. In fact we have the following

LEMMA. Let $B$ be a smooth hypersurface of degree $2g+2$ in $P$? and let $y$

be a pojnt on $P_{\zeta}^{n}$ off B. Then, if $n\geqq g+2$ , there exists a line $l$ passjng $y$ such
that the intersection multiplicity of $l$ and $B$ at every pojnt on $l\cap B$ is even.

Such a line $l$ will be said to be evenly in contact with $B$ . A proof of this
lemma will be given below, ending in (17.12).

(17.6) Given a vector bundle $E$ on a space $T$ , let $E^{\vee}$ (resp. $S^{k}E$ ) denote the
dual bundle (resp. k-th symmetric product) of $E$ . For every $t\in T$ , the fiber
$(S^{k}E)_{t}$ is canonically identified with the space of homogeneous polynomial func-
tions of degree $k$ on $(E^{\vee})_{t}$ . Hence, taking m-powers at each point $t$ of $T$ , we
get a mapping $S^{k}Earrow S^{mk}E$ for each positive integer $m$ . Of course, usually, this
is not a homomorphism of vector bundles. Any way, this induces a morphism
$\mu_{m}$ : $P((S^{k}E)^{\vee})arrow P((S^{mk}E)^{\vee})$ . Denoting by $H_{k}$ and $H_{mk}$ the tautological line
bundles on these spaces, we have $\mu^{*}{}_{m}H_{mk}=mH_{k}$ by dePnition of $\mu_{m}$ .

(17.7) To prove the lemma (17.5), let $V$ be the blowing-up of $P_{\zeta}^{n}$ with center
$y$ and let $S$ be the exceptional divisor over $y$ . Then (V, $H_{\zeta}$) $\cong(P(E), \mathcal{O}(1))$ for
the vector bundle $E=H_{\xi}\oplus \mathcal{O}$ on $P_{\xi}^{n-1}$ . $S$ is the unique member of $|H_{(}-H_{\xi}|$ .
The fibers of $p:Varrow P_{\xi}^{n-1}=P$ are in one to one correspondence with the lines
on $P_{\zeta}^{n}$ passing through $y$ . $B$ is defined by a section of $H^{0}(P_{\zeta}^{n}, \mathcal{O}(2g+2))\cong$

$H^{0}(V, (2g+2)H_{(})\cong H^{0}(P, S^{2g+2}E)$ . This section of $S^{2g+2}E$ does not vanish at any
point $x$ on $P$ because $B$ does not contain the fiber $V_{x}$ over $x$ . Hence this defines a
subbundle of $S^{2g+2}E$ isomorphic to $O_{P}$ . Correspondingly, we have a section $b$ of
the bundle $P((S^{2g+2}E)^{\vee})$ over $P$.

On the other hand, as we saw in (17.6), there is a natural morphism $\mu$ :
$P((S^{g+1}E)^{\vee})=Garrow P((S^{2g+2}E)^{\vee})$ defined by square. By definition of $\mu$ , the line $l_{x}$

corresponding to $x\in P$ is evenly in contact with $B$ if and only if $b(x)\in\mu(G)$ .
Therefore, we should show $b(P)\cap\mu(G)\neq\emptyset$ .

(17.8) First we consider the case n $=g+2$ . Then dimb$(P)=n-1=co\dim\mu(G)$ .
We will calculate the intersection number $I=b(P)\mu(G)$ in the Chow ring of
$P((S^{2g+2}E)^{\vee})$ and show $I>0$ .

(17.9) The section $b$ defines a subbundle $N$ of $S^{2g+2}E\cong\bigoplus_{j=0}^{2g+2}O_{P}(j)$ . The direct

sum component $O_{P}$ corresponds to the quotient sheaf $p_{*}(\mathcal{O}_{S}[(2g+2)H_{(}])$ of
$p_{*}(O_{V}[(2g+2)H_{\zeta}])\cong O_{P}[S^{2g+2}E]$ . Since $B\cap S=\emptyset$ , we infer that $N$ maps bijectively

onto this quotient bundle. Hence $S^{2g+2}E/N\cong\bigoplus_{j=1}^{2g+2}\mathcal{O}_{P}(j)$ . For each $j=1,$ $\cdots$ , $2g+2$ ,
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the quotient $\mathcal{O}_{P}(j)$ of $S^{2g+2}E$ defines a divisor $D_{j}\in|H_{\sigma}+$ ] $H_{\xi}|$ on $P((S^{2g+2}E)^{\vee})$ ,
where $H_{\sigma}$ denotes the tautological line bundle. Clearly $b(P)=D_{1}\cap\cdots\cap D_{2g+2}$ .
So $I=(H_{\sigma}+H_{\xi})\cdots(H_{\sigma}+(2g+2)H_{\xi})\mu(G)=(2H_{\tau}+H_{\xi})\cdots(2H_{\tau}+(2g+2)H_{\xi})_{G}$ , where $H_{\tau}$

is the tautological line bundle on $G=P((S^{g+1}E)^{\vee})$ , because $\mu^{*}H_{\sigma}=2H_{\tau}$ by (17.6).
(17.10) For the convenience of calculation, we introduce the following nota-

tion. Let $P^{1}\subset P^{2}\subset\cdots\subset P^{n}\subset P^{n+1}\subset\cdots$ be an infinite sequence of linear embeddings
and let $P^{\infty}= \bigcup_{n\geq 1}P^{n}$ . There is a line bundle $H$ on $P^{\infty}$ such that its restriction to

each $P^{n}$ is $O(1)$ . The Chow ring of $P^{\infty}$ is defined to be the projective limit of
Ch $(P^{n})$ , which turns out to be the ring $Z[[h]]$ of formal power series in $h=$

$c_{1}(H)$ with integral coefficients. For $\varphi\in Z[[h]]$ , we denote the coefficient of $h^{\iota 1}$

by $[\varphi]_{d}$ .
Now, for any totally decomposable vector bundle $E$ on $P^{\infty}$ , the total Chern

class $c(E)$ of $E$ is well-dePned by the following axioms: $c(E_{1}\oplus E_{2})=c(E_{1})c(E_{2})$

and $c(tH)=1+th$ . Similarly total Segre classes are defined by the axioms
$s(E_{1}\oplus E_{2})=s(E_{1})s(E_{2})$ and $s(tH)= \sum_{j=0}^{\infty}(th)^{j}$ . So $c(E)s(E^{\vee})=1$ for any $E$ . We

denote $[c(E)]_{d}$ and $[s(E)]_{d}$ by $c_{d}(E)$ and $s_{d}(E)$ respectively.

(17.11) Under the above notation, it is easy to see $I= \sum_{f=0}^{2g+2}2^{j}c_{2g+2-j}(H\oplus 2H$

$\oplus\cdots\oplus(2g+2)H)H^{j}{}_{\tau}H_{\xi}^{2g+2-j}\{G\}$ . On the other hand, since $n-1=g+1$ and

$( S^{g+1}E)^{\vee}\cong\bigoplus_{j=0}^{g+1}[-J^{H_{\xi}}]$ , we have $H_{\tau}^{g+1+r}H_{\xi}^{g+1- r}=s_{r}( \bigoplus_{j=0}^{g+1}[-J^{H])}$ if $r\geqq 0$ , and $=0$ if

$r<0$ . Therefore $I= \sum_{r=0}^{g+1}2^{g+1+r}s_{r}(\bigoplus_{j=0}^{g+1}[-jH])c_{g+1-r}(\bigoplus_{f=1}^{2g+2}[jH])=2^{g+1}[s(\bigoplus_{j=1}^{g+1}[-2jH])$

$c( \bigoplus_{j=1}^{g+1}[(2jH])c(\bigoplus_{j=1}^{g+1}[(2j-1)H])]_{g+1}=2^{g+1}c_{g+1}(\bigoplus_{t=0}^{g}[(2t+1)H])=2^{g+1}\coprod_{t=0}^{g}(2t+1)>0$ .
Thus we prove the assertion in case $n=g+2$ .

(17.12) In general, we can calculate the intersection number $I=b(P^{n-1})\mu(G)$

$H_{\xi}^{n-g-2}$ and show that $I>0$ , which implies $b(P)\cap\mu(G)\neq\emptyset$ as required. Alter-
nately, taking a general hyperplane section passing through $y$ , we can prove the
lemma (17.5) by induction on $n$ . Details are left to the reader.

(17.13) REMARK. When $n\leqq g+1$ , it is not difficult to see that any general
pair $(B’, y)$ as in (17.2) satisfies the condition (17.3).

(17.14) Putting things together, we get the following

THEOREM. Let $(M, L)$ be a p0larized manifold with $d(M, L)=\Delta(M, L)=1$ .
Supp0se that char $(\mathfrak{K})\neq 2$ and that $(M, L)$ is sectionally hyperelliptic of type $(\infty)$ .
Then, there exis $t$ a non-singular hypersurface $B$ of degree $2g(M, L)+2$ on $P^{n}$

and a pojnt $y’$ on $M’=R_{B}(P^{n})$ off the ramification locus of $M’arrow P^{n}$ such that $M$

is isomorphic to the blowing-up of $M’$ with center $y’$ and $L=H-E’$ for the ex-
cepti0nal divisor $E’$ over $y’$ . Furthermore, if $y$ is the image of $y’$ on $P^{n}$ , any
line on $P^{n}$ passing through $y$ is not evenly in contact with B. In particular
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$n=\dim M\leqq g(M, L)+1$ .
(17.15) COROLLARY. Polarized manifolds of the above type form a single

deformation family for any fixed $n=\dim M$ and $g=g(M, L)$ . This family is
complete in the sense of Kodaira-Spencer [KS] unless $n=g=2$ and $M’$ is $a$ K3-
surface.

This follows from the observation (16.14) and the result [F6; (7.7)]. From
the results on $11I’$ in [F6; \S 4], we obtain also the results below.

(17.16) COROLLARY. Let $(M, L)$ be as in (17.14). Then $\pi_{1}^{(p)}(M)=\{1\}$ for
$p=char(\mathfrak{K})$ and $\pi_{1}(M)=\{1\}$ if $\mathfrak{K}=C$ .

(17.17) COROLLARY. Let $j$ be an integer such that $0<j<2n$ and $j\neq n$ .
Then $b_{j}(M)=0$ if $j$ is odd and $b_{f}(M)=2$ if $j$ is even. If $\mathfrak{K}=C,$ $h^{p,q}(M)=0$

unless $p=q$ or $p+q=n$ .
(17.18) COROLLARY. If $n\geqq 3$ , Pic $(M)$ is generated by $L$ and $E’$ .
(17.19) REMARK. The conclusion of (17.14) is valid also in case $n=2$ and

$g=1$ . In this case $(M, L)$ is a Del Pezzo surface with $d=1$ .

\S 18. Type $(\perp)$ .
We employ the same notation as in \S 15 and $(M, L)$ is assumed to be sec-

tionally hyperelliptic of type $(+)$ .
(18.1) We have $\rho^{-1}(S)=E\cup i(E)$ and $S\cap B\neq\emptyset$ . Hence $B_{S}$ must be of the

form $2Y,$ $Y$ being an effective divisor on $S\cong P^{n-1}$ . Set $\delta=\deg Y>0$ .
(18.2) We claim $\delta-1=-e$ . Indeed, the pull-back of $Y$ by the morphism

$Earrow S$ is $i(E)_{E}$ . Hence, restricting $[E+i(E)]=[S]$ to $E$ and considering the
degrees, we get the desired equality.

(18.3) LEMMA. $n=2$ .
PROOF. We have natural exact sequences $0arrow T^{S}arrow T_{S}^{V}arrow[S]arrow 0$ on $S$ and

$0arrow T^{B}arrow T_{B}^{V}arrow[B]arrow 0$ on $B$ . Restrict them to $Y=B\cap S$ . Since $B_{S}=2Y$ , the
intersection of $B$ and $S$ along $Y$ is not transversal. So, at each point $y$ on $Y$ ,

the subspaces $T_{y}^{s}$ and $T_{y}^{B}$ of $T_{y}^{V}$ coincide with each other. This implies $[S]_{Y}$

$\cong[B]_{Y}$ . Hence, if $n>2$ , we have $-e=\deg[S]_{S}=\deg[B]_{S}=2\delta$ . Then $\delta-1=2\delta$

by (18.2), which is absurd because $\delta$ is positive. Thus we prove $n=2$ .
(18.4) $V$ is isomorphic to a Hirzebruch surface $\sum_{k}\equiv P(kH_{\xi}\oplus O)$ for some

$k\geqq 0$ . Let $H_{\alpha}$ be the tautological line bundle on $\sum_{k}$ . Note that $H_{\alpha}^{2}=k$ , and
that, if $k>0,$ $C^{2}=-k$ for the unique member $C$ of $H_{\alpha}-kH_{\xi}|$ . Set $[B]=2aH_{\alpha}+$

$2bH_{\xi}$ and $[S]=H_{\alpha}+\sigma H_{\xi}$ . Then $-e=S^{2}=k+2\sigma,$ $2\delta=BS=2ak+2b+2a\sigma$ and $2a$

$=BH_{\xi}=2g+2$ . So, from (18.2), we obtain

$(\#)$ $gk+(g-1)\sigma+b=1$ .
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(18.5) Assume that $k>0$ and let $C$ be the curve as above. Since $S^{2}=-e$

$=\delta-1\geqq 0$ , we see $S\neq C$ , which implies $\sigma=SC\geqq 0$ . We have also $2b=BC\geqq-k$

since $B$ is smooth. So $(\#)$ yields $2\geqq 2(gk+b)\geqq(2g-1)k\geqq 2g-1$ . This contradicts
the assumption $g\geqq 2$ . Thus we infer $k=0$ . Hence $V\cong P_{\alpha}^{1}\cross P_{\xi}^{1}$ .

(18.6) We claim $b>0$ . Indeed, otherwise, $B$ consists of $2a$ fibers of $\rho_{\alpha}$ :
$Varrow P_{a}^{1}$ since $b=0$ . So $M^{*}\cong P_{\xi}^{1}\cross T$ for some hyperelliptic curve $T$ of genus $g$ .
The mapping $M^{*}arrow Varrow P_{a}^{1}$ factors through $T$ . Hence the image of $E$ is a point
because $E$ is rational. So $S$ maps to a point on $P_{\alpha}^{1}$ via $\rho_{\alpha}$ . Then $S\subset B$ or
$S\cap B=\emptyset$ , contradicting the assumption.

(18.7) Now, by $(\#)$ and (18.5), we infer $b=1$ and $\sigma=0$ . In particular, $S$ is
a Pber of $\rho_{a}$ and $e=0$ . We also have $\delta=1$ and $B\in|(2g+2)H_{\alpha}+2H_{\xi}|$ . So $B$ is
ample on $V$ and hence connected. $\rho_{\alpha}(S)$ is a branch point of the double cover-
ing $Barrow P_{a}^{1}$ .

(18.8) Since every fiber of $f$ : $M^{*}arrow P_{\xi}^{1}$ is irreducible and reduced, $B$ satis-
fies the following condition:

$(\#\#)$ For every fiber $V_{x}$ of $Varrow P_{\xi}^{1}$ , there exists a point on $V_{x}$ at which $B$

and $V_{x}$ intersect with odd multiplicity.
(18.9) Conversely, suppose that we have a non-singular member $B$ of $|(2g$

$+2)H_{a}+2H_{\xi}|$ on $V\cong P_{\alpha}^{1}\cross P_{\xi}^{1}$ , which satisfies the above condition $(\#\#)$ . Take a
branch point $z$ of the double covering $Barrow P_{\alpha}^{1}$ and let $S$ be the fiber of $Varrow P_{\alpha}^{1}$

over $z$ . Then $B_{S}--2Y$ for some effective divisor $Y$ on S. Let $M^{*}=R_{B}(V)$ and
let $\rho$ : $M^{*}arrow V$ be the natural morphism. Then $\rho^{*}S=S_{1}+S_{2}$ for some divisors
$S_{1},$ $S_{2}$ on $M^{*}$ . $S_{1}S_{2}=\deg Y=1,$ $S_{1}^{2}=S_{2}^{2}=-1$ and both $S_{1}$ and $S_{2}$ are sections of
the mapping $f:M^{*}arrow P_{\xi}^{1}$ . The condition $(\#\#)$ implies that every fiber of $f$ is
irreducible and reduced. So, we can apply (13.7) to obtain a polarized manifold
$(M, L)$ with $d(M, L)=\Delta(M, L)=1$ by contracting either $S_{1}$ or $S_{2}$ to a point.
Clearly $(M, L)$ is sectionally hyperelliptic of type $(+)$ .

The isomorphism class of $(M, L)$ is determined by the pair $(B, z)$ and is
independent of the choice between $S_{1}$ and $S_{2}$ , because they are interchangeable
by the involution $i$ of $M^{*}$ .

(18.10) It is not difficult to see that the above condition $(\#\#)$ is satisfied by
any general member of $|(2g+2)H_{a}+2H_{\xi}|$ . So, as in the case of type $(\infty)$ ,
$(M, L)s$ of type $(+)$ form a single deformation family for each fixed $g=g(M, L)$ .
However, this family is not complete in the sense of Kodaira-Spencer [KS]. In
fact, for a general small deformation $(M_{t}, L_{t})$ of $(M, L)$ , we have $h^{0}(M_{t}, L_{t})<2$ ,
whence $\Delta(M_{t}, L_{t})>1$ . Note that $h^{1}(M, L)>0$ in case of type $(+)$ , unlike the
cases of type (–) and $(\infty)$ .

(18.11) Combining the preceding arguments, we obtain the following.

THEOREM. Let $(M, L)$ be a p0larized manifold with $d(M, L)=\Delta(M, L)=1$ .
Supp0se that char $(\mathfrak{K})\neq 2$ and that $(M, L)$ is sectionally hyperelliptic of type $(+)$ .
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Then dim $M=2$ and $M^{*}\cong R_{B}(P_{\alpha}^{1}\cross P_{\xi}^{1})$ for a non-singular member $B$ of $|(2g+2)H_{\alpha}$

$+2H_{\xi}|$ , where $M^{*}$ is as in (13.6). The image of $E$ on $V=P_{\alpha}^{1}\cross P_{\xi}^{1}$ is a fiber
over a branch pojnt of the double covering $Barrow P_{\alpha}^{1}$ . All the p0larized surfaces
of this type with fixed $g=g(M, L)$ form a single deformation family.

(18.12) COROLLARY. $M$ is a rational surface.
Indeed, the mapping $M^{*}arrow P_{\alpha}^{1}$ gives a $P^{1}$-ruling.

Appendix 1. Table of numerical invariants of $(M, L)$ with $n=\dim M$,
$g=g(M, L)$ .

Appendix 2. Here we present a proof of the following

THEOREM. Let $M$ be a Kahler threefold whose cohomology ring $H^{O}(M;Z)$

is isomorphic to $H^{O}(P^{3} ; Z)$ . Supp0se that $c_{1}(M)$ is posjtive. Then $M$ is analy-
$-tically$ isomorphic to $P^{3}$ .

PROOF. $M$ is projective since $H^{2}(M, O_{M})=0$ . So Pic $(M)$ is generated by an
ample line bundle $H$ such that $H^{3}=1$ . Set $K^{M}=kH$. $k$ is negative by assump-
tion and is even because $2g(M, H)-2=(K^{M}+2H)H^{2}=k+2$ . If $k\leqq-4$, we can
apply [KO]. So we should consider the case $k=-2$ . Then $(M, H)$ is a Del
Pezzo manifold and our theorem (14.6) applies. Hence it suffices to show the
following

LEMMA. Let $(M, L)$ be as in (14.6). Then the top0l0gical Euler number
$e(M)$ of $M$ is $-38$ .

PROOF. Given any manifold $X$, we denote the tangent bundle of $X$ by $T^{X}$ .
We have two exact sequences $0arrow[2H_{(}-2H_{\xi}]arrow T^{V}arrow T_{V}^{P}arrow 0$ and $0arrow O_{V}arrow H_{\xi}\oplus$

$H_{\xi}\oplus H_{\xi}arrow T_{V}^{P}arrow 0$ on $V$ as in (16.12). We have also $0arrow T^{B_{2}}arrow T_{B_{2}}^{V}arrow[3H_{\zeta}]_{B_{2}}arrow 0$
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on $B_{2}$ . Using them we express the total Chern class $c(T^{B_{2}})$ in terms of $c_{1}(H_{\zeta})$

and $c_{1}(H_{\xi})$ . Calculating intersection numbers we obtain $e(B_{2})=c_{2}(B_{2})=45$ . There-
fore $e(B)=e(B_{1})+e(B_{2})=48,$ $e(V)=6$ and $e(M^{*})=2e(V)-e(B)=-36$ . On the
other hand we have $e(M^{*})=e(M)+e(E)-1=e(M)+2$ . Hence $e(M)=-38$ .

REMARK. By a similar method we can calculate the Euler numbers of po-
larized manifolds studied in this paper.
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Note added in proof.

Professor Y. Miyaoka points out to the author that the answer to the
Question (16.9) is affirmative in positive characteristic cases too. His method
uses etale cohomology.
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