The 2-adic representations attached to elliptic curves defined over Q whose points of order 2 are all Q-rational

By Kumiko NISHIOKA

(Received July 10, 1980) (Revised Dec. 3, 1981)

0. Introduction.

Let E be an elliptic curve defined over the field Q of rational numbers. Throughout the paper, an elliptic curve defined over Q means an abelian variety of dimension one which is defined over Q. Let G be the Galois group of extension \overline{Q}/Q , where \overline{Q} denotes an algebraic closure of Q. Then the group G, with the Krull topology, is compact and totally disconnected. For each positive integer m, we denote by E_m the kernel of multiplication by m. Let p be a prime number. With the multiplication by $p: E_{p^{n+1}} \rightarrow E_{p^n}$, the sequence $\{E_{p^n}\}_{n=1,2,\dots}$ forms a projective system. The Tate module $T_p(E)$ is defined as follows:

$$T_p(E) = \underset{n \to \infty}{\operatorname{proj lim}} E_{p^n}$$
.

The module $T_p(E)$ is a free \mathbf{Z}_p -module of rank 2, where \mathbf{Z}_p denotes a p-adic completion of the ring \mathbf{Z} of rational integers, and G acts on $T_p(E)$. Fix a base (ξ_0, ξ_1) of $T_p(E)$ over \mathbf{Z}_p . If σ is an element of G, then there exists a unique element $\pi_p(\sigma)$ of $GL_2(\mathbf{Z}_p)$ such that

$$(\sigma\xi_0, \sigma\xi_1)=(\xi_0, \xi_1)\pi_p(\sigma)$$
.

The mapping $\pi \to \pi_p(\sigma)$, which will be denoted by π_p , is a continuous representation $G \to GL_2(\mathbb{Z}_p)$.

Serre [7] proved that if E has no complex multiplication, then the image group $\pi_p(G)$ is an open subgroup of $GL_2(\mathbf{Z}_p)$. He also states that if E is semistable and $p \ge 11$, then the Galois group $Gal(\mathbf{Q}(E_p)/\mathbf{Q})$ is isomorphic to $GL_2(\mathbf{Z}/p\mathbf{Z})$ (Theorem 5 in [8]), and therefore $\pi_p(G) = GL_2(\mathbf{Z}_p)$. Put

$$H^{(n)} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbf{Z}_p) \middle| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \bmod p^n \right\}.$$

This research was partially supported by Grant-in-Aid for Scientific Research (No. 57540029), Ministry of Education.

Then $\{H^{(n)}\}_{n=0,1,\dots}$ is a fundamental system of neighbourhoods of unity in $GL_2(\mathbf{Z}_p)$. Therefore $\pi_p(G) \supset H^{(N)}$, where N is a non-negative integer depending on E and p. Especially if E is semi-stable and $p \geq 11$, then we can take N=0.

In this paper we shall consider the case p=2 and prove:

Theorem 1. Let the notations be as above. Assume that E has no complex multiplication, and the points of order 2 of E are all Q-rational. Then

$$\pi_2(G) \supset H^{(7)}$$
.

Theorem 2. Assume that E satisfies the conditions of Theorem 1 and moreover E has a Q-rational point of order 8. Then

$$\pi_2(G) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H^{(1)} \middle| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \mod 2^3 \right\},$$

with a suitable \mathbb{Z}_2 -base of $T_2(E)$. Especially $\pi_2(G) \supset H^{(3)}$.

Our Theorem 1 asserts that for p=2, we can take N=7 independently of E under the hypothesis of Theorem 1, and Theorem 2 asserts that the conjugate class of $\pi_2(G)$ is uniquely determined under the hypothesis of Theorem 2.

The paper is divided into 3 parts as follows. Chapter 1 contains a number of preliminary lemmas. Theorem 1 and Theorem 2 are proved in Chapter 2 and Chapter 3 respectively.

1. Preliminary lemmas.

Let k be a field, the characteristic of k be not 2, and K be a field extension of k which is algebraically closed. Let E be the curve defined by:

$$Y^{2}Z = X^{3} + AXZ^{2} + BZ^{3}$$
, $A, B \in k, 4A^{3} + 27B^{2} \neq 0$, (1.1)

in 2-dimensional projective space $P^2(K)$. Then E has the structure of an abelian variety with (X, Y, Z) = (0, 1, 0) as zero element. We denote this curve in the affine form:

$$Y^2 = X^3 + AX + B$$
, (1.2)

and denote (0, 1, 0) by (∞, ∞) . Then the addition formulas are expressed as follows (cf. Cassels [2]). If $(X_1, Y_1)+(X_2, Y_2)=(X_3, Y_3)$, then

$$\begin{cases}
X_{3} = -X_{2} - X_{1} + \left(\frac{Y_{2} - Y_{1}}{X_{2} - X_{1}}\right)^{2}, \\
Y_{3} = -\left(\frac{Y_{1} - Y_{2}}{X_{1} - X_{2}}\right) X_{3} - \frac{X_{2} Y_{1} - X_{1} Y_{2}}{X_{2} - X_{1}}.
\end{cases} (1.3)$$

If $2(X_1, Y_1) = (X_3, Y_3)$, then

$$\begin{cases}
X_{3} = -2X_{1} + \left(\frac{3X_{1}^{2} + A}{2Y_{1}}\right)^{2}, \\
Y_{3} = -\left(\frac{3X_{1}^{2} + A}{2Y_{1}}\right)(X_{3} - X_{1}) - Y_{1}.
\end{cases} (1.4)$$

The points of order 2 are $(e_0, 0)$, $(e_1, 0)$ and $(e_2, 0)$, where $X^3 + AX + B = (X - e_0) \cdot (X - e_1)(X - e_2)$. Let (x_0, y_0) be a point on E, and (x_1, y_1) be a 2-divisional point of (x_0, y_0) . Put

$$\begin{cases} (x_2, y_2) = (x_1, y_1) + (e_0, 0), \\ (x_3, y_3) = (x_1, y_1) + (e_1, 0), \\ (x_4, y_4) = (x_1, y_1) + (e_2, 0). \end{cases}$$
 (1.5)

Then these three points and (x_1, y_1) are the 2-divisional points of (x_0, y_0) . From (1.4) we have

$$x_0 = -2x_i + \left(\frac{3x_i^2 + A}{2y_i}\right)^2 = -2x_i + \frac{(3x_i^2 + A)^2}{4(x_i^3 + Ax_i + B)} \qquad (i = 1, 2, 3, 4)$$

and x_1 , x_2 , x_3 , x_4 are the four roots of

$$X^{4}-4x_{0}X^{3}-2AX^{2}-(4Ax_{0}-8B)X+(A^{2}-4Bx_{0})=0.$$
 (1.6)

Since x_1 is a root of this equation and $y_1^2 = x_1^3 + Ax_1 + B$, we get

$$x_0 - e_i = \left(\frac{x_1^2 - 2e_i x_1 - A - 2e_i^2}{2y_1}\right)^2 \quad (i = 0, 1, 2). \tag{1.7}$$

Put

$$\begin{cases}
4w_0 = (x_1 + x_2) - (x_3 + x_4), \\
4w_1 = (x_1 + x_3) - (x_2 + x_4), \\
4w_2 = (x_1 + x_4) - (x_2 + x_2).
\end{cases} (1.8)$$

From (1.3) and (1.5), we have

$$\begin{cases}
x_{2} = -x_{1} - e_{0} + \left(\frac{y_{1}}{x_{1} - e_{0}}\right)^{2} = -x_{1} - e_{0} + \frac{(x_{1} - e_{1})(x_{1} - e_{2})}{x_{1} - e_{0}}, \\
x_{3} = -x_{1} - e_{1} + \left(\frac{y_{1}}{x_{1} - e_{1}}\right)^{2} = -x_{1} - e_{1} + \frac{(x_{1} - e_{0})(x_{1} - e_{2})}{x_{1} - e_{1}}, \\
x_{4} = -x_{1} - e_{2} + \left(\frac{y_{1}}{x_{1} - e_{2}}\right)^{2} = -x_{1} - e_{2} + \frac{(x_{1} - e_{0})(x_{1} - e_{1})}{x_{1} - e_{2}}.
\end{cases} (1.9)$$

Substituting (1.9) to (1.8) and noting $y_1^2 = (x_1 - e_0)(x_1 - e_1)(x_1 - e_2)$, we have

$$\begin{cases} w_{0} = \left(\frac{x_{1}^{2} - 2e_{1}x_{1} - A - 2e_{1}^{2}}{2y_{1}}\right) \left(\frac{x_{1}^{2} - 2e_{2}x_{1} - A - 2e_{2}^{2}}{2y_{1}}\right), \\ w_{1} = \left(\frac{x_{1}^{2} - 2e_{2}x_{1} - A - 2e_{2}^{2}}{2y_{1}}\right) \left(\frac{x_{1}^{2} - 2e_{0}x_{1} - A - 2e_{0}^{2}}{2y_{1}}\right), \\ w_{2} = \left(\frac{x_{1}^{2} - 2e_{0}x_{1} - A - 2e_{0}^{2}}{2y_{1}}\right) \left(\frac{x_{1}^{2} - 2e_{1}x_{1} - A - 2e_{1}^{2}}{2y_{1}}\right). \end{cases}$$
(1.10)

Comparing (1.7) and (1.10), we get

$$\begin{cases} w_0^2 = (x_0 - e_1)(x_0 - e_2), \\ w_1^2 = (x_0 - e_2)(x_0 - e_0), \\ w_2^2 = (x_0 - e_0)(x_0 - e_1), \\ w_0 w_1 w_2 = (x_0 - e_0)(x_0 - e_1)(x_0 - e_2). \end{cases}$$

$$(1.11)$$

Since x_1 , x_2 , x_3 , x_4 are the four roots of (1.6), we have $x_1+x_2+x_3+x_4=4x_0$. From this and (1.8),

$$\begin{cases} x_{1} = x_{0} + w_{0} + w_{1} + w_{2}, \\ x_{2} = x_{0} + w_{0} - w_{1} - w_{2}, \\ x_{3} = x_{0} - w_{0} + w_{1} - w_{2}, \\ x_{4} = x_{0} - w_{0} - w_{1} + w_{2}. \end{cases}$$

$$(1.12)$$

From (1.5) and (1.8), we have

LEMMA 1. Let the notations be as above, and $e_i \in k$ (i=0, 1, 2). Suppose that there exists an automorphism σ of K over k such that

$$(x_1^{\sigma}, y_1^{\sigma}) = (x_1, y_1) + (e_i, 0)$$
.

Then $w_i^{\sigma} = w_i$ and $w_j^{\sigma} = -w_j$ for $j \neq i$.

Let p be a prime number. For any positive integer h, r_h denotes the canonical homomorphism of $GL_2(\mathbf{Z}_p)$ to $GL_2(\mathbf{Z}/p^h\mathbf{Z})$. Let n be a positive integer. For any integer h such that $1 \leq h \leq n$, $r_{n,h}$ denotes the canonical homomorphism of $GL_2(\mathbf{Z}/p^n\mathbf{Z})$ to $GL_2(\mathbf{Z}/p^h\mathbf{Z})$. For any integer h such that $0 \leq h \leq n$, we define

$$H_n^{(h)} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbf{Z}/p^n\mathbf{Z}) \middle| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \bmod p^h \right\}.$$

Then we have obviously the following lemma.

LEMMA 2. Let V be a subgroup of $GL_2(\mathbb{Z}/p^n\mathbb{Z})$. Then

$$|V| = \prod_{h=1}^{n} |r_{n,h}(V) \cap H_h^{(h-1)}|.$$

Let $2 \le h \le n-2$, and $\sigma \in H_h^{(h)}$. Then there exist elements a, b, c and d of $\mathbf{Z}/p^n\mathbf{Z}$ such that

$$\sigma \equiv \begin{pmatrix} 1 + a p^h & b p^h \\ c p^h & 1 + d p^h \end{pmatrix} \mod p^{h+1}.$$

Then

$$\sigma \equiv \begin{pmatrix} 1 + a p^h & b p^h \\ c p^h & 1 + d p^h \end{pmatrix} \mod p^{h+1}.$$

$$\sigma^p \equiv \begin{pmatrix} 1 + a p^{h+1} & b p^{h+1} \\ c p^{h+1} & 1 + d p^{h+1} \end{pmatrix} \mod p^{h+2}.$$

Hence we have:

LEMMA 3. Let $2 \le h \le n-1$.

- (1) If a subgroup V of $GL_2(\mathbb{Z}/p^n\mathbb{Z})$ satisfies $r_{n,h+1}(V)\supset H_{h+1}^{(h)}$, then $V\supset H_n^{(h)}$.
- (2) If a subgroup V of $SL_2(\mathbb{Z}/p^n\mathbb{Z})$ satisfies $r_{n,h+1}(V) \supset H_{h+1}^{(h)} \cap SL_2(\mathbb{Z}/p^{h+1}\mathbb{Z})$, then $V \supset H_n^{(h)} \cap SL_2(\mathbb{Z}/p^n\mathbb{Z})$.

LEMMA 4. Let A be a closed subgroup of $GL_2(\mathbf{Z}_p)$ and h be an integer such that $h \ge 2$. If $r_{h+1}(A) \supset H_{h+1}^{(h)}$, then $A \supset H^{(h)}$.

PROOF. Since A and $H^{(h)}$ are closed, it is sufficient to show that $A \cap H^{(h)}$ is dense in $H^{(h)}$. Since $r_{h+1}(A) \supset H_{h+1}^{(h)}$,

$$r_{h+1}(A \cap H^{(h)}) \supset H_{h+1}^{(h)}$$
.

Let n be any integer with n > h. Then by Lemma 3,

$$r_n(A \cap H^{(h)}) \supset H_n^{(h)}$$
.

This shows that $A \cap H^{(h)}$ is dense in $H^{(h)}$.

In the rest of this paper, we consider the case p=2.

LEMMA 5. Let V be a subgroup of $SL_2(\mathbb{Z}/2^6\mathbb{Z})$. Suppose that V includes $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $\tau = \begin{pmatrix} e & f \\ \sigma & b \end{pmatrix}$ such that

$$a \equiv d \equiv 1$$
, $b \equiv 2 \mod 2^2$, $c \equiv 0 \mod 2^3$, (1.13)

$$\begin{pmatrix} e & f \\ g & h \end{pmatrix} \equiv \begin{pmatrix} 1+4 & 0 \\ 8 & 1-4 \end{pmatrix} \mod 2^4. \tag{1.14}$$

Then $V \supset SL_2(\mathbb{Z}/2^6\mathbb{Z}) \cap H_6^{(5)}$.

PROOF. Without loss of generality we may assume

$$c=0, b=2, f=0.$$
 (1.15)

In fact by (1.13) $c \equiv 0$ or $8 \mod 2^4$. In the latter case we may assume $c \equiv 0 \mod 2^4$ by adopting $\tau \sigma$ for σ . Then $c \equiv 0$ or 16 mod 2⁵. In the latter case we may assume $c \equiv 0 \mod 2^5$ by adopting $\tau^2 \sigma$ for σ . Then c = 0 or 32. If c = 32, then we adopt $\tau^4 \sigma$ for σ . Consequently we may assume c=0. By the same process

we see that $(\sigma^2)^m \sigma = \binom{*}{0} \binom{*}{*}$ and $(\sigma^8)^n \tau = \binom{*}{*} \binom{0}{*}$ for some integers m and n. $(\sigma^2)^m \sigma$ and $(\sigma^8)^n \tau$ satisfy (1.13) and (1.14) respectively, because $\sigma^2 \equiv \binom{1}{0} \binom{0}{1} \mod 2^2$ and $\sigma^8 \equiv \binom{1}{0} \binom{0}{1} \mod 2^4$. Hence we may assume (1.15). We can put $\sigma = \binom{a}{0} \binom{2}{a^{-1}}$, and $\tau = \binom{e}{8+16i} \binom{0}{e^{-1}}$, where $a \equiv a^{-1} \equiv 1 \mod 2^2$, $e \equiv 1+4$, $e^{-1} \equiv 1-4 \mod 2^4$ and $i \in \mathbb{Z}/2^6 \mathbb{Z}$. Set $\gamma = \sigma \tau \sigma^{-1} \tau^{-1}$. Then we have

$$\gamma = \begin{pmatrix} v_1 & v_2 \\ v_3 & v_4 \end{pmatrix},$$

where we have set

$$\begin{split} v_1 &= 1 + 2ae(8 + 16i) + 2a^{-1}e^{-1}(8 + 16i)(1 - a^2) \,, \\ v_2 &= 2a(1 - e^2) - 4(8 + 16i)e \,, \\ v_3 &= e^{-1}(8 + 16i)(a^{-2} - 1) \,, \\ v_4 &= 1 - 2a^{-1}e(8 + 16i) \,. \end{split}$$

Since a^2 , $a^{-2}\equiv 1 \mod 2^3$ and $e^2\equiv 1-8 \mod 2^5$, we have

$$\gamma = \begin{pmatrix} 1 + 16 + 32i & -16 \\ 0 & 1 - 16 + 32i \end{pmatrix}.$$

Since $\sigma^8 = \begin{pmatrix} a^8 & 16 \\ 0 & a^{-8} \end{pmatrix}$ and $a^8 = a^{-8} = 1 + 32j$, where $j \in \mathbb{Z}/2^6\mathbb{Z}$, we obtain

$$\sigma^{8}\gamma = \begin{pmatrix} 1 + 16 + 32i + 32j & 0 \\ 0 & 1 - 16 + 32i + 32j \end{pmatrix},$$

and therefore

$$\tau^{4}\sigma^{8}\gamma = \begin{pmatrix} 1 + 32i + 32j & 0 \\ 32 & 1 + 32i + 32j \end{pmatrix}.$$

Therefore V includes $\sigma^{\text{16}} = \begin{pmatrix} 1 & 32 \\ 0 & 1 \end{pmatrix}$, $\tau^{8} = \begin{pmatrix} 1+32 & 0 \\ 0 & 1+32 \end{pmatrix}$ and

$$\tau^4 \sigma^8 \gamma = \begin{pmatrix} 1 + 32i + 32j & 0 \\ 32 & 1 + 32i + 32j \end{pmatrix}.$$

Hence we have

$$V \supset \left\langle \begin{pmatrix} 1 & 0 \\ 32 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 32 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1+32 & 0 \\ 0 & 1+32 \end{pmatrix} \right\rangle = SL_2(\mathbf{Z}/2^6\mathbf{Z}) \cap H_6^{(5)}.$$

LEMMA 6. Let V be a subgroup of $SL_2(\mathbb{Z}/2^6\mathbb{Z})$. Suppose that V includes σ and τ such that

$$\sigma\!\equiv\!\!\begin{pmatrix}1&4\\0&1\end{pmatrix}$$
 or $\begin{pmatrix}1\!+\!4&4\\0&1\!+\!4\end{pmatrix}$ mod 2^3

and

$$\tau \equiv \begin{pmatrix} 1 & 0 \\ 8 & 1 \end{pmatrix} \quad or \quad \begin{pmatrix} 1+8 & 0 \\ 8 & 1+8 \end{pmatrix} \mod 2^4.$$

Then $V \supset SL_2(\mathbb{Z}/2^6\mathbb{Z}) \cap H_6^{(5)}$.

PROOF. In the same way as in the proof of Lemma 5, we may assume that $\sigma = \begin{pmatrix} a & 4 \\ 0 & a^{-1} \end{pmatrix}$, and $\tau = \begin{pmatrix} e & 0 \\ 8 & e^{-1} \end{pmatrix}$, where $a \equiv 1 \mod 2^2$ and $e \equiv 1 \mod 2^3$. Then

$$\sigma\tau\sigma^{-1}\tau^{-1} = \begin{pmatrix} 1 + 32a^{-1}e^{-1} + 32ae - 32ae^{-1} & 4a(1 - e^2) \\ 8e^{-1}(a^{-2} - 1) & 1 - 32a^{-1}e \end{pmatrix}.$$

Since $32a^{-1}e^{-1} \equiv 32ae \equiv 32ae^{-1} \equiv 32a^{-1}e \equiv 32 \mod 2^6$, $1-e^2 \equiv 0 \mod 2^4$ and $a^{-2}-1 \equiv 0 \mod 2^3$, we have

$$\sigma \tau \sigma^{-1} \tau^{-1} = \begin{pmatrix} 1+32 & 0 \\ 0 & 1+32 \end{pmatrix}.$$

From this and the assumption, we have

$$V \supset \left\langle \begin{pmatrix} 1 & 0 \\ 32 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 32 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1+32 & 0 \\ 0 & 1+32 \end{pmatrix} \right\rangle = SL_2(\mathbf{Z}/2^6\mathbf{Z}) \cap H_6^{(5)}.$$

The following lemma is well known (cf. Dickson [3]).

LEMMA 7. Let $a, b \in \mathbb{Q}$.

(1) If a and b satisfy one of the following equations:

$$\pm a^2 - b^4 = 1;$$
 $-2a^2 - b^4 = 1;$ $\pm a^2 - 4b^4 = 1;$ $\pm 2a^2 - 4b^4 = 1;$ $\pm 2a^2 + 4b^4 = 1;$ $\pm 2a^2 + 4b^4 = 1,$

then b=0.

(2) If a and b satisfy one of the following equations:

$$2a^2-b^4=1:$$
 $\pm 2a^2+b^4=1.$

then $b^4=1$.

(3) If a and b satisfy one of the following equations:

$$\pm a^2 + b^4 = 1$$
.

then b=0 or $b^4=1$.

LEMMA 8. (1) The Q-rational points on the curve $Y^2 = X^3 - X$ are $(X, Y) = (\infty, \infty)$, (0, 0), (1, 0) and (-1, 0).

- (2) The **Q**-rational points on the curve $Y^2 = X^3 4X$ are $(X, Y) = (\infty, \infty)$, (0, 0), (2, 0) and (-2, 0).
- (3) The Q-rational points on the curve $Y^2 = X^3 + X$ are $(X, Y) = (\infty, \infty)$ and (0, 0).
- (4) The **Q**-rational points on the curve $Y^2 = X^3 + 4X$ are $(X, Y) = (\infty, \infty)$, (0, 0), (2, 4) and (2, -4).

PROOF. From Table 3 and Table 4 in Birch and Swinnerton-Dyer [1], it follows that free rank of the group of the \mathbf{Q} -rational points on each one of curves $Y^2 = X^3 - X$, $Y^2 = X^3 - 4X$, $Y^2 = X^3 + X$ and $Y^2 = X^3 + 4X$ is zero. Therefore \mathbf{Q} -rational points on these curves are of finite order. Here we use Theorem 22.1 in Cassels [2]: If (x, y) is a point of finite order defined over \mathbf{Q} on $Y^2 = X^3 + AX + B$ $(A, B \in \mathbf{Z})$, then $x, y \in \mathbf{Z}$ and either y = 0 or $y^2 | (4A^3 + 27B^2)$. Let (x, y) be a \mathbf{Q} -rational point on $Y^2 = X^3 - X$, and $y \neq 0$. Then $x, y \in \mathbf{Z}$ and $y^2 | 4$. Therefore y is prime to 3, and $x^3 - x = y^2 \equiv 1 \mod 3$. This is a contradiction, and (1) is proved. In the same way, (2) is proved. Let (x, y) be a \mathbf{Q} -rational point on $Y^2 = X^3 + X$, and $y \neq 0$. Then $x, y \in \mathbf{Z}$, and $y^2 | 4$. Therefore y is prime to 5, and $x^3 + x = y^2 \equiv 1 \mod 5$. This is a contradiction, and (3) is proved. Let (x, y) be a \mathbf{Q} -rational point on $Y^2 = X^3 + 4X$, and $y \neq 0$. Then $x, y \in \mathbf{Z}$, and $y^2 | 4^4$. Therefore y^2 is one of 1, y^2 , y^2 , y

LEMMA 9. Let x be transcendental over \mathbf{Q} , and f(x), $g(x) \in \mathbf{Q}(x)$. Let n be an integer ≥ 3 , and ζ_{2^n} be a primitive 2^n -th root of 1. Let $a = \sqrt{2}$ or $\sqrt{-2}$. Then

$$Q(x, \zeta_{2^n}, \sqrt{f(x)}) \neq Q(x, \zeta_{2^n}, \sqrt{ag(x)})$$
.

PROOF. Assume that

$$Q(x, \zeta_{nn}, \sqrt{f(x)}) = Q(x, \zeta_{nn}, \sqrt{ag(x)})$$
.

We may assume that f(x), $g(x) \in \mathbf{Q}[x]$, and they have no multiple roots as polynomials in x. Then there is an element c of $\mathbf{Q}(x, \zeta_{2^n})^{\times}$ such that $c^2 f(x) = a g(x)$. Since f(x) and g(x) do not have multiple roots, $c \in \mathbf{Q}(\zeta_{2^n})^{\times}$. Comparing the coefficients of the highest terms, we have $c^2 = ac'$, where $c' \in \mathbf{Q}^{\times}$. This contradicts that $\sqrt{ac'} \notin \mathbf{Q}(\zeta_{2^n})$.

2. Proof of Theorem 1.

Let E be an elliptic curve defined over Q, and $\underline{0}$ be the zero element of E. We assume that E is the elliptic curve:

$$Y^2 = X^3 + AX + B$$
, $A, B \in \mathbb{Q}$, $4A^3 + 27B^2 \neq 0$,

and $\underline{0} = (\infty, \infty)$ (cf. Cassels [2]). Assume that E has no complex multiplication.

Then $j=12^{3}(4A^{3})/(4A^{3}+27B^{2})$ is neither 0 nor 123, and $AB\neq 0$. Put $a=27j/4(j-12^{3})$. Then the invariant of the elliptic curve E':

$$Y^2 = X^3 - aX - a$$

is j. Therefore there is an isomorphism λ of E to E' defined over \overline{Q} . From Theorem 7.1 in Cassels [2], there is an element $\mu \in \overline{Q}$ such that $-a = \mu^4 A$, $-a = \mu^6 B$, and

$$\lambda(x, y) = (\mu^2 x, \mu^3 y)$$

for $(x, y) \in E$. Since $ABa \neq 0$, $\mu^2 \in \mathbf{Q}^{\times}$. Hence the points of order 2 on E' are all \mathbf{Q} -rational, if and only if the points of order 2 on E are all \mathbf{Q} -rational. Let N be a positive integer, and (u_0, u_1) be a base of E_N over $\mathbf{Z}/N\mathbf{Z}$, where E_N denotes the kernel of the multiplication by N on E. Then $(\lambda u_0, \lambda u_1)$ is a base of E'_N . By $\mathbf{Q}(E_N)$ and $\mathbf{Q}(E'_N)$ we denote the fields which are generated by the coordinates of all elements of E_N and E'_N respectively. We identify $\mathrm{Gal}(\mathbf{Q}(E_N)/\mathbf{Q})$ and $\mathrm{Gal}(\mathbf{Q}(E'_N)/\mathbf{Q})$ with subgroups of $GL_2(\mathbf{Z}/N\mathbf{Z})$ having (u_0, u_1) and $(\lambda u_0, \lambda u_1)$ as bases respectively.

PROPOSITION 1. Let the notations be as above. Then

$$Gal(Q(E_N)/Q)\{\pm 1_2\} = Gal(Q(E'_N)/Q)\{\pm 1_2\},$$

where
$$1_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in GL_2(\mathbf{Z}/N\mathbf{Z}).$$

PROOF. Let $\sigma_0 \in \operatorname{Gal}(\boldsymbol{Q}(E_N')/\boldsymbol{Q})$ ($\subset GL_2(\boldsymbol{Z}/N\boldsymbol{Z})$), and σ an extension of σ_0 to an automorphism of $\overline{\boldsymbol{Q}}$. By σ_1 we denote the restriction of σ on $\boldsymbol{Q}(E_N)$. Then $\sigma_1 \in \operatorname{Gal}(\boldsymbol{Q}(E_N)/\boldsymbol{Q})$ ($\subset GL_2(\boldsymbol{Z}/N\boldsymbol{Z})$). We view σ_0 and σ_1 as automorphisms of E_N' and E_N respectively. For $(x, y) \in E_N$,

$$\lambda^{-1} \circ \sigma_0 \circ \lambda(x, y) = \lambda^{-1} \circ \sigma_0(\mu^2 x, \mu^3 y)$$

$$= \lambda^{-1}(\mu^2 x^{\sigma}, (\mu^3)^{\sigma} y^{\sigma})$$

$$= (x^{\sigma}, \mu^{-3}(\mu^3)^{\sigma} y^{\sigma}),$$

since $\mu^2 \in \mathbf{Q}^{\times}$. Then $\lambda^{-1} \circ \sigma_0 \circ \lambda = \pm \sigma_1$. Therefore $\sigma_0 \in \text{Gal}(\mathbf{Q}(E_N)/\mathbf{Q}) \{\pm 1_2\}$, and

$$\operatorname{Gal}(\boldsymbol{Q}(E_N')/\boldsymbol{Q})\{\pm 1_2\} \subset \operatorname{Gal}(\boldsymbol{Q}(E_N)/\boldsymbol{Q})\{\pm 1_2\}$$
.

In the same way, we have

$$\operatorname{Gal}(\mathbf{Q}(E_N)/\mathbf{Q})\{\pm 1_2\} \subset \operatorname{Gal}(\mathbf{Q}(E_N')/\mathbf{Q})\{\pm 1_2\}.$$

PROPOSITION 2. Let n be an integer ≥ 6 . Let V be a subgroup of $GL_2(\mathbf{Z}/2^n\mathbf{Z})$ such that

$$\det(V) = \{ \text{the determinant of } \sigma \mid \sigma \in V \} = (\mathbf{Z}/2^n \mathbf{Z})^{\times}, \tag{2.1}$$

$$-1_2 \in V \subset H_n^{(1)}$$
, (2.2)

$$V \not\supset H_n^{(5)} \cap SL_2(\mathbb{Z}/2^n\mathbb{Z}). \tag{2.3}$$

Then V is conjugate to a subgroup of a group A, where $A \subset H_n^{(1)}$, $\det(A) = (\mathbb{Z}/2^n\mathbb{Z})^{\times}$, and A satisfies one of the following:

(1) $A \supset H_n^{(3)} \cap SL_2(\mathbb{Z}/2^n\mathbb{Z}),$

$$r_{n,3}(A \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) = \left\langle \begin{pmatrix} 1+4 & 0 \\ 0 & 1+4 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix} \right\rangle \{\pm 1_2\};$$

(2) $A \supset H_n^{(4)} \cap SL_2(\mathbb{Z}/2^n\mathbb{Z}),$

$$r_{n,4}(A \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}/2^4\mathbf{Z}) \cap H_4^{(1)} \middle| c = 0 \right\};$$

(3) $A \supset H_n^{(3)} \cap SL_2(\mathbb{Z}/2^n\mathbb{Z}),$

$$r_{n.3}(A \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) = \left\langle \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix}, \begin{pmatrix} 1+4 & 0 \\ 0 & 1+4 \end{pmatrix} \right\rangle \{\pm 1_2\}.$$

PROOF. By (2.3) and Lemma 3 it follows that

$$r_{n,6}(V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \supset H_6^{(5)} \cap SL_2(\mathbf{Z}/2^6\mathbf{Z})$$
. (2.4)

By (2.2) we get $2 \leq |r_{n,2}(V \cap SL_2(\mathbb{Z}/2^n\mathbb{Z}))| \leq 2^3$. We show that

$$|r_{n,2}(V \cap SL_2(\mathbb{Z}/2^n\mathbb{Z}))| = 2^2 \text{ or } 2.$$
 (2.5)

Indeed, suppose $|r_{n,2}(V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z}))| = 2^3$. Then $r_{n,2}(V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) = H_2^{(1)} \cap SL_2(\mathbf{Z}/2^2\mathbf{Z})$. There are two elements σ and τ of $V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})$ such that $\sigma \equiv \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \mod 2^2$ and $\tau \equiv \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \mod 2^2$. Then $\sigma^2 \equiv \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \mod 2^3$ and $\tau^4 \equiv \begin{pmatrix} 1 & 0 \\ 8 & 1 \end{pmatrix} \mod 2^4$. This contradicts (2.4) by Lemma 6. Hence (2.5) is proved.

(I) Suppose $|r_{n,2}(V \cap SL_2(\mathbb{Z}/2^n\mathbb{Z}))| = 2^2$. In this case, we see that $r_{n,2}(V \cap SL_2(\mathbb{Z}/2^n\mathbb{Z}))$ is one of the groups:

$$\left\langle \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \right\rangle; \left\langle \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\rangle; \left\langle \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \right\rangle$$

by (2.2). The second group and the third group are conjugate to the first one by the inner automorphisms given by $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ respectively. Therefore we may assume that

$$r_{n,2}(V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) = \left\langle \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \right\rangle. \tag{2.6}$$

Here we have two cases:

(I. I) There is an element σ of $V \cap SL_2(\mathbb{Z}/2^n\mathbb{Z})$ such that

$$\sigma \equiv \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \mod 2^2 \quad \text{and} \quad \sigma \equiv \begin{pmatrix} * & * \\ 4 & * \end{pmatrix} \mod 2^3; \tag{2.7}$$

(I.II) There is an element σ of $V \cap SL_2(\mathbb{Z}/2^n\mathbb{Z})$ such that

$$\sigma \equiv \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \mod 2^2 \quad \text{and} \quad \sigma \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \mod 2^3. \tag{2.8}$$

Let us consider the case (I. I). Let γ_0 be an element of $SL_2(\mathbb{Z}/2^n\mathbb{Z})$ such that $\gamma_0 \equiv \begin{pmatrix} 1+4 & 0 \\ 0 & 1+4 \end{pmatrix} \mod 2^3$ and N_{γ_0} denote the normal subgroup of $H_n^{(1)}$ generated by $\bigcup_{\tau \in H_n^{(1)}} \tau^{-1} \gamma_0 \tau$. We show that

$$r_{n,3}(V \cdot N_{r_0} \cap SL_2(\mathbb{Z}/2^n \mathbb{Z})) \not\supset H_3^{(2)} \cap SL_2(\mathbb{Z}/2^3 \mathbb{Z}).$$
 (2.9)

Indeed conversely let us suppose $r_{n,3}(V \cdot N_{r_0} \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \supset H_3^{(2)} \cap SL_2(\mathbf{Z}/2^3\mathbf{Z})$. Then there are $\tau \in V$ and $\gamma \in N_{r_0}$ such that $\tau \gamma \in SL_2(\mathbf{Z}/2^n\mathbf{Z})$ and $\tau \gamma \equiv \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix} \mod 2^3$. Since $N_{r_0} \subset SL_2(\mathbf{Z}/2^n\mathbf{Z})$ and $r_{n,3}(N_{r_0}) = \left\langle \begin{pmatrix} 1+4 & 0 \\ 0 & 1+4 \end{pmatrix} \right\rangle$, we have that $\tau \in V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})$ and

$$\tau \equiv \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix}$$
 or $\begin{pmatrix} 1+4 & 0 \\ 4 & 1+4 \end{pmatrix} \mod 2^3$.

Therefore $r_{n,6}(V \cap SL_2(\mathbb{Z}/2^n\mathbb{Z}))$ includes σ^2 and τ^2 and satisfies the assumption of Lemma 6. This contradicts (2.4). Hence (2.9) is proved. (2.9) implies that

$$r_{n,3}(V\cdot N_{r_0}\cap SL_2(\mathbf{Z}/2^n\mathbf{Z}))\cap H_3^{(2)}=\left\langle \begin{pmatrix} 1+4&0\\0&1+4 \end{pmatrix}, \begin{pmatrix} 1&4\\0&1 \end{pmatrix} \right\rangle.$$

Therefore

$$r_{n,3}(V\cdot N_{r_0}\cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) = \left\langle \begin{pmatrix} 1+4 & 0 \\ 0 & 1+4 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix} \right\rangle \{\pm 1_2\}.$$

Put $A=V\cdot N_{r_0}\cdot (H_n^{(3)}\cap SL_2(\mathbf{Z}/2^n\mathbf{Z}))$. Then $\det(A)=\det(V)=(\mathbf{Z}/2^n\mathbf{Z})^{\times}$, $H_n^{(1)}\cap A\cap V$, $A\cap H_n^{(3)}\cap SL_2(\mathbf{Z}/2^n\mathbf{Z})$, and $r_{n,3}(A\cap SL_2(\mathbf{Z}/2^n\mathbf{Z}))=r_{n,3}(V\cdot N_{r_0}\cap SL_2(\mathbf{Z}/2^n\mathbf{Z}))=\left\langle \begin{pmatrix} 1+4 & 0 \\ 0 & 1+4 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix} \right\rangle \{\pm 1_2\}$. Hence A satisfies (1) and A is a required group. Next let us consider the case (I. II). Let $\sigma\in V\cap SL_2(\mathbf{Z}/2^n\mathbf{Z})$, and σ satisfy (2.8). If $\sigma\not\equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \mod 2^4$, then $\sigma\equiv \begin{pmatrix} 1+4a & 2+4b \\ 8 & 1+4d \end{pmatrix} \mod 2^4$. Since $\det\sigma=1$, we have $4a+4d\equiv 0 \mod 2^4$, so that $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}^{-1}\sigma \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}\equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \mod 2^4$. Therefore, by taking $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}^{-1}V\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ in place of V we may assume that $\sigma\equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \mod 2^4$. Let γ_1 be an element of $SL_2(\mathbf{Z}/2^n\mathbf{Z})$ such that $\gamma_1\equiv \begin{pmatrix} 1+4 & 0 \\ 0 & 1-4 \end{pmatrix} \mod 2^4$, and N_{r_1}

denote the normal subgroup of $H_n^{(1)}$ generated by $\bigcup_{\tau \in H_n^{(1)}} \tau^{-1} \gamma_1 \tau$. We show that

$$r_{n,4}(V \cdot N_{7,1} \cap SL_2(\mathbb{Z}/2^n\mathbb{Z})) \not\supset H_4^{(3)} \cap SL_2(\mathbb{Z}/2^4\mathbb{Z}).$$
 (2.10)

In fact, conversely let us suppose $r_{n,4}(V\cdot N_{\tau_1}\cap SL_2(\mathbf{Z}/2^n\mathbf{Z}))\supset H_4^{(3)}\cap SL_2(\mathbf{Z}/2^4\mathbf{Z}).$ Then there exist $\tau\in V\cap SL_2(\mathbf{Z}/2^n\mathbf{Z})$ and $\gamma\in N_{\tau_1}$ such that $\tau\gamma\equiv\begin{pmatrix}1&0\\8&1\end{pmatrix}\bmod 2^4.$ We see that $r_{n,4}(N_{\tau_1})=\left\langle\begin{pmatrix}1+4&0\\0&1-4\end{pmatrix}\right\rangle$. Therefore $\tau\equiv\tau_0\bmod 2^4$, where τ_0 is one of

$$\begin{pmatrix} 1+4 & 0 \\ 8 & 1-4 \end{pmatrix}$$
, $\begin{pmatrix} 1-4 & 0 \\ 8 & 1+4 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 8 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1+8 & 0 \\ 8 & 1+8 \end{pmatrix}$.

In any case, we see that $r_{n,6}(V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z}))$ satisfies the assumption of Lemma 5 or the assumption of Lemma 6. This contradicts (2.4). Hence (2.10) is proved. Since $r_{n,4}(\sigma^4) = \begin{pmatrix} 1 & 8 \\ 0 & 1 \end{pmatrix}$ and $r_{n,4}(\gamma_1^2) = \begin{pmatrix} 1+8 & 0 \\ 0 & 1+8 \end{pmatrix}$, (2.10) implies

$$r_{n,4}(V \cdot N_{r_1} \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \cap H_4^{(3)} = \left\langle \begin{pmatrix} 1 & 8 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1+8 & 0 \\ 0 & 1+8 \end{pmatrix} \right\rangle.$$

Since

$$r_{n,3}(\sigma^2) = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \text{ and } r_{n,3}(\gamma_1) = \begin{pmatrix} 1+4 & 0 \\ 0 & 1+4 \end{pmatrix} \in r_{n,3}(V \cdot N_{\gamma_1} \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \cap H_3^{(2)},$$

we have

$$r_{n,3}(V\cdot N_{\gamma_1}\cap SL_2(\mathbf{Z}/2^n\mathbf{Z}))\cap H_3^{(2)}=\left\langle \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1+4 & 0 \\ 0 & 1+4 \end{pmatrix} \right\rangle.$$

Therefore

$$r_{n,4}(V \cdot N_{\gamma_1} \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) = \langle r_{n,4}(\sigma), r_{n,4}(\gamma_1) \rangle \{\pm 1_2\}$$

$$= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}/2^4\mathbf{Z}) \cap H_4^{(1)} \middle| c = 0 \right\}.$$

Put $A=V\cdot N_{r_1}\cdot (H_n^{(4)}\cap SL_2(\mathbb{Z}/2^n\mathbb{Z}))$. Then we see that A satisfies (2) and A is a required group.

(II) Suppose that $|r_{n,2}(V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z}))| = 2$. The assumption (2.2) yields $r_{n,2}(V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) = \{\pm 1_2\}$. If $r_{n,3}(V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \supset H_3^{(2)} \cap SL_2(\mathbf{Z}/2^3\mathbf{Z})$, then $r_{n,6}(V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \supset H_6^{(5)} \cap SL_2(\mathbf{Z}/2^6\mathbf{Z})$ by Lemma 3, and this contradicts (2.4). Therefore $r_{n,3}(V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \supset H_3^{(2)} \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})$, so that $|r_{n,3}(V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \cap H_3^{(2)}| \leq 2^2$. If $|r_{n,3}(V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \cap H_3^{(2)}| = 2^2$, then $r_{n,3}(V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \cap H_3^{(2)}$ is one of the following 7 groups:

$$U_1 = \left\langle \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \right\rangle; \quad U_2 = \left\langle \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix}, \begin{pmatrix} 1+4 & 4 \\ 0 & 1+4 \end{pmatrix} \right\rangle;$$

$$U_{3} = \left\langle \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1+4 & 0 \\ 4 & 1+4 \end{pmatrix} \right\rangle; \quad U_{4} = \left\langle \begin{pmatrix} 1+4 & 0 \\ 4 & 1+4 \end{pmatrix}, \begin{pmatrix} 1+4 & 4 \\ 0 & 1+4 \end{pmatrix} \right\rangle;$$

$$W_{1} = \left\langle \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix}, \begin{pmatrix} 1+4 & 0 \\ 0 & 1+4 \end{pmatrix} \right\rangle; \quad W_{2} = \left\langle \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1+4 & 0 \\ 0 & 1+4 \end{pmatrix} \right\rangle;$$

$$W_{3} = \left\langle \begin{pmatrix} 1 & 4 \\ 4 & 1 \end{pmatrix}, \begin{pmatrix} 1+4 & 0 \\ 0 & 1+4 \end{pmatrix} \right\rangle.$$

If $r_{n,3}(V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \cap H_3^{(2)}$ is one of U_i (i=1, 2, 3, 4), then $r_{n,6}(V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \cap H_6^{(5)} \cap SL_2(\mathbf{Z}/2^6\mathbf{Z})$ by Lemma 6. This is a contradiction to (2.4). Therefore $r_{n,3}(V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \cap H_3^{(2)}$ is one of W_i (i=1, 2, 3). If $|r_{n,3}(V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \cap H_3^{(2)}| \leq 2$, then $r_{n,3}(V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \cap H_3^{(2)}$ is included in one of the groups W_1, W_2 and W_3 . Since W_2 and W_3 are conjugate to W_1 by $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ respectively, we may assume that

$$r_{n,3}(V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \cap H_3^{(2)} \subset W_1$$
.

Then

$$r_{n,3}(V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \subset W_1 \cdot \{\pm 1_2\}$$
.

Let γ_2 and γ_3 be elements of $SL_2(\mathbf{Z}/2^2\mathbf{Z})$ such that $\gamma_2 \equiv \begin{pmatrix} 1+4 & 0 \\ 0 & 1+4 \end{pmatrix} \mod 2^3$ and $\gamma_3 \equiv \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix} \mod 2^3$. By N_{r_i} (i=2,3) we denote the normal subgroup of $H_n^{(1)}$ which is generated by $\bigcup_{\tau \in H_n^{(1)}} \tau^{-1} \gamma_i \tau$. Then we have

$$r_{n,3}(V \cdot N_{\gamma_2} \cdot N_{\gamma_3} \cap SL_2(\mathbf{Z}/2^n\mathbf{Z}))$$

$$= r_{n,3}((V \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \cdot N_{\gamma_2} \cdot N_{\gamma_3}) = W_1 \cdot \{\pm 1_2\}.$$

Put $A = V \cdot N_{r_2} \cdot N_{r_3} \cdot (H_n^{(3)} \cap SL_2(\mathbf{Z}/2^n\mathbf{Z}))$. Then we see that A satisfies (3), and A is a required group.

PROPOSITION 3. Let E be an elliptic curve defined over \mathbf{Q} . Assume that E has no complex multiplication and the points of order 2 of E are all \mathbf{Q} -rational. Identify $\operatorname{Gal}(\mathbf{Q}(E_{2^n})/\mathbf{Q})$ with a subgroup of $\operatorname{GL}_2(\mathbf{Z}/2^n\mathbf{Z})$ by taking a base of E_{2^n} over $\mathbf{Z}/2^n\mathbf{Z}$. Then

$$\mathrm{Gal}\left(m{Q}(E_{2^n})/m{Q}
ight)\{\pm 1_2\} \supset H_n^{(5)} \cap SL_2(m{Z}/2^nm{Z})$$
 ,

for any integer $n \ge 6$.

PROOF. By Proposition 1, we may assume that E is the curve E(a): $Y^2 = X^3 - aX - a$, where $a \in \mathbb{Q}$ and $a(4a - 27) \neq 0$. Let $\mathbb{Q}(\alpha)$ be a rational function field of one variable α over \mathbb{Q} . Let $E(\alpha)$: $Y^2 = X^3 - \alpha X - \alpha$ be an elliptic curve defined over $\mathbb{Q}(\alpha)$ with zero element $0 = (\infty, \infty)$. By \mathbb{Q} we denote the specialization ring of the specialization $\alpha \to a$ over \mathbb{Q} and \mathfrak{p} denotes the maximal ideal of \mathbb{Q} . Since

 $a\in Q,\ \mathbb{D}/\mathfrak{p}\cong Q.$ We denote by $Q(\alpha,E(\alpha)_{2^n})$ the field which is generated by α and the coordinates of all elements of $E(\alpha)_{2^n}$. Let \mathfrak{S} be the integral closure of \mathfrak{D} in $Q(\alpha,E(\alpha)_{2^n})$, and \mathfrak{P} a maximal ideal of \mathfrak{S} lying above \mathfrak{p} . Then we regard \mathbb{D}/\mathfrak{p} as Q and $\mathfrak{S}/\mathfrak{P}$ as a subfield of \overline{Q} ; $Q=\mathbb{D}/\mathfrak{p}\subset \mathfrak{S}/\mathfrak{P}\subset \overline{Q}.$ If $(x,y)\in E(\alpha)_{2^n}$ and $(x,y)\neq (\infty,\infty)$, then $x,y\in S$, $(\bar{x},\bar{y})\in E(a)_{2^n}$ and $(\bar{x},\bar{y})\neq (\infty,\infty)$, where "-" indicates the reduction mod \mathfrak{P} . Therefore the reduction mod \mathfrak{P} induces the homomorphism: $E(\alpha)_{2^n}\to E(a)_{2^n}$ whose kernel is trivial. Since $|E(\alpha)_{2^n}|=|E(a)_{2^n}|$, this homomorphism is an isomorphism. Let $V_{\mathfrak{P}}$ be the decomposition group of \mathfrak{P} : $V_{\mathfrak{P}}=\{\sigma\in \mathrm{Gal}(Q(\alpha,E(\alpha)_{2^n})/Q(\alpha))|\mathfrak{P}^\sigma=\mathfrak{P}\}.$ Then for each $\sigma\in V_{\mathfrak{P}}$, we can associate an automorphism $\bar{\sigma}$ of $\mathfrak{S}/\mathfrak{P}$ over $\mathfrak{D}/\mathfrak{p}$ in the natural way, and the map given by $\sigma\to\bar{\sigma}$ induces a homomorphism $\phi:V_{\mathfrak{P}}\to \mathrm{Gal}((\mathfrak{S}/\mathfrak{P})/(\mathfrak{D}/\mathfrak{p})).$ We know that ϕ is surjective (cf. Lang $[\mathfrak{F}]$, Chapter 1). Assume that (u_0,u_1) is a base of $E(\alpha)_{2^n}$ over $Z/2^nZ$. Let $\sigma\in V_{\mathfrak{P}}$, and

$$(\sigma u_0, \sigma u_1) = (u_0, u_1) \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Z}/2^n\mathbb{Z})$. Then

$$(\bar{\sigma}\bar{u}_0, \bar{\sigma}\bar{u}_1) = (\bar{u}_0, \bar{u}_1) \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Therefore ϕ is an isomorphism and $\mathfrak{S}/\mathfrak{P}=Q(E(a)_{2^n})$. If we denote by L the fixed subfield of $Q(\alpha, E(\alpha)_{2^n})$ under $V_{\mathfrak{P}}$, then $(L \cap \mathfrak{S})/(L \cap \mathfrak{P})=\mathfrak{D}/\mathfrak{p}=Q$ (cf. Lang [5], Chapter 1). Identify $\operatorname{Gal}(Q(\alpha, E(\alpha)_{2^n})/Q(\alpha))$ (respectively $\operatorname{Gal}(Q(E(a)_{2^n})/Q)$) with a subgroup of $GL_2(\mathbb{Z}/2^n\mathbb{Z})$ by taking the base (u_0, u_1) (respectively (\bar{u}_0, \bar{u}_1)). Then $V_{\mathfrak{P}}=\operatorname{Gal}(Q(E(a)_{2^n})/Q)$. Let ζ_{2^n} be a primitive 2^n -th root of 1. It is well known (cf. Shimura [9], Chapter 6) that

$$\begin{aligned} &\operatorname{Gal}(\boldsymbol{Q}(\alpha, E(\alpha)_{2^n})/\boldsymbol{Q}(\alpha)) = GL_2(\boldsymbol{Z}/2^n\boldsymbol{Z}), \\ &\boldsymbol{Q}(\alpha, E(\alpha)_{2^n}) \cap \overline{\boldsymbol{Q}} = \boldsymbol{Q}(\zeta_{2^n}) = \operatorname{fix}(SL_2(\boldsymbol{Z}/2^n\boldsymbol{Z})), \\ &\operatorname{fix}(\{\pm 1_2\}) = \boldsymbol{Q}(\alpha, \{x\}_{(x,y) \in E(\alpha)_{2^n}}), \end{aligned}$$

where fix(*) denotes the fixed field of $Q(\alpha, E(\alpha)_{2^n})$ under *. We denote $V_{\mathfrak{P}}\{\pm 1_2\}$ by V. Since $\zeta_{2^n} \in Q(E(a)_{2^n})$ and $\zeta_{2^n}^{\sigma} = \zeta_{2^n}^{\det(\sigma)}$ for $\sigma \in \operatorname{Gal}(Q(E(a)_{2^n})/Q)$ ($=V_{\mathfrak{P}}$), we have $\det(V) = (\mathbb{Z}/2^n\mathbb{Z})^{\times}$. Since the points of order 2 of E(a) are all Q-rational, we have $V \subset H_n^{(1)}$. Assume that the consequence of Proposition 3 is false, namely

$$V = \operatorname{Gal}(Q(E(a)_{2^n})/Q)\{\pm 1_2\} \supset H_n^{(5)} \cap SL_2(\mathbb{Z}/2^n\mathbb{Z}).$$

We shall prove that this assumption derives a contradiction. By Proposition 2, V is conjugate to a subgroup of a group A in $GL_2(\mathbb{Z}/2^n\mathbb{Z})$, where $A \subset H_n^{(1)}$, $\det(A) = (\mathbb{Z}/2^n\mathbb{Z})^{\times}$, and A satisfies one of (1), (2) and (3) in Proposition 2. Then

we may assume $V \subset A$ by selecting a suitable base (u_0, u_1) . It follows that

$$L = \operatorname{fix}(V_{\mathfrak{B}}) \supset \operatorname{fix}(V) \supset \operatorname{fix}(A) = F \supset \mathbf{Q}(\alpha)$$
.

Since the residue class field $(L \cap \mathfrak{S})/(L \cap \mathfrak{P})$ is equal to Q,

$$(F \cap \mathfrak{S})/(F \cap \mathfrak{P}) = \mathbf{Q}. \tag{2.11}$$

We determine F for A of each type and deduce a contradiction to (2.11). Put

$$\begin{cases}
2^{n-4}u_{i} = (h_{i}, \sqrt{h_{i}^{3} - \alpha h_{i} - \alpha}), \\
2^{n-3}u_{i} = (g_{i}, \sqrt{g_{i}^{3} - \alpha g_{i} - \alpha}), \\
2^{n-2}u_{i} = (f_{i}, \sqrt{f_{i}^{3} - \alpha f_{i} - \alpha}), \\
2^{n-1}u_{i} = (e_{i}, 0),
\end{cases} (2.12)$$

where i=0, 1, and

$$(e_0, 0)+(e_1, 0)=(e_2, 0)$$

By (1.11) and (1.12),

$$\begin{cases} f_{0} = e_{0} + \sqrt{(e_{0} - e_{1})(e_{0} - e_{2})}, \\ f_{1} = e_{1} + \sqrt{(e_{1} - e_{2})(e_{1} - e_{0})}, \\ g_{i} = f_{i} + \sqrt{(f_{i} - e_{1})(f_{i} - e_{2})} + \sqrt{(f_{i} - e_{2})(f_{i} - e_{0})} + \sqrt{(f_{i} - e_{0})(f_{i} - e_{1})}, \\ h_{i} = g_{i} + \sqrt{(g_{i} - e_{1})(g_{i} - e_{2})} + \sqrt{(g_{i} - e_{2})(g_{i} - e_{0})} + \sqrt{(g_{i} - e_{0})(g_{i} - e_{1})}, \end{cases}$$

$$(2.13)$$

where i=0, 1. In the following, as a square root of $(e_0-e_1)(e_0-e_2)$, $(e_1-e_2)(e_1-e_0)$, \cdots , $(g_i-e_0)(g_i-e_1)$ we use $\sqrt{(e_0-e_1)(e_0-e_2)}$, $\sqrt{(e_1-e_2)(e_1-e_0)}$, \cdots , $\sqrt{(g_i-e_0)(g_i-e_1)}$ in (2.13) respectively. Since $A \subset H_n^{(1)}$, we have

 $F = \text{fix}(A) \supset \text{fix}(H_n^{(1)}) = \mathbf{Q}(\alpha, E(\alpha)_2) = \mathbf{Q}(\alpha, e_0, e_1, e_2).$ Put $s = 1 + 2e_1/e_0$. Then

$$\begin{cases}
e_0 = -(s^2 + 3)/(s^2 - 1), \\
e_1 = -(s^2 + 3)/2(s + 1), \\
e_2 = (s^2 + 3)/2(s - 1),
\end{cases} (2.14)$$

so that $Q(\alpha, E(\alpha)_2) = Q(s)$. We have

$$\begin{cases}
e_{0} - e_{1} = (s^{2} + 3)(s - 3)/2(s^{2} - 1), \\
e_{0} - e_{2} = -(s^{2} + 3)(s + 3)/2(s^{2} - 1), \\
e_{1} - e_{2} = -(s^{2} + 3)s/(s^{2} - 1).
\end{cases} (2.15)$$

We divide the consideration into 3 parts (I), (II), and (III) corresponding to each case that A satisfies (1), (2), or (3).

(I) Suppose that A satisfies (1) in Proposition 2. Put

$$F' = \operatorname{fix} \left(A \cdot (H_n^{(2)} \cap SL_2(\mathbb{Z}/2^n\mathbb{Z})) \right)$$
.

Then by Lemma 2 we have

$$[F': \mathbf{Q}(s)] = [H_{n}^{(1)}: A \cdot (H_{n}^{(2)} \cap SL_{2}(\mathbf{Z}/2^{n}\mathbf{Z}))]$$

$$= [\det(H_{n}^{(1)}): \det(A \cdot (H_{n}^{(2)} \cap SL_{2}(\mathbf{Z}/2^{n}\mathbf{Z})))]$$

$$\times [H_{n}^{(1)} \cap SL_{2}(\mathbf{Z}/2^{n}\mathbf{Z}): (A \cap SL_{2}(\mathbf{Z}/2^{n}\mathbf{Z})) \cdot (H_{n}^{(2)} \cap SL_{2}(\mathbf{Z}/2^{n}\mathbf{Z}))]$$

$$= 1 \times \frac{|H_{n}^{(1)} \cap SL_{2}(\mathbf{Z}/2^{n}\mathbf{Z})|}{|(A \cap SL_{2}(\mathbf{Z}/2^{n}\mathbf{Z})) \cdot (H_{n}^{(2)} \cap SL_{2}(\mathbf{Z}/2^{n}\mathbf{Z}))|}$$

$$= 1 \times \prod_{h=1}^{n} \frac{|r_{n,h}(H_{n}^{(1)} \cap SL_{2}(\mathbf{Z}/2^{n}\mathbf{Z})) \cap H_{h}^{(h-1)}|}{|r_{n,h}((A \cap SL_{2}(\mathbf{Z}/2^{n}\mathbf{Z})) \cdot (H_{n}^{(2)} \cap SL_{2}(\mathbf{Z}/2^{n}\mathbf{Z}))) \cap H_{n}^{(h-1)}|}$$

$$= 1 \times 1 \times 2 \times \prod_{h=0}^{n} 1 = 2.$$

$$(2.16)$$

We obtain also

$$[F'(\zeta_{2^n}): \mathbf{Q}(s, \zeta_{2^n})]$$

$$= [H_n^{(1)} \cap SL_2(\mathbf{Z}/2^n\mathbf{Z}): (A \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \cdot (H_n^{(2)} \cap SL_2(\mathbf{Z}/2^n\mathbf{Z}))]$$

$$= 2.$$
(2.17)

For any $\sigma \in (A \cap SL_2(\mathbb{Z}/2^n\mathbb{Z})) \cdot (H_n^{(2)} \cap SL_2(\mathbb{Z}/2^n\mathbb{Z})),$

$$\sigma(2^{n-2}u_0)=2^{n-2}u_0$$
 or $2^{n-2}u_0+(e_0,0)$.

Therefore by Lemma 1,

$$\begin{split} \sqrt{(e_0-e_1)(e_0-e_2)} &\in \operatorname{fix}\left((A \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \cdot (H_n^{(2)} \cap SL_2(\mathbf{Z}/2^n\mathbf{Z}))\right) \\ &= F'(\zeta_{2^n}) \,. \end{split}$$

In the following, $\sqrt{\frac{e_0-e_1}{e_0-e_2}}$ denotes $\frac{\sqrt{(e_0-e_1)(e_0-e_2)}}{e_0-e_2}$. The equations (2.15) give $\frac{e_0-e_1}{e_0-e_2} = (-1)(s-3)/(s+3)$ and $F'(\zeta_{2^n}) = \mathbf{Q}(s,\,\zeta_{2^n},\,\sqrt{(-1)(s-3)(s+3)})$, by (2.17). On the other hand, by (2.16) there is an element f(s) of $\mathbf{Q}[s]$ with no multiple roots such that $F' = \mathbf{Q}(s,\,\sqrt{f(s)})$. Then

$$Q(s, \zeta_{2^n}, \sqrt{f(s)}) = Q(s, \zeta_{2^n}, \sqrt{(-1)(s+3)(s-3)}).$$

Therefore $f(s) = c^2(-1)(s+3)(s-3)$, where $c \in \mathbf{Q}(s, \zeta_{2^n})^{\times}$. Since neither f(s) nor (-1)(s+3)(s-3) has any multiple root, we see $c \in \mathbf{Q}(\zeta_{2^n})^{\times}$. Since $c^2 \in \mathbf{Q}$, we may assume that c^2 is one of 1, -1, 2 and -2. Put $t_1 = \sqrt{\frac{e_0 - e_1}{e_0 - e_2}}$, $t_2 = \sqrt{-1} t_1$, $t_3 = \sqrt{2} t_1$ and $t_4 = \sqrt{-2} t_1$. Then F' is one of $\mathbf{Q}(s, t_i)$ (i=1, 2, 3, 4). By (2.15) we

see $Q(s, t_i) = Q(t_i)$. Therefore F' is one of $Q(t_i)$ (i=1, 2, 3, 4). Since A satisfies (1) in Proposition 2, $A \supset H_n^{(3)} \cap SL_2(\mathbb{Z}/2^n\mathbb{Z})$ and

$$r_{n,s}(A \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) = \left\langle \begin{pmatrix} 1+4 & 0 \\ 0 & 1+4 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix} \right\rangle \{\pm 1_2\}.$$

Let $\sigma \in A \cap SL_2(\mathbb{Z}/2^n\mathbb{Z})$ with $r_{n,3}(\sigma) = \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix}$, and $\gamma \in A \cap SL_2(\mathbb{Z}/2^n\mathbb{Z})$ with $r_{n,3}(\gamma) = \begin{pmatrix} 1+4 & 0 \\ 0 & 1+4 \end{pmatrix}$. Then we see

$$\begin{cases}
\gamma(2^{n-3}u_0) = 2^{n-3}u_0 + (e_0, 0), \\
\sigma(2^{n-3}u_0) = 2^{n-3}u_0 + (e_1, 0), \\
\gamma(2^{n-2}u_1) = 2^{n-2}u_1, \\
\sigma(2^{n-2}u_1) = 2^{n-2}u_1 + (e_0, 0).
\end{cases}$$

Therefore by Lemma 1,

$$\begin{cases}
\sqrt{(f_0 - e_1)(f_0 - e_2)^7} = \sqrt{(f_0 - e_1)(f_0 - e_2)}, \\
\sqrt{(f_0 - e_1)(f_0 - e_2)^\sigma} = -\sqrt{(f_0 - e_1)(f_0 - e_2)},
\end{cases} (2.18)$$

$$\begin{cases}
\sqrt{(e_1 - e_2)(e_1 - e_0)}^r = \sqrt{(e_1 - e_2)(e_1 - e_0)}, \\
\sqrt{(e_1 - e_2)(e_1 - e_0)}^\sigma = -\sqrt{(e_1 - e_2)(e_1 - e_0)}.
\end{cases} (2.19)$$

Since $\sqrt{(f_0-e_1)(f_0-e_2)}$, $\sqrt{(e_1-e_2)(e_1-e_0)} \in \mathbf{Q}(\alpha, \{x\}_{(x,y)\in E(\alpha)_2n}) = \mathrm{fix}(\{\pm 1_2\})$ and $\sqrt{(f_0-e_1)(f_0-e_2)}$, $\sqrt{(e_1-e_2)(e_1-e_0)} \in \mathbf{Q}(\alpha, E(\alpha)_{2^3}) = \mathrm{fix}(H_n^{(3)})$, (2.18) and (2.19) imply that

$$\sqrt{(f_0-e_1)(f_0-e_2)} \times \sqrt{(e_1-e_2)(e_1-e_0)} \in \text{fix}(A \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) = F(\zeta_{2^n}).$$

In the same way as before, we see

$$[F(\zeta_{\bullet n}): F'(\zeta_{\bullet n})] = [F: F'] = 2. \tag{2.20}$$

We have

$$\frac{f_0 - e_1}{f_0 - e_2} = \sqrt{\frac{e_0 - e_1}{e_0 - e_2}} = t_1 \in F'(\zeta_{2n}),$$

$$\frac{e_1 - e_2}{e_1 - e_0} = \frac{2s}{s - 3} = (t_1^2 - 1)/t_1^2.$$

Then, since f_0-e_2 , $e_1-e_0 \in F'(\zeta_{n})$, we have

$$F(\zeta_{2^n}) \supset F'(\zeta_{2^n}, \sqrt{t_1(t_1^2-1)}) = Q(t_1, \zeta_{2^n}, \sqrt{t_1(t_1^2-1)}).$$

By (2.20) we have $F(\zeta_{2^n}) = Q(t_1, \zeta_{2^n}, \sqrt{t_1(t_1^2 - 1)})$. On the other hand, by (2.20) there exists an element $f(t_i)$ of $Q[t_i]$ with no multiple root such that $F = \frac{1}{2^n} \int_{-\infty}^{\infty} dt dt$

 $Q(t_i, \sqrt{f(t_i)})$, where $F' = Q(t_i)$. In the case $F' = Q(t_i)$, we obtain

$$F(\zeta_{n}) = Q(t_1, \zeta_{n}, \sqrt{t_1(t_1^2-1)}) = Q(t_1, \zeta_{n}, \sqrt{f(t_1)}).$$

In the same way as before, we may assume that

$$f(t_1) = c^2 t_1(t_1^2 - 1)$$
, where $c^2 = \pm 1$ or ± 2 .

Since E(a) is elliptic, t_1 and $\sqrt{f(t_1)}$ are integral over the specialization ring \mathbb{Q} , i. e., t_1 , $\sqrt{f(t_1)} \in \mathbb{S}$, so that t_1 , $\sqrt{f(t_1)} \in F \cap \mathbb{S}$. By (2.11) $(X, Y) = (\bar{t}_1, \sqrt{f(t_1)})$ is a finite \mathbf{Q} -rational point on

$$Y^2 = c^2 X(X^2 - 1)$$
.

Then, by Lemma 8 $\bar{t}_1=0$ or $\bar{t}_1^2=1$. If $\bar{t}_1=0$, then $\overline{\left(\frac{e_0-e_1}{e_0-e_2}\right)}=0$. If $\bar{t}_1^2=1$, then $\overline{\left(\frac{e_0-e_1}{e_0-e_2}\right)}=1$, so that $\bar{e}_1=\bar{e}_2$. These contradict that E(a) is elliptic. If $F'=Q(t_2)$, then

$$F(\zeta_{2n}) = Q(t_2, \zeta_{2n}, \sqrt{t_2(t_2^2+1)}) = Q(t_2, \zeta_{2n}, \sqrt{f(t_2)}).$$

Then we may assume that $f(t_2)=c^2t_2(t_2^2+1)$, where $c^2=\pm 1$ or ± 2 . In the same way as above, $(X,Y)=(\overline{t_2},\sqrt{f(t_2)})$ is a finite Q-rational point on

$$Y^2 = c^2 X(X^2 + 1)$$
.

Then, by Lemma 8 $\bar{t}_2=0$ or $\bar{t}_2^2=1$. If $\bar{t}_2=0$, then $\bar{t}_1=0$. If $\bar{t}_2^2=1$, then $\bar{t}_1^2=-1$, so that $\bar{e}_0=0$ and a=0. These contradict that E(a) is elliptic. If $F'=\mathbf{Q}(t_3)$, then

$$F(\zeta_{2n}) = \mathbf{Q}(t_3, \zeta_{2n}, \sqrt{\sqrt{2}t_3(t_3^2-2)}) = \mathbf{Q}(t_3, \zeta_{2n}, \sqrt{f(t_3)}).$$

This contradicts Lemma 9. If $F'=Q(t_4)$, then

$$F(\zeta_{2^n}) = Q(t_4, \zeta_{2^n}, \sqrt{\sqrt{-2} t_4(t_4^2 + 2)}) = Q(t_4, \zeta_{2^n}, \sqrt{f(t_4)}).$$

This contradicts Lemma 9.

(II) Suppose that A satisfies (2) in Proposition 2. Put

$$F' = \operatorname{fix} \left(A \cdot (H_n^{(2)} \cap SL_n(\mathbb{Z}/2^n\mathbb{Z})) \right)$$

$$F'' = \operatorname{fix} \left(A \cdot (H_n^{(3)} \cap SL_2(\mathbb{Z}/2^n\mathbb{Z})) \right)$$

In the same way as in the first case, we see that F' is one of $Q(t_i)$ (i=1, 2, 3, 4), where t_i (i=1, 2, 3, 4) are the same as t_i (i=1, 2, 3, 4) in the first case. We have

$$\llbracket F'':F' \rrbracket = \llbracket F''(\zeta_{2^n}):F'(\zeta_{2^n}) \rrbracket = \llbracket F:F'' \rrbracket = \llbracket F(\zeta_{2^n}):F''(\zeta_{2^n}) \rrbracket = 2 \, .$$

Let $\sigma \in A \cap SL_2(\mathbb{Z}/2^n\mathbb{Z})$ with $r_{n,4}(\sigma) = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, and $\gamma \in A \cap SL_2(\mathbb{Z}/2^n\mathbb{Z})$ with $r_{n,4}(\gamma) = \begin{pmatrix} 1+4 & 0 \\ 0 & 1-4 \end{pmatrix}$. Then

$$\sigma(2^{n-3}u_0)=2^{n-3}u_0$$
,
 $\gamma(2^{n-3}u_0)=2^{n-3}u_0+(e_0,0)$.

This implies that $\sqrt{(f_0-e_1)(f_0-e_2)} \in \text{fix}((A \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \cdot (H_n^{(3)} \cap SL_2(\mathbf{Z}/2^n\mathbf{Z}))) = F''(\zeta_{2^n}), \text{ since } r_{n,3}(A \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) = \langle r_{n,3}(\sigma), r_{n,3}(\gamma) \rangle \{\pm 1_2\}. \text{ We saw that } \frac{f_0-e_1}{f_0-e_2} = t_1. \text{ Put}$

$$\sqrt{t_1} = \sqrt{\frac{f_0 - e_1}{f_0 - e_2}} = \frac{\sqrt{(f_0 - e_1)(f_0 - e_2)}}{f_0 - e_2}.$$

Then, since $f_0 - e_2 \in F'(\zeta_{2^n})$, we have

$$F''(\zeta_{2n}) = \mathbf{Q}(t_1, \zeta_{2n}, \sqrt{t_1}).$$

If $F'=Q(t_3)$ or $Q(t_4)$, then we have a contradiction to Lemma 9. Therefore $F'=Q(t_1)$ or $Q(t_2)$. Put

$$\sqrt{t_1} = v_{1,1}, \ \sqrt{-1} \ v_{1,1} = v_{1,2}, \ \sqrt{2} \ v_{1,1} = v_{1,3}, \ \sqrt{-2} \ v_{1,1} = v_{1,4},$$

$$\sqrt{t_2} = v_{2,1}, \ \sqrt{-1} \ v_{2,1} = v_{2,2}, \ \sqrt{2} \ v_{2,1} = v_{2,3}, \ \sqrt{-2} \ v_{2,1} = v_{2,4}.$$

Then $F''=Q(v_{i,j})$, where i is one of 1 and 2, and j is one of 1, 2, 3 and 4. Next we determine F. The genus of F as a function field of one variable is 1 by an easy computation (cf. Shimura [9]). Set

$$B = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z}/2^n\mathbf{Z}) \cap H_n^{(1)} \middle| a \equiv 1 \mod 2^3, \ c \equiv 0 \mod 2^4 \right\}.$$

We have

$$r_{n,4}(B\{\pm 1_2\}) = \left\langle \begin{pmatrix} 1+8 & 0 \\ 0 & 1+8 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \right\rangle \{\pm 1_2\}.$$

Then $2=[A\cap SL_2(\mathbb{Z}/2^n\mathbb{Z}): B\{\pm 1_2\}]=[fix(B\{\pm 1_2\}): F(\zeta_{2^n})]$ and $fix(B\{\pm 1_2\})=F(\zeta_{0^n}, \sqrt{(f_0-e_2)(f_0-e_0)})$. We have

$$\frac{f_0 - e_0}{f_0 - e_2} = \frac{\sqrt{(e_0 - e_1)(e_0 - e_2)}}{e_0 - e_2 + \sqrt{(e_0 - e_1)(e_0 - e_2)}} = \frac{t_1}{1 + t_1}.$$

Put

$$\frac{\sqrt{(f_0-e_2)(f_0-e_0)}}{f_0-e_2} = \sqrt{\frac{f_0-e_0}{f_0-e_2}} = \frac{\sqrt{t_1}}{\sqrt{t_1+1}},$$

where $\sqrt{t_1} = v_{1,1}$. Since $F''(\zeta_{2^n}) = Q(\zeta_{2^n}, \sqrt{t_1}) \subset F(\zeta_{2^n})$, we get

$$\mathrm{fix}(B\{\pm 1_2\}) = F(\zeta_{2^n}, \sqrt{(f_0 - e_2)(f_0 - e_0)}) = F(\zeta_{2^n}, \sqrt{t_1 + 1}).$$

We see $\sqrt{(g_0-e_1)(g_0-e_2)} \in \text{fix}(B\{\pm 1_2\})$. Noting $g_0-e_2 \in \text{fix}(B\{\pm 1_2\})$, we have

$$\sqrt{\frac{g_0-e_1}{g_0-e_2}} \in \text{fix}(B\{\pm 1_2\}) = F(\zeta_{2^n}, \sqrt{t_1+1}).$$

Therefore, there are two elements q and r of $F(\zeta_{2^n})$ such that

$$\frac{g_0 - e_1}{g_0 - e_2} = (q + r\sqrt{t_1 + 1})^2. \tag{2.21}$$

We have

$$\frac{g_{0}-e_{1}}{g_{0}-e_{2}} = \frac{\frac{f_{0}-e_{1}}{f_{0}-e_{2}} + \sqrt{\frac{f_{0}-e_{0}}{f_{0}-e_{2}}} + \sqrt{\frac{f_{0}-e_{0}}{f_{0}-e_{2}}} \sqrt{\frac{f_{0}-e_{1}}{f_{0}-e_{2}}}}{1 + \sqrt{\frac{f_{0}-e_{1}}{f_{0}-e_{2}}} + \sqrt{\frac{f_{0}-e_{0}}{f_{0}-e_{2}}} \sqrt{\frac{f_{0}-e_{1}}{f_{0}-e_{2}}}}
= \sqrt{t_{1}} - t_{1} + \sqrt{t_{1}} t_{1} + (\sqrt{t_{1}} - t_{1})\sqrt{t_{1}+1}}
= q^{2} + r^{2}(t_{1}+1) + 2qr\sqrt{t_{1}+1}.$$
(2.22)

By (2.21) and (2.22),

$$q^2+r^2(t_1+1)=\sqrt{t_1}-t_1+\sqrt{t_1}t_1$$
, $2qr=\sqrt{t_1}-t_1$,

and so

$$q^2 = (\sqrt{t_1} - t_1 + \sqrt{t_1} t_1 \pm t_1)/2$$
.

If $q^2=(\sqrt{t_1}-t_1+\sqrt{t_1}\,t_1-t_1)/2=\sqrt{t_1}(\sqrt{t_1}-1)^2/2$, then $F(\zeta_{2^n})=Q(\sqrt{t_1},\,\zeta_{2^n},\,\sqrt{\sqrt{t_1}})$, since $F''(\zeta_{2^n})=Q(\sqrt{t_1},\,\zeta_{2^n})$ and $[F(\zeta_{2^n}):F''(\zeta_{2^n})]=2$. Therefore the genus of $F(\zeta_{2^n})$ is 0. This contradicts that the genus of $F(\zeta_{2^n})$ is 1. Hence $q^2=\sqrt{t_1}(t_1+1)/2$, so that

$$F(\zeta_{2^n}) = \mathbf{Q}(\sqrt{t_1}, \zeta_{2^n}, \sqrt{\sqrt{t_1(t_1+1)}})$$

$$= \mathbf{Q}(v_{1,1}, \zeta_{2^n}, \sqrt{v_{1,1}(v_{1,1}^2+1)}).$$

Since [F: F'']=2 and $F''=\mathbf{Q}(v_{i,j})$, where i is one of 1 and 2, and j is one of 1, 2, 3 and 4, there is an element $f(v_{i,j})$ of $\mathbf{Q}[v_{i,j}]$ with no multiple root such that

$$F=\mathbf{Q}(v_{i,j}, \sqrt{f(v_{i,j})})$$
.

Then

$$\begin{split} F(\zeta_{2^n}) &= \mathbf{Q}(v_{i,j}, \, \zeta_{2^n}, \, \sqrt{f(v_{i,j})}) \\ &= \mathbf{Q}(v_{i,j}, \, \zeta_{2^n}, \, \sqrt{v_{1,1}(v_{1,1}^2 + 1)}) \, . \end{split}$$

If $F'' = Q(v_{1,j})$ for a certain j, then we have a contradiction in the same way as in the first case. If $F'' = Q(v_{2,1})$, then

$$Q(v_{2,1}, \zeta_{2n}, \sqrt{f(v_{2,1})}) = Q(v_{2,1}, \zeta_{2n}, \sqrt{v_{2,1}(v_{2,1}^2 + \sqrt{-1})}).$$

Since $f(v_{2,1})$ and $v_{2,1}(v_{2,1}^2+\sqrt{-1})$ have no multiple roots, there exists $c \in Q(\zeta_{2^n})^{\times}$ such that

$$f(v_{2,1}) = c^2 v_{2,1}(v_{2,1}^2 + \sqrt{-1})$$
.

This contradicts that $f(v_{2,1}) \in \mathbb{Q}[v_{2,1}]$. In the same way, if $F'' = \mathbb{Q}(v_{2,j})$ for a certain j, then we have a contradiction.

(III) Suppose that A satisfies (3) in Proposition 2. Let $\gamma = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \in SL_2(\mathbb{Z}/2^n\mathbb{Z})$. By N_r we denote the normal subgroup of $H_n^{(1)}$ which is generated by $\bigcup_{\tau \in H_n^{(1)}} \tau^{-1} \gamma \tau$. Put

$$F' = \operatorname{fix} (A \cdot N_r \cdot (H_n^{(2)} \cap SL_2(\mathbb{Z}/2^n\mathbb{Z})))$$

$$F'' = \operatorname{fix} \left(A \cdot (H_n^{(2)} \cap SL_2(\mathbb{Z}/2^n\mathbb{Z})) \right).$$

Then we see

$$[F: F''] = [F'': F'] = [F': \mathbf{Q}(s)] = [F(\zeta_{2^n}): F''(\zeta_{2^n})]$$
$$= [F''(\zeta_{n}): F'(\zeta_{n})] = [F'(\zeta_{n}): \mathbf{Q}(s, \zeta_{n})] = 2.$$

The genus of $F''(\zeta_{2^n})$ is 0 (cf. Shimura [9]), and therefore the genus of $F'(\zeta_{2^n})$ is 0. Since $\det(A) = (\mathbf{Z}/2^n\mathbf{Z})^{\times}$, $F \cap \overline{\mathbf{Q}} = F' \cap \overline{\mathbf{Q}} = F'' \cap \overline{\mathbf{Q}} = \mathbf{Q}$. Since

$$r_{n,2}((A \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \cdot N_{\gamma} \cdot (H_n^{(2)} \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})))$$

$$= \left\langle \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \right\rangle,$$

we have

$$F'(\zeta_{2^n}) = Q(s, \zeta_{2^n}, \sqrt{\frac{e_0 - e_2}{e_0 - e_1}}).$$

Put $\frac{e_0-e_2}{e_0-e_1}=g(s)\{h(s)\}^2$, where g(s) is an element of $\mathbf{Q}[s]$ with no multiple root and h(s) is an element of $\mathbf{Q}(s)$. Since $[F':\mathbf{Q}(s)]=2$, there is an element f(s) of $\mathbf{Q}[s]$ with no multiple root such that $F'=\mathbf{Q}(s,\sqrt{f(s)})$. Then we may assume that $c^2f(s)=g(s)$, where $c^2=\pm 1$ or ± 2 . Hence

$$\omega = \sqrt{f(s)} h(s) = (1/c) \sqrt{\frac{e_0 - e_2}{e_0 - e_1}} \in F' \cap \mathfrak{S}.$$

Since the genus of F' is 0 and $(\overline{s}, \sqrt{f(s)})$ is a Q-rational point on the curve $Y^2 = f(X)$, there is an element $t \in F'$ such that F' = Q(t). Since

$$r_n \cdot ((A \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \cdot (H_n^{(2)} \cap SL_2(\mathbf{Z}/2^n\mathbf{Z}))) = \{\pm 1_2\},$$

we have

$$F''(\zeta_{2^n}) = Q(t, \zeta_{2^n}, \sqrt{\frac{e_1 - e_2}{e_1 - e_0}}).$$

Hence in the same way as above, we have

$$F'' = \mathbf{Q}(t, \nu_0) = \mathbf{Q}(v)$$
.

where $\nu_0 = (1/c')\sqrt{\frac{e_1 - e_2}{e_1 - e_0}}$, and $c'^2 = \pm 1$ or ± 2 . Since

$$r_{n,3}((A \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})) \cdot (H_n^{(3)} \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})))$$

$$= \left\langle \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix}, \begin{pmatrix} 1+4 & 0 \\ 0 & 1+4 \end{pmatrix} \right\rangle \{\pm 1_2\}$$
 ,

we have

$$F(\zeta_{2n}) = Q(v, \zeta_{2n}, \sqrt{\frac{f_1 - e_2}{f_1 - e_0}}),$$

where $\frac{f_1-e_2}{f_1-e_0} = \sqrt{\frac{e_1-e_2}{e_1-e_0}}$. On the other hand $\sqrt{\frac{e_1-e_2}{e_1-e_0}} = c'\nu_0$, where $\nu_0 \in \mathbf{Q}(v)$. Noting $[F: \mathbf{Q}(v)] = [F: F''] = 2$, we obtain $c'^2 = \pm 1$ by Lemma 9. Then

$$F(\zeta_{2n}) = \mathbf{Q}(v, \zeta_{2n}, \sqrt{c'\nu_0}) = \mathbf{Q}(v, \zeta_{2n}, \sqrt{\nu_0}),$$

so that

$$F=\mathbf{Q}(v, \nu)$$
,

where $\nu = (1/c'')\sqrt{\nu_0}$, and $c''^2 = \pm 1$ or ± 2 . We have

$$\omega^2 = c^{-2} \left(\frac{e_0 - e_2}{e_0 - e_1} \right),$$

$$v^4 = c''^{-4}v_0^2$$

$$=c''^{-4}c'^{-2}\left(\frac{e_1-e_2}{e_1-e_0}\right).$$

Since $\frac{e_0-e_2}{e_0-e_1}+\frac{e_1-e_2}{e_1-e_0}=1$, we have $c^2\omega^2+c''^4c'^2\nu^4=1$, where $c^2=\pm 1$ or ± 2 , $c'^2=\pm 1$ and $c''^4=1$ or 4. Since ω , $\nu\in F\cap\mathfrak{S}$, $(X,Y)=(\overline{\omega},\overline{\nu})$ is a finite Q-rational point on the curve

$$c^2X^2+c''^4c'^2Y^4=1$$
.

where $c^2=\pm 1$ or ± 2 , and $c''^4c'^2=\pm 1$ or ± 4 . If $c''^4c'^2=\pm 4$, then $\bar{\nu}=0$ by Lemma 7, and therefore $(e_1-e_2)=0$. This contradicts that E(a) is elliptic. If $c''^4c'^2=\pm 1$, then $\bar{\nu}=0$ or $\bar{\nu}^4=1$ by Lemma 7, and therefore $(e_1-e_2)=0$ or 1. This contradicts that E(a) is elliptic. We deduced a contradiction in any case of (I), (II), (III), and so complete the proof of Proposition 3.

By Proposition 3, we have obviously the following proposition.

PROPOSITION 4. Let E satisfy the hypothesis of Theorem 1, and notations be

as above. Then

$$\operatorname{Gal}(\boldsymbol{Q}(E_{2n})/\boldsymbol{Q}) \supset SL_2(\boldsymbol{Z}/2^n\boldsymbol{Z}) \cap H_n^{(6)}$$
,

for any integer $n \ge 7$.

PROPOSITION 5. Let E satisfy the hypothesis of Theorem 1, and notations be as above. Then

$$\operatorname{Gal}(Q(E_{n})/Q) \supset H_n^{(7)}$$
,

for any integer $n \ge 8$.

PROOF. Let n be an integer ≥ 8 . Put $V = \text{Gal}(Q(E_{2^n})/Q)$. Assume that $V \not\supset H_n^{(n-1)}$. By Proposition 4,

$$V \cap H_n^{(6)} \supset H_n^{(6)} \cap SL_2(\mathbb{Z}/2^n\mathbb{Z})$$
.

By Lemma 3, $r_{n,h+1}(V) \not\supset H_{h+1}^{(h)}$, for any h such that $2 \leq h \leq n-1$. For any integer h such that $6 \leq h \leq n-1$, since $r_{n,h+1}(V) \supset H_{h+1}^{(h)} \cap SL_2(\mathbf{Z}/2^{h+1}\mathbf{Z})$, we have

$$r_{n,h+1}(V \cap H_n^{(6)}) \cap H_{h+1}^{(h)} = H_{h+1}^{(h)} \cap SL_2(\mathbf{Z}/2^{h+1}\mathbf{Z})$$
.

Therefore by Lemma 2,

$$|V \cap H_n^{(6)}| = |H_n^{(6)} \cap SL_2(\mathbb{Z}/2^n\mathbb{Z})|.$$

Hence

$$V \cap H_n^{(6)} = H_n^{(6)} \cap SL_2(\mathbf{Z}/2^n\mathbf{Z})$$
.

On the other hand, $V \cap H_n^{(6)} = \operatorname{Gal}(Q(E_{2^n})/Q(E_{2^6}))$. Let $\sigma \in V \cap H_n^{(6)} = H_n^{(6)} \cap SL_2(\mathbb{Z}/2^n\mathbb{Z})$. Then $\zeta_{2^n}^{\sigma} = \zeta_{2^n}^{\det(\sigma)} = \zeta_{2^n}$. So $\zeta_{2^n} \in Q(E_{2^6})$. We have $\operatorname{Gal}(Q(\zeta_{2^n})/Q) \cong \operatorname{Gal}(Q(E_{2^6})/Q)/\operatorname{Gal}(Q(E_{2^6})/Q(\zeta_{2^n}))$. If $\sigma \in \operatorname{Gal}(Q(E_{2^6})/Q)/\operatorname{Gal}(Q(E_{2^6})/Q(\zeta_{2^n}))$, then $\sigma^{2^5} = 1$, since $\operatorname{Gal}(Q(E_{2^6})/Q) \subset H_6^{(1)}$. Since $\operatorname{Gal}(Q(\zeta_{2^n})/Q) \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2^{n-2}\mathbb{Z}$, we have $n-2 \leq 5$. Therefore if $n \geq 8$, then $\operatorname{Gal}(Q(E_{2^n})/Q) \supset H_n^{(n-1)}$. Let $n \geq 8$. Then

$$r_{n,8}(\operatorname{Gal}(\boldsymbol{Q}(E_{2^n})/\boldsymbol{Q})) = \operatorname{Gal}(\boldsymbol{Q}(E_{2^8})/\boldsymbol{Q}) \supset H_8^{(7)}$$
.

Hence, by Lemma 3,

$$\operatorname{Gal}(\boldsymbol{Q}(E_{n})/\boldsymbol{Q}) \supset H_n^{(7)}$$
.

We can now complete the proof of our Theorem. We have

$$r_8(\pi_2(G)) = \pi_2(G)/(H^{(8)} \cap \pi_2(G))$$

$$= \operatorname{Gal}(\boldsymbol{Q}(E_{2^8})/\boldsymbol{Q})$$

$$\supset H_8^{(7)},$$

by Proposition 5, where G is the Galois group of \overline{Q}/Q , π_2 is the 2-adic representation attached to E, and r_8 is the natural homomorphism from $GL_2(\mathbf{Z}_2)$ to $GL_2(\mathbf{Z}/2^8\mathbf{Z})$. Since $\pi_2(G)$ is a closed subgroup of $GL_2(\mathbf{Z}_2)$, we obtain $\pi_2(G) \supset H^{(7)}$, by Lemma 4.

3. Proof of Theorem 2.

Let E be an elliptic curve defined over Q, and $\underline{0}$ be the zero element of E. Assume that the points of order 2 are all Q-rational, and E has a Q-rational point of order 8. From Kubert [4], such elliptic curves are parametrized in the following way by variable α :

$$E(\alpha): y^2+(1-c)xy-by=x^3-bx^2,$$

where

$$b = (2d-1)(d-1)$$
,
$$c = (2d-1)(d-1)/d = b/d$$
,
$$d = \alpha(8\alpha+2)/(8\alpha^2-1)$$
,

and

$$\begin{split} d(d-1)(2d-1)(8d^2-8d+1) \\ &(=2\alpha(4\alpha+1)(2\alpha+1)(8\alpha^2+4\alpha+1)(8\alpha^2+8\alpha+1)^2/(8\alpha^2-1)^5) \\ &\neq 0 \; . \end{split}$$

We consider $E(\alpha)$ as an elliptic curve with the zero element (∞, ∞) , defined over the rational function field $\mathbf{Q}(\alpha)$ of one variable α over \mathbf{Q} . Then we may consider that E=E(a) and $\mathbf{Q}=(\infty,\infty)$, where $a\in\mathbf{Q}$, $\Delta=2a(4a+1)(2a+1)(8a^2+4a+1)(8a^2+8a+1)^2/(8a^2-1)^5\neq 0$, i.e., E(a) is the elliptic curve obtained through the specialization $\alpha\to a$. We see that (0,0) is of order 8, -2(0,0)=(b,0) and $-2(b,0)=(d(d-1),d(d-1)^2)$ on $E(\alpha)$. Put

$$\begin{split} &e_0\!\!=\!d(d-1)\!\!=\!\!2\alpha(4\alpha\!+\!1)(2\alpha\!+\!1)/(8\alpha^2\!-\!1)^2\,,\\ &e_1\!\!=\!\!(4\alpha\!+\!1)(8\alpha^2\!+\!4\alpha\!+\!1)/16\alpha^2(8\alpha^2\!-\!1)\,,\\ &e_2\!\!=\!\!-2\alpha(2\alpha\!+\!1)(8\alpha^2\!+\!4\alpha\!+\!1)/(4\alpha\!+\!1)^2(8\alpha^2\!-\!1)\,. \end{split}$$

Then the points of order 2 on $E(\alpha)$ are

$$(e_i, -((1-c)e_i-b)/2)$$
 $i=1, 2, 3$.

Let $2u_0=(0,0)$ and $8u_1=(e_1,-((1-c)e_1-b)/2)$. Then (u_0,u_1) is a base of $E(\alpha)_{2^4}$ over $\mathbb{Z}/2^4\mathbb{Z}$. Let identify $\operatorname{Gal}(\mathbf{Q}(\alpha,E(\alpha)_{2^4})/\mathbf{Q}(\alpha))$ with a subgroup of $GL_2(\mathbb{Z}/2^4\mathbb{Z})$ by taking the base (u_0,u_1) . Then we can see easily that

$$\operatorname{Gal}(\boldsymbol{Q}(\alpha, E(\alpha)_{2^4})/\boldsymbol{Q}(\alpha)) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H_4^{(1)} \middle| a \equiv 1, c \equiv 0 \mod 2^3 \right\},$$

$$\overline{\boldsymbol{Q}} \cap \boldsymbol{Q}(\alpha, E(\alpha)_{2^4}) = \boldsymbol{Q}(\zeta_{2^4}).$$

Put

$$B = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H_4^{(1)} \middle| a \equiv 1, c \equiv 0 \mod 2^3 \right\}.$$

PROPOSITION 6. Let E be an elliptic curve defined over Q. Let the points of order 2 on E be all Q-rational, and E have a Q-rational point of order 8. Then we have

$$\operatorname{Gal}(\boldsymbol{Q}(E_{o4})/\boldsymbol{Q}) = B$$

with a suitable base of E_{24} .

PROOF. Let the notations be as above. Then we may assume that E=E(a), where $a\in Q$. By $\mathbb Q$ we denote the specialization ring of the specialization $\alpha\to a$ over Q and by $\mathfrak p$ the maximal ideal of $\mathbb Q$. Let $\mathfrak S$ be the integral closure of $\mathbb Q$ in $Q(\alpha, E(\alpha)_{2^4})$, $\mathfrak P$ be a maximal ideal of $\mathfrak S$ lying above $\mathfrak p$. In what follows we regard $\overline Q\supset \mathfrak S/\mathfrak P\supset \mathfrak O/\mathfrak p=Q$. Let $V_{\mathfrak P}$ be the decomposition group of $\mathfrak P$. Then by the same reason as in the proof of Proposition 3 it is sufficient to prove that $V_{\mathfrak P}=B$. Assume that $V_{\mathfrak P}\neq B$. Since B is a 2-group, there exists a subgroup A of B such that $A\supset V_{\mathfrak P}$ and [B:A]=2. Put $F=\mathrm{fix}(A)$. Then by the same reason as in the proof of Proposition 3, we have $(F\cap \mathfrak S)/(F\cap \mathfrak P)=Q$. Next we determine F. Since [B:A]=2, $A\supset B^2$, where B^2 is the group generated by $\{\sigma^2\}_{\sigma\in B}$. We have easily

$$B^2 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H_4^{(2)} \middle| a = 1, c = 0, d \equiv 1 \mod 2^3 \right\}.$$

Put $K=\text{fix}(B^2)$. Then u_0 and 2^2u_1 are K-rational, where $2u_0=(0,0)$ and $2\cdot 2^2u_1=(e_1,-((1-c)e_1-b)/2)$. By the assumption that the points of order 2 on $E(\alpha)$ are all $Q(\alpha)$ -rational, we see $\sqrt{0-e_0}$, $\sqrt{0-e_1}$, $\sqrt{e_1-e_0}$ and $\sqrt{e_1-e_2} \in K$, where

$$\begin{split} -e_0 &= -2\alpha(4\alpha+1)(2\alpha+1)/(8\alpha^2-1)^2 \;, \\ -e_1 &= -(4\alpha+1)(8\alpha^2+4\alpha+1)/16\alpha^2(8\alpha^2-1) \;, \\ e_1 -e_0 &= -(4\alpha+1)^2/16\alpha^2(8\alpha^2-1)^2 \;, \\ e_1 -e_2 &= (8\alpha^2+4\alpha+1)^2(8\alpha^2+8\alpha+1)/16\alpha^2(4\alpha+1)^2(8\alpha^2-1) \;. \end{split}$$

Since $\det(B^2) = \langle 1+8 \rangle \subset (\mathbb{Z}/2^4\mathbb{Z})^{\times}$, $\zeta_{2^3} \in K$. Therefore $\sqrt{-1}$, $\sqrt{2} \in K$. Since $[K: \mathbf{Q}(\alpha)] = [B: B^2] = 2^8/2^3 = 2^5$, we have

$$K = \mathbf{Q}(\alpha, \sqrt{-1}, \sqrt{2}, \sqrt{\alpha(4\alpha+1)(2\alpha+1)},$$

$$\sqrt{(4\alpha+1)(8\alpha^2+4\alpha+1)(8\alpha^2-1)},$$

$$\sqrt{(8\alpha^2+8\alpha+1)(8\alpha^2-1)}).$$

Since [B:A]=2 and $A \supset B^2$, we have $[F:\mathbf{Q}(\alpha)]=2$ and $F \subset K$. Hence there is

an element η of F such that $F = Q(\alpha, \eta)$ and η^2 is one of the following:

- (0) $i \neq 1$;
- (1) $i(8\alpha^2-1)(8\alpha^2+8\alpha+1)$;
- (2) $i\alpha(4\alpha+1)(2\alpha+1)$;
- (3) $i(8\alpha^2-1)(8\alpha^2+4\alpha+1)(4\alpha+1)$;
- (4) $i(8\alpha^2-1)(8\alpha^2+4\alpha+1)\alpha(2\alpha+1)$;
- (5) $i\alpha(4\alpha+1)(2\alpha+1)(8\alpha^2-1)(8\alpha^2+8\alpha+1)$;
- (6) $i(8\alpha^2+8\alpha+1)(8\alpha^2+4\alpha+1)(4\alpha+1)$;
- (7) $i(8\alpha^2+8\alpha+1)(8\alpha^2+4\alpha+1)(2\alpha+1)\alpha$,

where i is one of 1, -1, 2 and -2. Since $\det(A) = \det(V_{\mathfrak{P}}) = (\mathbf{Z}/2^4\mathbf{Z})^{\times}$, $\overline{\mathbf{Q}} \cap F = \mathbf{Q}$, so that η^2 is one of (1), (2), ..., (7). Let h be the image of η by the canonical map $\mathfrak{S} \to \mathfrak{S}/\mathfrak{P}$. Then (a,h) is \mathbf{Q} -rational, since $\eta \in F \cap \mathfrak{S}$. Next we shall prove that a is one of 0, -1/4 and -1/2, i.e., $\Delta = 0$, so that we have a contradiction. In what follows, we suppose that a is not zero and it has a description a = t/s, where s and t are rational integers prime to each other with s > 0. We can see easily that a common prime divisor of any two of s, t, 4t+s, 2t+s, $8t^2-s^2$, $8t^2+8ts+s^2$ and $8t^2+4ts+s^2$, if any, is 2.

(I) Suppose $\eta^2=(1)$. Then (x, y)=(a, h) is a finite Q-rational point of the curve C(1, i):

$$y^2 = i(8x^2 - 1)(8x^2 + 8x + 1)$$
.

Assume that i=1 or -1. By Mordell [6] Chapter 10 Theorem 2, C(1, 1) and C(1, -1) are isomorphic to the curve:

$$Y^2 = X^3 - X$$
.

Then by Lemma 8 we can determine the Q-rational points of the curves C(1, 1) and C(1, -1), and we obtain that a is one of -1/4 and -1/2. Assume that i=2. Then $2(64t^4+64t^3s-8ts^3-s^4)$ is a square in Q. Since

$$2(64t^4+64t^3s-8ts^3-s^4) \equiv -2s^4 \mod 4$$
,

we have s=2s', where s' is a rational integer. Hence $2(4t^4+8t^3s'-4ts'^3-s'^4)$ is a square in Q. Since

$$2(4t^4+8t^3s'-4ts'^3-s'^4) \equiv -2s'^4 \mod 4$$

we have s'=2s'', where s'' is a rational integer. Hence $2(t^4+4t^3s''-8ts''^3-4s''^4)$ is a square in Q. Since

$$2(t^4+4t^3s''-8ts''^3-4s''^4)\equiv 2t^4 \mod 4$$
,

we have 2|t. This contradicts that s and t are prime to each other. By the above method, we have also a contradiction for the case where i=-2.

(II) Suppose $\eta^2=(2)$. If i=1, then (a, h) satisfies the equation: $h^2=a(4a+1)(2a+1)$. Therefore (a, h) satisfies the equation: $(8h)^2=(8a+2)^3-4(8a+2)$. By Lemma 8, 8a+2 is one of 0, 2 and -2, so that a is one of -1/4 and -1/2. This result is also obtained in the same manner when i is one of -1, 2 and -2.

(III) Suppose $\eta^2 = (5)$. Then (a, h) satisfies the equation:

$$h^2 = ia(4a+1)(2a+1)(8a^2-1)(8a^2+8a+1)$$
,

where i is one of 1, -1, 2 and -2. Then

$$s^8h^2=ist(4t+s)(2t+s)(8t^2-s^2)(8t^2+8ts+s^2)$$
.

Hence we have

$$i'st(4t+s)(2t+s)=h'^2$$
,

where i' is one of 1, -1, 2 and -2, h' is a rational integer. Then

$$h'^2/s^4 = i'(t/s)(4t/s+1)(2t/s+1)$$

= $i'a(4a+1)(2a+1)$.

In the same way as in the case where η^2 =(2), we obtain that a is one of -1/4 and -1/2.

(IV) Suppose $\eta^2 = (3)$ or (6). Then (a, h) satisfies the equation:

$$h^2 = i(8a^2 - 1)(8a^2 + 4a + 1)(4a + 1)$$
.

or the equation:

$$h^2 = i(8a^2 + 8a + 1)(8a^2 + 4a + 1)(4a + 1)$$
.

Then

$$s^6h^2=i(8t^2-s^2)(8t^2+4ts+s^2)(4t+s)s$$

or

$$s^6h^2=i(8t^2+8ts+s^2)(8t^2+4ts+s^2)(4t+s)s$$
.

Hence $s=q^2$ or $2q^2$, and $4t+s=\pm r^2$ or $\pm 2r^2$, where q and r are rational integers. Since $8t^2+4ts+s^2$ is positive, $8t^2+4ts+s^2=k^2$ or $2k^2$, where k is a rational integer. If $s=q^2$ and $4t+s=\pm r^2$, then $8t^2+4ts+s^2=(1/2)(q^4+r^4)$, so that $q^4+r^4=2k^2$ or $(2k)^2$. Then $2(k/q^2)^2-(r/q)^4=1$ or $(2k/q^2)^2-(r/q)^4=1$. By Lemma 7, $(r/q)^4=1$ or r/q=0. Therefore $4(t/s)+1=\pm 1$ or 0, so that a=-1/2 or -1/4. If $s=q^2$ and $4t+s=\pm 2r^2$, $8t^2+4ts+s^2=(1/2)(4r^4+q^4)$, so that $4r^4+q^4=2k^2$ or $(2k)^2$. Then $2(k/q^2)^2-4(r/q)^4=1$. By Lemma 7, r/q=0. Therefore a=-1/4. If $s=2q^2$ and $4t+s=\pm r^2$, $8t^2+4ts+s^2=(1/2)(r^4+4q^4)$, ,so that $r^4+4q^4=2k^2$ or $(2k)^2$. Then r=0 or q/r=0. Therefore a=-1/4. If $s=2q^2$ and $4t+s=\pm r^2$, $8t^2+4ts+s^2=(1/2)(r^4+4q^4)$, ,so that $r^4+4q^4=2k^2$ or $(2k)^2$. Then r=0 or q/r=0. Therefore a=-1/4. If $s=2q^2$ and $4t+s=\pm 2r^2$, then

 $8t^2+4ts+s^2=2q^4+2r^4$, so that $q^4+r^4=2(k/2)^2$ or k^2 . Thus a=-1/2 or -1/4. (V) Suppose $\eta^2=(4)$ or (7). Then (a, h) satisfies the equation:

$$h^2 = i(8a^2 - 1)(8a^2 + 4a + 1)a(2a + 1)$$
,

or the equation:

$$h^2 = i(8a^2 + 8a + 1)(8a^2 + 4a + 1)a(2a + 1)$$
.

Then

$$s^6h^2=i(8t^2-s^2)(8t^2+4ts+s^2)(2t+s)t$$

or

$$s^6h^2=i(8t^2+8ts+s^2)(8t^2+4ts+s^2)(2t+s)t$$
.

Hence $t=q^2$ or $2q^2$, and $2t+s=\pm r^2$ or $\pm 2r^2$, where q and r are rational integers. Since $8t^2+4ts+s^2$ is positive, we have $8t^2+4ts+s^2=k^2$ or $2k^2$, where k is a rational integer. If $t=q^2$ and $2t+s=\pm r^2$, then $8t^2+4ts+s^2=r^4+4q^4=k^2$ or $2k^2$. Then r=0 or q/r=0, by Lemma 7. Therefore a=-1/2. If $t=q^2$ and $2t+s=\pm 2r^2$, then $8t^2+4ts+s^2=4q^4+4r^4$, so that $q^4+r^4=(k/2)^2$ or $2(k/2)^2$. Then $(r/q)^4=1$ or r/q=0, by Lemma 7. Therefore a=-1/2 or -1/4. If $t=2q^2$ and $2t+s=\pm r^2$, $8t^2+4ts+s^2=r^4+(2q)^4=k^2$ or $2k^2$. Then $(r/2q)^4=1$ or r/2q=0. Therefore a=-1/4 or -1/2. If $t=2q^2$ and $2t+s=\pm 2r^2$, then $8t^2+4ts+s^2=4r^4+(2q)^4=k^2$ or $2k^2$. We get a=-1/2, since r/2q=0 by Lemma 7. Hence we have that a is -1/4 or -1/2. Consequently we obtain Proposition 6.

We can now complete the proof of Theorem 2. Let notations be as above. Let E=E(a), and (ξ_0, ξ_1) be a base of $T_2(E)$ such that the projection of ξ_i to E_{2^4} is \bar{u}_i (i=0, 1). With the base (ξ_0, ξ_1) , we identify $\pi_2(G)$ as a subgroup of $GL_2(\mathbf{Z}_2)$. By Proposition 7,

$$\begin{split} r_4(\pi_2(G)) &= \operatorname{Gal}\left(\boldsymbol{Q}(E_{2^4})/\boldsymbol{Q}\right) \\ &= &\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H_4^{(1)} \,\middle|\, a \equiv 1, \ c \equiv 0 \ \operatorname{mod} 2^3 \right\} \\ &\supset &H_4^{(3)} \;. \end{split}$$

Then $\pi_2(G) \supset H^{(3)}$, by Lemma 4. These imply Theorem 2.

References

- [1] B.J. Birch and H.P.F. Swinnerton-Dyer, Notes on elliptic curves I, J. Reine Angew. Math., 212 (1963), 7-25.
- [2] J.W.S. Cassels, Diophantine equations with special reference to elliptic curves, J. London Math. Soc., 41 (1966), 193-291.
- [3] L.E. Dickson, History of the theory of numbers II, 1934.
- [4] D. Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc., (3), 33 (1976), 193-237.
- [5] S. Lang, Algebraic number theory, Addison-Wesley, 1970.

- [6] L.J. Mordell, Diophantine equations, Academic Press, 1969.
- [7] J.-P. Serre, Abelian *l*-adic representations and elliptic curves, Benjamin, Addison-Wesley, 1968.
- [8] J.-P. Serre, Points rationnels des courbes modulaires $X_0(N)$, Séminaire Bourbaki, $30^{\rm e}$ année, 1977/1978, n°511.
- [9] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten and Princeton University Press, 1971.

Kumiko NISHIOKA

Department of Mathematics
Nara Women's University
Kita-uoya Nishimachi
Nara 630, Japan