Cancellation law for Riemannian direct product

By Kagumi UESU

(Received Sept. 11, 1980) (Revised Nov. 29, 1982)

§0. Introduction.

L. S. Charlap showed that there are two compact differentiable manifolds M and N such that $M \times S^1$ is diffeomorphic to $N \times S^1$, while M and N are of different homotopy type (see [1]).

On the other hand, considering a Riemannian analogue of the above problem, we obtained the following result [3]:

Let M and N be connected complete Riemannian manifolds and S a connected compact locally symmetric Riemannian manifold. If $M \times S$ is isometric to $N \times S$, then M is isometric to N.

Later on, H. Takagi obtained the following result [2]:

Let M and N be connected complete Riemannian manifolds and let S be a connected complete Riemannian manifold which is simply connected or has the irreducible restricted homogeneous holonomy group. If $M \times S$ is isometric to $N \times S$, then M is isometric to N.

The purpose of this paper is to give a complete answer to the above problem in Riemannian case.

The main result is the following.

THEOREM. If $M \times S$ is isometric to $N \times S$, then M is isometric to N, where M, N and S are connected complete Riemannian manifolds.

In this paper, Riemannian manifolds are always supposed to be connected and complete, and \cong means isometric.

We shall give a brief account of the idea of the proof. Let M, N and S be Riemannian manifolds such that $M \times S$ is isometric to $N \times S$. Then $M \cong X/\Gamma_1$, $N \cong X/\Gamma_2$ and $S \cong Y/\Gamma_3$ where X and Y are simply connected Riemannian manifolds and Γ_1 , Γ_2 and Γ_3 are deck transformation groups of M, N and S, respectively. If we could find an isometry \tilde{g} of $X \times Y$ satisfying Conditions 1 and 2 in Lemma 3, then our theorem would be proved. An isometry g of $X \times Y$ which is a natural lift of an isometry from $M \times S$ to $N \times S$ satisfies Condition 1 in Lemma 3. While if X and Y have the Euclidean parts in its de Rham decompositions, then g does not always satisfy Condition 2 in Lemma 3. However, using Lemma 4 and Lemma 5, we can change g into \tilde{g} which satisfies Conditions 1 and 2 in Lemma 3.

I am grateful to Professor M. Goto for helpful comments which led to the improvements of the original manuscript.

§1. Basic lemmas.

In this section we shall refer to five lemmas for the proof of the theorem.

By the uniqueness of the de Rham decomposition of a simply connected Riemannian manifold, we have the following lemma.

LEMMA 1. Let M, N and S be Riemannian manifolds. If $M \times S$ is isometric to $N \times S$, then the universal Riemannian covering manifold \tilde{M} of M is isometric to \tilde{N} , the universal Riemannian covering manifold of N.

DEFINITION. An *FPDA-group* on a Riemannian manifold is a subgroup of the isometry group of the manifold whose action on the manifold is free and properly discontinuous.

LEMMA 2 ([3]). Let Γ and Γ' be FPDA-groups on simply connected Riemannian manifolds A and A' respectively. Then A/Γ is isometric to A'/Γ' if and only if there exists an isometry ϕ from A to A' with $\Gamma' = \phi \Gamma \phi^{-1}$.

For isometries f_1, \dots, f_n from Riemannian manifolds A_1, \dots, A_n to Riemannian manifolds B_1, \dots, B_n respectively, we denote by $f_1 \times \dots \times f_n$ the isometry from $A_1 \times \dots \times A_n$ to $B_1 \times \dots \times B_n$ such that the image of $(a_1, \dots, a_n) \in A_1 \times \dots \times A_n$ is $(f_1(a_1), \dots, f_n(a_n))$. We denote the identity map of a Riemannian manifold A by id_A. For FPDA-groups Γ and Λ on Riemannian manifolds A and B respectively, we denote by $\Gamma \times \Lambda$ the group consisting of all the isometries on $A \times B$ of the form $\gamma \times \lambda$ for some $\gamma \in \Gamma$ and $\lambda \in \Lambda$. Then $\Gamma \times \Lambda$ is an FPDA-group on $A \times B$.

For an isometry we have the following fact which is essential for the proof of Lemma 3.

FACT. Let A, B, C and D be Riemannian manifolds and ϕ an isometry from $A \times B$ onto $C \times D$. If, for some points (a_0, b_0) and $(c_0, d_0) = \phi(a_0, b_0)$, $\phi(A, b_0) = (C, d_0)$, then there are isometries ϕ_1 from A to C and ϕ_2 from B to D such that $\phi = \phi_1 \times \phi_2$.

PROOF. By the assumption $\phi(a_0, B) = (c_0, D)$. So there are isometries ϕ_1 from A to C and ϕ_2 from B to D such that $\phi(a, b_0) = (\phi_1(a), b_0)$ and $\phi(a_0, b) = (c_0, \phi_2(b))$ for any $a \in A$ and $b \in B$. Then $\phi(a_0, b_0) = (\phi_1(a_0), \phi_2(b_0))$ and $d\phi_{(a_0, b_0)} = d\phi_{1a_0} + d\phi_{2b_0}$. Hence $\phi = (\phi_1 \times \phi_2)$.

The following lemma is essential in our proof of the theorem. In the following lemma, we regard a set consisting of one element as a zero-dimensional Riemannian manifold.

LEMMA 3. Let A and B be Riemannian manifolds, let Π_1 and Π_2 be FPDAgroups on A and let Π_3 be an FPDA-group on B. We assume that there are decompositions $A \cong A_1 \times A_2$, $B \cong B_1 \times B_2$ and an isometry ϕ of $A \times B$ satisfying the following conditions.

Condition 1. $\phi(\Pi_1 \times \Pi_3)\phi^{-1} = \Pi_2 \times \Pi_3$.

Condition 2. For some isometries η_A and η_B from $A_1 \times A_2$ and $B_1 \times B_2$ to Aand B respectively, $\phi \circ (\eta_A \times \eta_B)(A_1 \times \{a_2\} \times \{b_1\} \times B_2) = A \times \{b\}$ and $\phi \circ (\eta_A \times \eta_B)(\{a_1\} \times A_2 \times B_1 \times \{b_2\}) = \{a\} \times B$ for some $a_1 \in A_1$, $a_2 \in A_2$, $b_1 \in B_1$, $b_2 \in B_2$, $a \in A$ and $b \in B$. Then:

(1) If the dimension of B_1 or the dimension of B_2 is equal to zero, then there is an isometry ψ of A with $\psi \Pi_1 \psi^{-1} = \Pi_2$.

(2) If the dimension of B_1 and the dimension of B_2 are positive, then $B/\Pi_3 \cong B_1/\Lambda_1 \times B_2/\Lambda_2$ for some FPDA-groups Λ_1 and Λ_2 on B_1 and B_2 respectively.

PROOF OF (1). First let the dimension of B_2 be equal to zero. Then B_1 is isometric to B and, by Condition 2, the dimension of A_2 is equal to zero. Hence Condition 2 is as follows; $\phi(A \times \{b\}) = A \times \{b^*\}$ and $\phi(\{a\} \times B) = \{a^*\} \times B$ for some $a, a^* \in A, b$ and $b^* \in B$. So, by Fact, there are isometries ϕ_A of A and ϕ_B of Bsuch that $\phi = \phi_A \times \phi_B$. By Condition 1, $(\phi_A \times \phi_B)(\Pi_1 \times \Pi_3)(\phi_A \times \phi_B)^{-1} = \Pi_2 \times \Pi_3$. Hence $(\phi_A \Pi_1 \phi_A^{-1}) \times (\phi_B \Pi_3 \phi_B^{-1}) = \Pi_2 \times \Pi_3$. Therefore $\phi_A \Pi_1 \phi_A^{-1} = \Pi_2$.

Next let the dimension of B_1 be equal to zero. Then B_2 is isometric to B. We consider ϕ as an isometry of $A_1 \times A_2 \times B$ and also we consider Π_1 and Π_2 as FPDA-groups on $A_1 \times A_2$. Then Condition 2 is as follows; $\phi(A_1 \times \{a_2^{(0)}\} \times B) = A_1$ $\times A_2 \times \{b^{(1)}\}$ and $\phi(\{a_1^{(0)}\} \times A_2 \times \{b^{(0)}\}) = \{a_1^{(1)}\} \times \{a_2^{(1)}\} \times B$ for some $a_1^{(0)}, a_1^{(1)} \in A_1$, $a_2^{(0)}, a_2^{(1)} \in A_2, b^{(0)} \text{ and } b^{(1)} \in B.$ Hence there is an isometry ϕ_3 from A_2 to B such that $\phi(a_1^{(0)}, a_2, b^{(0)}) = (a_1^{(1)}, a_2^{(1)}, \phi_3(a_2))$. Let A'_1 and A'_2 be submanifolds of $A_1 \times A_2$ such that $\phi(A_1 \times \{a_2^{(0)}\} \times \{b^{(0)}\}) = A'_1 \times \{b^{(1)}\}$ and $\phi(\{a_1^{(0)}\} \times \{a_2^{(0)}\} \times B) = A'_2 \times B'_2 \times B'_2$ $\{b^{(1)}\}.$ Then there are isometries ϕ_1 and ϕ_2 from A_1 and B to A'_1 and A'_2 , respectively, such that $\phi(a_1, a_2^{(0)}, b^{(0)}) = (\phi_1(a_1), b^{(1)})$ and $\phi(a_1^{(0)}, a_2^{(0)}, b) = (\phi_2(b), b^{(1)})$. Since $\phi(A_1 \times \{a_2^{(0)}\} \times B) = A_1 \times A_2 \times \{b^{(1)}\}$, there is an isometry ϕ_0 from $A_1 \times B$ to $A_1 \times A_2$ such that $\phi(a_1, a_2^{(0)}, b) = (\phi_0(a, b), b^{(1)})$. Let $\eta = (\phi_1 \times \phi_2) \circ \phi_0^{-1}$ and $\Pi'_2 =$ $\eta \Pi_2 \eta^{-1}$. Then η is an isometry from $A_1 \times A_2$ to $A'_1 \times A'_2$ and Π'_2 is an FPDAgroup on $A'_1 \times A'_2$. Because $\phi(\Pi_1 \times \Pi_3)\phi^{-1} = \Pi_2 \times \Pi_3$, $(\eta \times \mathrm{id}_B) \circ \phi(\Pi_1 \times \Pi_3)\phi^{-1} \circ (\eta \times \Pi_3)\phi^{-1} = (\eta \times \Pi_3)\phi^{-1} \circ (\eta \times \Pi_3)\phi^{-1} = (\eta \times \Pi_3)\phi^{-1} \circ (\eta \times \Pi_3)\phi^{-1} = (\eta \times \Pi_3)\phi^{-1} \circ (\eta \times \Pi_3)\phi^{-1} \circ (\eta \times \Pi_3)\phi^{-1} = (\eta \times \Pi_3)\phi^{-1} \circ (\eta \times \Pi_3)\phi^{-1} \circ (\eta \times \Pi_3)\phi^{-1} = (\eta \times \Pi_3)\phi^{-1} \circ (\eta \times \Pi_3)\phi^{-1} \circ (\eta \times \Pi_3)\phi^{-1} \circ (\eta \times \Pi_3)\phi^{-1} = (\eta \times \Pi_3)\phi^{-1} \circ (\eta \times \Pi_3)\phi^{-1} = (\eta \times \Pi_3)\phi^{-1} \circ (\eta \times \Pi_3)\phi^{-1}$ $\times \mathrm{id}_{B})^{-1} = \Pi'_{2} \times \Pi_{3}$. Moreover $(\eta \times \mathrm{id}_{B}) \circ \phi(a_{1}, a_{2}^{(0)}, b) = (\eta \times \mathrm{id}_{B})(\phi_{0}(a_{1}, b), b^{(1)}) = (\phi_{1}(a_{1}), b^{(1)})$ $\phi_2(b), b^{(1)})$ and $(\eta \times \mathrm{id}_B) \circ \phi(a_1^{(0)}, a_2, b^{(0)}) = (\eta \times \mathrm{id}_B)(a_1^{(1)}, a_2^{(1)}, \phi_3(a_2)) = (\eta(a_1^{(1)}, a_2^{(2)}), a_2^{(1)})$ $\phi_{\mathfrak{z}}(a_2)$), where $a_1 \in A_1$, $a_2 \in A_2$ and $b \in B$. If we show that there exists an isometry ψ from $A_1 \times A_2$ to $A'_1 \times A'_2$ such that $\Pi'_2 = \psi \Pi_1 \psi^{-1}$, then $\eta^{-1} \cdot \psi$ is an isometry of $A_1 \times A_2$ and $\Pi_2 = (\eta^{-1} \circ \psi) \Pi_1 (\eta^{-1} \circ \psi)^{-1}$. Therefore it is sufficient to show the following assertion:

Let ϕ be an isometry from $A_1 \times A_2 \times B$ to $A'_1 \times A'_2 \times B$, and Π_1 , Π_2 and Π_3

FPDA-groups on $A_1 \times A_2$, $A'_1 \times A'_2$ and B respectively. We assume the following two conditions;

(1) $\phi(\Pi_1 \times \Pi_3)\phi^{-1} = \Pi_2 \times \Pi_3$,

(2) There are isometries ϕ_1 , ϕ_2 and ϕ_3 from A_1 , B and A_2 to A'_1 , A'_2 and B, respectively, such that $\phi(a_1, a_2^{(0)}, b) = (\phi_1(a_1), \phi_2(b), b^{(1)})$ and $\phi(a_1^{(0)}, a_2, b^{(0)}) = (a_1^{(1)}, a_2^{(1)}, \phi_3(a_2))$ for some $a_1^{(0)} \in A_1$, $a_2^{(0)} \in A_2$, $a_1^{(1)} \in A'_1$, $a_2^{(1)} \in A'_2$, $b^{(0)}$ and $b^{(1)} \in B$, where $a_1 \in A_1$, $a_2 \in A_2$ and $b \in B$ are arbitrary. Then there is an isometry ϕ from $A_1 \times A_2$ to $A'_1 \times A'_2$ such that $\Pi_2 = \phi \Pi_1 \phi^{-1}$.

Let ν be an isometry from $A_1 \times A_2 \times B$ to $A_1 \times B \times A_2$ such that $\nu(a_1, a_2, b) = (a_1, b, a_2)$ for $a_1 \in A_1$, $a_2 \in A_2$ and $b \in B$. Then, by Fact, $\phi \circ \nu^{-1} = \phi_1 \times \phi_2 \times \phi_3$, that is $\phi = (\phi_1 \times \phi_2 \times \phi_3) \circ \nu$. Hence each isometry of $\phi(\{\mathrm{id}_{A_1 \times A_2}\} \times \Pi_3)\phi^{-1}$ is of the form $\mathrm{id}_{A'_1} \times \sigma \times \mathrm{id}_B$, where σ is some isometry of A'_2 . So, by the condition, $\phi(\{\mathrm{id}_{A_1 \times A_2}\} \times \Pi_3)\phi^{-1} \subset \Pi_2 \times \{\mathrm{id}_B\}$. Similarly $\phi^{-1}(\{\mathrm{id}_{A'_1 \times A'_2}\} \times \Pi_3)\phi \subset \Pi_1 \times \{\mathrm{id}_B\}$. Therefore $\Pi_2 \times \{\mathrm{id}_B\} = ((\Pi_2 \times \{\mathrm{id}_B\}) \cap \phi(\Pi_1 \times \{\mathrm{id}_B\})\phi^{-1}) \cdot (\phi(\{\mathrm{id}_{A_1 \times A_2}\} \times \Pi_3)\phi^{-1})$ and $\Pi_1 \times \{\mathrm{id}_B\} = (\phi^{-1}(\Pi_2 \times \{\mathrm{id}_B\}) \phi \cap (\Pi_1 \times \{\mathrm{id}_B\})) \cdot (\phi^{-1}(\{\mathrm{id}_{A'_1 \times A'_2}\} \times \Pi_3)\phi)$. Let $\psi = (\phi_1 \times \phi_2) \cdot (\mathrm{id}_{A_1} \times \phi_3)$. Since each isometry of $\phi^{-1}(\Pi_2 \times \{\mathrm{id}_B\})\phi \cap (\Pi_1 \times \{\mathrm{id}_B\})\phi \cap (\Pi_1 \times \{\mathrm{id}_B\}))$ is of the form $\sigma \times \mathrm{id}_{A_2} \times \mathrm{id}_B$ for some isometry σ of A_1 , $(\phi \times \mathrm{id}_B)(\phi^{-1}(\Pi_2 \times \{\mathrm{id}_B\})\phi \cap (\Pi_1 \times \{\mathrm{id}_B\}))(\phi \times \mathrm{id}_B)$ is of the form $\sigma \times \mathrm{id}_{A_2} \times \mathrm{id}_B$ is $\phi(\sigma^{-1}(\Pi_2 \times \{\mathrm{id}_B\})\phi \cap (\Pi_1 \times \{\mathrm{id}_B\}))\phi^{-1} = (\Pi_2 \cap \{\mathrm{id}_{A_1 \times A_2}\} \times \Pi_3)\phi^{-1}$. Hence $(\phi \times \mathrm{id}_B)(\Pi_2 \times \{\mathrm{id}_B\})(\phi \times \mathrm{id}_B)(\phi^{-1}(\{\mathrm{id}_{A_1 \times A_2}\} \times \Pi_3)\phi)(\Pi_2 \times \{\mathrm{id}_B\})(\phi \times \mathrm{id}_B)(\Pi_2 \times \{\mathrm{id}_B\})\phi^{-1} = \Pi_2$.

PROOF OF (2). By the same way as the proof of (1), it is sufficient to prove the existence of Λ_1 and Λ_2 in the following situation:

Let ϕ be an isometry from $A_1 \times A_2 \times B_1 \times B_2$ to $A'_1 \times A'_2 \times B'_1 \times B'_2$, and Π_1 , Π_3 , Π_2 and Π_4 FPDA-groups on $A_1 \times A_2$, $B_1 \times B_2$, $A'_1 \times A'_2$ and $B'_1 \times B'_2$ respectively. We assume the following two conditions;

(1) $\phi(\Pi_1 \times \Pi_3)\phi^{-1} = \Pi_2 \times \Pi_4$,

(2) There are isometries ϕ_1 , ϕ_2 , ϕ_3 and ϕ_4 from A_1 , B_2 , B_1 and A_2 to A'_1 , A'_2 , B'_1 and B'_2 , respectively, such that $\phi(a_1, a_2^{(0)}, b_1^{(0)}, b_2) = (\phi_1(a_1), \phi_2(b_2), b_1^{(1)}, b_2^{(1)})$ and $\phi(a_1^{(0)}, a_2, b_1, b_2^{(0)}) = (a_1^{(1)}, a_2^{(1)}, \phi_3(b_1), \phi_4(a_2))$ for some $a_1^{(0)} \in A_1$, $a_1^{(1)} \in A'_1$, $a_2^{(0)} \in A_2$, $a_2^{(1)} \in A'_2$, $b_1^{(0)} \in B_1$, $b_1^{(1)} \in B'_1$, $b_2^{(0)} \in B_2$ and $b_2^{(1)} \in B'_2$, where $a_1 \in A_1$, $a_2 \in A_2$, $b_1 \in B_1$ and $b_2 \in B_2$ are arbitrary.

Let ν be an isometry from $A_1 \times A_2 \times B_1 \times B_2$ to $A_1 \times B_2 \times B_1 \times A_2$ such that $\nu(a_1, a_2, b_1, b_2) = (a_1, b_2, b_1, a_2)$ for $a_1 \in A_1$, $a_2 \in A_2$, $b_1 \in B_1$ and $b_2 \in B_2$. Then, by Fact, $\phi \circ \nu^{-1} = \phi_1 \times \phi_2 \times \phi_3 \times \phi_4$ that is $\phi = (\phi_1 \times \phi_2 \times \phi_3 \times \phi_4) \circ \nu$. By the condition, for $\sigma \in \Pi_3$, there are $\sigma_2 \in \Pi_2$ and $\sigma_4 \in \Pi_4$ such that $\mathrm{id}_{A_1 \times A_2} \times \sigma = \phi^{-1} \circ (\sigma_2 \times \mathrm{id}_{B'_1 \times B'_2}) \circ (\mathrm{id}_{A'_1 \times A'_2} \times \sigma_4) \circ \phi$. Hence $\nu \circ (\mathrm{id}_{A_1 \times A_2} \times \sigma) \circ \nu^{-1} = ((\phi_1^{-1} \times \phi_2^{-1}) \circ \sigma_2 \circ (\phi_1 \times \phi_2)) \times ((\phi_3^{-1} \times \phi_4^{-1}) \circ \sigma_4 \circ (\phi_3 \times \phi_4))$. So, by Fact, $(\phi_1^{-1} \times \phi_2^{-1}) \circ \sigma_2 \circ (\phi_1 \times \phi_2) = \mathrm{id}_{A_1} \times \tau_2$ and $(\phi_3^{-1} \times \phi_4^{-1}) \circ \sigma_4 \circ (\phi_3 \times \phi_4) = \tau_1 \times \mathrm{id}_{A_2}$ for some isometry τ_1 and τ_2 of B_1 and B_2 respectively. Hence $\phi^{-1} \circ (\sigma_2 \times \mathrm{id}_{B'_1 \times B'_2}) \circ \phi$ and $\phi^{-1} \circ (\mathrm{id}_{A'_1 \times A'_2} \times \sigma_4) \circ \phi$ are in $\{\mathrm{id}_{A_1 \times A_2}\} \times \Pi_3$. Therefore $\{\mathrm{id}_{A_1 \times A_2}\} \times \Pi_3 = ((\{\mathrm{id}_{A_1 \times A_2}\} \times \Pi_3) \cap \phi^{-1}(\Pi_2 \times \{\mathrm{id}_{B'_1 \times B'_2}\}) \phi) \cdot ((\{\mathrm{id}_{A_1 \times A_2}\} \times \Pi_3) \cap \phi^{-1}(\Pi_2 \times \mathrm{id}_{B'_1 \times B'_2})) \phi$.

56

 $\phi^{-1}(\{\mathrm{id}_{A_1'\times A_2'}\}\times \Pi_4)\phi) \text{ and each element of } (\{\mathrm{id}_{A_1\times A_2}\}\times \Pi_3)\cap \phi^{-1}(\Pi_2\times \{\mathrm{id}_{B_1'\times B_2'}\})\phi$ and $(\{\mathrm{id}_{A_1\times A_2}\}\times \Pi_3)\cap \phi^{-1}(\{\mathrm{id}_{A_1'\times A_2'}\}\times \Pi_4)\phi \text{ are of the form } \mathrm{id}_{A_1\times A_2}\times \mathrm{id}_{B_1}\times \tau_2 \text{ and } \mathrm{id}_{A_1\times A_2}\times \tau_1\times \mathrm{id}_{B_2},$ respectively, where τ_1 and τ_2 are isometries of B_1 and B_2 respectively. Let $\Lambda_1=\{\tau:\tau \text{ is an isometry of } B_1 \text{ such that } \mathrm{id}_{A_1\times A_2}\times \tau\times \mathrm{id}_{B_2} \text{ is in } (\{\mathrm{id}_{A_1\times A_2}\}\times \Pi_3)\cap \phi^{-1}(\{\mathrm{id}_{A_1'\times A_2'}\}\times \Pi_4)\phi\} \text{ and } \Lambda_2=\{\tau:\tau \text{ is an isometry of } B_2 \text{ such that } \mathrm{id}_{A_1\times A_2}\times \mathrm{id}_{B_1}\times \tau \text{ is in } (\{\mathrm{id}_{A_1\times A_2}\}\times \Pi_3)\cap \phi^{-1}(\Pi_2\times \{\mathrm{id}_{B_1'\times B_2'}\})\phi\}.$ Then $(B_1\times B_2)/\Pi_2\cong B_1/\Lambda_1\times B_2/\Lambda_2.$

Concerning a group consisting of isometries of a Euclidean space, we have the following.

LEMMA 4. Let V be an n-dimensional real vector space with a Euclidean metric and Π a group consisting of isometries of V. For $v \in V$, let V_v be the linear subspace spanned by $\{\sigma v - v : \sigma \in \Pi\}, V_0 = \sum_{v \in V} V_v$ and V_1 the orthogonal complement of V_0 . Let us choose an orthonormal basis $\{e_1, \dots, e_n\}$ of V such that e_i $(1 \leq i \leq k)$

of V_0 . Let us choose an orthonormal basis $\{e_1, \dots, e_n\}$ of V such that $e_i(1 \le i \le R)$ are in V_0 and $e_j(k+1 \le j \le n)$ are in V_1 , where k =dimension of V_0 . Then, by the canonical coordinate with respect to e_1, \dots, e_n , any element $\sigma \in \Pi$ has the following form,

where A is a (k, k)-orthogonal matrix, I_{n-k} is the identity matrix of (n-k, n-k)type and ξ is a k-dimensional real vector. Hence for a linear map ϕ of the following form,

	$1 \cdots k k+1 \cdots n$		
$ \begin{array}{c} 1\\ \vdots\\ k\\ k+1\\ \vdots\\ n\end{array} $	I _k	0	0
	0	Т	0
	0	0	1

we have $\phi \circ \sigma \circ \phi^{-1} = \sigma$ for any $\sigma \in \Pi$, where I_k is the identity matrix of (k, k)-type and T is a non-singular matrix.

PROOF. For $v \in V$ and $\sigma \in \Pi$ we write

$$\sigma v = A(\sigma)v + a(\sigma)$$
,

K. UESU

where $a(\sigma) \in V$ and $A(\sigma)$ is an orthogonal transformation of the vector space V. Denoting the origin by O, we have

$$a(\sigma) \in V_{o} \subset V_{o}$$
.

Also by $\sigma(\sigma'v-v)=(\sigma\sigma')v-v-(\sigma v-v)+a(\sigma)\in V_0$, for $\sigma, \sigma'\in\Pi$, we have

$$\sigma V_0 = V_0$$
 and $A(\sigma)V_0 = V_0$.

Since $A(\sigma)$ is orthogonal, it follows

$$A(\sigma)V_1 = V_1$$
.

Next for $\sigma \in \Pi$ and $w \in V_1$,

$$(A(\sigma)-1)w = (\sigma w - w) - a(\sigma) \in V_0 \cap V_1 = \{0\}$$
,

and we have

 $A(\sigma) =$ identity on V_1 .

The last assertion is obvious.

Let Π be an FPDA-group on a Riemannian manifold A and d a distance function on A. A geodesic from a to b is called, by definition, minimal if its length is equal to d(a, b). In this paper a geodesic is always parametrized by the arc length from the starting point. For a fixed $a_0 \in A$, we consider the set $\Omega(a_0)$ consisting of all minimal geodesics each of which issues from a_0 and ends at $\sigma(a_0)$ for some $\sigma \in \Pi - \{id\}$, where id is the identity. Since Π acts on A properly discontinuously, the subset $\{\sigma(a_0): \sigma \in \Pi - \{id\}$ and $d(a_0, \sigma(a_0)) \leq r\}$ of A is a finite set where r is a positive number. So any subset of $\{d(a_0, \sigma(a_0)): \sigma \in \Pi - \{id\}\}$ has a minimal element because any element of the set is positive. So we have the following lemma.

LEMMA 5. Let Π_1 and Π_2 be FPDA-groups on a Riemannian manifold A. For $a \in A$, let

$$\Omega_1(a) = \begin{cases} c : c \text{ is a minimal geodesic segment from } a \text{ to } \sigma(a) \\ for \text{ some } \sigma \in \Pi_1 - \{\text{id}\} \end{cases}$$

and

$$\Omega_2(a) = \left\{ \begin{array}{c} c : c \text{ is a minimal geodesic segment from } a \text{ to } \sigma(a) \\ for \text{ some } \sigma \in \Pi_2 - \{\text{id}\} \end{array} \right\}.$$

Then there are the shortest elements in any subset of $\Omega_1(a)$ and in any subset of $\Omega_2(a)$. Further, if there is an isometry ϕ of A with $\phi \Pi_1 \phi^{-1} = \Pi_2$, then $\phi(\Omega_1(a)) = \Omega_2(\phi(a))$ holds, where $(\phi(c))(t) = \phi(c(t))$ for $c \in \Omega_1(a)$.

§2. Proof of Theorem.

Let M, N and S be Riemannian manifolds such that $M \times S$ is isometric to

 $N \times S$. By Lemma 1, the universal Riemannian covering manifold of M is isometric to the one of N. So let X be the universal Riemannian covering manifold of M and N, and let Y be the one of S. Let Γ_1 , Γ_2 and Γ_3 be the deck transformation groups of M, N and S respectively. Then Γ_1 and Γ_2 are subgroups of the isometry group of X, Γ_{s} is a subgroup of the isometry group of Y, and $\Gamma_1 \times \Gamma_3$ and $\Gamma_2 \times \Gamma_3$ are regarded naturally as the deck transformation groups of $M \times S$ and $N \times S$ respectively. By Lemma 2 and by the assumption, there is an isometry g of $X \times Y$ such that $g(\Gamma_1 \times \Gamma_3)g^{-1} = \Gamma_2 \times \Gamma_3$. To prove the theorem, it is sufficient to prove the theorem for a Riemannian manifold S which is never isometric to the Riemannian direct product of any two Riemannian manifolds of positive dimension. So we assume that S is never isometric to the Riemannian direct product of any two Riemannian manifolds of positive dimension. If an isometry \tilde{g} of $X \times Y$ satisfies Conditions 1 and 2 in Lemma 3, then by the above assumption, it is the case (1) in Lemma 3. Therefore by Lemma 2, M is isometric to N.

We shall construct such an isometry \tilde{g} . Let X_0 and Y_0 be the Euclidean parts, and X' and Y' the non-Euclidean parts of the de Rham decompositions of X and Y, respectively. Then $X_0 \times Y_0$ is the Euclidean part and $X' \times Y'$ is the non-Euclidean part of $X \times Y$. Identifying an isometry of $X \times Y$ with an isometry of $(X_0 \times Y_0) \times (X' \times Y')$, an isometry σ of $X \times Y$ is $\sigma_0 \times \sigma'$ where σ_0 is an isometry of $X_0 \times Y_0$ and σ' is an isometry of $X' \times Y'$. We call σ_0 the Euclidean component of σ . Let $g = g_0 \times g'$ and

 $\varGamma_i^* = \{ \sigma_{\scriptscriptstyle 0} \, : \, \sigma_{\scriptscriptstyle 0} \, \text{ is the Euclidean component of some } \sigma \! \in \! \Gamma_i \}$,

for i=1, 2, 3. Then by the assumption, $g_0(\Gamma_1^* \times \Gamma_3^*)g_0^{-1} = \Gamma_2^* \times \Gamma_3^*$ holds.

Let $X'=A_1 \times \cdots \times A_s$ and $Y'=A_{s+1} \times \cdots \times A_{s+t}$ be the de Rham decompositions of X' and Y' respectively. Then there are a permutation τ of $\{1, \dots, s+t\}$ and isometries ϕ_i from A_i to $A_{\tau(i)}$ $(i=1, \dots, s+t)$ such that

 $g'(a_1, \cdots, a_s, a_{s+1}, \cdots, a_{s+t}) = (\phi_{\tau^{-1}(1)}(a_{\tau^{-1}(1)}), \cdots, \phi_{\tau^{-1}(s+t)}(a_{\tau^{-1}(s+t)})).$ Let

$$X'_{1} = \prod_{\substack{1 \le i \le s \\ 1 \le \tau(i) \le s}} A_{i}, \qquad X'_{2} = \prod_{\substack{1 \le i \le s \\ s+1 \le \tau(i) \le s+t}} A_{i},$$
$$Y'_{1} = \prod_{\substack{s+1 \le i \le s+t \\ s+1 \le \tau(i) \le s+t}} A_{i}, \qquad Y'_{2} = \prod_{\substack{s+1 \le i \le s+t \\ 1 \le \tau(i) \le s}} A_{i}.$$

Then

and these decompositions satisfy Condition 2 in Lemma 3 for the isometry g'of $X' \times Y'$. So if there is an isometry \tilde{g}_0 of $X_0 \times Y_0$ which satisfies Condition 2 in Lemma 3 as well as an equality $\tilde{g}_0 \circ \sigma_0 \circ \tilde{g}_0^{-1} = g_0 \circ \sigma_0 \circ g_0^{-1}$ for any $\sigma_0 \in \Gamma_1^* \times \Gamma_3^*$, then the theorem holds. In fact, the isometry $\tilde{g} = \tilde{g}_0 \times g'$ of $X \times Y$ satisfies Conditions 1 and 2 in Lemma 3. We shall construct such an isometry \tilde{g}_0 in the

 $X' = X'_1 \times X'_2$ and $Y' = Y'_1 \times Y'_2$,

K. Uesu

following manner.

We can consider X_0 and Y_0 as vector spaces V_1 and V_2 for some fixed origins respectively. Let W_1 and W_2 be vector spaces whose underlying spaces are X_0 and Y_0 , and whose origins are the images of the origins of V_1 and V_2 under g_0 respectively. Then g_0 is a linear isometry from $V=V_1+V_2$ to $W=W_1+W_2$. If there are a basis $\{e_1, \dots, e_n\}$ of V and a linear isometry \tilde{g}_0 from V to W satisfying the following conditions,

(*) $\begin{cases} (0) \quad \tilde{g}_0 \circ \sigma_0 \circ \tilde{g}_0^{-1} = g_0 \circ \sigma_0 \circ g_0^{-1} & \text{for any} \quad \sigma_0 \in \Gamma_1^* \times \Gamma_3^*, \\ (1) \quad \text{each } e_i \text{ is in } V_1 \text{ or } V_2, \\ (2) \quad \text{each } \tilde{g}(e_i) \text{ is in } W_1 \text{ or } W_2, \end{cases}$

then \tilde{g}_0 satisfies Conditions 1 and 2 in Lemma 3.

Next we shall construct such a basis and such a linear map. By the method of Lemma 4, we obtain linear subspaces V_v , V_0 of V for $\Gamma_1^* \times \Gamma_3^*$, and linear subspaces W_w , W_0 of W for $\Gamma_2^* \times \Gamma_3^*$. Since $g_0(\Gamma_1^* \times \Gamma_3^*)g_0^{-1} = \Gamma_2^* \times \Gamma_3^*$, $g_0(V_v) = W_{g_0(v)}$ and $g_0(V_0) = W_0$. If we choose a basis $\{\tilde{e}_1, \dots, \tilde{e}_m\}$ of V_v such that, for each i with $1 \leq i \leq m = \dim V_v$,

- (1) \tilde{e}_i is in V_1 or V_2 ,
- (2) $g_0(\tilde{e}_i)$ is in W_1 or W_2 ,

then it is easy to choose a basis of V_0 such that it satisfies the above condition. Let $\{e_1, \dots, e_k\}$ be such a basis of V_0 , let V' be the orthogonal complement of V_0 in V and let W' be the orthogonal complement of W_0 in W. Since $\{e_1, \dots, e_k\}$ is a basis of V_0 such that for each i $(1 \le i \le k)$, e_i is in V_1 or V_2 , we can choose an orthonormal basis $\{e_{k+1}, \dots, e_n\}$ of V' such that e_i is in V_1 or V_2 for each i $(k+1 \le i \le n)$. Similarly we can choose an orthonormal basis $\{f_{k+1}, \dots, f_n\}$ of W' such that f_i is in W_1 or W_2 for each i $(k+1 \le i \le n)$. We define a linear isometry \tilde{g}_0 from V to W as follows,

$$\begin{cases} \tilde{g}_0 | v_0 = g_0, \\ \tilde{g}_0(e_i) = f_i \quad (i = k + 1, \dots, n). \end{cases}$$

Then by Lemma 4, \tilde{g}_0 satisfies (0) of (*). So the basis $\{e_1, \dots, e_n\}$ and the isometry \tilde{g}_0 satisfy the condition (*).

Lastly we shall find out a basis $\{\tilde{e}_1, \dots, \tilde{e}_m\}$ of V_v such that, for each i $(1 \leq i \leq m; m \text{ is the dimension of } V_v)$,

- (1) \tilde{e}_i is in V_1 or V_2 ,
- (2) $g_0(\tilde{e}_i)$ is in W_1 or W_2 .

Let (x, y) be a point of $X \times Y$ whose Euclidean component with respect to the de Rham decomposition $(X_0 \times Y_0) \times (X' \times Y')$ is v. Let (x', y') = g(x, y). By the method in Lemma 5, we obtain $\Omega_1(x, y)$ and $\Omega_2(x', y')$ for $\Pi_1 = \Gamma_1 \times \Gamma_3$ and $\Pi_2 =$

60

Cancellation law

 $\Gamma_2 \times \Gamma_3$ respectively. Then $g(\Omega_1(x, y)) = \Omega_2(x', y')$ because $g(\Gamma_1 \times \Gamma_3)g^{-1} = \Gamma_2 \times \Gamma_3$. By Lemma 5, we can carry out the following method.

Let c_1 be one of the shortest elements of $\Omega_1(x, y)$. Then c_1 is a minimal geodesic from (x, y) to $(\gamma_1(x), \gamma_3(y))$ for some $\gamma_1 \in \Gamma_1$ and $\gamma_3 \in \Gamma_3$. If neither γ_1 nor γ_3 is the identity, then a minimal geodesic from (x, y) to $(\gamma_1(x), y)$ is in $\Omega_1(x, y)$ and whose length is smaller than c_1 , a contradiction. Hence γ_1 or γ_3 is the identity, i.e. $c_1(0)$ is tangent to $X \times \{y\}$ or $\{x\} \times Y$. Next we consider the subset $\Omega_1^{(1)}$ of $\Omega_1(x, y)$ consisting of all elements whose initial vectors are not contained in the linear subspace spanned by $\dot{c}_1(0)$. Let c_2 be one of the shortest elements of $Q_1^{(1)}$. Then, similarly to c_1 , $\dot{c}_2(0)$ is tangent to $X \times \{y\}$ or $\{x\} \times Y$. When we have chosen c_1, \dots, c_k , let c_{k+1} be one of the shortest elements of $\Omega_1^{(k)}$, where $\Omega_1^{(k)}$ is the subset of $\Omega_1(x, y)$ consisting of all elements whose initial vectors are not contained in the linear subspace spanned by $\dot{c}_1(0)$, ..., $\dot{c}_{k-1}(0)$ and $\dot{c}_k(0)$. Then similarly to c_1 , $\dot{c}_{k+1}(0)$ is tangent to $X \times \{y\}$ or $\{x\}$ $\times Y$. Let $T\Omega_1(x, y)$ and $T\Omega_2(x', y')$ be the linear subspaces spanned by $\{\dot{c}(0)\}$ $c \in \Omega_1(x, y)$ and $\{d(0); d \in \Omega_2(x', y')\}$ respectively. Let $d_i = g(c_i)$ for $i=1, \dots, l$, where l is the dimension of $TQ_1(x, y)$. Then, because g is an isometry, d_1, \dots , d_1 are ones which are chosen by the above method, i.e. d_1 is an element of $\Omega_2(x', y')$ whose length is minimum in $\Omega_2(x', y')$ and so on. Hence for $i=1, \dots, j$ $l, \dot{d}_i(0)$ is tangent to $X \times \{y'\}$ or $\{x'\} \times Y$ at (x', y') and $\{\dot{d}_1(0), \dots, \dot{d}_l(0)\}$ is a basis of $T\Omega_2(x', y')$.

For a differentiable manifold A and a point $a \in A$, let $T_a A$ denote the tangent space to A at a. Then $T_{(x, y)}(X \times Y)$ is naturally identified with $T_v(X_0 \times Y_0) + T_p(X' \times Y')$ where p is the component of the non-Euclidean part of (x, y). Let $\pi_{(x, y)}$ be the projection from $T_{(x, y)}(X \times Y)$ to $T_v(X_0 \times Y_0)$ and $\pi_{(x', y')}$ the projection from $T_{(x', y')}(X \times Y)$ to $T_{g_0(v)}(X_0 \times Y_0)$ with respect to the above identifications. The tangent space at a point of a vector space is naturally identified with the original vector space, so $T_v(X_0 \times Y_0)$ and $T_{g_0(v)}(X_0 \times Y_0)$ are naturally identified with V and W respectively. Then, under this identification,

(1) for $\xi \in T_{v}(X_{0} \times Y_{0})$, $dg_{0}\xi = g_{0}\xi$,

(2) an element ξ of $T_{v}(X_{0} \times Y_{0})$ tangents to X_{0} or Y_{0} if and only if ξ is contained in V_{1} or V_{2} respectively,

(3) an element η of $T_{g_0(v)}(X_0 \times Y_0)$ tangents to X_0 or Y_0 if and only if η is contained in W_1 or W_2 respectively,

(4) $V_v = \pi_{(x, y)} T \Omega_1(x, y)$ and $W_{g_0(v)} = \pi_{(x', y')} T \Omega_2(x', y')$.

Let $\xi_i = \pi_{(x,y)} \dot{c}_i(0)$ and $\eta_i = \pi_{(x',y')} \dot{d}_i(0)$ for $i=1, \dots, l$. Then $\eta_i = dg_0(\xi_i)$ because $dg(\dot{c}_i(0)) = \dot{d}_i(0)$. Let $\{\xi_{i_1}, \dots, \xi_{i_m}\}$ be a maximal subset of $\{\xi_1, \dots, \xi_l\}$ such that $\xi_{i_1}, \dots, \xi_{i_m}$ are linearly independent. Then $\{\eta_{i_1}, \dots, \eta_{i_m}\}$ is so because of $\eta_i = dg_0(\xi_i)$. We denote $\tilde{e}_j = \xi_{i_j}$ and $\tilde{f}_j = \eta_{i_j}$ for $j=1, \dots, m$. Since $V_v = \pi_{(x,y)} T \Omega_1(x, y)$ and $W_{g_0(v)} = \pi_{(x',y')} T \Omega_2(x', y')$, $\{\tilde{e}_1, \dots, \tilde{e}_m\}$ is a basis of V_v and $\{\tilde{f}_1, \dots, \tilde{f}_m\}$

K. Uesu

is a basis of $W_{g_0(v)}$. By the fact that, for $i=1, \dots, l$, $\dot{c}_i(0)$ is tangent to $X \times \{y\}$ or $\{x\} \times Y$ and $\dot{d}_i(0)$ is tangent to $X \times \{y\}$ or $\{x\} \times Y$, \tilde{e}_i is in V_1 or V_2 and \tilde{f}_j is in W_1 or W_2 for $j=1, \dots, m$. This completes the proof.

References

- [1] L. S. Charlap, Compact flat Riemannian manifolds: I, Ann. of Math., 81(1965), 15-30.
- H. Takagi, Notes on the cancellation of Riemannian manifolds, Tôhoku Math. J., 32(1980), 411-417.
- [3] K. Uesu, On cancellation of compact Riemannian manifolds, Mem. Fac. Sci. Kyushu Univ. Ser. A Math., 33(1979), 225-236.

Kagumi UESU

Department of Mathematics Faculty of Science Kyushu University 33 Fukuoka 812, Japan