Cancellation law for Riemannian direct product

By Kagumi Uesu

(Received Sept. 11, 1980)
(Revised Nov. 29, 1982)

§ 0. Introduction.

L. S. Charlap showed that there are two compact differentiable manifolds M and N such that $M \times S^{1}$ is diffeomorphic to $N \times S^{1}$, while M and N are of different homotopy type (see [1]).

On the other hand, considering a Riemannian analogue of the above problem, we obtained the following result [3]:

Let M and N be connected complete Riemannian manifolds and S a connected compact locally symmetric Riemannian manifold. If $M \times S$ is isometric to $N \times S$, then M is isometric to N.

Later on, H. Takagi obtained the following result [2]:
Let M and N be connected complete Riemannian manifolds and let S be a connected complete Riemannian manifold which is simply connected or has the irreducible restricted homogeneous holonomy group. If $M \times S$ is isometric to $N \times$ S, then M is isometric to N.

The purpose of this paper is to give a complete answer to the above problem in Riemannian case.

The main result is the following.
Theorem. If $M \times S$ is isometric to $N \times S$, then M is isometric to N, where M, N and S are connected complete Riemannian manifolds.

In this paper, Riemannian manifolds are always supposed to be connected and complete, and \cong means isometric.

We shall give a brief account of the idea of the proof. Let M, N and S be Riemannian manifolds such that $M \times S$ is isometric to $N \times S$. Then $M \cong X / \Gamma_{1}$, $N \cong X / \Gamma_{2}$ and $S \cong Y / \Gamma_{3}$ where X and Y are simply connected Riemannian manifolds and Γ_{1}, Γ_{2} and Γ_{3} are deck transformation groups of M, N and S, respectively. If we could find an isometry \tilde{g} of $X \times Y$ satisfying Conditions 1 and 2 in Lemma 3, then our theorem would be proved. An isometry g of $X \times Y$ which is a natural lift of an isometry from $M \times S$ to $N \times S$ satisfies Condition 1 in Lemma 3. While if X and Y have the Euclidean parts in its de Rham decom-
positions, then g does not always satisfy Condition 2 in Lemma 3. However, using Lemma 4 and Lemma 5, we can change g into \tilde{g} which satisfies Conditions 1 and 2 in Lemma 3,

I am grateful to Professor M. Goto for helpful comments which led to the improvements of the original manuscript.

§ 1. Basic lemmas.

In this section we shall refer to five lemmas for the proof of the theorem.
By the uniqueness of the de Rham decomposition of a simply connected Riemannian manifold, we have the following lemma.

Lemma 1. Let M, N and S be Riemannian manifolds. If $M \times S$ is isometric to $N \times S$, then the universal Riemannian covering manifold \tilde{M} of M is isometric to \tilde{N}, the universal Riemannian covering manifold of N.

Definition. An FPDA-group on a Riemannian manifold is a subgroup of the isometry group of the manifold whose action on the manifold is free and properly discontinuous.

Lemma 2 ([3]). Let Γ and Γ^{\prime} be FPD A-groups on simply connected Riemannian manifolds A and A^{\prime} respectively. Then A / Γ is isometric to $A^{\prime} / \Gamma^{\prime}$ if and only if there exists an isometry ϕ from A to A^{\prime} with $\Gamma^{\prime}=\phi \Gamma \phi^{-1}$.

For isometries f_{1}, \cdots, f_{n} from Riemannian manifolds A_{1}, \cdots, A_{n} to Riemannian manifolds B_{1}, \cdots, B_{n} respectively, we denote by $f_{1} \times \cdots \times f_{n}$ the isometry from $A_{1} \times \cdots \times A_{n}$ to $B_{1} \times \cdots \times B_{n}$ such that the image of (a_{1}, \cdots, a_{n}) $\in A_{1} \times \cdots \times A_{n}$ is ($\left.f_{1}\left(a_{1}\right), \cdots, f_{n}\left(a_{n}\right)\right)$. We denote the identity map of a Riemannian manifold A by id ${ }_{4}$. For FPDA-groups Γ and Λ on Riemannian manifolds A and B respectively, we denote by $\Gamma \times \Lambda$ the group consisting of all the isometries on $A \times B$ of the form $\gamma \times \lambda$ for some $\gamma \in \Gamma$ and $\lambda \in \Lambda$. Then $\Gamma \times \Lambda$ is an FPDA-group on $A \times B$.

For an isometry we have the following fact which is essential for the proof of Lemma 3.

Fact. Let A, B, C and D be Riemannian manifolds and ϕ an isometry from $A \times B$ onto $C \times D$. If, for some points (a_{0}, b_{0}) and $\left(c_{0}, d_{0}\right)=\phi\left(a_{0}, b_{0}\right), \phi\left(A, b_{0}\right)=$ $\left(C, d_{0}\right)$, then there are isometries ϕ_{1} from A to C and ϕ_{2} from B to D such that $\phi=\phi_{1} \times \phi_{2}$.

Proof. By the assumption $\phi\left(a_{0}, B\right)=\left(c_{0}, D\right)$. So there are isometries ϕ_{1} from A to C and ϕ_{2} from B to D such that $\phi\left(a, b_{0}\right)=\left(\phi_{1}(a), b_{0}\right)$ and $\phi\left(a_{0}, b\right)=$ $\left(c_{0}, \phi_{2}(b)\right)$ for any $a \in A$ and $b \in B$. Then $\phi\left(a_{0}, b_{0}\right)=\left(\phi_{1}\left(a_{0}\right), \phi_{2}\left(b_{0}\right)\right)$ and $d \phi_{\left(a_{0}, b_{0}\right)}=$ $d \phi_{1 a_{0}}+d \phi_{2 b_{0}}$. Hence $\phi=\left(\phi_{1} \times \phi_{2}\right)$.

The following lemma is essential in our proof of the theorem. In the following lemma, we regard a set consisting of one element as a zero-dimensional

Riemannian manifold.
Lemma 3. Let A and B be Riemannian manifolds, let Π_{1} and Π_{2} be FPDAgroups on A and let Π_{3} be an FPDA-group on B. We assume that there are decompositions $A \cong A_{1} \times A_{2}, B \cong B_{1} \times B_{2}$ and an isometry ϕ of $A \times B$ satisfying the following conditions.

Condition 1. $\quad \phi\left(\Pi_{1} \times \Pi_{3}\right) \phi^{-1}=\Pi_{2} \times \Pi_{3}$.
Condition 2. For some isometries η_{A} and η_{B} from $A_{1} \times A_{2}$ and $B_{1} \times B_{2}$ to A and B respectively, $\phi \circ\left(\eta_{A} \times \eta_{B}\right)\left(A_{1} \times\left\{a_{2}\right\} \times\left\{b_{1}\right\} \times B_{2}\right)=A \times\{b\}$ and $\phi \circ\left(\eta_{A} \times \eta_{B}\right)\left(\left\{a_{1}\right\}\right.$ $\left.\times A_{2} \times B_{1} \times\left\{b_{2}\right\}\right)=\{a\} \times B$ for some $a_{1} \in A_{1}, a_{2} \in A_{2}, b_{1} \in B_{1}, b_{2} \in B_{2}, a \in A$ and $b \in B$.

Then:
(1) If the dimension of B_{1} or the dimension of B_{2} is equal to zero, then there is an isometry ψ of A with $\psi \Pi_{1} \psi^{-1}=\Pi_{2}$.
(2) If the dimension of B_{1} and the dimension of B_{2} are positive, then B / Π_{3} $\cong B_{1} / \Lambda_{1} \times B_{2} / \Lambda_{2}$ for some FPDA-groups Λ_{1} and Λ_{2} on B_{1} and B_{2} respectively.

Proof of (1). First let the dimension of B_{2} be equal to zero. Then B_{1} is isometric to B and, by Condition 2, the dimension of A_{2} is equal to zero. Hence Condition 2 is as follows ; $\phi(A \times\{b\})=A \times\left\{b^{*}\right\}$ and $\phi(\{a\} \times B)=\left\{a^{*}\right\} \times B$ for some $a, a^{*} \in A, b$ and $b^{*} \in B$. So, by Fact, there are isometries ϕ_{A} of A and ϕ_{B} of B such that $\phi=\phi_{A} \times \phi_{B}$. By Condition 1, $\left(\phi_{A} \times \phi_{B}\right)\left(\Pi_{1} \times \Pi_{3}\right)\left(\phi_{A} \times \phi_{B}\right)^{-1}=\Pi_{2} \times \Pi_{3}$. Hence $\left(\phi_{A} \Pi_{1} \phi_{A}^{-1}\right) \times\left(\phi_{B} \Pi_{3} \phi_{B}^{-1}\right)=\Pi_{2} \times \Pi_{3}$. Therefore $\phi_{A} \Pi_{1} \phi_{A}^{-1}=\Pi_{2}$.

Next let the dimension of B_{1} be equal to zero. Then B_{2} is isometric to B. We consider ϕ as an isometry of $A_{1} \times A_{2} \times B$ and also we consider Π_{1} and Π_{2} as FPDA-groups on $A_{1} \times A_{2}$. Then Condition 2 is as follows; $\phi\left(A_{1} \times\left\{a_{2}^{(0)}\right\} \times B\right)=A_{1}$ $\times A_{2} \times\left\{b^{(1)}\right\}$ and $\phi\left(\left\{a_{1}^{(0)}\right\} \times A_{2} \times\left\{b^{(0)}\right\}\right)=\left\{a_{1}^{(1)}\right\} \times\left\{a_{2}^{(1)}\right\} \times B$ for some $a_{1}^{(0)}, a_{1}^{(1)} \in A_{1}$, $a_{2}^{(0)}, a_{2}^{(1)} \in A_{2}, b^{(0)}$ and $b^{(1)} \in B$. Hence there is an isometry ϕ_{3} from A_{2} to B such that $\phi\left(a_{1}^{(0)}, a_{2}, b^{(0)}\right)=\left(a_{1}^{(1)}, a_{2}^{(1)}, \phi_{3}\left(a_{2}\right)\right)$. Let A_{1}^{\prime} and A_{2}^{\prime} be submanifolds of $A_{1} \times A_{2}$ such that $\phi\left(A_{1} \times\left\{a_{2}^{(0)}\right\} \times\left\{b^{(0)}\right\}\right)=A_{1}^{\prime} \times\left\{b^{(1)}\right\}$ and $\phi\left(\left\{a_{1}^{(0)}\right\} \times\left\{a_{2}^{(0)}\right\} \times B\right)=A_{2}^{\prime} \times$ $\left\{b^{(1)}\right\}$. Then there are isometries ϕ_{1} and ϕ_{2} from A_{1} and B to A_{1}^{\prime} and A_{2}^{\prime}, respectively, such that $\phi\left(a_{1}, a_{2}^{(0)}, b^{(0)}\right)=\left(\phi_{1}\left(a_{1}\right), b^{(1)}\right)$ and $\phi\left(a_{1}^{(0)}, a_{2}^{(0)}, b\right)=\left(\phi_{2}(b), b^{(1)}\right)$. Since $\phi\left(A_{1} \times\left\{a_{2}^{(0)}\right\} \times B\right)=A_{1} \times A_{2} \times\left\{b^{(1)}\right\}$, there is an isometry ϕ_{0} from $A_{1} \times B$ to $A_{1} \times A_{2}$ such that $\phi\left(a_{1}, a_{2}^{(0)}, b\right)=\left(\phi_{0}(a, b), b^{(1)}\right)$. Let $\eta=\left(\phi_{1} \times \phi_{2}\right) \circ \phi_{0}^{-1}$ and $\Pi_{2}^{\prime}=$ $\eta \Pi_{2} \eta^{-1}$. Then η is an isometry from $A_{1} \times A_{2}$ to $A_{1}^{\prime} \times A_{2}^{\prime}$ and Π_{2}^{\prime} is an FPDAgroup on $A_{1}^{\prime} \times A_{2}^{\prime}$. Because $\phi\left(\Pi_{1} \times \Pi_{3}\right) \phi^{-1}=\Pi_{2} \times \Pi_{3},\left(\eta \times \operatorname{id}_{B}\right) \circ \phi\left(\Pi_{1} \times \Pi_{3}\right) \phi^{-1} \circ(\eta$ $\left.\times \operatorname{id}_{B}\right)^{-1}=\Pi_{2}^{\prime} \times \Pi_{3}$. Moreover $\left(\eta \times \operatorname{id}_{B}\right) \circ \phi\left(a_{1}, a_{2}^{(0)}, b\right)=\left(\eta \times \operatorname{id}_{B}\right)\left(\phi_{0}\left(a_{1}, b\right), b^{(1)}\right)=\left(\phi_{1}\left(a_{1}\right)\right.$, $\left.\phi_{2}(b), b^{(1)}\right)$ and $\left(\eta \times \mathrm{id}_{B}\right) \circ \phi\left(a_{1}^{(0)}, a_{2}, b^{(0)}\right)=\left(\eta \times \operatorname{id}_{B}\right)\left(a_{1}^{(1)}, a_{2}^{(1)}, \phi_{3}\left(a_{2}\right)\right)=\left(\eta\left(a_{1}^{(1)}, a_{2}^{(2)}\right)\right.$, $\left.\phi_{3}\left(a_{2}\right)\right)$, where $a_{1} \in A_{1}, a_{2} \in A_{2}$ and $b \in B$. If we show that there exists an isometry ψ from $A_{1} \times A_{2}$ to $A_{1}^{\prime} \times A_{2}^{\prime}$ such that $\Pi_{2}^{\prime}=\psi \Pi_{1} \psi^{-1}$, then $\eta^{-1}{ }^{\circ} \psi$ is an isometry of $A_{1} \times A_{2}$ and $\Pi_{2}=\left(\eta^{-1} \circ \phi\right) \Pi_{1}\left(\eta^{-1} \circ \psi\right)^{-1}$. Therefore it is sufficient to show the following assertion:

Let ϕ be an isometry from $A_{1} \times A_{2} \times B$ to $A_{1}^{\prime} \times A_{2}^{\prime} \times B$, and Π_{1}, Π_{2} and Π_{3}

FPDA-groups on $A_{1} \times A_{2}, A_{1}^{\prime} \times A_{2}^{\prime}$ and B respectively. We assume the following two conditions;
(1) $\phi\left(\Pi_{1} \times \Pi_{3}\right) \phi^{-1}=\Pi_{2} \times \Pi_{3}$,
(2) There are isometries ϕ_{1}, ϕ_{2} and ϕ_{3} from A_{1}, B and A_{2} to $A_{1}^{\prime}, A_{2}^{\prime}$ and B, respectively, such that $\phi\left(a_{1}, a_{2}^{(0)}, b\right)=\left(\phi_{1}\left(a_{1}\right), \phi_{2}(b), b^{(1)}\right)$ and $\phi\left(a_{1}^{(0)}, a_{2}, b^{(0)}\right)=\left(a_{1}^{(1)}\right.$, $\left.a_{2}^{(1)}, \phi_{3}\left(a_{2}\right)\right)$ for some $a_{1}^{(0)} \in A_{1}, a_{2}^{(0)} \in A_{2}, a_{1}^{(1)} \in A_{1}^{\prime}, a_{2}^{(1)} \in A_{2}^{\prime}, b^{(0)}$ and $b^{(1)} \in B$, where $a_{1} \in A_{1}, a_{2} \in A_{2}$ and $b \in B$ are arbitrary. Then there is an isometry ψ from $A_{1} \times A_{2}$ to $A_{1}^{\prime} \times A_{2}^{\prime}$ such that $\Pi_{2}=\psi \Pi_{1} \psi^{-1}$.

Let ν be an isometry from $A_{1} \times A_{2} \times B$ to $A_{1} \times B \times A_{2}$ such that $\nu\left(a_{1}, a_{2}, b\right)=$ $\left(a_{1}, b, a_{2}\right)$ for $a_{1} \in A_{1}, a_{2} \in A_{2}$ and $b \in B$. Then, by Fact, $\phi \circ \nu^{-1}=\phi_{1} \times \phi_{2} \times \phi_{3}$, that is $\phi=\left(\phi_{1} \times \phi_{2} \times \phi_{3}\right) \circ \nu$. Hence each isometry of $\phi\left(\left\{\operatorname{id}_{A_{1} \times A_{2}}\right\} \times \Pi_{3}\right) \phi^{-1}$ is of the form $\mathrm{id}_{A_{1}^{\prime}} \times \sigma \times \mathrm{id}_{B}$, where σ is some isometry of A_{2}^{\prime}. So, by the condition, $\phi\left(\left\{\mathrm{id}_{A_{1} \times A_{2}}\right\}\right.$ $\left.\times \Pi_{3}\right) \phi^{-1} \subset \Pi_{2} \times\left\{\mathrm{id}_{B}\right\}$. Similarly $\phi^{-1}\left(\left\{\operatorname{id}_{A_{1}^{\prime} \times A_{2}^{\prime}}\right\} \times \Pi_{3}\right) \phi \subset \Pi_{1} \times\left\{\mathrm{id}_{B}\right\}$. Therefore Π_{2} $\times\left\{\mathrm{id}_{B}\right\}=\left(\left(\Pi_{2} \times\left\{\mathrm{id}_{B}\right\}\right) \cap \phi\left(\Pi_{1} \times\left\{\mathrm{id}_{B}\right\}\right) \phi^{-1}\right) \cdot\left(\phi\left(\left\{\mathrm{id}_{A_{1} \times A_{2}}\right\} \times \Pi_{3}\right) \phi^{-1}\right)$ and $\Pi_{1} \times\left\{\mathrm{id}_{B}\right\}=$ $\left(\phi^{-1}\left(\Pi_{2} \times\left\{\operatorname{id}_{B}\right\}\right) \phi \cap\left(\Pi_{1} \times\left\{\operatorname{id}_{B}\right\}\right)\right) \cdot\left(\phi^{-1}\left(\left\{\operatorname{id}_{A_{1}^{\prime} \times A_{2}^{\prime}}\right\} \times \Pi_{3}\right) \phi\right)$. Let $\psi=\left(\phi_{1} \times \phi_{2}\right) \circ\left(\mathrm{id}_{A_{1}} \times \phi_{3}\right)$. Since each isometry of $\phi^{-1}\left(\Pi_{2} \times\left\{\operatorname{id}_{B}\right\}\right) \phi \cap\left(\Pi_{1} \times\left\{\operatorname{id}_{B}\right\}\right)$ is of the form $\sigma \times \mathrm{id}_{A_{2}} \times \mathrm{id}_{B}$ for some isometry σ of $A_{1},\left(\psi \times \operatorname{id}_{B}\right)\left(\phi^{-1}\left(\Pi_{2} \times\left\{\mathrm{id}_{B}\right\}\right) \phi \cap\left(\Pi_{1} \times\left\{\mathrm{id}_{B}\right\}\right)\right)\left(\psi \times \mathrm{id}_{B}\right)^{-1}=$ $\phi\left(\phi^{-1}\left(\Pi_{2} \times\left\{\mathrm{id}_{B}\right\}\right) \phi \cap\left(\Pi_{1} \times\left\{\mathrm{id}_{B}\right\}\right)\right) \phi^{-1}=\left(\Pi_{2} \cap\left\{\mathrm{id}_{B}\right\}\right) \cap \phi\left(\Pi_{1} \times\left\{\mathrm{id}_{B}\right\}\right) \phi^{-1}$. Similarly $(\psi$ $\left.\times \operatorname{id}_{B}\right)\left(\phi^{-1}\left(\left\{\operatorname{id}_{A_{1}^{\prime} \times A_{2}^{\prime}}\right\} \times \Pi_{3}\right) \phi\right)\left(\psi \times \mathrm{id}_{B}\right)^{-1}=\phi\left(\left\{\operatorname{id}_{A_{1} \times A_{2}}\right\} \times \Pi_{3}\right) \phi^{-1}$. Hence $\left(\psi \times \operatorname{id}_{B}\right)\left(\Pi_{2} \times\right.$ $\left.\left\{\mathrm{id}_{B}\right\}\right)\left(\phi \times \operatorname{id}_{B}\right)^{-1}=\Pi_{2} \times\left\{\mathrm{id}_{B}\right\}$. Therefore $\psi \Pi_{1} \psi^{-1}=\Pi_{2}$.

Proof of (2). By the same way as the proof of (1), it is sufficient to prove the existence of Λ_{1} and Λ_{2} in the following situation:

Let ϕ be an isometry from $A_{1} \times A_{2} \times B_{1} \times B_{2}$ to $A_{1}^{\prime} \times A_{2}^{\prime} \times B_{1}^{\prime} \times B_{2}^{\prime}$, and Π_{1}, Π_{3}, Π_{2} and Π_{4} FPDA-groups on $A_{1} \times A_{2}, B_{1} \times B_{2}, A_{1}^{\prime} \times A_{2}^{\prime}$ and $B_{1}^{\prime} \times B_{2}^{\prime}$ respectively. We assume the following two conditions;
(1) $\phi\left(\Pi_{1} \times \Pi_{3}\right) \phi^{-1}=\Pi_{2} \times \Pi_{4}$,
(2) There are isometries $\phi_{1}, \phi_{2}, \phi_{3}$ and ϕ_{4} from A_{1}, B_{2}, B_{1} and A_{2} to A_{1}^{\prime}, $A_{2}^{\prime}, B_{1}^{\prime}$ and B_{2}^{\prime}, respectively, such that $\phi\left(a_{1}, a_{2}^{(0)}, b_{1}^{(0)}, b_{2}\right)=\left(\phi_{1}\left(a_{1}\right), \phi_{2}\left(b_{2}\right), b_{1}^{(1)}, b_{2}^{(1)}\right)$ and $\phi\left(a_{1}^{(0)}, a_{2}, b_{1}, b_{2}^{(0)}\right)=\left(a_{1}^{(1)}, a_{2}^{(1)}, \phi_{3}\left(b_{1}\right), \phi_{4}\left(a_{2}\right)\right)$ for some $a_{1}^{(0)} \in A_{1}, a_{1}^{(1)} \in A_{1}^{\prime}, a_{2}^{(0)} \in$ $A_{2}, a_{2}^{(1)} \in A_{2}^{\prime}, b_{1}^{(0)} \in B_{1}, b_{1}^{(1)} \in B_{1}^{\prime}, b_{2}^{(0)} \in B_{2}$ and $b_{2}^{(1)} \in B_{2}^{\prime}$, where $a_{1} \in A_{1}, a_{2} \in A_{2}, b_{1} \in B_{1}$ and $b_{2} \in B_{2}$ are arbitrary.

Let ν be an isometry from $A_{1} \times A_{2} \times B_{1} \times B_{2}$ to $A_{1} \times B_{2} \times B_{1} \times A_{2}$ such that $\nu\left(a_{1}, a_{2}, b_{1}, b_{2}\right)=\left(a_{1}, b_{2}, b_{1}, a_{2}\right)$ for $a_{1} \in A_{1}, a_{2} \in A_{2}, b_{1} \in B_{1}$ and $b_{2} \in B_{2}$. Then, by Fact, $\phi \circ \nu^{-1}=\phi_{1} \times \phi_{2} \times \phi_{3} \times \phi_{4}$ that is $\phi=\left(\phi_{1} \times \phi_{2} \times \phi_{3} \times \phi_{4}\right) \circ \nu$. By the condition, for $\sigma \in \Pi_{3}$, there are $\sigma_{2} \in \Pi_{2}$ and $\sigma_{4} \in \Pi_{4}$ such that $\operatorname{id}_{A_{1} \times A_{2}} \times \sigma=\phi^{-1} \circ\left(\sigma_{2} \times \operatorname{id}_{B_{1}^{\prime} \times B_{2}}\right)$ 。 $\left(\mathrm{id}_{A_{1} \times A_{2}} \times \sigma_{4}\right) \circ \phi$. Hence $\quad \nu \circ\left(\mathrm{id}_{A_{1} \times A_{2}} \times \sigma\right) \circ \nu^{-1}=\left(\left(\phi_{1}^{-1} \times \phi_{2}^{-1}\right) \circ \sigma_{2} \circ\left(\phi_{1} \times \phi_{2}\right)\right) \times\left(\left(\phi_{3}^{-1} \times\right.\right.$ $\left.\phi_{4}^{-1}\right) \circ \sigma_{4} \circ\left(\phi_{3} \times \phi_{4}\right)$. So, by Fact, $\left(\phi_{1}^{-1} \times \phi_{2}^{-1}\right) \circ \sigma_{2} \circ\left(\phi_{1} \times \phi_{2}\right)=\mathrm{id}_{A_{1}} \times \tau_{2}$ and $\left(\phi_{3}^{-1} \times\right.$ $\left.\phi_{4}^{-1}\right) \circ \sigma_{4} \circ\left(\phi_{3} \times \phi_{4}\right)=\tau_{1} \times \mathrm{id}_{A_{2}}$ for some isometry τ_{1} and τ_{2} of B_{1} and B_{2} respectively. Hence $\phi^{-1} \circ\left(\sigma_{2} \times \operatorname{id}_{B_{1}^{\prime} \times B_{2}}\right) \circ \phi$ and $\phi^{-1} \circ\left(\operatorname{id~}_{A_{1}^{\prime} \times A_{2}^{\prime}} \times \sigma_{4}\right) \circ \phi$ are in $\left\{\operatorname{id}_{A_{1} \times A_{2}}\right\} \times \Pi_{3}$. Therefore $\quad\left\{\operatorname{id}_{A_{1} \times A_{2}}\right\} \times \Pi_{3}=\left(\left(\left\{\operatorname{id}_{A_{1} \times A_{2}}\right\} \times \Pi_{3}\right) \cap \phi^{-1}\left(\Pi_{2} \times\left\{\operatorname{id}_{B_{1} \times B_{2}}\right\}\right) \phi\right) \cdot\left(\left(\left\{\operatorname{id}_{A_{1} \times A_{2}}\right\} \times \Pi_{3}\right) \cap\right.$
$\left.\phi^{-1}\left(\left\{\operatorname{id}_{A_{1}^{\prime} \times A_{2}}\right\} \times \Pi_{4}\right) \phi\right)$ and each element of $\left.\left(\left\{\operatorname{id}_{A_{1} \times A_{2}}\right\} \times \Pi_{3}\right) \cap \phi^{-1}\left(\Pi_{2} \times \operatorname{id}_{B_{1}^{\prime} \times B_{2}^{2}}\right\}\right) \phi$ and $\left(\left\{\operatorname{id}_{A_{1} \times A_{2}}\right\} \times \Pi_{3}\right) \cap \phi^{-1}\left(\left\{\operatorname{id}_{A_{1}^{\prime} \times A_{2}}\right\} \times \Pi_{4}\right) \phi$ are of the form $\operatorname{id}_{A_{1} \times A_{2}} \times \operatorname{id}_{B_{1}} \times \tau_{2}$ and $\mathrm{id}_{A_{1} \times A_{2}} \times \tau_{1} \times \mathrm{id}_{B_{2}}$, respectively, where τ_{1} and τ_{2} are isometries of B_{1} and B_{2} respectively. Let $\Lambda_{1}=\left\{\tau: \tau\right.$ is an isometry of B_{1} such that $\operatorname{id}_{A_{1} \times A_{2}} \times \tau \times \operatorname{id}_{B_{2}}$ is in $\left.\left(\left\{\operatorname{id}_{A_{1} \times A_{2}}\right\} \times \Pi_{3}\right) \cap \phi^{-1}\left(\left\{\mathrm{id}_{A_{1}^{\prime} \times A_{2}^{\prime}}\right\} \times \Pi_{4}\right) \phi\right\}$ and $\Lambda_{2}=\left\{\tau: \tau\right.$ is an isometry of B_{2} such that $\operatorname{id}_{A_{1} \times A_{2}} \times \operatorname{id}_{B_{1}} \times \tau$ is in $\left.\left(\left\{\operatorname{id}_{A_{1} \times A_{2}}\right\} \times \Pi_{3}\right) \cap \phi^{-1}\left(\Pi_{2} \times\left\{\operatorname{id}_{B_{1}^{\prime} \times B_{2}}\right\}\right) \phi\right\}$. Then $\left(B_{1} \times B_{2}\right) /$ $\Pi_{2} \cong B_{1} / \Lambda_{1} \times B_{2} / \Lambda_{2}$.

Concerning a group consisting of isometries of a Euclidean space, we have the following.

Lemma 4. Let V be an n-dimensional real vector space with a Euclidean metric and Π a group consisting of isometries of V. For $v \in V$, let V_{v} be the linear subspace spanned by $\{\sigma v-v: \sigma \in \Pi\}, V_{0}=\sum_{v \in V} V_{v}$ and V_{1} the orthogonal complement of V_{0}. Let us choose an orthonormal basis $\left\{e_{1}, \cdots, e_{n}\right\}$ of V such that $e_{i}(1 \leqq i \leqq k)$ are in V_{0} and $e_{j}(k+1 \leqq j \leqq n)$ are in V_{1}, where $k=$ dimension of V_{0}. Then, by the canonical coordinate with respect to e_{1}, \cdots, e_{n}, any element $\sigma \in \Pi$ has the following form,

$1 \cdots \cdots k k+1 \cdots \cdots n$			
$\stackrel{1}{\dot{k}}$	A	0	ξ
$k+1$	0	I_{n-k}	0
	0	0	1

where A is a (k, k)-orthogonal matrix, I_{n-k} is the identity matrix of $(n-k, n-k)-$ type and ξ is a k-dimensional real vector. Hence for a linear map ϕ of the following form,

$1 \cdots \cdots k$	$k+1 \cdots \cdots n$		
1 \dot{k} $k+1$ \vdots n	I_{k}	0	0
	0	T	0
	0	0	1

we have $\phi \circ \sigma \circ \phi^{-1}=\sigma$ for any $\sigma \in \Pi$, where I_{k} is the identity matrix of (k, k)-type and T is a non-singular matrix.

Proof. For $v \in V$ and $\sigma \in \Pi$ we write

$$
\sigma v=A(\sigma) v+a(\sigma),
$$

where $a(\sigma) \in V$ and $A(\sigma)$ is an orthogonal transformation of the vector space V. Denoting the origin by \boldsymbol{O}, we have

$$
a(\sigma) \in V_{o} \subset V_{0}
$$

Also by $\sigma\left(\sigma^{\prime} v-v\right)=\left(\sigma \sigma^{\prime}\right) v-v-(\sigma v-v)+a(\sigma) \in V_{0}$, for $\sigma, \sigma^{\prime} \in \Pi$, we have

$$
\sigma V_{0}=V_{0} \quad \text { and } \quad A(\sigma) V_{0}=V_{0}
$$

Since $A(\sigma)$ is orthogonal, it follows

$$
A(\sigma) V_{1}=V_{1}
$$

Next for $\sigma \in \Pi$ and $w \in V_{1}$,

$$
(A(\sigma)-1) w=(\sigma w-w)-a(\sigma) \in V_{0} \cap V_{1}=\{0\}
$$

and we have

$$
A(\sigma)=\text { identity on } V_{1}
$$

The last assertion is obvious.
Let Π be an FPDA-group on a Riemannian manifold A and d a distance function on A. A geodesic from a to b is called, by definition, minimal if its length is equal to $d(a, b)$. In this paper a geodesic is always parametrized by the arc length from the starting point. For a fixed $a_{0} \in A$, we consider the set $\Omega\left(a_{0}\right)$ consisting of all minimal geodesics each of which issues from a_{0} and ends at $\sigma\left(a_{0}\right)$ for some $\sigma \in \Pi-\{\operatorname{id}\}$, where id is the identity. Since Π acts on A properly discontinuously, the subset $\left\{\sigma\left(a_{0}\right): \sigma \in \Pi-\{i d\}\right.$ and $\left.d\left(a_{0}, \sigma\left(a_{0}\right)\right) \leqq r\right\}$ of A is a finite set where r is a positive number. So any subset of $\left\{d\left(a_{0}, \sigma\left(a_{0}\right)\right): \sigma \in \Pi-\right.$ \{id\}\} has a minimal element because any element of the set is positive. So we have the following lemma.

LEMMA 5. Let Π_{1} and Π_{2} be FPDA-groups on a Riemannian manifold A. For $a \in A$, let

$$
\Omega_{1}(a)=\left\{\begin{array}{c}
c: c \text { is a minimal geodesic segment from a to } \sigma(a) \\
\text { for some } \sigma \in \Pi_{1}-\{\mathrm{id}\}
\end{array}\right\}
$$

and

$$
\Omega_{2}(a)=\left\{\begin{array}{c}
c: c \text { is a minimal geodesic segment from a to } \sigma(a) \\
\text { for some } \sigma \in \Pi_{2}-\{\mathrm{id}\}
\end{array}\right\}
$$

Then there are the shortest elements in any subset of $\Omega_{1}(a)$ and in any subset of $\Omega_{2}(a)$. Further, if there is an isometry ϕ of A with $\phi \Pi_{1} \phi^{-1}=\Pi_{2}$, then $\phi\left(\Omega_{1}(a)\right)$ $=\Omega_{2}(\phi(a))$ holds, where $(\phi(c))(t)=\phi(c(t))$ for $c \in \Omega_{1}(a)$.

§ 2. Proof of Theorem.

Let M, N and S be Riemannian manifolds such that $M \times S$ is isometric to
$N \times S$. By Lemma 1, the universal Riemannian covering manifold of M is isometric to the one of N. So let X be the universal Riemannian covering manifold of M and N, and let Y be the one of S. Let Γ_{1}, Γ_{2} and Γ_{3} be the deck transformation groups of M, N and S respectively. Then Γ_{1} and Γ_{2} are subgroups of the isometry group of X, Γ_{3} is a subgroup of the isometry group of Y, and $\Gamma_{1} \times \Gamma_{3}$ and $\Gamma_{2} \times \Gamma_{3}$ are regarded naturally as the deck transformation groups of $M \times S$ and $N \times S$ respectively. By Lemma 2 and by the assumption, there is an isometry g of $X \times Y$ such that $g\left(\Gamma_{1} \times \Gamma_{3}\right) g^{-1}=\Gamma_{2} \times \Gamma_{3}$. To prove the theorem, it is sufficient to prove the theorem for a Riemannian manifold S which is never isometric to the Riemannian direct product of any two Riemannian manifolds of positive dimension. So we assume that S is never isometric to the Riemannian direct product of any two Riemannian manifolds of positive dimension. If an isometry \tilde{g} of $X \times Y$ satisfies Conditions 1 and 2 in Lemma 3, then by the above assumption, it is the case (1) in Lemma 3. Therefore by Lemma 2, M is isometric to N.

We shall construct such an isometry \tilde{g}. Let X_{0} and Y_{0} be the Euclidean parts, and X^{\prime} and Y^{\prime} the non-Euclidean parts of the de Rham decompositions of X and Y, respectively. Then $X_{0} \times Y_{0}$ is the Euclidean part and $X^{\prime} \times Y^{\prime}$ is the non-Euclidean part of $X \times Y$. Identifying an isometry of $X \times Y$ with an isometry of ($\left.X_{0} \times Y_{0}\right) \times\left(X^{\prime} \times Y^{\prime}\right)$, an isometry σ of $X \times Y$ is $\sigma_{0} \times \sigma^{\prime}$ where σ_{0} is an isometry of $X_{0} \times Y_{0}$ and σ^{\prime} is an isometry of $X^{\prime} \times Y^{\prime}$. We call σ_{0} the Euclidean component of σ. Let $g=g_{0} \times g^{\prime}$ and
$\Gamma_{i}^{*}=\left\{\sigma_{0}: \sigma_{0}\right.$ is the Euclidean component of some $\left.\sigma \in \Gamma_{i}\right\}$,
for $i=1,2,3$. Then by the assumption, $g_{0}\left(\Gamma_{1}^{*} \times \Gamma_{3}^{*}\right) g_{0}^{-1}=\Gamma_{2}^{*} \times \Gamma_{3}^{*}$ holds.
Let $X^{\prime}=A_{1} \times \cdots \times A_{s}$ and $Y^{\prime}=A_{s+1} \times \cdots \times A_{s+t}$ be the de Rham decompositions of X^{\prime} and Y^{\prime} respectively. Then there are a permutation τ of $\{1, \cdots, s+t\}$ and isometries ϕ_{i} from A_{i} to $A_{\tau(i)}(i=1, \cdots, s+t)$ such that

$$
g^{\prime}\left(a_{1}, \cdots, a_{s}, a_{s+1}, \cdots, a_{s+t}\right)=\left(\phi_{\tau-1(1)}\left(a_{\tau-1(1)}\right), \cdots, \phi_{\tau-1(s+t)}\left(a_{:-1(s+t)}\right)\right) .
$$

Let

$$
\begin{aligned}
& X_{1}^{\prime}=\prod_{\substack{1 \leq i \leq i s s \\
1 \leq \tau(i) \leq s}} A_{i}, \quad X_{2}^{\prime}=\prod_{s+1 \leq T i \leq s) \leq s+t} A_{i}, \\
& Y_{1}^{\prime}=\prod_{\substack{s+1 \leq i \leq s+t \\
s+1 \leq \tau(i) \\
s+c}} A_{i}, \quad Y_{2}^{\prime}=\prod_{\substack{s+1 \leq i \leq s+t \\
1 \leq r \leq i)}} A_{i} .
\end{aligned}
$$

Then

$$
X^{\prime}=X_{1}^{\prime} \times X_{2}^{\prime} \quad \text { and } \quad Y^{\prime}=Y_{1}^{\prime} \times Y_{2}^{\prime}
$$

and these decompositions satisfy Condition 2 in Lemma 3 for the isometry g^{\prime} of $X^{\prime} \times Y^{\prime}$. So if there is an isometry \tilde{g}_{0} of $X_{0} \times Y_{0}$ which satisfies Condition 2 in Lemma 3 as well as an equality $\tilde{g}_{0}{ }^{\circ} \sigma_{0} \circ \tilde{g}_{0}^{-1}=g_{0}{ }^{\circ} \sigma_{0} \circ g_{0}^{-1}$ for any $\sigma_{0} \in \Gamma_{1}^{*} \times \Gamma_{3}^{*}$, then the theorem holds. In fact, the isometry $\tilde{g}=\tilde{g}_{0} \times g^{\prime}$ of $X \times Y$ satisfies Conditions 1 and 2 in Lemma 3. We shall construct such an isometry \tilde{g}_{0} in the
following manner.
We can consider X_{0} and Y_{0} as vector spaces V_{1} and V_{2} for some fixed origins respectively. Let W_{1} and W_{2} be vector spaces whose underlying spaces are X_{0} and Y_{0}, and whose origins are the images of the origins of V_{1} and V_{2} under g_{0} respectively. Then g_{0} is a linear isometry from $V=V_{1}+V_{2}$ to $W=W_{1}+W_{2}$. If there are a basis $\left\{e_{1}, \cdots, e_{n}\right\}$ of V and a linear isometry \tilde{g}_{0} from V to W satisfying the following conditions,
$(*) \quad\left\{\begin{array}{l}(0) \quad \tilde{g}_{0} \circ \sigma_{0} \circ \tilde{g}_{0}^{-1}=g_{0} \circ \sigma_{0} \circ g_{0}^{-1} \quad \text { for any } \sigma_{0} \in \Gamma_{1}^{*} \times \Gamma_{3}^{*}, \\ (1) \\ \text { each } e_{i} \text { is in } V_{1} \text { or } V_{2}, \\ (2) \\ \text { each } \tilde{g}\left(e_{i}\right) \text { is in } W_{1} \text { or } W_{2},\end{array}\right.$
then \tilde{g}_{0} satisfies Conditions 1 and 2 in Lemma 3,
Next we shall construct such a basis and such a linear map. By the method of Lemma 4, we obtain linear subspaces V_{v}, V_{0} of V for $\Gamma_{1}^{*} \times \Gamma_{3}^{*}$, and linear subspaces W_{w}, W_{0} of W for $\Gamma_{2}^{*} \times \Gamma_{3}^{*}$. Since $g_{0}\left(\Gamma_{1}^{*} \times \Gamma_{3}^{*}\right) g_{0}^{-1}=\Gamma_{2}^{*} \times \Gamma_{3}^{*}, g_{0}\left(V_{v}\right)=$ $W_{g_{0}(v)}$ and $g_{0}\left(V_{0}\right)=W_{0}$. If we choose a basis $\left\{\tilde{e}_{1}, \cdots, \tilde{e}_{m}\right\}$ of V_{v} such that, for each i with $1 \leqq i \leqq m=\operatorname{dim} V_{v}$,
(1) \tilde{e}_{i} is in V_{1} or V_{2},
(2) $g_{0}\left(\tilde{e}_{i}\right)$ is in W_{1} or W_{2},
then it is easy to choose a basis of V_{0} such that it satisfies the above condition. Let $\left\{e_{1}, \cdots, e_{k}\right\}$ be such a basis of V_{0}, let V^{\prime} be the orthogonal complement of V_{0} in V and let W^{\prime} be the orthogonal complement of W_{0} in W. Since $\left\{e_{1}, \cdots, e_{k}\right\}$ is a basis of V_{0} such that for each $i(1 \leqq i \leqq k), e_{i}$ is in V_{1} or V_{2}, we can choose an orthonormal basis $\left\{e_{k+1}, \cdots, e_{n}\right\}$ of V^{\prime} such that e_{i} is in V_{1} or V_{2} for each $i(k+1 \leqq i \leqq n)$. Similarly we can choose an orthonormal basis $\left\{f_{k+1}, \cdots, f_{n}\right\}$ of W^{\prime} such that f_{i} is in W_{1} or W_{2} for each $i(k+1 \leqq i \leqq n)$. We define a linear isometry \tilde{g}_{0} from V to W as follows,

$$
\left\{\begin{array}{l}
\left.\tilde{g}_{0}\right|_{v_{0}}=g_{0} \\
\tilde{g}_{0}\left(e_{i}\right)=f_{i} \quad(i=k+1, \cdots, n) .
\end{array}\right.
$$

Then by Lemma 4, \tilde{g}_{0} satisfies (0) of (*). So the basis $\left\{e_{1}, \cdots, e_{n}\right\}$ and the isometry \tilde{g}_{0} satisfy the condition (*).

Lastly we shall find out a basis $\left\{\tilde{e}_{1}, \cdots, \tilde{e}_{m}\right\}$ of V_{v} such that, for each i ($1 \leqq i \leqq m ; m$ is the dimension of V_{v}),
(1) \tilde{e}_{i} is in V_{1} or V_{2},
(2) $g_{0}\left(\tilde{e}_{i}\right)$ is in W_{1} or W_{2}.

Let (x, y) be a point of $X \times Y$ whose Euclidean component with respect to the de Rham decomposition $\left(X_{0} \times Y_{0}\right) \times\left(X^{\prime} \times Y^{\prime}\right)$ is v. Let $\left(x^{\prime}, y^{\prime}\right)=g(x, y)$. By the method in Lemma 5, we obtain $\Omega_{1}(x, y)$ and $\Omega_{2}\left(x^{\prime}, y^{\prime}\right)$ for $\Pi_{1}=\Gamma_{1} \times \Gamma_{3}$ and $\Pi_{2}=$
$\Gamma_{2} \times \Gamma_{3}$ respectively. Then $g\left(\Omega_{1}(x, y)\right)=\Omega_{2}\left(x^{\prime}, y^{\prime}\right)$ because $g\left(\Gamma_{1} \times \Gamma_{3}\right) g^{-1}=\Gamma_{2} \times \Gamma_{3}$. By Lemma 5, we can carry out the following method.

Let c_{1} be one of the shortest elements of $\Omega_{1}(x, y)$. Then c_{1} is a minimal geodesic from (x, y) to ($\gamma_{1}(x), \gamma_{3}(y)$) for some $\gamma_{1} \in \Gamma_{1}$ and $\gamma_{3} \in \Gamma_{3}$. If neither γ_{1} nor γ_{3} is the identity, then a minimal geodesic from (x, y) to $\left(\gamma_{1}(x), y\right)$ is in $\Omega_{1}(x, y)$ and whose length is smaller than c_{1}, a contradiction. Hence γ_{1} or γ_{3} is the identity, i.e. $\dot{c}_{1}(0)$ is tangent to $X \times\{y\}$ or $\{x\} \times Y$. Next we consider the subset $\Omega_{1}^{(1)}$ of $\Omega_{1}(x, y)$ consisting of all elements whose initial vectors are not contained in the linear subspace spanned by $\dot{c}_{1}(0)$. Let c_{2} be one of the shortest elements of $\Omega_{1}^{(1)}$. Then, similarly to $c_{1}, \dot{c}_{2}(0)$ is tangent to $X \times\{y\}$ or $\{x\} \times Y$. When we have chosen c_{1}, \cdots, c_{k}, let c_{k+1} be one of the shortest elements of $\Omega_{1}^{(k)}$, where $\Omega_{1}^{(k)}$ is the subset of $\Omega_{1}(x, y)$ consisting of all elements whose initial vectors are not contained in the linear subspace spanned by $\dot{c}_{1}(0)$, $\cdots, \dot{c}_{k-1}(0)$ and $\dot{c}_{k}(0)$. Then similarly to $c_{1}, \dot{c}_{k+1}(0)$ is tangent to $X \times\{y\}$ or $\{x\}$ $\times Y$. Let $T \Omega_{1}(x, y)$ and $T \Omega_{2}\left(x^{\prime}, y^{\prime}\right)$ be the linear subspaces spanned by $\{\dot{c}(0)$; $\left.c \in \Omega_{1}(x, y)\right\}$ and $\left\{\dot{d}(0) ; d \in \Omega_{2}\left(x^{\prime}, y^{\prime}\right)\right\}$ respectively. Let $d_{i}=g\left(c_{i}\right)$ for $i=1, \cdots, l$, where l is the dimension of $T \Omega_{1}(x, y)$. Then, because g is an isometry, d_{1}, \cdots, d_{l} are ones which are chosen by the above method, i.e. d_{1} is an element of $\Omega_{2}\left(x^{\prime}, y^{\prime}\right)$ whose length is minimum in $\Omega_{2}\left(x^{\prime}, y^{\prime}\right)$ and so on. Hence for $i=1, \cdots$, $l, \dot{d}_{i}(0)$ is tangent to $X \times\left\{y^{\prime}\right\}$ or $\left\{x^{\prime}\right\} \times Y$ at $\left(x^{\prime}, y^{\prime}\right)$ and $\left\{\dot{d}_{1}(0), \cdots, \dot{d}_{l}(0)\right\}$ is a basis of $T \Omega_{2}\left(x^{\prime}, y^{\prime}\right)$.

For a differentiable manifold A and a point $a \in A$, let $T_{a} A$ denote the tangent space to A at a. Then $T_{(x, y)}(X \times Y)$ is naturally identified with $T_{v}\left(X_{0} \times Y_{0}\right)+$ $T_{p}\left(X^{\prime} \times Y^{\prime}\right)$ where p is the component of the non-Euclidean part of (x, y). Let $\pi_{(x, y)}$ be the projection from $T_{(x, y)}(X \times Y)$ to $T_{v}\left(X_{0} \times Y_{0}\right)$ and $\pi_{\left(x^{\prime}, y^{\prime}\right)}$ the projection from $T_{\left(x^{\prime}, y^{\prime}\right)}(X \times Y)$ to $T_{g_{0}(v)}\left(X_{0} \times Y_{0}\right)$ with respect to the above identifications. The tangent space at a point of a vector space is naturally identified with the original vector space, so $T_{v}\left(X_{0} \times Y_{0}\right)$ and $T_{g_{0}(v)}\left(X_{0} \times Y_{0}\right)$ are naturally identified with V and W respectively. Then, under this identification,
(1) for $\xi \in T_{v}\left(X_{0} \times Y_{0}\right), d g_{0} \xi=g_{0} \xi$,
(2) an element ξ of $T_{v}\left(X_{0} \times Y_{0}\right)$ tangents to X_{0} or Y_{0} if and only if ξ is contained in V_{1} or V_{2} respectively,
(3) an element η of $T_{g_{0}(v)}\left(X_{0} \times Y_{0}\right)$ tangents to X_{0} or Y_{0} if and only if η is contained in W_{1} or W_{2} respectively,
(4) $V_{v}=\pi_{(x, y)} T \Omega_{1}(x, y)$ and $W_{g_{0}(v)}=\pi_{\left(x^{\prime}, y^{\prime}\right)} T \Omega_{2}\left(x^{\prime}, y^{\prime}\right)$.

Let $\xi_{i}=\pi_{(x, y)} \dot{c}_{i}(0)$ and $\eta_{i}=\pi_{\left(x^{\prime}, y^{\prime}\right)} \dot{d}_{i}(0)$ for $i=1, \cdots, l$. Then $\eta_{i}=d g_{0}\left(\xi_{i}\right)$ because $d g\left(\dot{c}_{i}(0)\right)=\dot{d}_{i}(0)$. Let $\left\{\xi_{i_{1}}, \cdots, \xi_{i_{m}}\right\}$ be a maximal subset of $\left\{\xi_{1}, \cdots, \xi_{l}\right\}$ such that $\xi_{i_{1}}, \cdots, \xi_{i_{m}}$ are linearly independent. Then $\left\{\eta_{i_{1}}, \cdots, \eta_{i_{m}}\right\}$ is so because of $\eta_{i}=$ $d g_{0}\left(\xi_{i}\right)$. We denote $\tilde{e}_{j}=\xi_{i_{j}}$ and $\tilde{f}_{j}=\eta_{i_{j}}$ for $j=1, \cdots, m$. Since $V_{v}=\pi_{(x, y)} T \Omega_{1}(x$, $y)$ and $W_{g_{0}(v)}=\pi_{\left(x^{\prime}, y^{\prime}\right)} T \Omega_{2}\left(x^{\prime}, y^{\prime}\right),\left\{\tilde{e}_{1}, \cdots, \tilde{e}_{m}\right\}$ is a basis of V_{v} and $\left\{\tilde{f}_{1}, \cdots, \tilde{f}_{m}\right\}$
is a basis of $W_{g_{0}(v)}$. By the fact that, for $i=1, \cdots, l, \dot{c}_{i}(0)$ is tangent to $X \times\{y\}$ or $\{x\} \times Y$ and $\dot{d}_{i}(0)$ is tangent to $X \times\{y\}$ or $\{x\} \times Y, \tilde{e}_{i}$ is in V_{1} or V_{2} and \tilde{f}_{j} is in W_{1} or W_{2} for $j=1, \cdots, m$. This completes the proof.

References

[1] L. S. Charlap, Compact flat Riemannian manifolds: I, Ann. of Math., 81 (1965), 15-30.
[2] H. Takagi, Notes on the cancellation of Riemannian manifolds, Tôhoku Math. J., 32 (1980), 411-417.
[3] K. Uesu, On cancellation of compact Riemannian manifolds, Mem. Fac. Sci. Kyushu Univ. Ser. A Math., 33 (1979), 225-236.

Kagumi Uesu

Department of Mathematics
Faculty of Science
Kyushu University 33
Fukuoka 812, Japan

