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1. Introduction.

Let P be a topologically embedded Ké&hler submanifold of compact closure in
a complete Kdhler manifold M. Denote by V¥(r) the volume of a tube of radius
r about P. I shall give inequalities for V¥(r) in terms of the Chern classes of
P and M that depend on the sectional curvature of M. These inequalities are
generalizations of Weyl's formula for the volumes of tubes about submani-
folds of Euclidean space.

Let F be the Kihler form of P and denote by 7.(RF—R*¥) the c¢** Chern
form of RF—R¥, where R and RY are the curvature operators of P and M.
Also let K¥ denote the sectional curvature of M, and let n=dim¢M, ¢g=dimP.

THEOREM 1.1. Suppose r>0 is not larger than the distance from P to its
nearest focal point.
(i) If K¥=0 then

(re(RP—R¥) NF*)[P] (mr®)n—?

(LD VEM= X

(r?)r-a+e< vol(P).

& (n—gtol{g—o! = (n—g)!
(ii) If K¥<0 then
(1.2) vEeyz 3 TR (g

=0 (n—q+o)! (g—o)!
(iii) If M has nonnegative holomorphic bisectional curvature, then

2\n-q
(1.3) vEr= S oy .
(n—g)!
COROLLARY 1.2. If PCC™ is a Kdhler submanifold and r>0 is not greater
than the distance from P to its nearest focal point, then

(re(RONFO)LP]
(

(L.4) V= R o -0

c=0

(mr¥)n-a+e
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is a consequence either of theorem 1.1, or Weyl’s tube formula
together with an algebraic lemma about powers of curvature tensor
fields of Kéhler manifolds. Griffiths observed the form of the right side
of but he did not determine the value of the coefficients.

The rest of the paper will be devoted to generalizing to com-
plex submanifolds of Kéhler manifolds of nonzero curvature. In Section 3 I shall
prove

THEOREM 1.3. Let P® be a topologically embedded complex submanifold (of
real dimension 2q) with compact closure in a space M(A) of constant holomorphic
sectional curvature 42. Then the volume VEP(r) of a tube of radius r about P
in M(A) is completely expressible in terms of the Kdhler form F and the Chern
forms 11, -+, 74 of P. More precisely when 1>0

(1.5) ng(r):dzq Cad F, 71, -+, 74) (sinv/ A r)2m-0
where
C (,2 F )—, (#:1),,(1;?)<E_)n_qq§l) (_f_)a( _a+1)| ( /\Fq'a)[P]
a\4, ’ 7’1, ’ rd - (n—d>d‘ 2 = da Z q - Ta
-a l

q-d
and Dea=" 2, bl (g—a—b+1)! (g—a—b—d)! (n—g+a+b—1)!"
one puts sinhv/'|A| v in place of sinv/Ar in (1.5). (Formula (1.5) reduces to (1.4)
when A=0).

For theorem 1.3 the Chern forms of R”—R¥‘® must be calculated in terms
of those of Rf. This computation is carried out in Section 3. Katz [KA] has
performed similar calculations for complex hypersurfaces. It should also be
remarked that for the case 1>0 Flaherty and Wolf [WO] have obtained
tube formulas in which the tube coefficients are shown to be metric invariants.
The formulas in these papers are found by transferring Weyl’s formulas from
Euclidean space to complex projective space via the natural projection. The main
point of is to establish the topological character of the tube coeffi-
cients for submanifolds (both in complex projective space and also in complex
hyperbolic space).

In fact

When 4<0

COROLLARY 1.4. Fix A and f. Let P be any Kdhler manifold for which
yi ¢
(L6) [rd=f(@)| < F]

for ¢=1, -+, q. Then VEP®(r) depends only on the volume of P and is otherwise
independent of the Kdhler metric (compatible with the given complex structure).
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In particular

COROLLARY 1.5. Let P be a complete intersection in CP™A). Then VE™ D (r)
depends only on the degrees of the polynomials defining P.

Finally in Section 4 a comparison theorem for the case K” =2 that partially
combines Theorems 1.2 and 1.5 will be given.

2. An identity for the ¢'" power of the curvature tensor field of a Kihler
manifold.

In [GR4, Section 7] tensor fields having the same symmetries as the curvature
tensor field were considered. Such tensor fields will be called curvature-like.

One can form the c** power R° of a curvature-like tensor R and also the com-
plete contraction C%*(R°®).

Now consider the case of an almost Hermitian manifold P of real dimension
2q. Let J be the almost complex structure.

DEFINITION. A curvature-like tensor field R on an almost Hermitian mani-
fold P is said to be Kahlerian provided

2.1 R(wx)(yz)=R(Jw Jx)(yz)

for all tangent vectors w, x, v, z to P.
For a Kihler curvature-like tensor field R not only is there the contraction

2.2) C*(R)= 3} R%Ca, " a,)(Ca, " Cay)

ay-age=1

(where {e; -+ ey} is any orthonormal basis of a tangent space P,); one also has
the contraction

1
1

I

29
(2.3) 2@1._‘% Re(eq ek, - ea,ek Mev, %, - ene},)
R

where e¥=Je;, When ¢=1 the Kéihler identity implies that and (2.3)
coincide, the common value being the scalar curvature of R. In order to express
the tube coefficients in terms of the Chern forms it will be necessary to know a
relation between and (2.3) for arbitrary c.

LEMMA 2.1 Let R be a Kdhler curvature-like tensor field on an almost Her-
mitian manifold P. Then (writing a; for ea,)

q
2.4) 3 RY(aya* - aca¥)(bib¥ - bob¥)
e

1
1

It

el 2 2q 20 y 2
N (?zccﬁ) o B O el )= ((2cc)1)CZC(RC)’
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where {e; -+ ey} is an arbitrary orthonormal basis of a tangent space P, to P.
PROOF. Put

25 b6, = S RY@:0% - 0:0¥duins - dad(bibE -+ bib¥dasss -+ dao).

1ag=1

bl'“bi—l
From the Kéhler identity follows the generalized Kihler identity
(2.6) Rc(xaf xakc)(yl yzc):RC(xl x2c)(y1 o Yae)

for tangent vectors xy, -+, X, ¥1, =+, Ve EPp. Then from (2.5) and [2.6) one has
2.7) b(i, )= 2 R(a.a% -+ a,a¥d¥s. - dF)(bibY - bib¥dgiy -+ dae) .
There is also a generalized Bianchi identity [TH3]:

2c+1
2.8 kgl(—l)kR“(xl B Xoer) (XY Yae)=0

for xi, -+, Xsc41, Yo, =+, ¥2c€P,. (See also [GR1, 2], [TH1, 2].) From (2.7) and
[2.8) it follows after some calculation that

2.9) b(i, j):(%f)b(i—l, JH1).

Repeated use of yields (2:)!5(, 0)=(2%1)%6(0, 7), which is just [2.4).

The rest of this section is devoted to showing how to express the tube coef-
ficients k4 (R) for a Kdihler curvature-like tensor field R in terms of the Chern
forms of R.

Let F denote the Kdéhler form of the almost Hermitian manifold P, and let
A¢(P) be the space of ¢-forms on P. Thus F(xy)=<{Jx, y> for tangent vectors
x, y to P. Also Fee \*(P).

LEMMA 2.2. Let ¢= \*(P) and let {e, - ey} be any orthonormal basis of Py
compatible with the orientation of P. Then

(2.10) (@AF ) ey -+ ez9)
—c)! 2q

We omit the proof which is straightforward. (Note that the definition of
wedge product involving shuffle permutations is being used.)

According to the ¢t* Chern form 7.(R)& A ?(P) of a Kihler curvature-
like tensor field R is given by

(2.11) Cr)Te(R) (%1 -+ x2e)

1 24 :
=G ap s, Rt g )

for tangent vectors xj, -, x5 to P. Therefore
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LEMMA 2.3. Let R be a Kdhler curvature-like tensor field on an almost
Hermitian manifold P. For peP let {ei - ey} be any orthonormal basis of P,
compatible with the orientation of P. Then

(2.12) 22) (o R) AT, -~ em):—(c‘—’!-(“%cwuew .

Hence

(2.13) bolR)= 2 (1 (R)AFT)P],
(g—o)!

provided the integrals in (2.13) exist.

PROOF. From Lemmas 2.1 and 2.2 together with equation one gets
2.12). Then follows from and the definition of %,.(R) ([GR4, for-
mula (7.6)]).

PROOF OF COROLLARY 1.2. In we take R=RFP. Thus from Weyl’s
tube formula [GR4, formula (1.1)] we obtain [1.4).

3. Tubes about submanifolds of spaces of constant holomorphic sectional
curvature.

Before proving theorems about Chern classes some preliminary facts about
complex differential forms will be needed.

LEMMA 3.1. Let ay, -+, a. be complex 1-forms. Then

Q'l/\&l al/\d'c
det : : =clayANa N AN Na; .

Ct'c/\(il i ac/\&c

PROOF. Since Sa&g(l)/\“'/\a—g(c)zdl/\‘“/\&c it follows that 60a1/\d'g(1)/\"'
AacA&a(c)=a1/\c'¥1A~--/\ac/\&c. Write a,-j'—:ai/\c?j. Then by definition of the
determinant,

det(a:5)= 2 €,Q10 *** Qeoco)
oEG,

- Z Egal/\&g(l)/\"'/\ac/\a;a(c)

SCH
:C!alf\a_l/\"‘/\ac/\&c N

Next let P be any almost Hermitian manifold with almost complex structure
J, metric {, > and Kihler form F. Let {E,--- E,JE,--- JE;} be a local ortho-
normal frame field preserved by J and let 64, :--, 04, 61+, ---, 0, be the dual basis
of 1-forms. For a=1, .-, g write ¢,=0,++—1 0, Then it is easy to see
that



28 A. GrAaY

29 q 7 -

(3.1 Co=30=2 3 0i= 3 gude
1 2¢ g -1 -
3.2) F—:E‘ ;01/\01*: Zjlﬁa/\ﬁa*: "*2*‘(§1¢a/\¢a

(where 6 4.9.=—0,). Furthermore an easy calculation using shows
COROLLARY 3.2.
q ¢01A5a1 ¢a1A9DTac
2, det}: N D
ayae=1 ¢ac/\¢‘11 ¢“c/\¢ac
The Cartan structure equations will be written down in a convenient form.
Let V be the Riemannian connection of P. For X, Y €X(P) put w;;(X)={xE;,

Ej>, wij"(X):<vXEi; ]Ej>, ‘Qij(XY):<RXYEi; Ej> and Qij'(XY):<RXYEiy ]Ej>-
Then (as is well-known) we have the real structure equations

):c 1 (—2+4/—1 F)°.

(3.3) dl;= iiwij/\ b,
iz
29
(34) da)ij: kZ:}la)ik/\wk,-——.Qij, Z., ].::1, ey Zq .

Also put ¢ay=@as—v —1 @ap and 5 1y=240— v —1 Qe for a, b=1, -+, g. When
P is a Kahler manifold,

(3.5) W rjr—Wq5 and .Qi»jt:gij, Z., ]:1, trey, 2q .
Therefore from [3.3), [3.4), [3.5) follow the complex structure equations

q
(36) d¢a:b§1¢ab/\¢b;
q
3.7 dpar= §1¢ac/\¢cb_5ab, a, b=1, -, q,

for a Kihler manifold P. Using matrix notation [3.3), [3.4), [3.6) and can
be written as

df=wNb do=w Nw—12,
(3.8) {

dg=¢Ng  dp=¢NJ—3.

From one obtains the following form of the Bianchi identities

(3.9) QNO=ENg=0,
(3.10) dQ—oAQ+ QN No=dE—pNE+EAH=0.

In the sequel only will be needed.
Next let Hoy=5 40— APaAGo—2v—1 84,F) and let 5 be the corresponding
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matrix. Note that the A(¢,Ad,—2+—10,,F) are just the complex curvature
forms of a space M(A) of constant holomorphic curvature 44. Although & is
defined abstractly, when P is a complex submanifold of M(2) the matrix 5 can
be interpreted as the difference between the matrices of complex curvature forms
of P and M(A).

The problem solved now will be the computation of Chern forms 7, of £ in
terms of the Chern forms y, of &. By definition (see for example

N L. vV—=1z
(3.11) 17+ - -Hq:r:det(z?ab—%f Eﬂ—aab),
and similarly for the 7,’s.
LemMmA 3.3. We have
L& q—a+1 ———);ﬂc—a .
3.12) n—azzlo —a )( nff) NYa, OV more concisely
R q A g-a+1
(3.13) r:;‘o(l—;F) ATe.
PROOF. From follows
. 2 V=1, . -
(3.14) r*det<(1—;F>5ab+ rrw{(uab—zqﬁa/\m)).
One expands the right hand side of and gets
. g 2 Nee// —1I\e
(3.15) r_c,;)(l’;F) o ) ¢. where

Ea, a "ZQZSQ A&a Ea ac"2¢a /\Sgac

(3.16) JC:*L é det(ﬁ 12 : 1 ) 1 3 1 : 1 8 .
:‘ac‘ll—‘)‘qsac/\@"dl Eacac—lgf)%/\gﬁac

In turn one expands the right hand side of in powers of 2 and obtains

~ ]- a ~ fod
(3.17) ch:'g‘" > L E@ Sa{zala(al)/\"’/\ﬂaco—(ac)
L ayac=10E6,
4 ~ r 2 ~
— A Z Eala(al)/\"'/\\@ab/\Qba(ap/\"'/\‘:/aco(ac)

b

1l

1

+ .- _![_(_,Q)Cgsal/\(;“al)/\"-/\¢ac/\§a<ac)} .

Using the first Bianchi identity on one finds

fond ~—

~ 1 7 Zaya; dfhac
(3.18) Jo=—- > ldet| " :
¢l apiac=1 = oo &

—/acal ‘—/llc(lc

1y

|

. =
_ ajay —ajac-1
_CZgZSac/\g)acdet( : _ )
\-_/ ac?lal .o ‘:

Gc-10c-1
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ay  Pa A\ —"-c
(g der[ P Pu ».

SaAFay+ BaAa,
From [3.18)] and [Corollary 3.2 it follows that

(3.19) Fo= b‘g @A=L F)*¢,,

where ¢, is defined by with 4=0. From and the definition of the
Chern classes of & one gets

«/ 1\e
Hence using one can rewrite [3.19) as

3.21) Fe=@ =Ty 5 (=Z)F A,

Substituting [3.21) into (3. and rearranging terms it follows that
q
=2

(3.22) 0 é(l—iF) (=25

Moreover

-2 (-2r)
(1~%F>q—b+1_ . )q-b+1

I

A q-b+1 A g-b+1
=(1=2F) = (=2F)
Note that Fe-2*'Ay,=0 for all b because it is a ¢g+1 form on a g¢-dimensional

manifold. Therefore from and one obtains [3.13). This completes
the proof.

PROOF OF THEOREM 1.3. Let A¥(r) be the (2n—1)-dimensional volume of
the boundary of the tube of radius » about P. Then

(3.24) »%V}F’(r)zAﬁ‘o’(r) .

(See [GR4, Lemma 7.2].) Furthermore
(3.25) A¥A(r)

2 " 2n
= T ) (cosv/ A ) :-26

(M)> koo RF—R™ D)
'z 2(n—q)---(n—g+c—1)’
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where R¥® denotes the restriction of the curvature tensor of M(2) to P. For-
mula (3.25) is proved in [GYV, Corollary 7.5]; alternatively it follows from slight
simplifications of calculations in the next section. From Corollary 2.3 one has

(3.26) ke RP—RY D)= (;z_ﬁ)cc) (7 RP— R D)AF1-)[P].
Also by

&g b+l A \¢?
(3.27) rdRP—RY)= 5 (1T L F) AR,

From (3.24)-(3.27) one gets (1.5).

The proof of is obvious. Also [Corollary 1.5 follows from Corol-
lary 1.4 and standard facts about the Chern classes of complete intersections.
For example, see Schwarzenberger’s appendix to Hirzebruch’s book [HI, p.159].

4. Comparison theorems for the volumes of tubes in Kihler manifolds
of nonnegative or nonpositive curvature.

PROOF OF THEOREM 1.1. In [GR4] it is shown that if P is a 2¢-dimensional
topological embedded submanifold with compact closure in a complete Riemannian
manifold M of dimension 2n, then K¥*=0 implies

(zr?)n-e g ks (RP— R¥)p2e

M
“.D) 2NS Gt & gt D (g o)

Furthermore if P is a minimal variety of M then the right hand side of is
not greater than {(z7®)""%/(n—¢)!}vol(P). Now assume that P is a Kihler sub-
manifold of M. In take R=RY—RY¥ and substitute into ((4.1).
The result is because P is a minimal variety of M. This proves (i); (ii)
is proved in a similar way.

To prove (iii) the arguments of must be generalized. Let 7 be a unit
speed geodesic in M normal to P with 7(0)=p<P. Choose a holomorphic basis
{eie¥ -+ ened} of the tangent space M, so that e,ef --- ee¥ are tangent to P, and
e,+1=7'(0). Also it may be assumed that e,e¥ --- ¢,e} diagonalize the symmetric
bilinear form (x, ¥)— T ,,.,, where u=7’(0) and T is the second fundamental
form of P. Let £,(0), £%(0), -+, £,(0), £¥(0) be the corresponding eigenvalues. Now
extend e;e¥ --- e,e} to orthonormal vector fields FyFf F,F¥ along 7 so that at
each point F,.,(t)=7'(t) and the other F,(¢) diagonalize the second fundamental
form of the hypersurface P,. Here P, is the tubular hypersurface at a distance
t from P. Let ki(t), -, £,(8), £g+1s(l), -+, £ns(t) be the principal curvatures of P;.
In it is shown that (except where the £,(f) are nondifferentiable) the fol-
lowing differential equations are satisfied :
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(4.2) Eal)=ko@*+RYEOF, orwF, w0

for a=1, -+, n* a#¢+1. Since M is a Kahler manifold it follows from [4.2)
that

4.3) {E;(t)‘{‘ﬁfx*(t):Ka(t>2+ﬁ§(f)2+R%<t>Jr'mFa(c)JFau) , aFq+l,
Eqrn ) =kqe @)+ RE G 1oy s -

Then and the assumption that M has nonnegative holomorphic bisectional
curvature imply that

L0+ R DZ ka8 072 - (ka0 +H0) 20,
(4.4) {

li’(q+1>*(t)§ff(q+1)*(t)2 .

Now because P is a complex submanifold of M it follows that

(4.5) £a(0)+ra(0)=0  for a=l, ,q.
Furthermore
(4.6) £(0)=—c0  for i=(g+1)* -, n*.

Then [4.4), [(4.5) and [4.6) imply
i’ﬂl(t)_!_xa*(t)zoy (1:1, g,

/Ci(t)_}—lfi*(t)z—-g—, Z':q_|_2’ eon,

4.7 ¢

1
lﬁ(qﬂ)*(l‘)z — 7

The second fundamental form of the real hypersurface P, at the point y(t) will
be denoted by S(¢). Then trS(#)=«,({)+ -+ +kn(®) and so from it follows
that

(4.8) trS(t)=—@2n—2g—1)/t.

By a continuity argument given in this inequality holds even at points
where a £,(t) is not differentiable. Also one has [GR4, Lemma 6.1]

0.1 _ (@:29 —1

(4.9) o = t S HS®),  0.0)=1,

where @, is the infinitesimal change of volume in the normal direction u. From
[(4.8) and follows
(4.10) g.H=1.

Now there is the general formula (see [GR4, Lemma 7.17)



Volumes of tubes 33

4.11) Aﬁ‘!(r):r"‘"“zq‘lgps 0.(r) dudP.

S2n-2q-1(1

From and [(4.11) one obtains

Qpn-pen-2q-1

(4.12) ¥ »ﬁ-r@f_—alw vol (P).
Then [1.3) is obtained by integrating (4.12) from 0 to 7.

In the rest of the section a comparison theorem that combines
with (i) will be proved. For this it will be necessary to generalize
some of the analytical results of [GR4] The following notion will be needed.

DEFINITION. Let M be a Kihler manifold with sectional curvature K*, and
let 0=60<2x. The @-holomorphic sectional curvature K*(@) is the restriction of
the sectional curvature K to those 2-dimensional subspaces of tangent spaces
that make an angle # with the holomorphic 2-dimensional spaces.

THEOREM 4.1. Let P be a 2q-dimensional topologically embedded Kdhler sub-
manifold with compact closure in a complete Kdhler manifold M. Assume that
the holomorphic sectional curvature K*(0) satisfies K¥(0)=42 and that the antiholo-

morphic sectional curvature K¥ (g) satisfies K M(—g)gl. Then

2Cul F s o, )GV TR0 for 230,

g _lld/\Fq;d)EPj ,,, \n-g+d _
| &=t (i—gtay1 ) for =0,

(4.13) VEN=

dizocd(z, F 7y, -, 7o) Sinhw/[A] P20 for 2<0.

PROOF. Assume A>0. Let pP and let ucP; be a unit vector. Denote
by 7 the unit speed geodesic in M with 7(0)=p and y’(0)=u. The second fun-
damental form of the hypersurface P, at the point y(¢) will be denoted by S(¢).
Also let R(t)x=R¥.,.y’®). In [GR4, Corollary 4.27 it is shown that S satisfies
the Riccati differential equation

(4.14) S’ )=S)*+-R({).

Suppose E is a unit parallel vector field along y with E(0)=P3 and <E(0), u)
=0. Put cos §=<CE, Jy'(t)> and let f({)=<SE, EX(t). Here 6 is a constant and

f(0)=—co. Using and [GR4, Lemma 5.2] it follows that for 8=0, %:

v 2A(1+cos®8)
4.15 > VAlwcosd)
(415 SE, EXtz tan(tv/A(1+3 cos?8))
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Next take a parallel unit vector field H along y with H(0)eP,. Then<{H, ">
={H, Jr'>=0. Put g(t)=<(SH, H)(#). Then
(4.16) g0)=Trny,

where T is the second fundamental form of P in M and H(0)=h. Now
and together with [GR4, Lemma 5.17] imply

Thhu+\/_l—tan\/—/'f t

1— tanv\/% t Tons

Let (Tyx, y>=Tzyu. Then [4.15)] and [4.17) imply
(V7 tanv/ A DI+T,, )~2<n—q—1)«/7“ 2V
]-:/ljz(tan\/T HT.

(4.17) (SH, H)>t)=

> : .
(4.18) trS) :tr( tanv A t tan2+/ At

From (4.18) and follows

(4.19) 0.,()<(cosv/ T )7+ (Sh}/{}t)“'“_l det(1— ta%‘{; ! T.).

From one obtains

(4.20) ‘41]"9{(7’),3_((:05«/7_7’)2‘1“(Siri/\%_'z7’;)”“2“1

tanv A
U soncgrey det(I= 5T )du P
The right hand side of can be integrated just as in the case of the Weyl
tube formula. See [GR4, Theorem 1.3] for details. The result is the first part
of (4.13). Similar proofs for the cases A=0 yields the rest of (4.13).

Denote by VZ(r) the volume of a geodesic ball of radius » in M. By taking
P to be a point in a Kidhler manifold M and integrating one gets

COROLLARY 4.2. Let M be a complete Kihler manifold for which K*(0)=42
and K‘”(%—)_Z_Z. Then if r is less than or equal to the distance from m to its

nearest conjugate point,

" siny/ A r\en
(R for 230,
(4.21) Vs T for 2=0,
\‘ .
7" ¢ sinhv/|A]r\en
n!(7 77"';7/77])2;]:’ : _> fO?’ Z<O .
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Equation (4.21) 7s analogous to an estimate of Bishop [BC, p.256] for real mani-
folds, but simpler.

[ HI ]
CKA]
[THI1]
"TH2]
TH3]

TWY]
TWO]
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