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0. Introduction.

Let E be an elliptic curve defined over the field @ of rational numbers.
Throughout the paper, an elliptic curve defined over @ means an abelian variety
of dimension one which is defined over @. Let G be the Galois group of exten-
sion @/Q, where @ denotes an algebraic closure of @. Then the group G, with
the Krull topology, is compact and totally disconnected. For each positive integer
m, we denote by E, the kernel of multiplication by m. Let p be a prime num-
ber. With the multiplication by »: Epnﬂ—»E o the sequence {E pn}n=1,2,... forms
a projective system. The Tate module T ,(E) is defined as follows:

Tp(E):pr(;J;}oim Epn .
The module T,(E) is a free Z,-module of rank 2, where Z, denotes a p-adic
completion of the ring Z of rational integers, and G acts on T,(F). Fix a base
(o, &1) of T,(E) over Z,. If o is an element of G, then there exists a unique
element x,(¢) of GL,(Z,) such that

(6&0, 08)=(&, EDmp(0).
The mapping z—r,(¢), which will be denoted by x,, is a continuous representa-
tion G—GLy(Z,).
Serre proved that if £ has no complex multiplication, then the image
group 7,(G) is an open subgroup of GLy(Z,). He also states that if E is semi-

stable and p=11, then the Galois group Gal(Q(E,)/Q) is isomorphic to GL(Z/pZ)
(Theorem 5 in [8]), and therefore n,(G)=GLy(Z,). Put

a b a b 1 0
oy ey I, o]
c d c d/ \0 1
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Then {H™},,,,,.. is a fundamental system of neighbourhoods of unity in GL,(Z ).
Therefore z,(G)DH®’, where N is a non-negative integer depending on E and
p. Especially if E is semi-stable and p=11, then we can take N=0.

In this paper we shall consider the case p=2 and prove:

THEOREM 1. Let the notations be as above. Assume that E has no complex
multiplication, and the points of order 2 of E are all Q-rational. Then

o (G)DH ™ .

THEOREM 2. Assume that E satisfies the conditions of Theorem 1 and more-
over E has a Q-rational point of order 8. Then

a b a b 1 *
sl erfy e
¢ d ¢ d 0 *

with a suitable Zj,-base of TL(E). Especially m.(G)DH®.

Our asserts that for p=2, we can take N=7 independently of E
under the hypothesis of [[heorem 1, and [Theorem 2| asserts that the conjugate
class of m,(G) is uniquely determined under the hypothesis of

The paper is divided into 3 parts as follows. Chapter 1 contains a number
of preliminary lemmas. [lheorem 1| and[lheorem 2 are proved in Chapter 2 and
Chapter 3 respectively.

1. Preliminary lemmas.

Let % be a field, the characteristic of £ be not 2, and K be a field extension
of k& which is algebraically closed. Let E be the curve defined by:

YV Z=X*4+AXZ*+BZ*, A, Bek, 4A*-27TB*+0, (1.1)

in 2-dimensional projective space P*(K). Then E has the structure of an abelian
variety with (X, Y, Z)=(0, 1, 0) as zero element. We denote this curve in the
affine form:

YV:=X+AX+B, (1.2)

and denote (0, 1, 0) by (o0, o). Then the addition formulas are expressed as
follows (cf. Cassels [2]). If (Xi, V)+(X,, Vo)=(X;, V), then

_ Y,—Y.\2
X=X Xt (3= ¢ ) s
v :_<X1’—Y2 )X . XY 1— XY, .

¢ X,—X, /7 X.— X, )

If 2(X;, Y)=(Xs, Y4), then
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3Xi+A \2
X,=—2X,+(—=—L1
1+< 2Y1 ) ’
3X31+A .
1
Vi=—("y )X XY,

The points of order 2 are (e,, 0), (e;, 0) and (e,, 0), where X+ AX+B=(X—e,)-
(X—e(X—e,). Let (x,, y,) be a point on E, and (x,, y,) be a 2-divisional point
of (xo, o). Put

(x4, yz>=(x1, y1)+(eo, 0,

(x3y y3):(x1; y1)+(ely 0) ’ (105)

(x4, y4)=(x1, yi)+(es, 0).

Then these three points and (x;, y;) are the 2-divisional points of (x,, y,). From
(1.4) we have )

3x2+A )2:—2v (Bxi+A)?

2y, e

ro= 2ot ixi+Ax it B)

(=1, 2, 3, 4)

and x4, x,, xs, x4 are the four roots of
Xt—4x, X3—2AX*—(4Ax,—8B)X+(A*—4Bx,)=0. (1.6)

Since x, is a root of this equation and y?=x3}+ Ax,+ B, we get

xi—2e;x,— A—2¢e%
2y,

Xo—es =( )2 =0, 1, 2). (1.7

Put
dwo=(x1+%5)—(Xs+x4),
dw,=(x1+x5)—(x:+x4), (1.8)
dwo=(x14x)—(xs+x3) .

From (1.3) and (1.5), we have

2 x1—e x,—e
JXZZ_X1_'90 +( o J_)_le—) =—X1—¢ +,‘L1,71§7€1 o) ,
1 0 1 0
_ Vi \2_ (x1—eo)(x1—ey)
]xg—'—xl_€1+ “;’é’* m_xl'—el‘*‘ X —eo y (1.9)
A1 1 1 1
2 X1—e )\Xx1—¢
x4:_x1__82_|_(_x_y_1_;) = x,—e,+ (x4 xo)(el 1)
1 2 1— €2

Substituting to (1.8) and noting yi=(x,—e,)(x;—ey)(x;—e,), We have
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2_’)}1 2311
_( Xi—2esx,— A—2ef \/ xi—2e0x,— A—2ef
111)1—( 2y, )( 2y, )’
_( X1—2eox;— A—2¢j i%ﬁ—Zelxl—AiZ’ei
“’2_( 29, )( 291 )
Comparing [1.7) and [1.I0), we get

J wi=(x,—e)(xo—es),

J w():( x3—2e,x,— A—2¢% )( xf—Zele—A—Ze‘;;> ’

(1.10)

wi=(xo—ey)(xo—ey),
(1.11)
] wi=(xo—e)(xo—e1),
Wow 1 We=(xo—eo)(Xg—e)(xo—ez) .

Since x., x,, x;, x, are the four roots of we have x;+x,+ x5+ x,=4x,.
From this and (1.8),

x2:xO+wO_w1_W2 N

J X1=XotWotwi+ws,
(1.12)
1 X3=Xo— WoTW1— Wy,
x4:.7C0—wO—“wl+w2 .
From (1.5) and (1.8), we have

LEMMA 1. Let the notations be as above, and e;=k (1=0, 1, 2). Suppose that
there exists an automorphism o of K over k such that

(x%, ¥D=(x1, y1)+(e;, 0).

Then wi=w; and wi=—w; for j+i.

Let p be a prime number. For any positive integer h, r, denotes the ca-
nonical homomorphism of GL,(Z,) to GL.(Z/p"*Z). Let n be a positive integer.
For any integer h such that 1=<h=<n, r, » denotes the canonical homomorphism
of GLy(Z/p"Z) to GLy(Z/p*Z). For any integer h such that 0=h=<n, we

define
a b 1 0
= mod p"} .
¢ d 0 1

Then we have obviously the following lemma.
LEMMA 2. Let V be a subgroup of GLy(Z/p"Z). Then

b
H,gmz{(a d)eGLZ(Z/p"Z)
C

V1= I n(VONHE ).
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Let 2=h=n—2, and o= H{». Then there exist elements a, b, ¢ and d of
Z/p™Z such that

1+ap™ bp™
o= mod pr*t,
cpt 1+dp™
Then
1+aph+1 bph+1
oP= mod pr+3,
Cph+1 1_!_dph+l

Hence we have:

LEMMA 3. Let 2=h=n-—1.

(1) If a subgroup V of GL(Z/p"Z) satisfies vp, n:(V)DHY,, then VOHMP,

(2) If asubgroup V of SL(Z/p"Z) satisfies vy, n+:(V)DHINSLAZ/p*Z),
then VOHMNSL(Z/p"Z).

LEMMA 4. Let A be a closed subgroup of GLy(Z,) and h be an integer such
that h=2. If rp(A)DHY, then ADH™,

PrOOF. Since A and H™® are closed, it is sufficient to show that A~H®
is dense in H®. Since r4.(A)DH®,,

rrel(ANH ®)DH P, .
Let n be any integer with n>h. Then by

ralANH®)DH®

This shows that ANH® is dense in H™,
In the rest of this paper, we consider the case p=2.
LEMMA 5. Let V be a subgroup of SLy(Z/2°Z). Suppose that V includes

o=<f 3) and T:(Z’ f) such that

h
a=d=1, b=2 mod2? ¢=0 mod 23, (1.13)
e f 1+4 0
= mod 2¢. (1.14)
g h 8 1-4

Then VOSL(Z/2°Z)NH.
Proor. Without loss of generality we may assume

c=0, b=2, f=0. (1.15)

In fact by (1.13) ¢=0 or 8 mod 2*. In the latter case we may assume ¢=0 mod 2*
by adopting zo for ¢. Then ¢=0 or 16 mod 2°. In the latter case we may
assume ¢=0 mod2® by adopting z?¢ for 6. Then ¢=0 or 32. If ¢=32, then
we adopt z*¢ for ¢. Consequently we may assume ¢=(0. By the same process
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we see that (ag)maz(g z) and (08)%:(: 2) for some integers m and n.

(¢)™c and (0%)"r satisfy (1.13) and respectively, because 025((1) (1)) mod 22

and osz((l) (1)) mod 2¢. Hence we may assume [1.15). We can put o=<g i _1>,

— e 0 — -1 PR “1—1__ 4 .
and T_<8+16i e‘l)’ where a=a*=1 mod 2% ¢=1+4, ¢'=1—4 mod 2* and 7/

Z/2°Z. Set y=oto"'z"'. Then we have
V1 Vs
r= )
Vs Vs

vi=1+2ae(8+16:i)+2a e (84167)(1—a?),

where we have set

vy=2a(1—e?)—4(8+16i)e ,
vs=e 1(84+16¢)(a"*—1),
vi=1—2a"'e(8+167).

Since a?, ¢ %?=1 mod 2® and ¢?=1—8 mod 2°, we have

(1+16+32i —16 >
7= .
0 1—16+32;
. a® 16 _ ) . .
Since 08:<0 a‘s) and a®=a"%=1+4325, where j€Z/2°Z, we obtain
1+164-32:4325 0
o'y = ;
0 1—16432;+4325
and therefore
1+4-32:4-325 0
tiody= .
32 1432/4325
. 1 32 1432 0
16 8__
Therefore V includes o —(0 1), T m( 0 1 +32) and
1+-32{+325 0
ttoty= .
32 1+32/4325

Hence we have

1 0 1 32 1+32 0
V3< , , >:SL2(Z/2“Z)mHé5> .
32 1 0 1 0 1+32
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LEMMA 6. Let V be a subgroup of SL(Z/2°Z). Suppose that V includes o

and T such that
1 4 144 4
o= or mod 23
0 1 0 144

1 0 148 0
T= or mod 2¢.
8 1 8 148

Then VOSL(Z/2°Z)N\HE®.
PrROOF. In the same way as in the proof of we may assume that

_ a 4 _ e 0 i 2 o 3
a—(o a“)’ and r—(g e‘l)’ where ¢=1 mod 2* and e¢=1 mod 2°. Then

and

ara‘lf”1:<

1+32a-t¢ '4+32ae—32aet 4a(l—e? )
8¢ Y(a"%—1) 1—-32a7%e .

Since 32ale '=32a¢=32ae¢'=32a"'¢=32 mod 2%, 1—e¢?=0 mod 2* and ¢ ?—1=0

mod 2%, we have
1432 0
oro lrTi= .
0 1432

From this and the assumption, we have

1 0 1 32 1+32 0
D<( ), ( ) , ( >>=SL2(Z/26Z)AH.§") .
32 1 0 1 0 1432

The following lemma is well known (cf. Dickson [3]).
LEMMA 7. Let a, beQ.
(1) If a and b satisfy one of the following equations:

+a*—b*=1; —2a*—b*=1; +a’—4b*=1;

+2a?—4b*=1; +a’+4bt=1; +2a*+4b*=1,
then b=0,
(2) If a and b satisfy one of the following equations:

2a*—b*=1; +2a%4-bt=1,
then b*=1.
(3) If a and b satisfy one of the following equations:

+a?+bit=1,
then b=0 or b*=1.
LEMMA 8. (1) The Q-rational points on the curve Y*=X*—X are (X, V)=
(00, 00), (0, 0), (1, 0) and (—1, 0).
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(2) The Q-rational points on the curve Y?*=X*—4X are (X, Y)=(co, 00),
©0,0), (2,0 and (—2,0).

(3) The Q-rational points on the curve Y:=X34+X are (X, Y)=(c0, c0) and
0, 0).

(4) The Q-rational points on the curve Y?=X4+4X are (X, Y)=(co, c0),
©,0), (2,4) and (2, —4).

ProOF. From Table 3 and Table 4 in Birch and Swinnerton-Dyer it
follows that free rank of the group of the Q-rational points on each one of
curves Y =X*—X, Y2=X3—4X, Y*=X*+X and Y?=X?44X is zero. Therefore
Q-rational points on these curves are of finite order. Here we use Theorem 22.1
in Cassels [2]: If (x,y) is a point of finite order defined over Q on Y%=
X4+AX+B (A, BeZ), then x, yeZ and either y=0 or y2|(4A®*+27B%. Let
(x, y) be a Q-rational point on Y?=X*—X, and y+0. Then x, yeZ and y*|4.
Therefore y is prime to 3, and x*—x=y?=1 mod 3. This is a contradiction, and
(1) is proved. In the same way, (2) is proved. Let (x, y) be a Q-rational point
on Y*=X3+X, and y#0. Then x, y=Z, and y*|4. Therefore y is prime to 5,
and x*4x=7y*=1 mod5. This is a contradiction, and (3) is proved. Let (x, y)
be a Q-rational point on Y?*=X°®+44X, and y+#0. Then x, yeZ, and y%|44
Therefore y? is one of 1, 2% 2% 2% and 2% But x®+4x mod 13 is not any of
1, 22, 2% and 2% Hence y*=2* and (4) is proved.

LEMMA 9. Let x be transcendental over Q, and f(x), g(x)=Q(x). Let n be
an integer =3, and {,n be a primitive 2"-th root of 1. Let a=+/2 or ~/=2.
Then

Q(x, Czn, \/f<—x)):f"l_Q(x, Czn: ‘\/ag(x» .
PROOF. Assume that
Q(x, &on, VI(xX))=Q(x, {,n, Vag(x)).

We may assume that f(x), g(x)=@Q[x], and they have no multiple roots as poly-
nomials in x. Then there is an element ¢ of Q(x, {,»)* such that c*f(x)=ag(x).
Since f(x) and g(x) do not have multiple roots, c€@Q(,,)*. Comparing the co-
efficients of the highest terms, we have c?=ac’, where ¢’Q*. This contradicts

that +/ac’ Q).

2. Proof of Theorem 1.

Let E be an elliptic curve defined over @, and 0 be the zero element of E.
We assume that E is the elliptic curve:

Y’=X*+AX+B, A, BeQ, 4A*4-27B*+0,

and 0=(oo, o) (cf. Cassels [2]). Assume that E has no complex multiplication.
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Then ;=12%4A%)/(4A*+27B?% is neither 0 nor 12% and AB#0. Put a=
277/4(7—12%. Then the invariant of the elliptic curve E’:

Y*=X'—aX—a

is j. Therefore there is an isomorphism 1 of E to E’ defined over @. From
Theorem 7.1 in Cassels [2], there is an element =@ such that —a=pt4, —a
=p°B, and

Alx, y)=(u2x, py)

for (x, y)eE. Since ABa+0, p*<Q*. Hence the points of order 2 on E’ are
all @-rational, if and only if the points of order 2 on E are all @-rational. Let
N be a positive integer, and (u,, u,) be a base of Ey over Z/NZ, where Ey
denotes the kernel of the multiplication by N on E. Then (Au,, Au,) is a base
of E%. By Q(Ey) and Q(E%) we denote the fields which are generated by the
coordinates of all elements of E and EY respectively. We identify Gal(Q(E y)/Q)
and Gal(Q(E%)/Q) with subgroups of GL,(Z/NZ) having (u,, u,) and (Au,, Au;)
as bases respectively.
PROPOSITION 1. Let the notations be as above. Then

Gal(Q(Ev)/@) {1.} =Gal (Q(EY)/@){£ 1.},

where 12=((1) (l))eGLZ(Z/NZ).

PROOF. Let ,=Gal(Q(Ey)/Q) (CGLyZ/NZ)), and ¢ an extension of o, to
an automorphism of @. By o, we denote the restriction of ¢ on Q(Ey). Then
0.€Gal(QEN)/Q) (CGLYZ/NZ)). We view o, and o, as automorphisms of

¥ and Ey respectively. For (x, y)eEuy,

A leooeA(x, y)=A"teao(p’x, 1*y)
=21 px, (1))7y°)
=(x9, £~ ey,
since p*@Q*. Then A 'eg,cA==+0,. Therefore g,=Gal(Q(Ey)/Q){*1,}, and
Gal(Q(EW)/Q) {1} CGal (Q(Ey)/@){£1,}.

In the same way, we have

Gal(Q(Ey)/Q){+1:} CGal(Q(E)/Q){£1.}.

PROPOSITION 2. Let n be an integer =6. Let V be a subgroup of GLy(Z/2"Z)
such -that

det (V)= {the determinant of o | o €V}=(Z/2"Z)*, (2.1)



200 K. NisHioOKA

—1,eVCHY, (2.2)
VIHIPNSL(Z/2Z). 2.3)

Then V 1is conjugate to a subgroup of a group A, where ACHS, det(A)=
(Z/2"Z)*, and A satisfies one of the following:
(1) ADHPNSLL(Z/2"Z),

1+4 0 1 2
rn,s(Ar\SLz(Z/Z”Z))=<( 0 ), ( )>{i12};

1+4 4 1
czO};
() ADHPNSLL(Z/2"Z),

1 0\ /1+4 0
rn.s(Ar\SLz(Z/Z”Z))=<< >, ( )>{i12}-
4 1 0 1+4

PrROOF. By and it follows that

() ADHNSLy(Z/2"Z),

c

b
rn(ANSLAZ/2"Z ))={<a d) €SLA(Z/2'Z)NH P

T o VNSLAZ/2"Z) PHF N\SL(Z/2°Z) . (2.4)
By we get 2<|r, (VNSLAZ/2"Z))| <2°. We show that
170, VASLL(Z/2"Z))| =2 or 2. (2.5)

Indeed, suppose |7,..(VN\SLL(Z/2"Z))|=2°. Then 7,V NSL(Z/2"Z)) =
HMN\SL,(Z/2*Z). There are two elements ¢ and ¢ of VN\SLy(Z/2"Z) such

= 1 2 2 — 1 0 2 2= 1 4 3 4=
tl;at g_(o 1) mod 2% and z-:(z 1) mod 22. Then ¢ _(0 1) mod 2% and ¢'=
(8 1) mod 2¢. This contradicts by Lemma 6. Hence is proved.

(I) Suppose |7, (VNSL,(Z/2"Z))|=2% In this case, we see that r, (VN
SLy(Z/2"Z)) is one of the groups:

PN L Y N i 3

by [2.2). The second group and the third group are conjugate to the first one

by the inner automorphisms given by (1 (1)) and (_(1) (1)> respectively. There-

fore we may assume that

‘ -1 0\ /1 2
70 o(VNSL(Z/2"Z)) =<( ), ( )> . (2.6)
0 -1/ \0 1

Here we have two cases:
(.I) There is an element ¢ of VN\SL,(Z/2"Z) such that
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1 2 * *
o= mod 2?2 and o= mod 2°; 2.7
0 1 4 *
(I.LII) There is an element ¢ of VNA\SLy,Z/2"*Z) such that
1 2 * *
o= mod 2¢ and a‘:‘( mod 2°. (2.8)
0 1 0 *
Let us consider the case (I.I). Let 7, be an element of SL,(Z/2"Z) such that
_(1+4 0 s W
0 _.( 0 14 4) mod 2° and N,, denote the normal subgroup of Hi" generated
by \J z7'7,r. We show that
reH;ll)

7o sV NyyN\SLAZ/2"Z)) PHFP N\SLAZ/2°Z). (2.9
Indeed conversely let us suppose rn,s(V-N,omSLz(Z/Z"Z))DHéz’mSLZ(Z/ZsZ).
Then there are z<V and y €N, such that ryeSL,(Z/2"Z) and rrz(l 0) mod 22,

4 1
Since N, CSLyZ/2"Z) and rn,s(N,0)=<(l_{(_)4 114>>, we have that 7
VNSL.(Z/2"Z) and

T= L0 or 1+4 0 mod 25,
(4 1 4 1+4

Therefore 7, (VNSL,Z/2"Z)) includes ¢? and z% and satisfies the assumption
of Lemma 6. This contradicts [2.4). Hence is proved. implies that

1+4 0 1 4
P oV -NeeN\SLo(Z/2" Z)NH =<( ) ( >>

0 1+4 0 1
Therefore
144 0 1 2
Tn,s(V-Ny, "SLy(Z/2" Z)) =<< ) ( )> {£1:}.
0 144 4 1

Put A=V N, -(HPNSL,Z/2"Z)). Then det(A)=det(V)=(Z/2"Z)*, H{PDA
DV, ADHPNSLNZ/2"Z), and v, s(ANSLo(Z/2"Z))=1r,s(V - Ny y\SL(Z/2" Z))

:<(1(_)i_4 l—l(-) 4>, (;11 ?)>{—_t12}. Hence A satisfies (1) and A is a required group.

Next let us consider the case (I.II). Let &€V N\SL,(Z/2"Z), and ¢ satisfy

it o() *)mod2s then o=(" 5 T

4a+4d=0 mod 2¢, so that (1 O>_la(1 O)E(* :) mod 2¢. Therefore, by tak-

10yl 2 1 e U0 .
ing ( ) v ) in place of V we may assume that az( *) mod 2%
)mod 24, and N,

)mod 2% Since det =1, we have

2 1 2 1 144 0 0
Let 7: be an element of SL,(Z/2"Z) such that 715( 0 1—4
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denote the normal subgroup of H{" generated by \J z7'y;z. We show that

cen ()

Yol V- Ny NSLAZ/2"Z) DHP NSL(Z/2'Z) . (2.10)
In fact, conversely let us suppose rn, «V -Ny N\SL(Z/2"Z)DHP NSL(Z/2'Z).
Then there exist teVN\SL(Z/2"Z) and y<N,, such that T?’E<1 O) mod 2.

8 1
We see that rn,4(Nr1):<<1_l(_)4 10_ 4)> Therefore t=7, mod 2, where 7, is one of

— 1 1+8 0
(Hz—;l 1O—4>' (1 84 114)’ (8 (1)> and (E 1+8>'

In any case, we see that 7,V \SL.(Z/2"Z)) satisfies the assumption of
5 or the assumption of Lemma 6. This contradicts [2.4). Hence is proved.

Since rn,4(a4):((l) 513) and rn,4(ﬁ):(lg_8 14(—)8)' (2.10) implies

1 8 [1+8 0
no(V-NyNSLAZ/2" Z))NH P :<(0 ) ( >>

1 0 1+8
Since
14 1+4 0
Tn.o0%)= and  7n,4(7:)= €7 sV -NyNSLAZ/2 ZNAHE
01 0 1+4
we have
1 4 144 0
PusV - NyNSLo(Z/2* D) H :< : > .
0 1 0 1+4
Therefore

Tn oV 'erﬂSLz(Z/ZnZ)):<7’n,4(0)y Yno (P> {12}

:{(a b)eSLZ(Z/Z“Z)mHi“ c:O}.

c d

Put A=V N, -(HPN\SLZ/2"Z)). Then we see that A satisfies (2) and A is a
required group.

(I) Suppose that |7, .VASLZ/2"Z))|=2. The assumption [2.2) yields
Tno(VNSLAZ/2" )= {x1,}. I 7, (VNSLAZ/2"Z)DHP N\SLy(Z/2°Z), then
n. e VNSLA(Z/2"Z)DH& NSLL(Z/2°Z) by and this contradicts
Therefore v, d(VNSL(Z/2"Z) DHP NSLy(Z/2Z), so that |r,, (VNSL,Z/2"Z))
NHP | =28 1 |10, s(VNSLAZ/2" Z) NHP | =2°, then v, o VASL(Z/2" Z) NH®
is one of the following 7 groups:

oy bl el G L)
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1 4 1+4 0 1+4 0 1+4 4
elf N el )
0 1 4 1+4 4 144 0 1+4
1 0 1+4 0 1 4 1+4 0
I/V1:< ) >, I/V2:< ’ >;
4 1 0 14-4 0 1 0 1+4
1 4 1+4 0
I/V3:< ) >.
4 1 0 1+4

If 70, s (VASLL(Z/2"Z)N\H? is one of U; (1=1, 2, 3, 4), then r,, (VN\SL(Z/2"Z))
DH®NSL,(Z/2°Z) by Lemma 6. This is a contradiction to [2.4) Therefore
Tn s VASLLAZ/2"Z)NH is one of W; (1=1,2,3). If |rn,s(VNSLJ(Z/2"Z))N\H§?|
<2, then 7, (VNASL(Z/2"Z))NH{® is included in one of the groups W, W, and

W, Since W, and W, are conjugate to W, by ((1) (1)> and <(1) i) respectively,

we may assume that

7o, s(VNSLZ/2"Z))N\HP W, .
Then

Yn, o VNSLAZ/2"Z))CW - {£15}.

144 0
0 1+4

Let 7, and 7, be elements of SL,(Z/2*Z) such that 7’25(
7s E(i (1)> mod 2°. By N, (i=2,3) we denote the normal subgroup of H"

) mod 2° and

which is generated by \UJ z7'yy;z. Then we have
rEH#)

7n,s(V Ny NeyN\SLo(Z/2" Z))
=70 (VNASLAZ/2"Z))- Ny, Ny ) =W+ {£1,}.

Put A=V -N,,-N,;-(HPNSL,Z/2"Z)). Then we see that A satisfies (3), and A
is a required group.

PROPOSITION 3. Let E be an elliptic curve defined over Q. Assume that E
has no complex multiplication and the points of order 2 of E are all Q-rational.
Identify Gal(Q(E,»)/Q) with a subgroup of GL(Z/2"Z) by taking a base of E,,
over Z)2"Z. Then

Gal(Q(E,»)/@){£ 1} DHPNSLy(Z/2"Z),

for any integer n=6.

ProOOF. By we may assume that E is the curve E(a): Y=
X?—aX—a, where a=Q and a(4a—27)+0. Let Q(«) be a rational function field
of one variable a over Q. Let E(a): Y:=X?—aX—a be an elliptic curve defined
over Q(a) with zero element 0=(oco, o0). By O we denote the specialization ring
of the specialization a—a over @ and p denotes the maximal ideal of . Since
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asq, O/p=Q. We denote by Q(a, E(a),,) the field which is generated by «
and the coordinates of all elements of E(a),.. Let & be the integral closure of
O in Q(a, E(a),,), and P a maximal ideal of & lying above p. Then we regard
O/p as Q and &/P as a subfield of @; Q=0/pCS/PBCQ. If (x, y)eE(a),» and
(x, y)#(o0, 0), then x, y€S, (X, §)€E(a),» and (X, y)# (oo, c0), where “-”
indicates the reduction mod . Therefore the reduction mod P induces the
homomorphism: E(a),»—E(a),» whose kernel is trivial. Since | E(a),,|=|E(a),l,
this homomorphism is an isomorphism. Let Vg be the decomposition group of
P: Vye={ocGal(Qa, E(a),)/Qa))|P°=P}. Then for each s=Vyp we can
associate an automorphism & of &/ over L/p in the natural way, and the map
given by o¢—¢ induces a homomorphism ¢: Vg—Gal((&/PB)/(D/p)). We know
that ¢ is surjective (cf. Lang Chapter 1). Assume that (u,, u;) is a base
of E(a),, over Z/2"Z. Let o<V4q, and

a ’b
(ouo, ou)=(u,, ul)( >,
¢ d

b

where (g J

)eGLZ(Z/Z“Z). Then

a b
(G, 5'121):(770, 1/71)( )
¢ d

Therefore ¢ is an isomorphism and &/P=@Q(E(a),,). If we denote by L the
fixed subfield of Q(a, E(a),,) under Vg, then (LN&)/(LNP)=0/p=Q (cf. Lang
[6], Chapter 1). Identify Gal(Q(«, E(a),»)/@Q(a)) (respectively Gal(Q(E(a),.)/®))
with a subgroup of GL,(Z/2"Z) by taking the base (u,, u,) (respectively (&Z,, ;).
Then Vg=Gal(Q(E(a),,)/Q). Let {,, be a primitive 2*-th root of 1. It is well
known (cf. Shimura [9], Chapter 6) that

Gal(Q(a, E(a),n)/Q(a))=GLo(Z/2"Z),
Qa, E(@),)NQ=Q(,)=fix(SLZ/2" 7)),
fix({£1.})=Q(a, {x} s, y)eE(a)zn) s

where fix () denotes the fixed field of Q(«, E(a),,) under . We denote Vg {+1,}
by V. Since {,»€Q(E(a),») and {5,={" for o=Gal(Q(E(a),,)/Q) (=Vg), we
have det(V)=(Z/2"Z)*. Since the points of order 2 of E(a) are all @-rational,
we have VCH{’. Assume that the consequence of is false, namely

V=Gal(Q(E(a),n)/@){x 1} PHP NSLy(Z/2"Z).

We shall prove that this assumption derives a contradiction. By
V is conjugate to a subgroup of a group A in GL(Z/2"Z), where ACH,

det(A)=(Z/2"Z)*, and A satisfies one of (1), (2) and (3) in Then
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we may assume VC A by selecting a suitable base (u,, u;). It follows that
L=fix(Vg)Dfix(V)Dfix(A)=F D Q(a) .
Since the residue class field (LNS&)/(LN\P) is equal to Q,
(FN&)/(FNP)=Q. (2.11)
We determine F for A of each type and deduce a contradiction to [2.1I). Put

2”'4ui:(hi, \/hﬁ—ahi—a) »
20y, =(gi, Vgi—agi—a),

o (2.12)
1 2ty =(f,  fimafi—a),
2" 'uy=(es, 0,
where =0, 1, and
(€0, 0)+(e1, 0)=(es, 0).
By (1.11) and (1.12),
fozeo‘}"\’ (eo“‘élj(a“r‘ézj ’
f1:€1+\/(?1‘6’2)(z1‘”’é;) s
(2.13)

gi:fi+\/(fi—@1)(fi““82)+\/Ui—€2)(fi~eoj+\/(fi_‘eo)(fi"el) ’
hi=gi+v(gi—e)(gi—es)+V(gi—e)(gi—el)+V(gi—eo)(gi—er) ,

where 7=0, 1. In the following, as a square root of (¢,—e;)(eo—es,), (e1—ez)(e;—ey),

-+, (gi—eo)(gi—er) we use v(e,—er)(es—es), vV(er—es)(er—eo), -+, V(gi—eo)(gi—ey)
in (2.13) respectively. Since ACH, we have
F=fix(A)Dfix(HP)=Q(a, E(a),)=Q(«, e, €1, ¢;). Put s=1+2¢,/¢,. Then

eo=—(s"+3)/(s*—1),
e;=—(s*+3)/2(s+1), (2.14)
e,=(s*+3)/2(s—1),
so that Q(«, E{a),)=Q(s). We have
eo—e;=(s*+3)(s—3)/2(s*—1),
eo—e,=—(s"+3)(s+3)/2(s*—1), (2.15)
e;—e,=—(s*+3)s/(s*—1).

We divide the consideration into 3 parts (I), (II), and (Ill) corresponding to each
case that A satisfies (1), (2), or (3).

(I) Suppose that A satisfies (1) in Put
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F=fix(A-(HPNSLZ/2"Z))).
Then by we have
CF: Q(s)I=[H : A-(HP N\SL(Z/2"Z))]
=[det(H7"): det(A-(HPNSLy(Z/2"Z)))]
XLHPNSLAZ[2VZ): (ANSLZ/2"Z))-(H3P NS L(Z/2" Z))]

1w NHPNSLy(Z/2"Z)]
T ANSLy(Z/2"2))-(HP N\SLA(Z/2" 2))|

=1X l_n[ |70, W (HPNSL(Z /2" Z)NH PV |
TS [P a(ANS LA Z/2° 2) - (HP ASLAZ[2 Z)NH 7]

:1x1x2xji1:2. (2.16)
=3

We obtain also
LF/(C,n): Q(s, £yn)]
=[HIPNSLAZ/2"Z): (ANSLy(Z/2"2))-(HP NSLo(Z/2" Z))]
=2. (2.17)
For any o =(ANSL(Z/2"Z))- (HP N\SL(Z/2"Z)),
(2" 2uy)=2""u, or 2" *uy-+(e, 0).

Therefore by Lemma 1|,

V(eo—es)(eo—es) X (ANSLAZ/2"Z))-(HP NSLZ/2" Z)))

:FI(C2n> .
In the following, x/m denotes Ve —e(es—ey) .
Cy—¢€;

—& €o— 8y
py— =(—=1)(s—3)/(s+3) and F'({,n) =Q(s, L,n, vV (—1(s—3)(s+3)), by [2I7)
0 2
On the other hand, by there is an element f(s) of Q[s] with no multiple
roots such that F'=Q(s, +/f(s)). Then

The equations (2.15) give

Q(S: Czny \/JACQ):Q(S, an; \/(_l)(3+3)(8—3» .

Therefore f(s)=c*(—1)(s+3)(s—3), where c=Q(s, {,,»)*. Since neither f(s) nor
(—1)(s-+3)(s—3) has any multiple root, we see cc@Q((,,)". Since c*=Q, we may

¢y—e —_—
C 2 ty=a/—1ty, ty=
0——€s

v/ 2t and t,=+/—2¢;. Then F’ is one of Q(s, t;) (1=1, 2, 3, 4). By (2.15) we

assume that ¢ is one of 1, —1, 2 and —2. Put tlz\/
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see Q(s, t,)=Q{;). Therefore F’ is one of Q(t;) (:=1, 2, 3, 4). Since A satisfies
(1) in ADH®P NSL(Z/2"Z) and

1+4 0 1 2
rn,s(AmSLz(Z/Z"Z))=<( ) ( )> {£1.}.
0 1+4/ 4 1

Let o ANSLL(Z/2"Z) with rn,3(a):(1

4
rn,s(T):(lg_[l H(‘)4 . Then we see

f) and 7€ ANSLy(Z/2"Z) with

{ 7(2"'3u0)=2"'8uo+(90, 0)7
0(2"’3u0)=2"—3uo+(91, 0) ’
{ 72" *u)=2""u,,

(2" 2u)=2"""u;+(e,, 0).
Therefore by Lemma 1,

{ V(fo—e)fo—es) =V (fo—e)(fo—es), 2.18

V(fo—e)(fo—e) ' =—v(fo—e)(fo—es),

{ V(e1—es)(er—eo) '=+/(er—es)(e1—ey) , 2.19)
V(e1—es)(e1—ey)’ =—~/(ex—ez)(er—ey) .

Since V/(fo—e)(fo—es), V(ei—en)(er—eo)€Q(a, {x}z, epiaqn)=fx({*1}) and
V(fo—e)(fo—es), V(er—es)(ei—en) €Q(a, E(a),)=1ix(H ), (2.18) and (2.19) imply
that

V(fo—e)(fo—es) XV (er—es)(es—e0) Efix(ANSLo(Z/2" Z))=F (€,n) -

In the same way as before, we see

CF(,n): F/(C)]=[F: F']=2. (2.20)
We have

fo—er Jeo—er ,

fo’“ez _«/eo__e2 “tIEF (Czn),

er—es 28,

P =(ti—1/t1.

Then, since fo—es, e1—eoEF'(C,n), we have
FCn)DF Cpny VEG—D)=Qts, {yn, VEETD)).

By we have F(,.)=Q(, {,n, V1,(t2—1)). On the other hand, by
there exists an element f(#;) of Q[t;] with no multiple root such that F=
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Qt;, ' f(t;), where F/'=Q(;). In the case F’'=Q(t,), we obtain
F()=Qt, {ypn, VEE—1)=Q(t1, {;n, vV F(t1) .

In the same way as before, we may assume that
flt)=c%#2—1), where ¢>==+1 or +2.

Since E(a) is elliptic, ¢, and +/f(t,) are integral over the specialization ring 9,

i.e,t;, Vft)ES, so that t, Vft)eFNS. By (X, =@, Vft)) is a
finite @-rational point on
Yi=c2X(X?2—-1).

Then, by £=0 or H=1. If =0, then (<°=2)=0. If ##=1, then

€y—E€>

(2=%)=1, so that 7,=2,. These contradict that E(a) is elliptic. 1f F'=Q(t),
0T €2

then
F(Cn)=Q(s, Lyn, VELE+1)=Q(ts, Cyn, vV [(22)) .

Then we may assume that f(t;)=c%,(t3+1), where ¢?==+1 or +2. In the same
way as above, (X, V)=, v/ f(t,)) is a finite @-rational point on

Y?=c2X(X?+1).

Then, by f,=0 or #2=1. If {,==0, then #;=0. If #¢=1, then #2=—1, so
that ¢,=0 and a=0. These contradict that E(a) is elliptic. If F'=Q(t,), then

FC,n)=Q(ts, Lyny V'V 21,5—2)=Q(ts, Lo, VI(E5)).
This contradicts If F'=Q(t,), then

This contradicts
(II) Suppose that A satisfies (2) in Put

F'=fix(A-(H®PNSL(Z/2"2))),
F'=fix(A-(HPN\SLAZ/2"Z))) .

In the same way as in the first case, we see that F’ is one of Q(t;) (:=1,2, 3, 4),
where t; (=1, 2, 3, 4) are the same as ¢; (=1, 2, 3, 4) in the first case. We have

LF”: F/]=[F"(C,n): F/(Cn)]=0F: F71=[F ) : F7(Cw]1=2.

Let 6€ ANSL(Z/2"Z) with rn,4(0):<(1) ?) and ye ANSL(Z/2"Z) with v, (1)

=('* 0, Then
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o(2" %y )=2""%u,,
(2P 3u0)=2"3uy+(ey, 0).
This implies that /(fo—e)(fo—es) € AiX(ANSLAZ/2"Z))-(HO NSLY(Z)2"Z)))=

F"(C,n), since v, s(ANSLy(Z/2"Z))=<r7n 5(0), 7n,s(1)> {£1:}. We saw that ;0:21
=t,. Put v

Vi =yJfime _V{f—e)fo—er)
1= f = .

0 €2 f0—92
Then, since f,—e.€F’'({,»), we have

F”(Czn>:Q(tl, Czn; Vi) .

If F/'=Q(t,) or Q(t,), then we have a contradiction to Therefore F’
=Q(t,) or Q(t,). Put :

\/iT:ULn \/;1‘U1,1:U1,2y \/7247)1,1:7)1,3, '\/:277)1,1:7)1,4,
’\/{2—:1}2.1, \/:fvz,1zvz,2: \/ 2‘?)2,1:7)2,3, \/:27”2,1:1/2,4 .

Then F”=Q(v;,;), where 7 is one of 1 and 2, and jisoneof 1, 2,3 and 4. Nextv
we determine F. The genus of F as a function field of one variable is 1 by an
easy computation (cf. Shimura [9]). Set

a b
B:{( )ESLZ(Z/Z”Z)AH;” a=1 mod 23, ¢ =0 mod 24}.
d

C
148 0 1 2
Vn,4(B{i12}):<( ), ( )>{i12}-
0 148 0 1

Then 2=[ANSL«(Z/2°Z): B{+1}1=[fx(B{+1}): F(C,] and fix(B{+1})=
F(&,n, V(fo—e:)(fo—eo)). We have

7fo—€o _ \/(?ofel)(eo_éy _7vt17
fo—es N eo—ea+«/(eo—el)(eo—ez) - 14+t

We have

Put
\/Cfo_ez)(fo_‘eo)_\/f;—_e;_ﬁ '\i<
fo_ez o fo"“ez B '\/Z‘l"f‘l ’

where v/#; =v;,;. Since F”({,2)=Q(,n, V1, )TF(,s), we get
fix(B{£1})=F(,n, vV(fo—e)(fo—e))=F(,n, vVt:+1).

We see v/(go—ei)(go—e,) Efix(B{=*1,}). Noting g,—e.=fix(B{+1,}), we have
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\/§——e‘ efix(B{+1,})=F(,, Vi +1).

0 €2

Therefore, there are two elements ¢ and r of F({,») such that

BE (gD 22D
go—¢€2
We have
fo—er fo—es fo—eo fo—eo ,/fo—e
Lo—e :—_,fo_ez +~/fo_€2 +\/fo—€2 +\/fo_€2 \/ 0@
Bo—¢€2 fo—en fo—eo fo—eo, [fo—es .
l+«/f0_€2 +‘/fo"‘€2 +Jfo_€2¢ 0 €2

=Vt —ti+ V1 W —t)VE ]
=g +r¥t,+ 1) +2gr vV +1. (2.22)
By and

@+t =~t —t+Vt b, 2qr=+/t; —t,
and so

=Vt —t1+Vt t+1)/2.

If g*=(Vh —tib/Et—1)/2=VEWE-1Y2, then FEn)=QWi, L, V1),
since F”(C,,)=Q(~/ti, C,n) and [F(C,): F”({,n)]=2. Therefore the genus of

F(,») is 0. This contradicts that the genus of F({,,) is 1. Hence =1t +1)/2,
so that

FCn)=Q('t, Lpn, ¥V VH(t:+1))
=Q(vy,3, an) '\/01,1(7)1, 2+HD).

Since [F: F”]=2 and F”"=Q(v;,;), where 7 is one of 1 and 2, and ; is one of 1,
2, 3 and 4, there is an element f(v; ;) of Q[v; ;] with no multiple root such that

F=Q.;, ¥V f(w:,).
Then

F(an):Q(vi,J’; sz \/7(T”>)
=Qvs, 5, Lyn» V1,1(v1,*41))

If F”=Q(v,,;) for a certain j, then we have a contradiction in the same way as
in the first case. If F”"=Q(v,,,), then

Q(vs,1, an, \/f(vz,1))—_—Q(‘Uz,1; an; \/021(02;21\7:1)) .
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Since f(vs,1) and v,,1(vs,,*++/—1) have no multiple roots, there exists c€Q((,.)”
such that
f e, 1)=c%vs,1(v2, "+ +/—1) .

This contradicts that f(vs,,,)€Q[v,,,]. In the same way, if F”=Q(v,,;) for a cer-

tain j, then we have a contradiction.

(III) Suppose that A satisfies (3) in [Proposition 2, Let r:(é ?)ESLg(Z/Z”Z )

By N, we denote the normal subgroup of H{’ which is generated by U )r'lrr
(1
Put TEH p

—fix (A Ny (HP NS Lo Z/2" 2))),

F'=fix(A-(HPNSL,(Z/2"Z))).
Then we see

LF: F7]=[F": F]=[F": Q(s)]=[F(Cn): F"(C,n)]
=[F"Cp): F'Cn)1=LF"(C,n) : Qs, Lyn)]=2.

The genus of F”({,,) is 0 (cf. Shimura [9]), and therefore the genus of F’({,,)
is 0. Since det(A)=(Z/2"Z)*, FNQ=F'nQ@=F""Q=Q. Since

Yu,d(ANSLZ/2" Z))- Ny (HP NS Lo(Z/2" Z)))

A

o).
Put _ee_o—ez =g(s){h(s)}? where g(s) is an element of Q[s] with no multiple
0T €1

we have

oMy

F/(C)=Q(s,

root and h(s) is an element of Q(s). Since [F’: Q(s)]=2, there is an element
f(s) of Q[s] with no multiple root such that F’=@Q(s, v/ f(s)). Then we may
assume that ¢*f(s)=g(s), where ¢*=-=+1 or +2. Hence

eF N&.

Since the genus of F’ is 0 and (5, v/ f(s)) is a Q-rational point on the curve
Y?=f(X), there is an element t<F’ such that F'=@(t). Since

Tas((ANSLo(Z/27Z))-(HP NS Lo(Z/2" Z))={£ 14},

=t G V7).

__eo

we have
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Hence in the same way as above, we have

F”:Q<t: vO):Q(v),

€18y
€1—¢@

where voz(l/c’)\/ , and ¢’?’==+1 or +2. Since

"a.s(ANSLoZ/2"Z))-(HiP NS L(Z/2" Z)))

1 0 144 0
4 1 0 144

[ R

1— €3
fl_eo

we have

—e e1—e e1—¢e
where fr=es :\/ 1" "2 On the other hand x/ LT
fi—eo e1—e, e1—ep

Noting [F: Q)]=[F: F”]=2, we obtain ¢’?>==+1 by Lemma 9 Then
F(Czn):Q(vy an, \/_C/TO):Q(U; Czn; '\/170) ’

=c’y,, Where v,=Q).

so that
F=Q(, v),

where v=(1/¢")a/vo, and ¢”?*==+1 or £2. We have

_of €0 €2
=

€o—e4
vt =c" "%
:C//—4c/—2( el_e2_>
e1—e,
. €o—E€s e,—e; 2 o n4 12,4 2 /2
Since o —o -4 pa— -=1, we have c2w?+c¢”*¢’?v*=1, where ¢*=-+1 or +2, ¢
0T €1 17— €0

=41 and ¢”*=1 or 4. Since w, vEFNS, (X, Y)=(w, ) is a finite Q-rational
point on the curve
X"ty =1,
where ¢*=241 or +2, and c¢”*¢?*=-+1 or +4. If ¢"*¢’*=44, then v=0 by
and therefore (e—‘“zi)zo. This contradicts that E(a) is elliptic. If
]

(2]
¢”*¢’*=+1, then v=0 or p*=1 by and therefore ( e ):0 or 1. This

1 0
contradicts that E(a) is elliptic. We deduced a contradiction in any case of (I),

(I, (III), and so complete the proof of
By we have obviously the following proposition.

PROPOSITION 4. Let E satisfy the hypothesis of Theorem 1, and notations be
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as above. Then
Gal(Q(E,+)/Q)DSLAZ/2"Z)NH Y,

for any integer n=7.

PROPOSITION 5. Let E satisfy the hypothesis of Theorem 1, and notations be
as above. Then

Gal(Q(E,.)/Q)DH,

for any integer n=8.

PROOF. Let n be an integer =8. Put V=Gal(Q(E,»)/Q). Assume that
VPHPD. By

VAHPDOHPNSL(Z/2"Z) .

By Tanei(V)DHER, for any h such that 2<h<n—1. For any integer
h such that 6<h=<n—1, since rp s :(V)DHMNSL(Z/2"Z), we have

Yo aes(VNHOINH =HIANSL(Z/2"Z) .
Therefore by

\[VNHP |=|HPNSLZ/2"Z)|.
Hence
VAH®=H®PN\SLLZ/2"Z).

On the other hand, VNHP=Gal(Q(E,.)/Q(E,). Let e€VNHP=HP N
SLy(Z/2"Z). Then (5,={4%"={,n. So {,nEQ(E,). We have Gal(Q((,.)/Q)=
Gal(Q(E,s)/Q)/Gal (Q(E,s)/QL,n). If o€Gal(Q(E,:)/Q)/Gal(Q(E,:)/Q(,r)), then
0”=1, since Gal(Q(E,)/Q)CH. Since Gal(Q,.)/Q=Z/2ZDZ/2"*Z, we
have n—2=5. Therefore if n=8, then Gal(Q(E,,)/@)DH V. Let n=8. Then

77.5(Gal (Q(E,»)/@)=Gal (Q(E 5)/Q)DH:" .

Hence, by
Gal(Q(E,.)/@)DHP .

We can now complete the proof of our Theorem. We have
re(m(G))=mo(G)/(H® N7o(G))
=Gal(Q(E,»)/Q)
DH{,

by where G is the Galois group of @/Q, x, is the 2-adic repre-
sentation attached to E, and 7; is the natural homomorphism from GL.(Z,) to
GL,(Z/22Z). Since m,(G) is a closed subgroup of GL4(Z,), we obtain z,(G)DH ™,

by Lemma 4
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3. Proof of Theorem 2.

Let E be an elliptic curve defined over @, and Q be the zero element of E.
Assume that the points of order 2 are all Q-rational, and E has a Q-rational point
of order 8. From Kubert [4], such elliptic curves are parametrized in the fol-
lowing way by variable «:

E(a): y*+(1—c)xy—by=x3—bx*,

where
b=02d—-1)(d-1),
c=2d—1)d—1)/d=b/d,
d=a8a+2)/B8a®*—1),
and

d(d—1X2d—1)(8d*—8d--1)
(=2a(4a+1)2a+1)8a’*+4a+1)(8a’*+8a+1)*/(8a*—1)%)
#0.

We consider E(a) as an elliptic curve with the zero element (oo, o), defined
over the rational function field Q(«) of one variable ¢ over Q. Then we may
consider that E=F(a) and 0=(co, o), where aQ, 4=2a(4a+1)2a+1)8a’*+4a
+1)(8a*+8a+1)%/(8a*—1)*+0, i.e., E(a) is the elliptic curve obtained through
the specialization a—a. We see that (0,0) is of order 8, —2(0, 0)=(b, 0) and
—2(b, 0)=(d(d—1), d(d—1)?) on E(a). Put

eo=d(d—1)=2a(4a+1)2a-+1)/(8a*—1),
e;={4a+1)8a’+4a+1)/16a*8a*—1),
e;=—2a(2a+1)8a’+4a+1)/(4a+1)*8a’*—1) .
Then the points of order 2 on E(a) are
(s, —((1—c)es—b)/2) i=1,2,3.

Let 2u,=(0, 0) and 8u;=(e;, —((1—c)e;—b)/2). Then (u,, u,) is a base of E(a),s
over Z/2*Z. Let identify Gal(Q(«a, E(a),,)/Q(a)) with a subgroup of GL,(Z/2*Z)
by taking the base (u,, u;). Then we can see easily that

b
Gal(Q(a, E(a),s)/ Q(a))Z{(a d)GH &P
(4

a=1, ¢=0 mod 23},

Q/WQ(CV; E(a)24) :Q(‘:24) .
Put
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a b
e o
¢ d

PROPOSITION 6. Let E be an elliptic curve defined over Q. Let the points
of order 2 on E be all Q-rational, and E have a Q-rational point of order 8.
Then we have

a=1, ¢=0 mod 23} .

Gal (Q(E,.)/Q)=B

with a suitable base of E,,.

PrROOF. Let the notations be as above. Then we may assume that E=FE(aq),
where a=Q. By O we denote the specialization ring of the specialization
a—a over @ and by p the maximal ideal of ©O. Let © be the integral closure
of © in Qa, E(a),), B be a maximal ideal of & lying above p. In what
follows we regard QDOS/BDOO/p=Q. Let Vg be the decomposition group of P.
Then by the same reason as in the proof of it is sufficient to
prove that Vg=DB. Assume that Vg#B. Since B is a 2-group, there exists a
subgroup A of B such that ADVg and [B: A]=2. Put F=fix(A4). Then by

the same reason as in the proof of we have (FN®)/(FN\P)=Q.
Next we determine F. Since [B: A]=2, ADB? where B? is the group gener-

ated by {0¢% ,e5. We have easily

a b
o G
¢ d

Put K=fix(B?. Then u, and 2%u, are K-rational, where 2u,=(0,0) and 2-2%u,
=(e;, —((1—c)e;—b)/2). By the assumption that the points of order 2 on E(a)
are all Q(a)-rational, we see v/0—e,, v0—e;, vVe,—e, and vVe,—e,= K, where

a=1, ¢=0, d=1 m0d23}.

—e,=—2a(4a+1)2a+1)/8a’—1)%,
—e;=—(4a+1)8a’+4a+1)/16a*8a*—1),
e;—eo=—4a+1)%/16a*8a*—1)?,
e;—e;=8a’+4a+1)*8a’+8a+1)/16a*(da+1)*Ba’—1).

Since det(B)=<{1+8)C(Z/2‘Z)*, {,=K. Therefore +/—1,42<K. Since
[K: Qla)]=[B: B*]=28/2°=2°% we have

K=Q(a, V=1, V2, Valat1)2at1),
Vda-FD)(Barbat 1Ba*—1),

V(8a+8a+1)8ar—1)).
Since [B: A]=2 and ADB? we have [F: Q(a)]=2 and FCK. Hence there is
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an element 5 of F such that F=@Q(a, ») and 7’ is one of the following:
) 7 (#F1);
(1) iBa*—1)8a’+8a-+1);
2) ia(da+1)(2a+1);
3) (Ba’*—1)(8a’+4a+1)4a+1);
4) 1Ba*—1)8a’+4a+1a(2a+1);
) ialda+1)2a+1)8a’—1)Ba’+8a+1);
6) Ba’+8a-+1)Bat+4a-t+1)4a+1);
() iBa’+8a+1)8a’+4a+1)2a+1a,

where i is one of 1, —1, 2 and —2. Since det(A)=det(Vy)=(Z/2‘Z)*, Q"\F=Q,
so that 7? is one of (1), (2), ---, (7). Let h be the image of » by the canonical
map ©&—&/PB. Then (qa, h) is Q-rational, since n=FNS. Next we shall prove
that a is one of 0, —1/4 and —1/2, i.e,, 4=0, so that we have a contradiction.
In what follows, we suppose that a is not zero and it has a description a=t/s,
where s and ¢ are rational integers prime to each other with s>0. We can see
easily that a common prime divisor of any two of s, t, 4t+s, 2t+s, 8t2—s?, 8t*4
8ts+s? and 8t*-+4ts+s?, if any, is 2.

(I) Suppose %*=(1). Then (x, y)=(a, h) is a finite Q-rational point of the
curve CQ, 7):

y2=i(8x*—1)(8x*+8x+1).

Assume that 7=1 or —1. By Mordell Chapter 10 C(, 1) and
C(, —1) are isomorphic to the curve:

Vi=X*—X.

Then by we can determine the Q-rational points of the curves C(1, 1)
and C(, —1), and we obtain that e is one of —1/4 and —1/2. Assume that
i=2. Then 2(64t*+464t%s—8ts*—s*) is a square in Q. Since

2(64t4+64t%s —8ts*—st)=—2s* mod 4,

we have s=2s’, where s’ is a rational integer. Hence 2(4¢*+48t%s’—4ts’*—s’!) is a
square in Q. Since

20414 +4-8t3s’ —4ts" P — ') =—2¢"* mod 4,

we have s’=2s”, where s” is a rational integer. Hence 2(t*+4t3s” —8ts”3—4s"*)
is a equare in Q. Since
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20t -41°s" —8ts"*—4s"H)=2t* mod4,

we have 2{t. This contradicts that s and ¢ are prime to each other. By the
above method, we have also a contradiction for the case where i=—2.

(II) Suppose 7?=(2). If =1, then (a, h) satisfies the equation: h*=a(4a+1)
(2a+1). Therefore (a, h) satisfies the equation: (8h):=(8a+2)*—4(8a+2). By
8a-+2 is one of 0, 2 and —2, so that ¢ is one of —1/4 and —1/2.
This result is also obtained in the same manner when ¢ is one of —1, 2 and —2.

(Il) Suppose 7*=(5). Then (a, h) satisfies the equation:

h*=ia(4a+1)2a-+1)8a*—1)(8a*+8a-+1),
where 7 is one of 1, —1, 2 and —2. Then

s8h2=ist(4t+5)(2t+5)(8t2—s2)(Bt*+8ts+s?) .
Hence we have
7'st(dt+s)(2t+s)=h"?,

where ¢’ is one of 1, —1, 2 and —2, h’ is a rational integer. Then

h'®/st=1'(t/s)(4t/s+1)(2t/s+1)
=i'a(4a+1)(2a+1).

In the same way as in the case where 5?=(2), we obtain that a is one of —1/4
and —1/2.
(IV) Suppose %°=(3) or (6). Then (a, h) satisfies the equation:

h?=i8a*>—1)8a’+4a+1)da+1),
or the equation:
h*=i(8a®>+8a+1)8a’+4a-+1)4a+1).
Then
SehE={(8t>—s*)(8t*+4ts+s)(4t+s)s
or
s8h?=¢(8t*+8ts s2)(8t2+ 4t s+ s2)(4t+s)s .

Hence s=g¢* or 2¢% and 4t+s=-=4#% or +2r% where g and » are rational integers.
Since 8i2+4ts+s? is positive, 8t2+4ts-+s2=Fk? or 2k% where b is a rational integer.
If s=¢* and 4t+s==r% then 8t*+4ts+s2=(1/2)(¢g*+r*), so that ¢*+r*=2k* or
(2k)%. Then 2(k/q®)*—(r/q)*=1 or (2k/¢®)*—(r/q)*=1. By (r/@*=1 or
r/q=0. Therefore 4(¢/s)+1==+1 or 0, so that a=—1/2 or —1/4. If s=¢* and
At +s=+2r% 8t*+4ts+s*=(1/2)(4r*+q¢*), so that 4r*+¢*=2k%or (2k)%. Then 2(k/q*)*
—4(r/g)*=1 or (2k/q¢*)*—4(r/q)*=1. By Lemma 7, »/q=0. Therefore a=-—1/4.
If s=2¢° and 4t+s=:7r2 8t2+4ts+s*=(1/2)(»*+4q*), ,s0 that r*+4¢*=2k% or (2k)"
Then »=0 or ¢/r=0. Therefore a=—1/4. If s=2¢* and 4t+s==+2% then
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8t2+4ts+s*=2¢*+2r*, so that ¢*+r*=2(k/2)* or k*. Thus a=-—1/2 or —1/4.
(V) Suppose n*=(4) or (7). Then (a, h) satisfies the equation:

h*=18a*—1)8a*+4a+1)a(2a+1),
or the equation:
h*=i(8a*+8a-+1)(8a®*+4a-+1)a(2a+1).
Then
s h?=q(8t*—s®)(8t2+4ts s (2t +s)t
or
sthr=i{(8t*4-8ts+s®)(8t*+4ts+ s (2t +s)t .

Hence 1=¢? or 2¢% and 2t+s=-7r* or -=2r% where ¢ and » are rational integers.
Since 8t?+4¢s+s? is positive, we have 8t*-4ts-+s?=~k% or 2k?% where k is a
rational integer. If t=¢® and 2¢t+s==7r% then 8t*4-4is+s*=ri+4¢*=Fk® or 2k>
Then »=0 or ¢/r=0, by Therefore a=—1/2. 1If t=¢* and 2t+s==2¢%,
then 8t*44ts-+s*=4q¢*+4r*, so that ¢*+r*=(k/2)* or 2(k/2)%. Then (r/q)*=1 or
r/q=0, by Therefore a=—1/2 or —1/4. If t=2¢* and 2t+s==+7?
812 +4ts+si=r*4+(2¢)*=~k* or 2k% Then (r/2¢)*=1 or r/2¢g=0. Therefore a=
—1/4 or —1/2. If t=2¢* and 2t+s=+2r% then 8t*+4ts-+s*=4r*4+(2¢)*=~k* or
2k We get a=—1/2, since r/2¢=0 by Hence we have that a is
—1/4 or —1/2. Consequently we obtain

We can now complete the proof of Let notations be as above.
Let E=FE(a), and (&, &) be a base of T,(FE) such that the projection of &; to
E, is @; ((=0,1). With the base (£, §&:), we identify 7,(G) as a subgroup of
GL,Z,. By Proposition 7,

ri(my(G))=Gal (Q(E,.)/Q)

(-
= eH®
¢ d

DH{®.

Then 7,(G)DH®, by These imply

a=1, ¢=0 mod 23}
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