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\S 0. Introduction.

L. $S$
’ Charlap showed that there are two compact differentiable manifolds

$M$ and $N$ such that $M\cross S^{1}$ is diffeomorphic to $N\cross S^{1}$ , while $M$ and $N$ are of
different homotopy type (see [1]).

On the other hand, considering a Riemannian analogue of the above problem,
we obtained the following result [3]:

Let $M$ and $N$ be connected complete Riemannian manifolds and $S$ a connected
compact locally symmetric Riemannian manifold. If $M\cross S$ is isometric to $N\cross S$ ,
then $M$ is isometric to $N$.

Later on, H. Takagi obtained the following result [2]:

Let $M$ and $N$ be connected complete Riemannian manifolds and let $S$ be a
connected complete Riemannian manifold which is simply connected or has the
irreducible restricted homogeneous holonomy group. If $M\cross S$ is isometric to $N\cross$

$S$ , then $M$ is isometric to $N$.
The purpose of this paper is to give a complete answer to the above problem

in Riemannian case.
The main result is the following.

THEOREM. If $M\cross S$ is isometric to $N\cross S$ , then $M$ is isometric to $N$, where
$M,$ $N$ and $S$ are connected complete Riemannian manifolds.

In this paper, Riemannian manifolds are always supposed to be connected
and complete, and $\cong$ means isometric.

We shall give a brief account of the idea of the proof. Let $M,$ $N$ and $S$ be
Riemannian manifolds such that $M\cross S$ is isometric to $N\cross S$ . Then $M\cong X/\Gamma_{1}$ ,
$N\cong X/\Gamma_{:}$ and $S\cong Y/\Gamma_{8}$ where $X$ and $Y$ are simply connected Riemannian mani-
folds and $\Gamma_{1},$ $\Gamma_{2}$ and $\Gamma_{3}$ are deck transformation groups of $M,$ $N$ and $S$, respec-
tively. If we could find an isometry $\tilde{g}$ of $X\cross Y$ satisfying Conditions 1 and 2 in
Lemma 3, then our theorem would be proved. An isometry $g$ of $X\cross Y$ which
is a natural lift of an isometry from $M\cross S$ to $N\cross S$ satisfies Condition 1 in
Lemma 3. While if $X$ and $Y$ have the Euclidean parts in its de Rham decom-
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positions, then $g$ does not always satisfy Condition 2 in Lemma 3. However,
using Lemma 4 and Lemma 5, we can change $g$ into $\tilde{g}$ which satisfies Conditions
1 and 2 in Lemma 3.

I am grateful to Professor M. Goto for helpful comments which led to the
improvements of the original manuscript.

\S 1. Basic lemmas.

In this section we shall refer to five lemmas for the proof of the theorem.
By the uniqueness of the de Rham decomposition of a simply connected

Riemannian manifold, we have the following lemma.

LEMMA 1. Let $M,$ $N$ and $S$ be Riemannian manifolds. If $M\cross S$ is isometric
to $N\cross S$ , then the universal Riemannian covering manifold $\tilde{M}$ of $M$ is isometric
to $\tilde{N}$, the universal Riemannian covering manifold of $N$.

DEFINITION. An FPDA-group on a Riemannian manifold is a subgroup of the
isometry group of the manifold whose action on the manifold is free and properly
discontinuous.

LEMMA 2 ([3]). Let $\Gamma$ and $\Gamma’$ be FPDA-groups on simply connected Rieman-
nian manifolds $A$ and $A$ ‘ respectively. Then $A/\Gamma$ is isometric to $A’/\Gamma’$ if and
only if there exists an isometry $\phi$ from $A$ to $A’$ with $\Gamma’=\phi\Gamma\phi^{-1}$ .

For isometries $f_{1},$ $\cdots$ , $f_{n}$ from Riemannian manifolds $A_{1},$ $\cdots$ , $A_{n}$ to Rieman-
nian manifolds $B_{1},$ $\cdots$ , $B_{n}$ respectively, we denote by $f_{1}\cross\cdots\cross f_{n}$ the isometry
from $A_{1}\cross\cdots\cross A_{n}$ to $B_{1}\cross\cdots\cross B_{n}$ such that the image of $(a_{1}, \cdots , a_{n})\in A_{1}\cross\cdots\cross A_{n}$

is $(f_{1}(a_{1}), \cdots , f_{n}(a_{n}))$ . We denote the identity map of a Riemannian manifold
$A$ by $id_{A}$ . For FPDA-groups $\Gamma$ and $\Lambda$ on Riemannian manifolds $A$ and $B$ res-
pectively, we denote by $\Gamma\cross\Lambda$ the group consisting of all the isometries on
$A\cross B$ of the form $\gamma\cross\lambda$ for some $\gamma\in\Gamma$ and $\lambda\in\Lambda$ . Then $\Gamma\cross\Lambda$ is an FPDA-group
on $A\cross B$ .

For an isometry we have the following fact which is essential for the proof
of Lemma 3.

FACT. Let $A,$ $B,$ $C$ and $D$ be Riemannian manifolds and $\phi$ an isometry from
$A\cross B$ onto $C\cross D$ . If, for some pojnts $(a_{0}, b_{0})$ and $(c_{0}, d_{0})=\phi(a_{0}, b_{0}),$ $\phi(A, b_{0})=$

$(C, d_{0})$ , then there are isometries $\phi_{1}$ from $A$ to $C$ and $\phi_{2}$ from $B$ to $D$ such that
$\phi=\phi_{1}\cross\phi_{2}$ .

PROOF. By the assumption $\phi(a_{0}, B)=(c_{0}, D)$ . So there are isometries $\phi_{1}$

from $A$ to $C$ and $\phi_{2}$ from $B$ to $D$ such that $\phi(a, b_{0})=(\phi_{1}(a), b_{0})$ and $\phi(a_{0}, b)=$

$(c_{0}, \phi_{2}(b))$ for any $a\in A$ and $b\in B$. Then $\phi(a_{0}, b_{0})=(\phi_{1}(a_{0}), \phi_{2}(b_{0}))$ and $d\phi_{(a_{0},b_{0})}=$

$d\phi_{1a_{0}}+d\phi_{2b_{0}}$ Hence $\phi=(\phi_{1}\cross\phi_{2})$ .
The following lemma is essential in our proof of the theorem. In the fol-

lowing lemma, we regard a set consisting of one element as a zero-dimensional
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Riemannian manifold.
LEMMA 3. Let $A$ and $B$ be Riemannian manifolds, let $\Pi_{1}$ and $\Pi_{2}$ be FPDA-

grouPs on $A$ and let $\Pi_{3}$ be an FPDA-group on B. We assume that there are
decompOsjtjons $A\cong A_{1}\cross A_{2},$ $B\cong B_{1}\cross B_{2}$ and an isometry $\phi$ of $A\cross B$ satisfying the
following conditions.

Condition 1. $\phi(\Pi_{1}\chi\Pi_{3})\phi^{-1}=\Pi_{2}\cross\Pi_{3}$ .
Condition 2. For some isometries $\eta_{A}$ and $\eta_{B}$ from $A_{1}\cross A_{2}$ and $B_{1}\cross B_{2}$ to $A$

and $B$ $resPectively$ , $\phi\circ(\eta_{A}\cross\eta_{B})(A_{1}\cross\{a_{2}\}\cross\{b_{1}\}\cross B_{2})=A\cross\{b\}$ and $\phi^{Q}(\eta_{A}\cross\eta_{B})(\{a_{1}\}$

$\cross A_{2}\cross B_{1}\cross\{b_{2}\})=\{a\}\cross B$ for some $a_{1}\in A_{1},$ $a_{2}\in A_{2},$ $b_{1}\in B_{1},$ $b_{2}\in B_{2},$ $a\in A$ and $b\in B$ .
Then:
(1) If the dimension of $B_{1}$ or the dimension of $B_{2}$ is equal to zero, then

there is an isometry $\psi$ of $A$ with $\psi^{\Pi_{1}}\psi^{-1}=\Pi_{2}$ .
(2) If the dimension of $B_{1}$ and the dimension of $B_{2}$ are positive, then $B/\Pi_{a}$

$\cong B_{1}/\Lambda_{1}\cross B_{2}/\Lambda_{2}$ for some FPDA-groups $\Lambda_{1}$ and $\Lambda_{2}$ on $B_{1}$ and $B_{2}$ respectj $\iota$)$ely$ .
PROOF OF (1). First let the dimension of $B_{2}$ be equal to zero. Then $B_{1}$ is

isometric to $B$ and, by Condition 2, the dimension of $A_{2}$ is equal to zero. Hence
Condition 2 is as follows; $\phi(A\cross\{b\})=A\cross\{b^{*}\}$ and $\phi(\{a\}\cross B)=\{a^{*}\}\cross B$ for some
$a,$ $a^{*}\in A,$ $b$ and $b^{*}\in B$ . So, by Fact, there are isometries $\phi_{A}$ of $A$ and $\phi_{B}$ of $B$

such that $\phi=\phi_{A}\cross\phi_{B}$ . By Condition 1, $(\phi_{A}\cross\phi_{B})(\Pi_{1}\cross\Pi_{3})(\phi_{A}\cross\phi_{B})^{-1}=\Pi_{2}\cross\Pi_{3}$ .
Hence $(\phi_{A^{\Pi_{1}}}\phi_{A}^{-1})\cross(\phi_{B}^{\Pi_{a}}\phi_{B}^{-1})=\Pi_{2}\cross\Pi_{3}$ . Therefore $\phi_{A^{\Pi_{1}}}\phi_{A}^{-1}=\Pi_{2}$ .

Next let the dimension of $B_{1}$ be equal to zero. Then $B_{2}$ is isometric to $B$ . We
consider $\phi$ as an isometry of $A_{1}\cross A_{2}\cross B$ and also we consider $\Pi_{1}$ and $\Pi_{2}$ as
FPDA-groups on $A_{1}\cross A_{2}$ . Then Condition 2 is as follows; $\phi(A_{1}\cross\{a_{2}^{(0)}\}\cross B)=A_{1}$

$\cross A_{2}\cross\{b^{(1)}\}$ and $\phi(\{a_{1}^{(0)}\}\cross A_{2}\cross\{b^{(0)}\})=\{a_{1}^{(1)}\}\cross\{a_{2}^{(1)}\}\cross B$ for some $a_{1}^{(0)},$ $a_{1}^{(1)}\in A_{1}$ ,
$a_{2}^{(0)},$ $a_{2}^{(1)}\in A_{2}$ , $b^{(0)}$ and $b^{(1)}\in B$ . Hence there is an isometry $\phi_{3}$ from $A_{2}$ to $B$

such that $\phi(a_{1}^{(0)}, a_{2}, b^{(0)})=(a_{1}^{(1)}, a_{2}^{(1)}, \phi_{3}(a_{2}))$ . Let $A_{1}’$ and $A_{2}’$ be submanifolds of
$A_{1}\cross A_{2}$ such that $\phi(A_{1}\cross\{a_{2}^{(0)}\}\cross\{b^{(0)}\})=A_{1}’\cross\{b^{(1)}\}$ and $\phi(\{a_{1}^{(0)}\}\cross\{a_{2}^{(0)}\}\cross B)=A_{2}’\cross$

$\{b^{(1)}\}$ . Then there are isometries $\phi_{1}$ and $\phi_{2}$ from $A_{1}$ and $B$ to $A_{1}’$ and $A_{2}’$ ,

respectively, such that $\phi(a_{1}, a_{2}^{(0)}, b^{(0)})=(\phi_{1}(a_{1}), b^{(1)})$ and $\phi(a_{1}^{(0)}, a_{2}^{(0)}, b)=(\phi_{2}(b), b^{(1)})$ .
Since $\phi(A_{1}\cross\{a_{2}^{(0)}\}\cross B)=A_{1}\cross A_{2}\cross\{b^{(1)}\}$ , there is an isometry $\phi_{0}$ from $A_{1}\cross B$ to
$A_{1}\cross A_{2}$ such that $\phi(a_{1}, a_{2}^{(0)}, b)=(\phi_{0}(a, b),$ $b^{(1)}$ ). Let $\eta=(\phi_{1}\cross\phi_{3})\circ\phi_{0}^{-1}$ and $\Pi_{2}’=$

$\eta^{\Pi_{2}}\eta^{-1}$ . Then $\eta$ is an isometry from $A_{1}\cross A_{2}$ to $A_{1}’\cross A_{2}’$ and $\Pi_{2}’$ is an FPDA-
group on $A_{1}’\cross A_{2}’$ . Because $\phi(\Pi_{1}\cross\Pi_{3})\phi^{-1}=\Pi_{2}x\Pi_{3},$ $(\eta\cross id_{B})Q\phi(\Pi_{1}\cross\Pi_{3})\phi^{-1_{\circ}}(\eta$

$\cross id_{B})^{-1}=\Pi_{2}’\cross\Pi_{3}$ . Moreover $(\eta\cross id_{B})\circ\phi(a_{1}, a_{2}^{(0)}, b)=(\eta\cross id_{B})(\phi_{0}(a_{1}, b),$ $b^{(1)}$ ) $=(\phi_{1}(a_{1})$ ,
$\phi_{2}(b),$ $b^{(1)}$ ) and $(\eta\cross id_{B})\circ\phi(a_{1}^{(0)}, a_{2}, b^{(0)})=(\eta\cross id_{B})(a_{1}^{(1)}, a_{2}^{(1)}, \phi_{3}(a_{2}))=(\eta(a_{1}^{(1)}, a_{2}^{(2)})$ ,
$\phi_{8}(a_{2}))$ , where $a_{1}\in A_{1},$ $a_{2}\in A_{2}$ and $b\in B$ . If we show that there exists an isometry
$\psi$ from $A_{1}\cross A_{2}$ to $A_{1}’\cross A_{2}’$ such that $\Pi_{2}’=\psi^{\Pi_{1}}\psi^{-1}$ , then $\eta^{-1_{\circ}}\psi$ is an isometry of
$A_{1}\cross A_{2}$ and $\Pi_{2}=(\eta^{-1_{Q}}\psi)\Pi_{1}(\eta^{-1_{\circ}}\psi)^{-1}$ . Therefore it is sufficient to show the
following assertion:

Let $\phi$ be an isometry from $A_{1}\cross A_{2}\cross B$ to $A_{1}’\cross A_{2}’\cross B$ , and $\Pi_{1},$ $\Pi_{2}$ and $\Pi_{a}$
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FPDA-groups on $A_{1}\cross A_{2},$ $A_{1}’\cross A_{2}’$ and $B$ respectively. We assume the following
two conditions;

(1) $\phi(\Pi_{1}x\Pi_{3})\phi^{-1}=\Pi_{2}\cross\Pi_{3}$ ,
(2) There are isometries $\phi_{1},$ $\phi_{2}$ and $\phi_{3}$ from $A_{1},$ $B$ and $A_{2}$ to $A_{1}’,$ $A_{2}’$ and $B$,

respectively, such that $\phi(a_{1}, a_{2}^{(0)}, b)=(\phi_{1}(a_{1}), \phi_{2}(b),$ $b^{(1)}$ ) and $\phi(a_{1}^{(0)}, a_{2}, b^{(0)})=(a_{1}^{(1)}$ ,
$a_{2}^{(1)},$ $\phi_{3}(a_{2}))$ for some $a_{1}^{(0)}\in A_{1},$ $a_{2}^{(0)}\in A_{2},$ $a_{1}^{(1)}\in A_{1}’,$ $a_{2}^{(1)}\in A_{2}’,$ $b^{(0)}$ and $b^{(1)}\in B$, where
$a_{1}\in A_{1},$ $a_{2}\in A_{2}$ and $b\in B$ are arbitrary. Then there is an isometry $\psi$ from $A_{1}\cross A_{2}$

to $A_{1}’\cross A_{2}’$ such that $\Pi_{2}=\psi^{\Pi_{1}}\psi^{-1}$ .
Let $\nu$ be an isometry from $A_{1}\cross A_{2}\cross B$ to $A_{1}\cross B\cross A_{2}$ such that $\nu(a_{1}, a_{2}, b)=$

$(a_{1}, b, a_{2})$ for $a_{1}\in A_{1},$ $a_{2}\in A_{2}$ and $b\in B$ . Then, by Fact, $\phi\circ\nu^{-1}=\phi_{1}\cross\phi_{2}\cross\phi_{3}$ , that
is $\phi=(\phi_{1}\cross\phi_{2}\cross\phi_{3})\circ\nu$ . Hence each isometry of $\phi(\{id_{A_{1}\cross A_{2}}\}\cross\Pi_{3})\phi^{-1}$ is of the form
$id_{A_{1}’}\cross$ a $\cross id_{B}$ , where $\sigma$ is some isometry of $A_{2}’$ . So, by the condition, $\phi(\{id_{A_{1}\cross A_{2}}\}$

$\cross\Pi_{3})\phi^{-1}\subset\Pi_{2}\cross\{id_{B}\}$ . Similarly $\phi^{-1}(\{id_{A_{1}’\cross A_{2}’}\}\cross\Pi_{3})\phi\subset\Pi_{1}\cross\{id_{B}\}$ . Therefore $\Pi_{2}$

$\cross\{id_{B}\}=((\Pi_{2}\cross\{id_{B}\})\cap\phi(\Pi_{1}\cross\{id_{B}\})\phi^{-1})\cdot(\phi(\{id_{A_{1}\cross A_{2}}\}\cross\Pi_{3})\phi^{-1})$ and $\Pi_{1}\cross\{id_{B}\}=$

$(\phi^{-1}(\Pi_{2}\cross\{id_{B}\})\phi\cap(\Pi_{1}\cross\{id_{B}\}))\cdot(\phi^{-1}(\{id_{A_{1}’\cross A_{2}’}\}\cross\Pi_{3})\phi)$ . Let $\psi=(\phi_{1}\cross\phi_{2})\circ(id_{A_{1}}\cross\phi_{3})$ .
Since each isometry of $\phi^{-1}(\Pi_{2}\cross\{id_{B}\})\phi\cap(\Pi_{1}\cross\{id_{B}\})$ is of the form $\sigma\cross id_{A_{2}}\cross id_{B}$

for some isometry $\sigma$ of $A_{1},$ $(\psi\cross id_{B})(\phi^{-1}(\Pi_{2}\cross\{id_{B}\})\phi\cap(\Pi_{1}\cross\{id_{B}\}))(\psi\cross id_{B})^{-1}=$

$\phi(\phi^{-1}(\Pi_{2}\cross\{id_{B}\})\phi\cap(\Pi_{1}\cross\{id_{B}\}))\phi^{-1}=(\Pi_{2}\cap\{id_{B}\})\cap\phi(\Pi_{1}\cross\{id_{B}\})\phi^{-1}$ . Similarly $(\psi$

$\cross id_{B})(\phi^{-1}(\{id_{A_{1}’\cross A_{2}’}\}\chi\Pi_{3})\phi)(\psi\cross id_{B})^{-1}=\phi(\{id_{A_{1}\cross A_{2}}\}\cross\Pi_{3})\phi^{-1}$ . Hence $(\psi\cross id_{B})(\Pi_{2}\cross$

$\{id_{B}\})(\psi\cross id_{B})^{-1}=\Pi_{2}\cross\{id_{B}\}$ . Therefore $\psi^{\Pi_{1}}\psi^{-1}=\Pi_{2}$ .
PROOF OF (2). By the same way as the proof of (1), it is sufficient to prove

the existence of $\Lambda_{1}$ and $\Lambda_{2}$ in the following situation:
Let $\phi$ be an isometry from $A_{1}\cross A_{2}\cross B_{1}\cross B_{2}$ to $A_{1}’\cross A_{2}’\cross B_{1}’\cross B_{2}’$ , and $\Pi_{1},$ $\Pi_{3}$ ,

$\Pi_{2}$ and $\Pi_{4}$ FPDA-groups on $A_{1}\cross A_{2},$ $B_{1}\cross B_{2},$ $A_{1}’\cross A_{2}’$ and $B_{1}’\cross B_{2}’$ respectively.
We assume the following two conditions;

(1) $\phi(\Pi_{1}\cross\Pi_{3})\phi^{-1}=\Pi_{2}\cross\Pi_{4}$ ,
(2) There are isometries $\phi_{1},$ $\phi_{2},$ $\phi_{3}$ and $\phi_{4}$ from $A_{1},$ $B_{2},$ $B_{1}$ and $A_{2}$ to $A_{1}’$ ,

$A_{2}’,$ $B_{1}’$ and $B_{2}’$ , respectively, such that $\phi(a_{1}, a_{2}^{(0)}, b_{1}^{(0)}, b_{2})=(\phi_{1}(a_{1}), \phi_{2}(b_{2}),$ $b_{1}^{(1)},$ $b_{2}^{(1)}$ )

and $\phi(a_{1}^{(0)}, a_{2}, b_{1}, b_{2}^{(0)})=(a_{1}^{(1)}, a_{2}^{(1)}, \phi_{3}(b_{1}), \phi_{4}(a_{2}))$ for some $a_{1}^{(0)}\in A_{1},$ $a_{1}^{(1)}\in A_{1}’,$ $a_{2}^{(0)}\in$

$A_{2},$ $a_{z}^{(1)}\in A_{2}’,$ $b_{1}^{(0)}\in B_{1},$ $b_{1}^{(1)}\in B_{1}’,$ $b_{2}^{(0)}\in B_{2}$ and $b_{2}^{(1)}\in B_{2}’$ , where $a_{1}\in A_{1},$ $a_{2}\in A_{2},$ $b_{1}\in B_{1}$

and $b_{2}\in B_{2}$ are arbitrary.
Let $\nu$ be an isometry from $A_{1}\cross A_{2}\cross B_{1}\cross B_{2}$ to $A_{1}\cross B_{2}\cross B_{1}\cross A_{2}$ such that

$\nu(a_{1}, a_{2}, b_{1}, b_{2})=(a_{1}, b_{2}, b_{1}, a_{2})$ for $a_{1}\in A_{1},$ $a_{2}\in A_{2},$ $b_{1}\in B_{1}$ and $b_{2}\in B_{2}$ . Then, by
Fact, $\phi\circ\nu^{-1}=\phi_{1}\cross\phi_{2}\cross\phi_{3}\cross\phi_{4}$ that is $\phi=(\phi_{1}\cross\phi_{2}\cross\phi_{3}\cross\phi_{4})\circ\nu$ . By the condition,
for $\sigma\in\Pi_{3}$ , there are $\sigma_{2}\in\Pi_{2}$ and $\sigma_{4}\in\Pi_{4}$ such that $id_{A_{1}\cross A_{2}}\cross\sigma=\phi^{-1_{\circ}}(\sigma_{2}\cross id_{B_{1}’\cross B_{2}’})Q$

$(id_{A_{1}’xA_{2}’}\cross\sigma_{4})\circ\phi$ . Hence $\nu\circ(id_{A_{1}xA_{2}}\cross\sigma)\circ\nu^{-1}=((\phi_{1}^{-1}\cross\phi_{2}^{-1})\circ\sigma_{2^{\circ}}(\phi_{1}\cross\phi_{2}))\cross((\phi_{3}^{-1}\cross$

$\phi_{4}^{-1})\circ\sigma_{4^{\circ}}(\phi_{3}\cross\phi_{4}))$ . So, by Fact, $(\phi_{1}^{-1}\cross\phi_{2}^{-1})\circ\sigma_{2^{\circ}}(\phi_{1}\cross\phi_{2})=id_{A_{1}}\cross\tau_{2}$ and $(\phi_{3}^{-1}\cross$

$\phi_{4}^{-1})\circ\sigma_{4^{\circ}}(\phi_{3}\cross\phi_{4})=\tau_{1}\cross id_{A_{2}}$ for some isometry $\tau_{1}$ and $\tau_{2}$ of $B_{1}$ and $B_{2}$ respectively.
Hence $\phi^{-1_{\circ(\sigma_{2}\cross id_{B_{1}’\cross B_{2}’})\circ}}\phi$ and $\phi^{-1_{o}}(id_{A_{1}’\cross A_{2}’}\cross\sigma_{4})\circ\phi$ are in $\{id_{A_{1}\cross A_{2}}\}\cross\Pi_{3}$ . There-
fore $\{id_{A_{1}\cross A_{2}}\}\cross\Pi_{3}=((\{id_{A_{1}\cross A_{2}}\}\cross\Pi_{3})\cap\phi^{-1}(\Pi_{2}\cross\{id_{B_{1}’\cross B_{2}’}\})\phi)\cdot((\{id_{A_{1^{\cross}}A_{2}}\}\cross\Pi_{3})\cap$
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$\phi^{-1}(\{id_{A_{1}\cross A_{2}’}\}\cross\Pi_{4})\phi)$ and each element of $(\{id_{A_{1^{\cross}}A_{2}}\}\cross\Pi_{3})\cap\phi^{-1}(\Pi_{2}\cross\{id_{B_{1^{\cross}}’B_{2}’}\})\phi$

and $(\{id_{A_{1^{\cross}}A_{2}}\}\cross\Pi_{3})\cap\phi^{-1}(\{id_{A_{1}’\cross A_{2}’}\}\cross\Pi_{4})\phi$ are of the form $id_{A_{1}\cross A_{2}}\cross id_{B_{1}}\cross\tau_{2}$ and
$id_{A_{1}\cross A_{2}}\cross\tau_{1}\cross id_{B_{2}}$ , respectively, where $\tau_{1}$ and $\tau_{2}$ are isometries of $B_{1}$ and $B_{2}$ re-
spectively. Let $\Lambda_{1}=\{\tau;\tau$ is an isometry of $B_{1}$ such that $id_{A_{1}\cross A_{2}}\cross\tau\cross id_{B_{2}}$ is in
$(\{id_{A_{1}\cross A_{2}}\}\cross\Pi_{3})\cap\phi^{-1}(\{id_{A_{1}’\cross A_{2}’}\}\cross\Pi_{4})\phi\}$ and $\Lambda_{2}=\{\tau:\tau$ is an isometry of $B_{2}$ such
that $id_{A_{1}\cross A_{2}}\cross id_{B_{1}}\cross\tau$ is in $(\{id_{A_{1^{\cross}}A_{2}}\}\cross\Pi_{3})\cap\phi^{-1}(\Pi_{2}\cross\{id_{B_{1}’\cross B_{2}’}\})\phi\}$ . Then $(B_{1}\cross B_{2})/$

$\Pi_{2}\cong B_{1}/\Lambda_{1}\cross B_{2}/\Lambda_{2}$ .
Concerning a group consisting of isometries of a Euclidean space, we have

the following.

LEMMA 4. Let $V$ be an n-dimensional real vector space with $a$ Euclidean metric
and $\Pi$ a group conststing of isometries of V. For $v\in V$ , let $V_{v}$ be the linear
subspace spanned by $\{\sigma v-v:\sigma\in\Pi\},$

$V_{0}= \sum_{v\in V}V_{v}$ and $V_{1}$ the orthogonal complement

of $V_{0}$ . Let us choose an orthonormal basis $\{e_{1}, \cdots , e_{n}\}$ of $V$ such that $e_{i}(1\leqq i\leqq k)$

are in $V_{0}$ and $e_{j}(k+1\leqq!\leqq n)$ are in $V_{1}$ , where $k=dimension$ of $V_{0}$ . Then, $by$

the canonical coordinate with respect to $e_{1},$
$\cdots$ , $e_{n}$ , any element $\sigma\in\Pi$ has the

following form,
1 $\cdots\cdots kk+1\cdots\cdots n$

$k+1nk1::( \frac{}{001}\frac{A0}{0I_{n-k}0}\xi)$

where $A$ is a $(k, k)$-orthogonal matrix, $I_{n-k}$ is the identity matrix of $(n-k, n-k)-$

type and $\xi$ is a k-dimensional real vector. Hence for a linear map $\phi$ of the fol-
lowing form,

1 $\cdots\cdots kk+1\cdots\cdots n$

$k+1nk1:.(\begin{array}{llll}I_{k}0 0T \frac{0}{0}0 - 0 1\end{array})$

we have $\phi\circ\sigma\circ\phi^{-1}=\sigma$ for any $\sigma\in\Pi$ , where $I_{k}$ is the identity matrix of $(k, k)$-type
and $T$ is a non-singular matrix.

PROOF. For $v\in V$ and $\sigma\in\Pi$ we write
$\sigma v=A(\sigma)v+a(\sigma)$ ,
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where $a(\sigma)\in V$ and $A(\sigma)$ is an orthogonal transformation of the vector space $l^{-}$ .
Denoting the origin by $O$, we have

$a(\sigma)\in V_{O}\subset V_{0}$ .
Also by $o(\sigma’v-v)=(aa’)v-v-(\sigma v-v)+a(a)EV_{0}$ , for $\sigma,$

$\sigma’\in\Pi$ , we have

$\sigma V_{0}=V_{0}$ and $A(\sigma)V_{0}=V_{0}$ .
Since $A(\sigma)$ is orthogonal, it follows

$A(\sigma)V_{1}=V_{1}$ .
Next for $\sigma\in\Pi$ and $w\in V_{1}$ ,

$(A(\sigma)-1)w=(\sigma w-w)-a(\sigma)\in V_{0}\cap V_{1}=\{0\}$ ,

and we have
$A(\sigma)=identity$ on $V_{1}$ .

The last assertion is obvious.
Let $\Pi$ be an FPDA-group on a Riemannian manifold $A$ and $d$ a distance

function on $A$ . A geodesic from $a$ to $b$ is called, by definition, minimal if its
length is equal to $d(a, b)$ . In this paper a geodesic is always parametrized by
the arc length from the starting point. For a fixed $a_{0}\in A$ , we consider the set
$\Omega(a_{0})$ consisting of all minimal geodesics each of which issues from $a_{0}$ and ends
at $\sigma(a_{0})$ for some $\sigma\in\Pi-\{id\}$ , where id is the identity. Since $\Pi$ acts on $A$ prop-
erly discontinuously, the subset { $\sigma(a_{0}):\sigma\in\Pi-\{id\}$ and $d(a_{0},$ $\sigma(a_{0}))\leqq r$ } of $A$ is
a finite set where $r$ is a positive number. So any subset of $\{d(a_{0}, \sigma(a_{0})):\sigma\in\Pi-$

{id}} has a minimal element because any element of the set is positive. So we
have the following lemma.

LEMMA 5. Let $\Pi_{1}$ and $\Pi_{2}$ be FPDA-groups on a Riemannian manifold $A$ .
For $a\in A$ , let

$\Omega_{1}(a)=\{c$

: $c$ is
$aminimalgeodesicsegmentf_{orS0me}\sigma\in\Pi_{1}-\{id\}$

from $a$ to
$\sigma(a)\}$

and

$\Omega_{2}(a)=\{c$

: $c$ is
$aminimalgeode\alpha csegmentf_{0rS0me}\sigma\in\Pi_{2}-\{id\}$

from $a$ to
$\sigma(a)\}$ .

Then there are the shortest elements in any subset of $\Omega_{1}(a)$ and in any subset of
$\Omega_{2}(a)$ . Further, if there is an isometry $\phi$ of $A$ with $\phi^{\Pi_{1}}\phi^{-1}=\Pi_{2}$ , then $\phi(\Omega_{1}(a))$

$=\Omega_{2}(\phi(a))$ holds, where $(\phi(c))(t)=\phi(c(t))$ for $c\in\Omega_{1}(a)$ .

\S 2. Proof of Theorem.

Let $M,$ $N$ and $S$ be Riemannian manifolds such that $M\cross S$ is isometric to
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$N\cross S$ . By Lemma 1, the universal Riemannian covering manifold of $M$ is iso-
metric to the one of $N$. So let $X$ be the universal Riemannian covering manifold
of $M$ and $N$, and let $Y$ be the one of $S$ . Let $\Gamma_{1},$ $\Gamma_{2}$ and $\Gamma_{3}$ be the deck trans-
formation groups of $M,$ $N$ and $S$ respectively. Then $\Gamma_{1}$ and $\Gamma_{2}$ are subgroups
of the isometry group of $X,$ $\Gamma_{3}$ is a subgroup of the isometry group of $Y$ , and
$\Gamma_{1}\cross\Gamma_{3}$ and $\Gamma_{2}\cross\Gamma_{3}$ are regarded naturally as the deck transformation groups of
$M\cross S$ and $N\cross S$ respectively. By Lemma 2 and by the assumption, there is an
isometry $g$ of $X\chi Y$ such that $g(\Gamma_{1}\cross\Gamma_{3})g^{-1}=\Gamma_{2}\cross\Gamma_{3}$ . To prove the theorem, it
is sufficient to prove the theorem for a Riemannian manifold $S$ which is never
isometric to the Riemannian direct product of any two Riemannian manifolds of
positive dimension. So we assume that $S$ is never isometric to the Riemannian
direct product of any two Riemannian manifolds of positive dimension. If an
isometry $\tilde{g}$ of $X\cross Y$ satisfies Conditions 1 and 2 in Lemma 3, then by the above
assumption, it is the case (1) in Lemma 3. Therefore by Lemma 2, $M$ is isometric
to $N$.

We shall construct such an isometry $\tilde{g}$ . Let $X_{0}$ and $Y_{0}$ be the Euclidean
parts, and $X’$ and $Y’$ the non-Euclidean parts of the de Rham decompositions of
$X$ and $Y$ , respectively. Then $X_{0}\cross Y_{0}$ is the Euclidean part and $X’\cross Y’$ is the
non-Euclidean part of $X\cross Y$ . Identifying an isometry of $X\chi Y$ with an isometry
of $(X_{0}\cross Y_{0})\cross(X’\chi Y’)$ , an isometry $\sigma$ of $X\cross Y$ is $\sigma_{0}\cross\sigma’$ where $\sigma_{0}$ is an isometry
of $X_{0}\cross Y_{0}$ and $a’$ is an isometry of $X’\cross Y’$ . We call $\sigma_{0}$ the Euclidean component
of $\sigma$ . Let $g=g_{0}\cross g’$ and

$\Gamma_{i}^{*}=$ { $a_{0}$ : $\sigma_{0}$ is the Euclidean component of some $\sigma\in\Gamma_{i}$ },

for $i=1,2,3$ . Then by the assumption, $g_{0}(\Gamma_{1}^{*}\cross\Gamma_{3}^{*})g_{0}^{-1}=\Gamma_{2}^{*}\cross\Gamma_{3}^{*}$ holds.
Let $X’=A_{1}\cross\cdots\cross A_{s}$ and $Y’=A_{S+1}\cross\cdots\cross A_{s+t}$ be the de Rham decompositions

of $X’$ and $Y’$ respectively. Then there are a permutation $\tau$ of $\{1, \cdots , s+t\}$ and
isometries $\phi_{i}$ from $A_{i}$ to $A_{\tau(i)}$ $(i=1, \cdots , s+t)$ such that

$g’$ ( $a_{1}$ , $\cdot$ .. , a $s$ a $S+1$ , $\cdot$ .. , $a_{s+t}$ ) $=(\phi_{\tau^{-1(1)}}(a_{\tau^{-1(1)}}), \cdot.. , \phi_{\tau-1(s+t)}(a_{--1(s+t)}))$ .
Let

$X_{1}’= \prod_{1\leq i\sigma s}A_{i}$ , $X_{2}’=$
$\prod_{1\xi i\leq s,s+1\leqq\tau(t)\leq s+t}A_{t}$

,
$1\leq\tau(i)\xi S$

$Y_{1}’= \prod_{s+1\leqq i\leqq s+t}A_{i}$ , $Y_{2}’=$
$\prod_{s+1\leq i\leq s+t}$

$A_{i}$ .
$s+1\leq\tau(i)\leqq s+t$ $1\leq\tau(i)\leq S$

Then
$X’=X_{1}’\cross X_{2}’$ and $Y’=Y_{1}’\cross Y_{2}’$ ,

and these decompositions satisfy Condition 2 in Lemma 3 for the isometry $g’$

of $X’\cross Y’$ . So if there is an isometry $\tilde{g}_{0}$ of $X_{0}\cross Y_{0}$ which satisfies Condition 2
in Lemma 3 as well as an equality $\tilde{g}_{0^{Q}}\sigma_{0^{\circ}}\tilde{g}_{0}^{-1}=g_{0^{o}}\sigma_{0^{o}}g_{0}^{-1}$ for any $\sigma_{0}\in\Gamma_{1}^{*}\cross\Gamma_{3}^{*}$,
then the theorem holds. In fact, the isometry $\tilde{g}=\tilde{g}_{0}\cross g’$ of $X\cross Y$ satisfies Con-
ditions 1 and 2 in Lemma 3. We shall construct such an isometry $\tilde{g}_{0}$ in the
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following manner.
We can consider $X_{0}$ and $Y_{0}$ as vector spaces $V_{1}$ and $V_{2}$ for some fixed origins

respectively. Let $W_{1}$ and $W_{2}$ be vector spaces whose underlying spaces are $X_{0}$

and $Y_{0}$ , and whose origins are the images of the origins of $V_{1}$ and $V_{2}$ under $g_{0}$

respectively. Then $g_{0}$ is a linear isometry from $V=V_{1}+V_{2}$ to $W=W_{1}+W_{2}$ . If
there are a basis $\{e_{1}, \cdots , e_{n}\}$ of $V$ and a linear isometry $\tilde{g}_{0}$ from $V$ to $W$ satisfy-
ing the following conditions,

$(*)$ $\{\begin{array}{ll}(0) \tilde{g}_{0^{\circ}}\sigma_{0}\circ\tilde{g}_{0}^{-1}=g_{0}\circ\sigma_{0}\circ g_{0}^{-1} for any a_{0}\in\Gamma_{1}^{*}\cross\Gamma_{3}^{*},(1) each e_{i} is in V_{1} or V_{2}, (2) each \tilde{g}(e_{i}) is in W_{1} or W_{2}, \end{array}$

then $\tilde{g}_{0}$ satisfies Conditions 1 and 2 in Lemma 3.
Next we shall construct such a basis and such a linear map. By the method

of Lemma 4, we obtain linear subspaces $V_{v},$ $V_{0}$ of $V$ for $\Gamma_{1}^{*}\cross\Gamma_{3}^{*}$ , and linear
subspaces $W_{w},$ $W_{0}$ of $W$ for $\Gamma_{2}^{*}\cross\Gamma_{3}^{*}$ . Since $g_{0}(\Gamma_{1}^{*}\cross\Gamma_{3}^{*})g_{0}^{-1}=\Gamma_{2}^{*}\cross\Gamma_{3}^{*},$ $g_{0}(V_{v})=$

$W_{g_{0}(v)}$ and $g_{0}(V_{0})=W_{0}$ . If we choose a basis $\{\tilde{e}_{1}, \cdots , \tilde{e}_{m}\}$ of $V_{v}$ such that, for
each $i$ with $1\leqq i\leqq m=\dim V_{v}$,

(1) $\tilde{e}_{i}$ is in $V_{1}$ or $V_{2}$ ,
(2) $g_{0}(\tilde{e}_{i})$ is in $W_{1}$ or $W_{2}$ ,

then it is easy to choose a basis of $V_{0}$ such that it satisfies the above condition.
Let $\{e_{1}, \cdots , e_{k}\}$ be such a basis of $V_{0}$ , let $V’$ be the orthogonal complement of
$V_{0}$ in $V$ and let $W’$ be the orthogonal complement of $W_{0}$ in $W$ . Since $\{e_{1}, \cdots, e_{k}\}$

is a basis of $V_{0}$ such that for each $i(1\leqq i\leqq k),$ $e_{i}$ is in $V_{1}$ or $V_{2}$ , we can choose
an orthonormal basis $\{e_{k+1}, \cdots , e_{n}\}$ of $V’$ such that $e_{i}$ is in $V_{1}$ or $V_{2}$ for each
$i(k+1\leqq i\leqq n)$ . Similarly we can choose an orthonormal basis $\{f_{k+1}, \cdots , f_{n}\}$ of
$W’$ such that $f_{l}$ is in $W_{1}$ or $W_{2}$ for each $i(k+1\leqq i\leqq n)$ . We define a linear
isometry $\tilde{g}_{0}$ from $V$ to $W$ as follows,

$\{\begin{array}{l}\tilde{g}_{0}|_{V_{0}}=g_{0},\tilde{g}_{0}(e_{i})=f_{i} (i=k+1, \cdots n).\end{array}$

Then by Lemma 4, $\tilde{g}_{0}$ satisfies (0) of $(*)$ . So the basis $\{e_{1}, \cdots , e_{n}\}$ and the
isometry $\tilde{g}_{0}$ satisfy the condition $(*)$ .

Lastly we shall find out a basis $\{\tilde{e}_{1}, \cdots , \tilde{e}_{m}\}$ of $V_{v}$ such that, for each $i$

( $1\leqq i\leqq m;m$ is the dimension of $V_{v}$),
(1) $\tilde{e}_{i}$ is in $V_{1}$ or $V_{2}$ ,
(2) $g_{0}(\tilde{e}_{i})$ is in $W_{1}$ or $W_{2}$ .

Let $(x, y)$ be a point of $X\cross Y$ whose Euclidean component with respect to the
de Rham decomposition $(X_{0}\cross Y_{0})\cross(X’\cross Y’)$ is $v$ . Let $(x’, y’)=g(x, y)$ . By the
method in Lemma 5, we obtain $\Omega_{1}(x, y)$ and $\Omega_{2}(x’, y’)$ for $\Pi_{1}=\Gamma_{1}\cross\Gamma_{3}$ and $\Pi_{2}=$
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$\Gamma_{2}\cross\Gamma_{3}$ respectively. Then $g(\Omega_{1}(x, y))=\Omega_{2}(x’, y’)$ because $g(\Gamma_{1}\cross\Gamma_{3})g^{-1}=\Gamma_{2}\cross\Gamma_{3}$ .
By Lemma 5, we can carry out the following method.

Let $c_{1}$ be one of the shortest elements of $\Omega_{1}(x, y)$ . Then $c_{1}$ is a minimal
geodesic from $(x, y)$ to $(\gamma_{1}(x), \gamma_{3}(y))$ for some $\gamma_{1}\in\Gamma_{1}$ and $\gamma_{3}\in\Gamma_{3}$ . If neither $\gamma_{1}$

nor $\gamma_{3}$ is the identity, then a minimal geodesic from $(x, y)$ to $(\gamma_{1}(x), y)$ is in
$\Omega_{1}(x, y)$ and whose length is smaller than $c_{1}$ , a contradiction. Hence $\gamma_{1}$ or $\gamma_{3}$

is the identity, $i.e.\dot{c}_{1}(0)$ is tangent to $x\cross\{y\}$ or $\{x\}\cross Y$ . Next we consider
the subset $\Omega_{1}^{(1)}$ of $\Omega_{1}(x, y)$ consisting of all elements whose initial vectors are
not contained in the linear subspace spanned by $\dot{c}_{1}(0)$ . Let $c_{2}$ be one of the
shortest elements of $\Omega_{1}^{(1)}$ . Then, similarly to $c_{1},\dot{c}_{2}(0)$ is tangent to $x\cross\{y\}$ or
$\{x\}\cross Y$ . When we have chosen $c_{1},$

$\cdots$ , $c_{k}$ , let $c_{k+1}$ be one of the shortest ele-
ments of $\Omega_{1}^{(k)}$ , where $\Omega_{1}^{(k)}$ is the subset of $\Omega_{1}(x, y)$ consisting of all elements
whose initial vectors are not contained in the linear subspace spanned by $\dot{c}_{1}(0)$ ,

, $\dot{c}_{k-1}(0)$ and $\dot{c}_{k}(0)$ . Then similarly to $c_{1},\dot{c}_{k+1}(0)$ is tangent to $x\cross\{y\}$ or $\{x\}$

$\cross Y$ . Let $T\Omega_{1}(x, y)$ and $T\Omega_{2}(x’, y’)$ be the linear subspaces spanned by { $\dot{c}(0)$ ;
$c\in\Omega_{1}(x, y)\}$ and $\{\dot{d}(0);d\in\Omega_{2}(x’, y’)\}$ respectively. Let $d_{i}=g(c_{i})$ for $i=1,$ $\cdots,$

$l$ ,

where 1 is the dimension of $T\Omega_{1}(x, y)$ . Then, because $g$ is an isometry, $d_{1},$ $\cdots$ ,
$d_{l}$ are ones which are chosen by the above method, $i.e$ . $d_{1}$ is an element of
$\Omega_{2}(x’, y’)$ whose length is minimum in $\Omega_{2}(x’, y’)$ and so on. Hence for $i=1,$ $\cdots$ ,
$l,\dot{d}_{l}(0)$ is tangent to $x\cross\{y’\}$ or $\{x’\}\cross Y$ at $(x’, y’)$ and $\{\dot{d}_{1}(0), \cdots , \dot{d}_{l}(0)\}$ is a
basis of $T\Omega_{2}(x’, y’)$ .

For a differentiable manifold $A$ and a point $a\in A$ , let $T_{a}A$ denote the tangent
space to $A$ at $a$ . Then $T_{(x,y)}(X\cross Y)$ is naturally identified with $T_{v}(X_{0}\cross Y_{0})+$

$T_{p}(X’\cross Y’)$ where $p$ is the component of the non-Euclidean part of $(x, y)$ . Let
$\pi_{(x,y)}$ be the projection from $T_{(x,y)}(X\cross Y)$ to $T_{v}(X_{0}\cross Y_{0})$ and $\pi_{(x’.y’)}$ the pro-
jection from $T_{(x}(X\cross Y)$ to $T_{g_{0}(v)}(X_{0}\cross Y_{0})$ with respect to the above identifica-
tions. The tangent space at a point of a vector space is naturally identiPed
with the original vector space, so $T_{v}(X_{0}\cross Y_{0})$ and $T_{g_{0}(v)}(X_{0}\cross Y_{0})$ are naturally

identified with $V$ and $W$ respectively. Then, under this identiPcation,
(1) for $\xi\in T_{v}(X_{0}\cross Y_{0}),$ $dg_{0}\xi=g_{0}\xi$ ,
(2) an element $\xi$ of $T_{v}(X_{0}\cross Y_{0})$ tangents to $X_{0}$ or $Y_{0}$ if and only if $\xi$ is

contained in $V_{1}$ or $V_{2}$ respectively,
(3) an element $\eta$ of $T_{g_{0}(v)}(X_{0}\cross Y_{0})$ tangents to $X_{0}$ or $Y_{0}$ if and only if $\eta$

is contained in $W_{1}$ or $W_{2}$ respectively,
(4) $V_{v}=\pi_{(x.y)}T\Omega_{1}(x, y)$ and $W_{g_{0}(v)}=\pi_{(x’.y’)}T\Omega_{2}(x’, y’)$ .

Let $\xi_{i}=\pi_{(x:}{}_{y)}\dot{C}_{i(o)}$ and $\eta_{l}=\pi_{(x’.y^{r})}\dot{d}_{i}(0)$ for $i=1,$ $\cdots$ , $l$ . Then $\eta_{i}=dg_{0}(\xi_{i})$ because
$dg(\dot{c}_{i}(0))=d_{i}(0)$ . Let $\{\xi_{t_{1}}, \cdots , \xi_{i_{m}}\}$ be a maximal subset of $\{\xi_{1}, \cdots , \xi_{l}\}$ such that
$\xi_{i_{1}},$ $\cdots$ , $\xi_{i_{m}}$ are linearly independent. Then $\{\eta_{i_{1}}, \cdots , \eta_{i_{m}}\}$ is so because of $\eta_{i}=$

$dg_{0}(\xi_{i})$ . We denote $\tilde{e}_{j}=\xi_{i_{j}}$ and $\tilde{f}_{j}=\eta_{t_{j}}$ for $j=1,$ $\cdots$ , $m$ . Since $V_{v}=\pi_{(x.y)}T\Omega_{1}(x$ ,
y) and $W_{g_{0}(v)}=\pi_{(x’,y’)}T\Omega_{2}(x’, y’),$ $\{\tilde{e}_{1}, \cdots e_{m}\sim\}$ is a basis of $V_{v}$ and $\{\tilde{f}_{1}, \cdots , f_{m}\}$
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is a basis $ofW_{g_{0}(v)}$ . By the fact that, for $i=1,$ $\cdots$ , 1, $\dot{c}_{l}(0)$ is tangent to $x\cross\{y\}$

or $\{x\}\cross Y$ and $\dot{d}_{i}(0)$ is tangent to $X\cross\{y\}$ or $\{x\}\cross Y,\tilde{e}_{l}$ is in $V_{1}$ or $V_{2}$ and $\tilde{f}_{j}$

is in $W_{1}$ or $W_{2}$ for $j=1,$ $\cdots$ , $m$ . This completes the proof.
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