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Let X be a Lévy process (a process with stationary independent increments)
on the line having the exponent ¥ and 2-capacity function C%. We assume that
X satisfies the following conditions:

(A,) the A-resolvent is absolutely continuous with respect to Lebesgue measure,

(A;) every point is polar,

(Do) for a fixed A>0 there exist a (1>a>0), and a continuous function F
on (0, o) such that

F@=xRe([[2+¥(2)]),  z—oo,
and z*F(z) is decreasing on (0, o), and

() for a fixed 2>0 there exists a constant M>0 such that

Re([A+¥(22)17")/ Re([2+¥ ()] H=M
for every z>0.
Throughout this article we use the notation f(z)<g(z), z—a, if limsupf(z)/g(z)

<co and f(z)=xg(z), z—a, if f(2)<g(z), z—a and g(z)<f(z), z—a. We write
f(2)Xg(2), z—a, if }irglf(Z)/g(Z)ZO.

Then we have
THEOREM 1. Suppose that X satisfies (A;), (Az), (Do) and (I). Put

¢(x):g:/x5‘2e([2+W(z)]'l)dz, £>0.
Then C*K)=0 if and only if C#(K)=0, where C%(K) denotes the Frostman’s ¢-

capacity of K.
For general class of Lévy processes, if, for >0 and M,>0

(0.1) Re([A+T (DI HEMRe([A+¥3(2)]7Y)  for all z,

This research was partially supported by Grant-in-Aid for Scientific Research (No.
56540062), Ministry of Education.



222 M. Kanba

then
0.2) CHK)ZM,CYK) (M;>0)

for all compact sets K, where C?}, i=1, 2, are A-capacity functions of X;, =1, 2,
with the exponents ¥';, =1, 2, respectively. See Hawkes for general case
and Orey [9] and Kanda [5] for a restricted class. Especially

(0.3) Re([A+¥1(2)] )= Re([A+Tx(2)]™"), 200 = Px,=Px,,

where Py, 1=1, 2, are the classes of essentially polar sets of X, /=1, 2, respec-
tively, that is, Px,=(A; C{A)=0). In this article we improve the above as
follows.

THEOREM 2. Let X,, i=1, 2, be Lévy processes on the line having exponents
¥, and A-capacity function C%, i=1, 2, respectively. Assume that both X, i=1, 2,
satisfy (Ay), (Ag), (Dy) and (I). Put

¢i<x)=S:/’” Re (AT (2] Ddz,  x>0.

Then
i) if
(0.4) lin;jglf 01(x)/Pa(x)=0,

there exists a compact set K such that C¥K)>0 and C}K)=0;

ii) the following conditions are equivalent to each other:

1) Gi(0)<palx), x-0;

ii.2) for each fixed a>0, there exists a positive constant M such that CHK)
SMCHK) for every compact set K in the ball with radius a;

ii.3) Px,CPx,.
Especially

(0.5) D1(x)=py(x), x—0 if and only if Px,=Px,.

This is really an improvement of within the restricted class. Indeed
D1(x)=Po(x), x—0, if Re([A+T1(2)] H)=Re([A+T4(2)]"Y), z—oo and there exist
examples of pairs of Lévy processes satisfying (A,), (A,), (D) and (I) for which

(0.6), Re([A+T1(2) ] N<Re ([A+T(2)17Y, z—00,
0.6). lirglaglf Re([2+T1(2)17)/ Re([2+T 2(2)] =0,
but

D1(x)=XPo(x), x—0.
See Propositions 4.2 and 4.3 in §4. Indeed, choosing the symmetric Cauchy pro-
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cess as X, (that is, ¥,(z)=|z|), we show in [Proposition 4.3 that there exists a
symmetric Lévy process X; with the exponent ¥, for which [0.6)] holds, but
Py, =Py, It might be interesting to note that such phenomenon never happens
within the class of d-dimensional isotropic Lévy processes with density in case
d=3. That is, within this class, Px,=Px, for the d-dimensional isotropic Cauchy
process X; if and only if ¥,(z)x<|z|, z—o0. See [4].

Further it would be worthwhile to recall Kesten’s result [7];

lir?S:/xRe([Z—I—W(z)]")dzzoo, if and only if (A,) holds under (A,).

(Kesten’s result is a statement whether a point is attainable or not without the
condition (A;). So it is more general than the above.) Then it would be natural
that the degree of divergence of functions such as ¢ and ¢; reflects the inclu-
sion relation of the class of polar sets. In this respect we compare our result

with examples in which satisfy
lim inf Re([A+T1(2)]171)/ Re([A+T(2)]7)

Zlil'l’zl_glf Re([A+V:(2)11)/ Re([A+T(2)1"H)=0.

For the one example, Py, <Py, and for the other, Px,—Px,#@, Px,—Px,#Q.
In that paper [6]

x_ZS:-‘Re([2+¥f(t)]'l)t‘z(l—cos(xt))thx'1<1/w>(x_l)

plays the similar role as does ¢(x)———S;/xRe([l—i—?lf(z)]“‘)dz in this article.

(x~1/TH(x~)=<¢(x), x—0, under the conditions (A;), (A;), (D,) and (I).) The
examples in [6] do not satisfy (D,). Instead the weaker condition;

0.7 Re([A+T ()] H=Mz¢« for every z>0,

holds. But <1/T)(x H)<L/T,>(x"), x—0, for the example corresponding to
Py, S Py, and liﬂioinf<1/wl>(x")/<1/wz>(x’1)=liﬂoinf<1/Wz>(X'l)/<1/w1>(x“1)=0

for the example corresponding to Py, —Px,#@, Px,—Px,#@®. However it is
open whether Theorems hold if we replace (D,) with [0.7), even if we use
27 1/¥»(x") instead of ¢ and ¢@;. (The result in is of a weaker form than
the one in this article and is given only for symmetric case.)

As a direct consequence of we get

COROLLARY. If

(0.8 lim Re ([A+¥1(2)171)/ Re (A+¥ ()] =0,
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then Px & Py,.

Our example shows that cannot be replaced with [0.6).

Throughout this article A-capacity function C* of a given Lévy process X=
(Xi, P;) is the one defined as usual. For 4>0 and a Borel set A we define
P4(x)=E,exp(—AF,), where F,=inf{{>0, X, A} and E, denotes the integral
with respect to P,. Then there exists a unique measure n%4 whose support is
in the closure A of A such that (f, ¢2)=(?f, %) for every bounded Borel
function f, where U? is the A-resolvent of the dual process of X. The Ai-capa-
city of A is defined by

CHA)=r4(A).

. The author wishes to express his hearty thanks to the referee for careful
readings.

1. In this section we prepare some preliminary notations and results for a
Lévy process X having the exponent ¥ and A-capacity function C*. The condi-
tions (A,) and (A,) are always assumed without mentioning. Let u*(x, vy) be -
resolvent density relative to Lebesgue measure. Put

ul(x)=u*0, x),  ub(x)=2""[u*(x)+u?(—x)],
(1.1)

=151 "oy, Uko={udr—nud).
The inequality

x/2 z /2
(12) [ usoidy = uardy=s] usndy
is proved by Kesten Lemma 3.1 in more detailed form. Set

(1.3) A=z Re QAT BT 141 —cos (/121 )d

Then we have
PROPOSITION 1.1.
A/ (z)y=z"Tulz™Y), z—00,
PRrROOF. Set

(1.4) B=|Juso—opdnudy,  EO=E(fxdx).
Then it follows from and the simple inequality

r/ r/ r
[udoidy=l" wdte—ydy=2| undy

-r/2

for every xe[—r/2, r/2] that E(It-yz,r0)=<r’Lul(r), r—0, where I,(x)=1 if
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xeA, =0 1f otherwise. On the other hand it holds that E(i_r/sr2)=
ConstL1/T>(r Y)r for every r>0, because the Fourier transform of u} is
Re([A+¥]Y). The proof is finished.

Throughout this article we use the notation:

(z) :Siexp Gzy)pldy),
(1.5) -
Fe(=\"_14()|* Re(@+T(@)Idz
Set Pr(A)={y; a probability measure whose support is contained in A}.

ProposITION 1.2 (Hawkes [3], Theorem 3.1 and Theorem 3.2). If A is open,
41CH A Sinf {2r) "y (p), pePr(A)} =CHA)™

The next lemma may be known among those who are interested in this
topic. But it does not seem to be explicitly written except the case every semi-
polar set is polar.

LEMMA 1. For a compact set K, CX(K)>0if and only if Jy(p)<co for some
pePr(K). ,

PrROOF. Assume that [y(y)<oco for some p<Pr(K). For each open neigh-
borhood Q of K, CHQ)'=4inf{2x)"'Jy(v); vePr(Q)} =42xr) " Jy(p)=M;<co.
Hence C*(Q)=M7!, and so CHK)=M7'. Conversely, if CA(K)>0, there exists a
capacitary measure n%. Set v=r%/C*K) and define ¥ by 5(A)=uv(—A). Then
yePr(K) and Ulwd is a bounded function of class L'. Since Ukwsdlz)=
Re([(A+T(2)1H|9(2)|>>0, we see Jy(v)eL' by Theorem 2.2.1 in Bochner [T].
The proof is complete.

REMARK. For each probability measure g

(1.6) E()=@n)" (),

where E(u) is defined by [L4) If Jy(p)=co, the inequality is obvious. If Jy(u)
< co, Ufg;,z*/j(x):@n)‘lg exp(—ixy) Re([A+¥(2)]17")| a(z)|*dz holds almost every-

where by Theorem 2.1.5 in Bochner [1]. Since Ujuxa is lower semicontinuous,
we see that E(u)=Ukpxp(0)<(27) [y ().

2. In this section we give a lemma which plays a key role to the proof of
Theorems. The positive constants which are independent of variables which
appear in the following are denoted by M;, M,, ---.

LEMMA 2. Let X be a Lévy process with the exponent ¥ satisfying (A,), (A,),
(D,) and (I). Then
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(2.1) en|” |7 ule—yudnudy

=" {I" u Re@+w@INdu} a2 172

for every probability measure p of compact support. Further

(2.2) =] Re@+TEI Az, 10,

and

2.3) S:; U 'R ([A+T ()1 VduxRe ([A+T ()Y, Z—00,
PROOF. Set

<<1/¢>>(Z>:S 1w Re(A+T )] Hdu .

oo
12}

We divide the proof into four steps.
Step 1. We first prove [2.3). Using (D,) and (I),

<<1/?lf>><z>§M1§ -0y F () du < Ma-'F (| 2])

)
iz1

=M, Re[A+¥(2)17Y),
and
1221

<<1/w>><z>zM3§ w9 ya () du=MF(|22])

12]
=M; Re(A+¥22)1 )= MM; Re [2+¥(2)]7Y)
for every large |z|. We have proved [2.3). Further
(2.4) lzig)l [z]¢1/¥N(=)=0,
because z((l/yf))(z)éleu‘ldu+M6STu‘“+“’du-zézlog z+ M,z for z>0. In the

next we show
B 1/x
(2.5) Uo cos (x2)(L/TY(z) dzl < M7S0 Re([A+T ()] V)dz

for every B and every small x>0. Since {1/¥)(z) is continuous and monotone
decreasing on (0, o), it holds

[ cos (xa)(1/0)@)dz=(1/T)(1/ 5 Tsin (x&)—sin (1)]
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by Bonnet’s theorem, where & may depend on B and x, and for >0,

S:/xcos (x2){1/¥N(2)dz="[x"" sin (x2){1/¥)(2)]¥/*

+x-lg””z-1 sin(x2) Re ([A+¥ ()] ) dz

&

by integration by parts. Letting ¢ |0 and using we have

[ cos a1/ @ dz| <1/ 2)

+x-1S:'”z~1 sin (x2) Re (A+¥(2)])dz .
On the other hand
S:’”gze ([2+?1f(z)]‘1)dz><x‘lg :’”z-l sin (x2) Re A+ T ()] Vdz, x—0,
and

1/
1

S:'”gze([HLIf(z)]-l)dngsg *azaF(2)dz= Myx-'F(1/x)

=Miox 7' Re([[A+¥(1/2)]7)

for every x>0. Combining the above estimate with proven at the first
step, we see that holds.
Step 2. At this step we prove

(2.6) tim [* exp (x2)(1/ W)@ dz=@m)ul(x)

locally uniformly on R'— {0}. The limit indeed exists locally uniformly on R*— {0},
because

[ cos (xa)1 /0@ dz | <2101/ 4)

for 0< A< B by Bonnet’s theorem. We denote this limit by @(x). It is clear
that @ is continuous on R'— {0} and

@) [" rmomwdr=1im |* ety

o

={" Aotz

for each C~-function f of compact support in R'—{0}. We next show
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2.8) [ roramdr=en{” fowmed:
for every nonnegative C=-function of compact support. Note that

[ foamyede={7@ |7t geCatwen1dt|dz+{ 14z,
and Re([(A+T ()] NS Mz~* for every z>0 by (D,). Since

S“’tlg“ 17| g%e([1+?ﬁ'(zt)]“)dzdt<Mnrt'l““S:I F2) | z-2dzdt < oo

we have
[70[[7 @e@atweninar]az={Te| | 7o feCrt W1zt

by Fubini’'s theorem. Consequently

[ raxamy@de={t{" fo) e+ w1z at

On the other hand, noting

[" exoen| (™ ubr—nmsoidy|dr=tae C+¥EI @=L,
it follows from Theorem 2.1.5, Bochner that

[” sso—nmsmdy=tem|" exp(—izafe Re Q+¥En]dz

almost everywhere. As the both terms are continuous functions of x, the above
equality holds everywhere. Hence

S:f(z)«l/w»(z)dzz(275)5?_2I:S:ufg(y/t)f(y)dy]dt )

We have proved now, because the right term equals to (27:)5‘oo FLul(y)dy.

As a corollary of we see that [u]e L).. Combining with [2.8), we
see O(x)=(2n)[u](x) almost everywhere on R*— {0}, which shows the equality
holds everywhere, because the both terms are continuous on R*—{0}. The proof
of is finished.

Step 3. Now we show [2.2). It follows from [2.6) and that

[u](x)éMle:/x.‘Re([Z+W(z)]“‘)dz .
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On the other hand, it follows from [Proposition 1.1 that, for x>0,

[u](x)nggx‘zg:.qze([Z—l—llf(t)]‘l)t‘z(l—cos (tx))dt
1z t/x
=Myx~?| “)drZ ML Re QAT @It
Step 4. Only the proof of remains. We give it at this step. First we
show

2.9) 511 2|/ ¥N2)dz<co  if and only if

|7 stampua—yuas <o

for a given probability measure g of compact support. It follows from [2.2) and

(2.5) that

[ exp ta—3, LNz ML)

for every A>0. Therefore
[ 1a@ramede= M| pdnmde—udy.

The “if” part of (2.9) is proved. Suppose in the next Sm | 2(2) | %L/¥N=z)dz
<co. Define g by g(A)=p(—A) and put ps=p*g. Since it follows from (2.8)
that |*f()[ul(x—y)dx=@n)| exp(—iyz) @) (/) @)dz for every non-

negative C>-function of compact support, we have r Fx)ulrps(x)dx =

)" f2)1 21 (1PN dz and so

oo

Cudwps(x)=(2m) | _exp 2| a(@)| (1 E @z

almost everywhere. Hence [u]*gs(0)§(2n)‘181|ﬁ(z)lZ((l/Zlf»(z)dz by the lower

semicontinuity of [u]*ps. We have finished the proof of (2.9). For the proof
of it is sufficient to consider the case both terms are finite. Such a measure
p has no point mass. Indeed Jy(y) is finite by and so it follows from
that a point is non-polar if g has point mass. Now choose a sequence
of open neighborhood U, of {0} such that U, | 0. Then
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- . A .
2.10) lim sup fim sup {SU ys(dx)[S_Aexp (zxz)«l/w»(z)dz]}:o :
Indeed it follows from and that

], astdx)] | exp axa1 @z || <M pstdnrud,

and pug has no point mass as mentioned just before. On the other hand it fol-

lows from that

@.11) tim{  psan)| | expxa1 /@]

Atoo

=@, , 0.

R1

Combining [(2.10] with [2.11) it is easy to show

o A )
tim{” ustan)| | expxaxt /@@ |=en | psdnmai.

Since the left term equals limAT S:Ip(z)lz«l/@f})(z)dz, the equality is
proved. We have completed the proof of

3. In this section we prove [Theorem I, [Theorem 2 and Lévy

processes with the exponent ¥ in this section are assumed to satisfy (A;), (A,),
(D,) and (I) without special mentioning. Let ]qf(;z):r | a(2) |2 Re([A+¥ (2)] Ndz

as defined in (1.5). Then we have
PropPOSITION 3.1. i) There exists a positive constant M such that

o0
—oc

MIy@=|" {7 v Re@+T@INdu} p(2) 174

for every probability measure p.
il) For each fixed ¢>0 there exists a positive constant M, such that

[l v @e@tw@Indul 1 5) a2 M, T +o

—oco

for every probability measure p.
iii) For each probability measure p, Jy(p)<oo if and only if

-0

{17 e @+ P 0 <o,
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PROOF. Put ((l/yf))(z):rlu‘lfRe([Z—i—ll"(u)]")du as in the proof of
2. Since lirgl {1/¥H(z)=o0, the estimate together with the continuity and

the positivity of (1/¥)z) and Re([A+¥(2)]"!) implies that MRe([A+¥(2)]7Y)
<{1/¥¥z), from which the statement i) follows directly. In the next note
that there exists a positive constant M; such that Re([A+¥(w)] HSMu~¢,
(0<a<1l) for every u>1 by (D,). Then we have

<<1/¥f>><z>=§:u-lgze<[2+w<u>j-l>du+§:°u-l ReQA+T )] du

=2""og (1/2)+a™*M,

for every z, 0<z<1. Hence, for J, 0<d<1, we have

O§S:<<1/w>>(2) | 4(2)] Zdz:ZSj«l/ZF})(z) | p(z)|%dz

I}
gzx—lgo log (1/2)dz+2a- My .

Choose 0 so that the last term of this inequality is smaller than ¢ and fix it and
nextly choose a positive constant M(6) so that (1/TWz2)<M(@B)Re([A+¥(2)]17Y)

for every z with z2>6>0 by [23) Then we have Sm (/7)) a2)|*dz =
S] 1s5+51 [>5§€+M(5)]qf(/,t). Since 8 can be determined by e, we can replace

M) with M,.. The proof of ii) is finished. As for the proof of iii) we have
only to note that both the statement i) and ii) are valid even if Jy(y) or

|" @ ae)dz diverges.

For a positive and continuous decreasing function ¢ on (0, ) such that
liEn ¢(r)=o0, ¢-capacity C#(K) of a compact set K is defined as follows:
0

CHK)=¢ YE(K)) if E(K)<oo, C#(K)=0 if otherwise,

where E(K)=inf (E4(y), p&Pr(K)) and

(3.1 E()={ | mdx)g(| x—y D).
Choose
(3.2 p0= " Re QT dz.

Since ¢(x) 1 o as x |0 by (A,) (Kesten [7]), we can define ¢-capacity for such
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¢. Moreover we have
PROPOSITION 3.2. For every fixed a>0, we can choose positive constants M,
=1, 2 such that

M2E¢(p)§g w{g:ku'lfRe([Z—i—W(u)]“‘)du}I 2(2)|2dz< MLE 4(g2)

for every pePr(|x|<a), where ¢ and E4(y) are those defined by (3.2) and (3.1)
respectively.

ProoF. The assertion follows from directly, because we can conclude
from that there exist positive constants M;, i=1, 2 such that M,[u](x—y)
So(lx—y =M [ul(x—y) for every x, ye{|x|<a}, where [u] is the one
defined in (1.1).

ProoOF oF THEOREM 1. C*K)>0 if and only if Jy(yg)<co for some pe
Pr(K) by Lemma 1, and therefore if and only if

STW{S:, U Re ([H—W(u)]‘l)du} | p(z)|*dz<co  for some pePr(K)

by iii) of Proposition 3.I. This last statement is equivalent to FE4(u)<oco for
some pePr(K) by [Proposition 3.2, Now has been proved, because
it follows from the definition of ¢-capacity that C#(K)>0 if and only if Eg4(u)<oo
for some p<Pr(K).

Before proving we refer relations between Hausdorff measures
and ¢-capacity. We denote h-Hausdorff measure of K by An(K) for a positive
continuous function A on (0, o) with lrlfl(’)l h(r)=0. It is well known that

CH*K)=0 if A,(K)=0.
Furthermore

LEMMA 3 (Taylor [10], Theorem 4 and Remark. See also [6], [Theorem I).
Let ¢ and 1/h be positive, continuous and decreasing functions with lalcrf}) o(x)

:li{l;l 1/h(x)=00. Assume in addition; a) x¢(x) is increasing with lirlrgx #(x)=0,
z X

and b) x“IS:ng(s)ds_S_Mgb(x) for every small x>0. Then if

lirgrpli gnf @(x)h(x)=0,

then there exists a compact set K such that C?*(K)>0 and A,(K)=0.
The next proposition shows that Lemma 3 can be applied to our setting.
PROPOSITION 3.3. Let ¢ be the one defined in Theorem 1, and F be the one
in the condition (D,). Put FuW)=F () for u=1 and F=u"2FQ) for 0O<u<l.
Then the function & defined by



Lévy processes on the line 233

(3.3) Fo={ " Fudu

is a positive, continuous and decreasing function on (0, ) with lim §(x)=oc0 and
zi0
satisfies the conditions a) and b) in Lemma 3. Moreover

(3.4) J)=p(x),  x—0.
Proor. We first prove Noting that ligl ¢(x)=co as is mentioned in

the proof of [Theorem 1, we have
1/x 1/
ng(x)xSl .‘Re([l—l—@'(z)]“)dzxgl F(2)dz, x10,

and especially l;r& gi/IF (2)dz=o0. So ﬁ(x)xgi/xﬁ (2)dz, x |0, and the relation
is proved. At the same time we have proved 1;{13 @(x)=oco. The function
x@(x) is increasing, because xgﬁ(x):S:F‘ (t/x)dt and F is decreasing. Further
xgzm:xagzt-a(t/x)aﬁ‘a/x)dtgan:ﬁ(z)dt for 0<x=1. So limxg(x)=0. The

condition a) has been proved. The condition b) is proved as follows;

x~1S:$(t)dt=x-IS:t-l S:ﬁ(u/t)du]dt

§x-lg:t-1LS:(u/t)?a(u/t)aﬁ(u/t)du]dt

S:(u/t)““(u/x)"ﬁ(u/x)du]dt

L

x‘“"‘S:t““dt[g;ﬁ(u/x)dujléa‘lgg(x) .

ProOF OF THEOREM 2. Define ¢;, i=1, 2, as is defined by [3.3] Note that
is equivalent to lim inf $1(x)/$x(x)=0, and C?i(K)=0 if and only if C%(K)

=0 by [34] Hence it follows from Lemma 3 that C*1(K)>0 and A,,,,(K)=0
for some compact set K. So C¢YK)>0 and C¢2(K)=0. This implies C{K)>0
and CXK)=0 by [Theorem 1. We next prove ii.1)=ii.2)=ii.3)=ii.1). The asser-
tion ii.2)=1i.3) is trivial. The statement ii.3)=ii.1) is a consequence of the result
i). Assume ii.1). Then we can choose a positive constant M; such that Mp,(x)
<¢,(x) for 0<x<2a and therefore M,[u,)(x)=[u.](x) for 0<x<2a for some
positive constant M, by where [u,], 7=1, 2, are those defined in (1.1) for
the symmetrized A-resolvent kernel of X, i=1, 2, respectively. Then [Proposition|
3.2 implies
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=5}

(3.5) M (" um Re@a+¥, 01 du} | () 7z

—00

<[ {I" u @e@+ @I du} 41740

for every probability measure g whose support is in {|z| <a} and some positive
constant M; independent of g. Choose e so that e=z4'MM,C¥({|z|=a})™,
where M is the constant determined in i) of [Proposition 3.I. Then it follows
from [35), i) and ii) of [Proposition 3.1 that MM, Jy ()=M. Jv,(1)+¢c. Using
Proposition 1.2, we have 2z4-*MM;C{ A)"'<2zxM.C¥ A)"'+¢ for every open set A
whose closure is in {]z| <a}. Noting C{({|z|=Za})=C,(A), we have 4~ MM,C} A)™*
<2MC3}A)™* for every open set A whose closure is in {|z]<a}, and so does
for every compact set K in {|z|<a}. We have finished the proof of ii.l), ii.2).

PRrOOF oF COROLLARY. It is sufficient to prove that the condition [0.8) im-
plies LI{I(’)I @1(x)/po(x)=0. For an arbitrary small ¢>0, choose z, so that

Re([A+¥1(2)1)/ Re([A+¥o(2)]") <e for every z>z,. Then ¢i(x)/du(x)=
e+ Re([A+¥(2)] Y)dz/¢s(x). Hence 1irr;§31p¢1(x)/¢2(x)<s, because 1;1}(1] @o(x)=00.

As ¢ is arbitrary, we have finished the proof.

4. In this section we apply our result to the subordinators whose exponents
¥ are of the form below:

(@1 Ue)=| (1—exp 29Ny,

where N(y) is continuous and positive on (0, 1), N(y)=0 for y>1 and

1
SOyN(y)dy<<>° .

We study the behaviour of the exponents near infinity under certain regularity
conditions. Since Re¥(2)=Re¥(—2z)>0 and IMYT(2)=—IMm ¥ (—z), we study it
near oo, For convenience we put

4.2) N(y)=y2L(1/y)™* for 0<y=1 and equals to 0 for y>1.
If L satisfies the condition below :
*p 2P L(z)"! is increasing and z=P L(z)™* is decreasing on [1, o)
for some B, 0<B<],
then
(4.3) RV (2y=zL(z)*, z—00

and
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oo
z

(4.4), JmW(z)_S_zS w L) du+ Mz L) |

(4.4), Jme(z)gMzzS”u-lL(u)—ldu—MlzL(z)-l
for every large x. For the proof we set

RZ(x):Sif(z)z"ZL(x/z)‘ldz

:Sif(Z)Z—ZJ'ﬁ' {(x/2)" 8 L(x/2)} ‘dz x ¥

for a nonnegative function f on (a, b), 0=a<b<co. Then it follows from (L})
that
b=c(a, b, B)L(x/b) ' <Ry (x)=bPc(a, b, —B)L(x/b)*

for 0= a<b<co and

afe(a, b, —B)L(x/a)*<R%(x)<a Fc(a, b, B)L(x/a)™"
for 0<a<b< o, where

c(a, b, ﬁ’):gi F@z2F dz .

Using this estimate for f(z)=1—cos(z), we get

Re¥(x)ZxRY(x)=¢(0, 1, B)x L(x)? for every x>1,
and
Re¥(x)=xRi(x)+xR¥(x)=<c(0, 1, —B)x L(x)*+c(1, x, B)x L(x)*.

Noting ¢(1, x, —‘B):sz"z“ﬂ(l-—cos z)dz<M,, the proof of finishes. In the
next we prove (4.4) Applying the estimate for f(z)=1, we have

Jm?If(x):xS:sin(z)z“ZL(x/z)'ldz
éxgzz"lL(x/z)“ldz+fo(x)
§xS:u"L(u)"1du+c(1, x, B)xL(x)™".

Since c(1, x, ﬁ)zgfz‘2+ﬂdz<M1, the first inequality of is proved. On the
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other hand

I ()= xS:(sin ()2 L(x/2) " dz— x R¥(x)

= M| u L du—e(l, %, HrxL(x)™
and ¢(1, x, B)<M,; as mentioned before. Now the second inequality of has
been proved.

If we impose the following condition on L in addition to (L});

(L3 u'L(u)™t is decreasing on [1, co) for some y>0,
then
(4.5) | IMT ()| EM:x L(x) "< ReW (%), X—00 .

Indeed, xgwu‘lL(u)“ldu:xSwu“l'T{uTL(u)“} du<y-'xL(x)! for x>0.
x x

If L satisfies the following:

(S) L is slowly varying at infinity on [(, )
then

(4.6), Jml”(z);-\’zru‘ll,(u)‘ldu, 200,
(4.6), lim Re¥'(2)/ Im¥(2)=0.

For the proof we first note that
If (S) is satisfied, there exists a continuous function

4.7) M(x) on [1, o0) such that M(x)<L(x), x—co and M satisfies
(L}) for every B>0.

Indeed, by VIIL 9, Feller [2],
z
Lw=atexp(| )y dy),

where lime(y)=0 and Ilim a(x)=const. So we have only to choose
Y—oo X o0

exp(S]l e(y)/ydy) as M(x). In the next, applying (9.6) of [Theorem 1, VIII. 9, Feller

[2] to Z@)=L(#)* and p=—1, y=0, (here note that S?u"L(u)"a’u<oo by the

assumption S:yN(y)d y<co), we have

lim ()~ S:ou‘lL(u)'lduZO.

t—oo
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Hence it follows from that the first estimate of holds and this together

with implies the second equality of
Let us assume either (L) (L) or (S). Then

(4.8) Re([A+T(2)17") satisfies (D) and (I).

In case (L}) and (L) are satisfied, Re([A4+¥(2)]")=xz"'L(z), z—o0, by and
and it follows from (L}) that z*~'L(z) is decreasing if we choose a=1—p.
Hence (D,) holds. For (I), we have only to note z#L(z)<(2z)#L(2z) by (L}). In
case (S) is satisfied,

(4.9) Re (A= {In¥ (2)|*/ RV (2)}

xZ“L(z)"[gmu”1L(u)'1du]_2, Z—00 ,
Hence

.‘Re([Z—HF(Z)]‘1)><z"1]\«1/(z)‘1[gju‘U’VI(u)'la’u]—z, 700,

by (47). On the other hand S”u-quu)—ldu:z—ﬁS:u—1+ﬁ<z/u)ﬁM(z/u>duzz—ﬂM<z)

and ]\71(,2) is increasing for every 8>0. So z""l‘fzﬁM(z)“UVI(z)‘2 is decreasing if
we choose a, B so small that a—1+4+28<0. We have proved the property (D,)
for this case. The property (I) is proved similarly.

Now we can get a comparison theorem between the classes of polar sets for
subordinators X in the class mentioned above and their symmetrized processes
Xg's. Here the symmetrized process. Xs of X with the exponent ¥ in [4.I) is
defined as the Lévy process on the line whose exponént U5 is of the form below :

Vs(o)={ U—explizy)NIdy+ | (1—explizy)N(—2)dy
=2RU(z).

PROPOSITION 4.1. Let X be a subordinator with the exponent ¥ of the form
(4.1) and Xg be its symmetrized process.

i) If (L}) and (L)) hold, Px=Pyx,.

ii) If (S) holds, Px& Pxy.

ProOOF. First note that

(4.10) X and Xy satisfy (A;) and (A,).

The condition (A,) follows from the estimate ; Re¥ (2)= Mz L(z) '=M;z' "8z L(2)™*
=M,z'-#. The condition (A,) is proved by Kesten’s result [7], because Re¥(z)

§M7S (1—cos(zy)y-*dy=M,z, and so S?_{!{e([2+w'(z)]‘l)dz;Ms‘ls 2 ldz= oo,

1
0 1
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Combining (4.10) with we see that X and X satisfy (A,), (As), (D.) and ().
Under (L}) and (L?), Re([A+¥(2)]")=<Re([A+T s(2)]™?), 200, by and so
Py=Pxg If (S) hold, the estimate implies PxS Px g by [Corollary] of Theo-
rem 2. The proof is finished.

REMARK. Port and Stone proved that every point is nonpolar for the
asymmetric Cauchy process X but every point is polar for Xs. So Px&Pxg.
Our result ii) shows a similar phenomenon occurs, but every point is polar for
both the processes in our case. They also showed that every point is regular
for itself relative to X. We can also show that every semipolar set is polar
for our X. The proof will be given elsewhere.

Finally we give examples of pairs of Lévy processes with We first
show an example of a pair of subordinators given in satisfying (L}), for
which holds.

Let X be a subordinator with the exponent ¥ of the form satisfying
(Lp. If

zL(z)‘1<<zS:°u'1L(u)‘ldu , Z—00,

we have

(4.11) S:_‘Re([/H—Uf(x)]‘l)dxx(Sju‘lL(u)“du>_1

=<z[Im¥(2)]7, Zz—00 ,
Indeed, it follows from that
1

So ﬂze([l—]—qf(x)]“)dxxg (S‘”u-IL(u)-ldu )_2x‘1L(x)‘1dx | zesoo,
and, putting K(x):Swu“L(u)'ldu, the right term equals to

z K1)
SIK(x)‘Z(—K’(x))dx:SK(z)u‘zdu:K(z)‘l——K(l)‘l .

Especially, if (S) holds, then [4.11) is valid by [4.6).
Set
L(z)=(log(z))* and H(z)=(log(2))***

for a fixed small ¢>0. Choose B, 0<B,<1, and sufficiently large z, and fix
them afterwards. We construct a sequence {z.}-1s.. With lgmzk:oo and

a sequence of functions {f:} .o, 1,.. inductively as follows: We set f3.(z)=L(z)™!
for all k. If z,, is determined, then choose zs,.1=21 and fs,1(2)=asz41278° so
that fsz+1(Zsre1)=L(zsz41)7" (that is, ask+1:Z§k0+1L(Zsk+1)_1)- Secondly choose zg;.,
=inf (z>2Zsp41, fore1(2)=H(Z)™) and far:2(2)=0as4422%° s0 that firia(Zspes)=
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H(z3p42)"'. Finally choose zgpis=iInf (2>2z3442, f3r+2(2)=L(z)"Y). This procedure
is possible, and

(4.12) H(2)7' < fsr41(2) (resp. fir+2(2))
=L
for z€[zsp41, Zs+2] (resp. 2E€[2sp+2, Z32+s]), and

(4-13) Zapes =25 p42=Z5k+1, kZO, 1, 2; .

Indeed, fsr+1 and fs.,. have only one common point with each of L(z)~! and
H(z)™, and f3p41(235+1) <H(235+1)7" and fopeo(2ipee)> L(23440) 7%
Define
L),  z=z,,
~ fa(2), 23k§2<23k+1,
(4.14) L(z)'=

f3k+1(2), Z3p1=2<Z3k+2,
Sfarse(2), Z3p+2=2<Z3k+3,

for £=0,1, 2, ---. It is easy to check that L satisfies (L}) for B,<pB<1. Put

(4.15), Ny)=y=2L(1/9)1,
~ 1 s
(415) Fo)={ (1—exp 2y M)y,
and let X be a subordinator with the exponent ¥. Then
(4.16) Qeif(z)x’zf ()1, Z—00 ,
by [4.3). Especially
(4.17) ReW(2)<zL(2)™?
by

For the estimate of dm¥(z), we note that, for every given large z, Ij(z')"Jl
=L()* for every z'€[z8 2*%] if z€[2li%y, z3pesd, £=0,1,2, --- and L(z") =
L(z")! for every z' €[z, z%] if z€[2ss, 23431, £=0,1, 2, ---. Then
o ~ 28 22
(4.18) zS u L) 'duz= min(zg 4u‘l(log (w)?du, zS 1~ Y(log (u))‘zdu>

=2z(8log (2))7*,
and

zru“f(u)'ldu §zS u'L(u)*du=<z(log (2))7*.

The estimate together with [4.17) and [4.18) implies that
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(4.19) 2L <amB@p=a| u L du=aiog @), 2.
Hence it follows from that
(4.20) [\ e (@a+ ZC)daxlog (), 2.
On the other hand, let X be a subordinator with the exponent ¥ of the form;
(4.21) W(Z)ZS:(I—QXD (Gzy)y~*L(1/y)"'dy, L(x)=(log(x))*V1.
Then we have
(4.22) |\ 2e(@+T 1 drxlog (), 20

by because L satisfies (S). Noting that Im ¥(z)=<xIm¥(z)=z(log(2))™}, z—oo,
and}Re T (2)<zL (2)"'<z L(z)" < Re¥(z), z—o0 and liminf L(z)/L(2)=0, we get

PROPOSITION 4.2. Let X be a subordinator with the exponent of the form
(4.21) and X be a subordinator with the exponent of the form (4.15). Then (0.6)
holds if we put ¥,=V and ¥,=¥. However Px=DPj.

Now the proof is clear. Indeed, Px=Pjy follows from [4.20) and [4.22) by
using

Using the pair of subordinators in [Proposition 4.2, we can give a pair of
symmetric Lévy processes on the line for which [0.6)] holds. For this purpose
we prepare a lemma.

LEMMA 4. Let G be a positive function an (0, 00) such that u=°G(u) is in-
creasing on (¢, o) and u~"'G(u) is decreasing on (¢, o) for some 0<9<y<2 and ¢
>0. Then there exists a symmetric Lévy process with the exponent ¥ such that

V()=G(z), zZ—00,

ProOOF. We may assume c¢=1 without generality. Set N(y)=|y|*G(1/]y])™*
and let X be a symmetric Lévy process with the exponent ¥ of the form;

re)=| (1—expzy)NGIdy
Then, for z>0,

W(2)=2{ (1—cos (9)3Glz/»)dy
=2[ (1—cos (1)y =42/ (/)G 2/ y)d

2 (1—cos v~/ )@/ 3) TGz e
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46| ' 0dy+26(2)| (1—cos (y)y~+7dy

éMlc(Z) )
and

V(2)22| (1—cos 1)y ~(z/ (/)G z/ Y)dyZ MiG2)

The proof is finished.
Let X and X be subordinators with exponent ¥ and ¥ respectively which
are given in [Proposition 4.1. Then it follows from that

Re([A+T ()1 H=z"1, Z—00 ,
and from that ’

Re([A+T(2)] )=z L(2) (log(2)?,  z—00.
Define

2L(2)og(2) 2,  z=e,
(4.23) Gz :{

ef(e), z=Ze.

Then, if we choose 148,<y<2 and 0<d<1—pf, G satisfies the condition in

Hence we have
PROPOSITION 4.3. Let X, be a symmetric Lévy process with the exponent ¥,
which is constructed by Lemma 4 so that

U (2)=G(z), Z—00,

where G is given by (4.23) and X, be the symmetric Cauchy process (that is, the
exponent ¥y(z) equals to |z|). Then (0.6) holds, but Py =Pgx,.
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