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§1. Introduction.

The purpose of this paper is to describe the Plancherel formula for some
locally compact groups and to investigate the associated objects through the in-
termediary of a suitable normal subgroup and something related with it.

A. Kleppner and R.L. Lipsman ([12], discussed this problem under the
assumptions that a normal subgroup N of G is “essentially” of type I (cf. Defini-
tion 5-1 for detail), the action of G on N is smooth, and G is isotropically of
type I almost everywhere. We can regard their results as a “little group
analysis” in the Plancherel formula context.

In this paper, when N is “essentially” of type I, instead of Kleppner and
Lipsman’s smoothness (type I'ness) condition, we assume that the action of G on
N is locally essentially free (Definition 5-4). Whereas it is out of extent of the
Mackey theory, we can do the “little group analysis” about the Plancherel ob-
jects. We will be mainly interested in the non type I groups as the subjects of
this extended analysis.

The (central) decomposition of the Haar weight on C*(G) into 4g-semicharac-
ters is regarded as the Plancherel formula. A measure (class) which gives the
central decomposition of the left regular representation of G and so gives the
Plancherel formula of G is called Plancherel measure (class). Since the Haar
measure of G is dg-relatively invariant with respect to inner automorphism, the
above “Plancherel formula” can be regarded as the “global duality” of G. »

In order to establish the theory of decompositions of Haar weight, we must
make free use of the inductions and the direct integral decompositions of semi-
traces. We discuss these matters in §2. The author has received a recent pre-
print of N.V. Pedersen (On the left regular representations of locally compact
groups), after having finished the preparation of this paper, which contains dis-
cussions of similar problems but the conclusions are slightly different. In con-
trast to Pedersen, we used and refined the decomposition of left Hilbert algebra
established by C.E. Sutherland [2I]. Moreover, in this section we discussed the
case of projective semitraces in order to treat the problems in the group exten-
sion situation more closely in future.
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In §3, we discuss a delicate problem on central decompositions, and the
notion of the Plancherel theory. And we discuss the projective Plancherel theory.
In §4, we discuss the examples of the Plancherel theory for some concrete
groups. §5 is a general theory. We consider the problem to compose the
Plancherel theory of G from those of a suitable normal subgroup N and of
suitable closed subgroups of G/N. When N is “essentially” of type I, we show
that this system works well if we assume that the action of G on N is locally
essentially free. Next, we consider the case that N is not “essentially” of type L.
22], and “On the left ---” cited above treated the case that N is equal to
the kernel of modular function of G (the maximal unimodular subgroup). In
this case, the central property of the obtained decomposition of the left regular
representation follows from the special choice of N. We discuss the case in
which N is not necessarily the maximal unimodular subgroup. We present two
examples (discrete nilpotent group and almost connected Lie group) in which we
can apply a similar analysis.

The author would like to express his hearty thanks to Professor O. Take-
nouchi for valuable advices and constant encouragement, to Mr. S. Funakoshi,
Mr. Y. Katayama and Mr. S. Kawakami for their fruitful discussions, and the
referee for many suggestions.

§2. Induction and direct integral decomposition of semitraces.

2-1. Induction of semitraces.

The induction of semitraces was studied by N.V. Pedersen. For the nota-
tional convenience, we explain here the outline of his method and make some
additional remarks.

Let A be a separable C*-algebra, ¢ a weight on A. We use the following
notations. ng={x€A: d(x*x)<+oo}, Ny={x€A: ¢(x*x)=0} and mg=n§ng.

Let G be a separable locally compact group (s. 1. c. g.), dg a left Haar measure,
4, the modular function. Inner automorphisms of G induce a group {a,: g=G}
of automorphisms of C*(G). For each element 2<C.(G) (C.(G) is the set of con-
tinuous functions with compact supports), a, k isdefined as (a k)(g")=4s(g) k(g™ g’ g)
for g'eG. Let X be a continuous homomorphism from G to R*.

We write down the definitions of X-semitrace, X-semitraceclass representation,
YX-semicharacter and X-semitrace type representation for the convenience of the
reader (cf. 2-1 and 2-2 in [16])).

DEeFINITION 0. (A) A X-semitrace on G is a lower semicontinuous weight on
C*(G) such that

(1) ¢(x)=sup{g(y): yeiys 0=y=x},

2) dla,(x))=Ag)p(x), g€CG, xCHG)*.
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(B) A X-semitraceclass representation is a pair (z, ¢) consisting of a rep-
resentation = of G and a faithful normal semifinite (f.n.s.) weight on R(x) (the
von Neumann algebra generated by the range of z) such that

1) () Tx(g)")=Ug)$(T), g€G, TER(x),

(2) m(CXG)Nmg is weakly dense in R(x).

(C) When (z, gZ) is a X-semitraceclass representation, we call = a X-semitrace
type representation.

(D) X-semitrace is called a X-semicharacter when the G.N.S. representation
associated with it is factorial.

Now, we consider the induction of semitraces. Let N and G be s.l.c.g’s
and N<G (i.e. N is a closed normal subgroup of G). G acts on C*(N) by re-
stricting the action of {a,: g&G}. Let » be a continuous homomorphism from
G to R*, and X denotes the restriction of » to N. Suppose that a X-semitrace ¢
of C*(N) is yp-relatively invariant under the action of G. Let Az=nsN\n§/Ng.
Ay has a natural left Hilbert algebra structure. Let Hy be the Hilbert space
completion of ny4/Ny (Ay is dense in Hy), Uy be the left von Neumann algebra
of As and @ be the canonical weight on it (cf. 2-1).

Let 74 be the G.N.S. representation of G on H; given by ¢. We set
M(G, ¢) be the set of Borel functions k: G—Uy such that (i) k(gn)=m4(n)"'k(g)
for all geG, neN. (ii) k is norm bounded. (iii) g—| k(g)|l is with compact support
on G/N. C.(G) is naturally embedded in M(G, ¢). M(G, ¢) has a natural struc-
ture of involutive algebra which is an extension of the ordinary structure of
C/G). # denotes the involution of M(G, ¢).

Let n(G, )={keMG, ¢): |  dk@*k@ids<+oo}, NG, p={keMGs,
@) :SG/Ntﬁ(k(g)*k(g))dg:O}. H(G, ¢) denotes the completion of n(G, ¢)/N(G, @)

with respect to the inner product naturally introduced in it. Let A(G, ¢)=
(n(G, p)N\n(G, ¢)*)/N(G, ¢). A(G, ¢) has automatically a left Hilbert algebra
structure and is dense in H(G, ¢). Let U(G, ¢) denote the left von Neumann
algebra of A(G, ¢) and 5’ be the canonical weight on it. The left representation
of A(G, ¢) on H(G, ¢) induces a unitary representation of G which is unitarily
equivalent to 74=Indy,¢ 7. 5 denotes the image of $’ by the spatial transforma-
tion from U(G, ¢) to R(%g).

LEMMA 2-1 ([17] Proposition 2.1.1). (%4, @) is an n-dg, x-semitraceclass rep-
resentation. Let 5E$°7‘r¢ic-(g>+. Then ¢ is an 7-dg y-semitrace on C*G). The
unitary representation of G which we get from ¢ by the G.N.S. construction is
equivalent to 74. We call ¢ the semitrace induced from ¢ and denote it Indy.s@.

2-2. Direct integral decomposition of semitraces.
Let A be a separable C*-algebra. Let {o;:t=R} be a one parameter x-
automorphism group of A and ¢ be a weight on A. When ¢ satisfies the K. M. S,
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condition with respect to {g;:t€R} (p. 94 of [21]), we say that ¢ is ¢-K.M.S.
We assume that each K.M.S. weight is lower semicontinuous.

When ¢ is 0-K.M.S., Ny is a closed two sided ideal and we construct a left
Hilbert algebra Ay and a left representation (mg4, Hy). Let My be the left von
Neumann algebra, gzNS be the canonical weight on it and & be the modular auto-
morphism group determined by ¢.

LEMMA 2-2 ([21] Theorem 5.3). Let ¢ be a densely defined o-K. M. S. weight

on A. Suppose that MES?’ . dp(y) is a decomposition of w4 such that the diagonal

algebra is contained in the centre ZR(wy) of R(wg). Then there exists a family
of weights {¢,:7<I'} on A which satisfies the following conditions.

(1) x€A*, x—¢,(x) is measurable and ng(x):SszST(x)dp(r).

(2) for pa.a. 7, ¢, is o-K.M. S. _

) for p a.a. 7, ¢, is densely defined.

(4) for p a.a. v, the representation determined by ¢, is unitarily equivalent
to my.

REMARK 2-3. In [21], ¢ was assumed to be faithful and the decomposition
of w4 central. But the statements are valid under weaker conditions here stated.

Let ¢ be a ¢-K.M.S. weight on a separable C*-algebra A. Let G be an
s.l.c.g. and X be a continuous homomorphism from G to R*. Suppose that G
acts on A as a continuous *-automorphism group {a,: geG} and ¢@la,)=
X(g)gpw) for VgeiG, YveA*. Then there exists a o-weakly continuous *-auto-
morphism group {@,: g€ G} on R(xy) such that @,(7s(v))=r4(a,(v)) and 95(&3(T))
=X(g)(T) YT € R(my)*.

Now, suppose that 74 has a direct integral decomposition such that every
element of the diagonal algebra is fixed under the action of G. We have,

~ ® ~
{¢; 7l'¢, M¢) ¢r dg} ggl‘ {¢T1 71.7’) MT) ¢T; d’é} d#(T) H

and for ¢ a.a. 7, {@}: g&G} is a o-weakly continuous *-automorphism group
of M,.
THEOREM 2-4. For p a.a. 7, ¢ {a,0)=X(g)¢,v) for YgeC, Yve A+,
PrOOF. We prove that, for g a.a. 7, the equality @.(&%(T,))=X(g)3,(T,)

holds for Yg&G, VT,eM*. Let TeM* and TszT,dp(r). We have (T)=
[T and §auM)=10)| . §Tdpr)={ HOFT)dp). For each g

G, we put ¢8(T)=UQP(T), g8 T)=X(g)¢(T,) and §#*T )=, (&(T,)) for
VT eM*, VT, =M*. Clearly ¢%, ¢# Vs are f.n.s. weights, and by the continuity
of @}, ¢f¥s are also f.n.s. We consider the measurability. To this aim we
refer measurability and weak measurability of family of weights to
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4.1 in [2I]. Since {y—@,} is measurable, {y—@#} is measurable. By the prop-
erty of {a}}, {r—¢§? is weakly measurable. Using Theorem 4.25 in [21],
we have for p a.a. 7,

FaL(T))=X(g)¢ (T,  for VT,eM;.

Since G is assumed to be separable, there exists a countable dense set {g,} in G.
Let J1; be an exceptional null set relative to g; and J1=\UJJl;. T is also a p
null set. For every yelI'\?1 and every ; we have 5T(&§j(TT)):X(gj)gZT(T,) for
every T, Mj. Since ¢,’s are g-weakly lower semicontinuous and X is a continuous
homomorphism, this equality holds for every g€G and every y=l'\J.

g.e.d.

Again, let X be a continuous homomorphism from G to R*. X gives rise to
a continuous *-automorphism group {c¢%}:t€R} on C*(G) such that for 2=C.(G)
we have (otk)(g)=X"(g)k(g). It is to be remarked that C.(G) is {¢}} invariant.

LEMMA 2-5 ([2], p. 67-p. 68). Let ¢ be a X-semitrace on C*G), then ¢ is
oK. M. S.

By this lemma, we are able to apply the general theory of direct integral
decomposition and Theorem 2-4 to the case of semitraces. Let {e} be the trivial
normal subgroup of G. C*({e}) has a G invariant identical trace ¢*. Let ¢%=
Indiey1g0’. ¢% is a dg-semitrace of C*(G). The representation of G correspond-
ing to ¢¢ is the left regular representation 29 As n4e¢DC(G), ¢¢ is densely
defined. We call ¢¢ the Haar weight of G.

Let G and N be s.l.c.g’s and N<G. Let ¢¥ be the canonical weight on
MY=R(A¥) corresponding to the Haar weight ¢ of N and {&,} be the modular

automorphism group on M" determined by ¢¥. Let 4y be defined by SN k(gng)dn
:AN(g)SNk(n)dn for k=C,(N), where dn is a Haar measure of N. (The restric-

tion of 4y to N is just the modular function of N.)
LEMMA 2-6. &Y and @V are Ay-relatively invariant under the action of G.

©
Let 2% zSPZ?’ du(y) be a direct integral decomposition over some standard
measure space (I, p). Suppose that each element of the diagonal algebra is fixed
under the action of G. Let ¢V :SngS;V du(y) be the corresponding decomposition.

PROPOSITION 2-7. For p a.a. 7,

(1) @ is a dy-semitrace of C*(N), and it is dy-relatively invariant under
the action of G.

(2) AY is a semitrace type representation associated with the semitrace ¢¥F.

ProoF. We consider (G, C¥(N)) and apply Theorem 2-11 which appears
after in 2-3 to this situation. g.e.d.

REMARK 2-8. This proposition assures the possibility of inducing ¢¥ to G
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for p a.a. 7.

COROLLARY 2-9. The Haar weight of s.l.c.g. can be decomposed into dg-
-semicharacters.
ProOOF. Put G=N in Proposition 2-7. g.e.d.

2-3. The relation between the induction and the decomposition of semitraces.
Let G>>N and ¢ be a X-semitrace on C*(N) which is p-relatively invariant
under the action of G for a positive real character » of G. We assume first that
ng DC(N). This assumption is unnecessarily strong and we will make it weaker in

Corollary 2-12. Let n¢'—_‘ﬂSi n,du(y) and the diagonal algebra be fixed elementwise
under the action of G on R(zmy) determined by a (cf. 2.1). Then, the correspond-
ing f.n.s. weight ¢ on R(r,) is decomposed accordingly (ggzgjggrdy(r)). We
can assume that all gZT’s are y-relatively invariant. If we put ¢TE$T°WTIC.(N)+,
we have ¢:Sr¢7d‘u(7)' Let =Indy,s¢ and (3, §) be the semitraceclass rep-
resentation corresponding to ¢. Due to Mackey, we have n;zgj(lnd y1aTdup).

LEMMA 2-10. Let G and H be s.l.c.g.’s and GI>H. Let « be a unitary rep-
resentation of H on H,. Let {a,: g=G} be a *-automorphism group on R(zmg)

such that (gem)(h)=ag(x(h)) for every heH. Suppose that WESj”rd#(?) and
the diagonal algebra is fixed by &, (g=G) elementwise. If U=Indy,er, U=
Sj(lndma r)du(r). The diagonal algebra of this decomposition is contained in

R).

Proor. This lemma is an easy generalization of Lemma 3-4-3 of Pukanszky
18] g.e.d.

Let ¢,=Indy.¢¢;, and 57 be the f.n.s. weight of the von Neumann algebra
given by =, corresponding to &,. In this case R(z,) is also decomposed by the
same diagonal algebra as appeared at the beginning of this section.

THEOREM 2-11. In the above situation, {7—»57} is a measurable family of

f.n.s. weights and $=§";$,dﬂ(r>. From this we have gb_zgrgz?,dp(r).

PrROOF. We must treat null sets carefully. Since N is separable, there
exists a countable dense subset {£;} of C.(N) containing an approximate unit in
C.(N). Let P, be the Q() (rational complex numbers) coefficient *-subalgebra of
C.(N) generated by {§;}. Since P, is countable, by removing some null set,
we can assume that, for every y&I, P, is contained in ng.. Since ng, is hered-
itary, ng, contains the x-subalgebra P, generated by P..

For k=C.(G), let F(k)(g)(n)=k(gn) (VgeG, VneN). F(k)(g) is considered
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to be a map from G to C,(N). Let heP,. Then (F(k)(g)- h)(n):SN k(gn"Yh(n'~*n)dn’

for every neN. Let (k-h)(g)=(F(k)(g)-h)(e). Clearly k-h belongs to C.(G).

By the left invariance of dn, F(k)-h=F(k-h). Since hen¢7, kohengr. Analo-

gously keheng. Let {k;:i=1, 2, ---} be a countable dense subset of C.(G) con-

taining an approximate unit of C.(G). Let ¢,={k-h: ke{k;}, heP}. ¢.CC.(G)

and ¢, contains an approximate unit of C.(G), and ¢:CngNng, for every r=r”.
Let 2=C.(G) and heC,(N). We have

F((keh)*)(g)=de/n(&)ag (F(R)(g ) h*)
=a, " (W) g n(g)a, (F(k)(g™)%)
=F(k*)(ga; ' (h¥).

Since P, is x-closed, h€P; implies h*<P;. And since ng_is G invariant, we
have (koh)*CCC(G)mngrmna. Let g, be the Q@) coefficient *-subalgebra generated
by ¢q;. We have qzC_Cc(G)mnarmna and ¢, has an approximate unit. Let =
dgiw-7n. Forevery yerl, ¢ and §,’s are ¢"-K.M.S. Let ¢g; be the Q(:) coefficient
x-subalgebra generated by {o.(v):t=Q, veg,*q,}. ¢ is countable, dense, *-closed
and {o,:t<Q} invariant. Since C.(G), mj and mg s are o* invariant, ¢,CC(G)
NmMgM\mMs,. Let ¢, be the s-subalgebra generated by g¢;. By the “Polarization
identity”, if a weight is finite on ¢%, it is finite on ¢7F.

%, 5?’5 denote the modular automorphism group on von Neumann algebras
corresponding to o%. Let us=mwg(gs), us=mg(qs), uh=n;(gs) and wi=75,(q0). s
and ul’s are countable. These subsets satisfy the same property for (¢, %),
(gzzi‘r, #%)’s as in C*-situation. R(yr,;)zgi M,dp(y). We can assume that for every
rel, M,=R(Indy,¢7,). Let $:SP$§dﬂ(7) be the corresponding decomposition.

¢, s are f.n.s. and we can assume that all ¢,’s are ¥-relatively invariant under
the action of G. By removing some null set we can assume that, for every
rel, ufCmg,, and this implies that, for every yel, u,Cmg;.

By the construction of induced semitrace we can identify the representation
spaces of (Indy,¢7,)’s and 75 with the completion of left Hilbert algebras which

give induced semitraces. Since Hnz=L*G/N)XHrj, and Hng;gSiH(r)dy(r),
(5]

we have Hzr;azgr(L%G/N)@H(r))d;;(r). Let k=C.(G) take finite values for in-

duced semitraces. By the above consideration we can remove some g null set

N, from I"such that for yI'\N, we have |[F(k)"(g) IIZZS |F(k)(g)|I*d g, where

G/Ni

F(k);SjF(k)po(r) and F(k)(g);SiF(k)(g)Td,u(r) (as the decompositions of left

Hilbert algebras). Since u} is countable, we can assume that for every yer]
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5; and 5, are equal forzthe elements of u} of the form =y (k*xk). By the
“Polarization identity”, ¢; and @, are equal on u}, and so are on u]. u} denotes
the x-subalgebra generated by {o,..(T,):t<R, T,=ul}. We show that 57:5;
holds on u]. Since u} is *-closed and every automorphism preserves x, it is
sufficient to prove it for monomials. We define two functions on R"™ by

c(ts, -, t)=Gp(6L o (TH -+ 650, (TP)
by, o, L) =GUEE (T - 65,0, (TH)

where (t4, -+, t,)€R™ and Ticu,. For n=1, the validity of c=c¢’ comes from
the invariance of weights under modular automorphism groups. Suppose that
n=2. Since ¢, and ¢, are #-K.M.S. and all T}{’s are contained in ng.Mng*N
ngNng*, ti—clty, -, ta), ta—clty, o, ta), G¢(ty, -+, ta) and tp—c’(ty, 0, th)
are continuous. For 2=:=<n—1, t;—c(ty, -, i, -, tn) and t,—>c¢’(ty, -+, b, -+, L) Are
continuous because x-»g;,(yxz)(gg;(yxz)) (y, zengrmng}mngr*mngrr*) are matrix
elements of g-weakly continuous representations of M,. Therefore (¢;, -+, t,)—
c(ty, ==+, ta) (€'(ty, -+, tn)) is separately continuous. Since by the construction of
ul ¢c=c¢’ on Q", we have ¢=¢’ on R". This shows that $7|ug=$;lug.

Since u} is a =-closed o-weakly dense subalgebra of mg, Mmg; invariant under
the modular automorphism group, by virtue of Theorem 5.9 of G.K. Pedersen
and M. Takesaki we have gz:Sr:gg;. Therefore {y—@,} is a measurable family

of f.n.s. weights and $:Sj$,dg(r). This shows that 5:SP¢‘Tdy<r>. g.e.d.

COROLLARY 2-12. For the proof of Theorem 2-11, it was necessary that mg
had a good countable subset. Under the condition stated in the first part of this
section, we can derive the same conclusion for the direct integral components of
Haar weights.

We will use this stronger result in §5.

2-4. Projective semitraces.

Like ordinary semitraces, we can define the notion of a projective semitrace
and develope a theory of induction and direct integral decomposition. For this
purpose we need the notion of twisted C*-algebra defined in [13]. The argu-
ments of p. 104-p. 106 are valid without any assumption of type I'ness or
unimodularity. We will employ the same notation. Let G be an s.l.c.g. and
w be a multiplier on G. i.e. a function on GX G with value in T which is Borel
measurable and satisfies cocycle condition (cf. p. 215 in [11]). There exists a
conditional expectation P from C*(G(w)) to C*(G, w). Then weights on C*G, o)
can be regarded as weights on C*G(w)). This correspondence preserves lower
semicontinuity and densely defindness. Let X be a continuous homomorphism
from G to R*. X can be lifted on G(w).

DEFINITION 2-13. A lower semicontinuous weights ¢ on C¥*(G, w) is called an
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w-X-semitrace if @¢-P is a X-semitrace on C*G(w)).
The following propositions hold. The proof of them are carried out by re-
duction to the ordinary case.

PROPOSITION 2-14. Let G, N be s.l.c.g.’s, G> N, w be a multiplier on G and
o' =w|yxn. Let n be a continuous homomorphism from G to R*, and X=yp|y.
Let ¢ be an w’-X-semitrace on C*(N, ') which is xn-relatively invariant under the
action of G(w). Then we can construct a canonical w-n-dg y-semitrace on C¥*G, w).
Ind% ¢ @ denotes this semitrace.

PROPOSITION 2-15. A densely defined w-X-semitrace on C* G, w) can be de-
composed into densely defined w-X-semitraces.

PROPOSITION 2-16. In the situation analogous to Theorem 2-11, ¢ can be de-
composed into w-semitraces which are p-velatively invariant under the action of G.

PROPOSITION 2-17. The stage theorem holds for the induction of projective
semitraces.

PROPOSITION 2-18. In the projective semitrace context, the processes of induc-
tion and direct integral decomposition commute.

§3. Plancherel theory.

3-1. A remark on the central decomposition.
Let A be a separable C*-algebra and = be a representation of A. ==

<]
errdy(r) is called a coarse decomposition when the diagonal algebra is con-

tained in R(z). When we want to carry out the central decomposition of 7, we
often decompose 7 coarsely first and carry out the central decomposition of each

53}
component. That is to say nESPn,d w(7) (coarse) and nrzgz 7y, 5d 1, (0) (central).
But {7—»827:,,,;(1;;,(5)} may not be measurable, so we cannot understand the

central decomposition of x as a double integral directly. But by and [8],
the next lemma holds.

LEMMA 3-1 ([4], [8]). Let szjn,dp(r) be coarse and for p a.a.y m=
S; 7y, 5d 1 (0) be central. Then for p a.a.y there exists a family of Borel measures
(¢} on A satisfies the following (1) and (2). Put n;:S: 70,04 3) for p a.a. 1.
Then, (1) each =y is unitarily equivalent to rm,, and {y—r;} is measurable, (2) = is
unitarily equivalent to Si mrd p(7).

In the above situation we write

={ (o radu@dutrion) .
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REMARK 3-2. Let G be an s.l.c.g. and ¢ be a densely defined X-semitrace
on C¥(G). When we have ¢=Sr¢rdﬂ<r> and ¢,:SA 6,.5d1,(8), then we can
T

write as follows.

¢:Sp{gdr¢%5dﬂr(5)}’dﬂ(7'> (ZSFSATQﬁr,adﬂT@)dy(r) for notational convenience).

This is the greatest merit of considering the decomposition of semitraces rather
than the decomposition of representations.

3-2. Plancherel theory.

By using the notion of semitraces, we can have a Plancherel theory for
general separable locally compact groups. Let A% be the left regular representa-
tion of G and ¢¢ be the Haar weight on C*(G). Then by [3], there exists a
standard Borel measure u® on G unique up to measure classes and a measurable

field of factor representations {y—A4¥} such that we have XGgS: 28d u8(r), where

the diagonal algebra is the centre of R(41°). This algebra also gives the decom-
position of the canonical f.n.s. weight ¢¢ on R(1°) corresponding to ¢¢. That

is to say, by removing some null set from G if necessary, q;G:SZ FEdpl@y). I
we put ¢f=¢fA7| oo+, We have ¢ =56¢?d £(). This is a decomposition of the
Haar weight ¢¢ into dg-semicharacters.

DEFINITION 3-3 (§6 in [20]). We call ¢G:Sa #%d(r) the Plancherel formula

of G, ¢ a Plancherel measure and its measure class the Plancherel measure
class. The study of the central decomposition of A%, Plancherel measures and
Plancherel formula will be called the Plancherel theory for G.

REMARK 3-4. When G is not of type I, we do not know yet the whole set
of G. But in many interesting cases, we can determine a smaller part which
supports p°.

3-3. Projective Plancherel formula.

Let G be an s.l.c.g. and @ be a multiplier on G (cf. 2-4). Let ¢%« be the
w-ds-semitrace on C*(G, w) induced from the trivial trace on C*({e}). We call
¢% ¢ an w-Haar weight. 29¢ denotes the w-regular representation of G and )
denotes the involution of LY(G, w).

LEMMA 3-5. ¢%® is a densely defined ¢46-K.M.S. weight. For k< LG, w)
NLHG), ¢%*(k**,k)=(k**,k)(e). Therefore the elements of C.G(w)) considered
as elements of C*G(w)) are contained in N6, 0 _

When G is unimodular this is the Lemma 2-1 of [13]. G“ denotes the set
of quasi-equivalence classes of w factor representations of G. There exists a
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standard Borel measure p%¢ on G* such that ZG'“’Egaw,Z?'“’dyG'“’(r) (central)
and ¢G"“=Saw¢?""dy"""(7’).
DEFINITION 3-6. We call ngG"":S 6(,,95?’“’0,’ ©%“(r) an w-Plancherel formula of

G, (the class of) p% an (the) w-Plancherel measure (class) of G. The study of
the decomposition of 1%¢, the w-Plancherel formula and the w-Plancherel measure
(class) will be called the w-Plancherel theory of G.

The projective Plancherel theory is necessary when we study the Plancherel
theory on group extension context.

§4. Plancherel formula for concrete groups.

4-1. Groups whose regular representations or projective regular representa-
tions are factorial.

In this case, the Plancherel measure concentrates on one point. Examples
of these groups are ICC groups and Z? with “irrational” multipliers.

4-2. Solvable Lie group.
ExaMPLE 1. Mautner group.
G=RXC? The multiplication is given by
(%, 21, 22)(x’, 21, 25)=(x+x', e*¥ 21+ 21, €77 2,+27) .
For (w,, w,)€C?, X ¥r»»=C? is defined by
AL wO(z,  z =exp [ Re (i,2,+ 0:2,)] for z;=C.

When w;#0 and w,#0, the stabilizer at (12 of the action of R on €? is
trivial. Let U™r ¥ =Indce;aX ¥+ ¥?, If w,#0 and w,+#0, U1 %2 g irreducible.
We define rj, 6; (r;>0, 056,<2xn) by w;=r;e*?i (j=1,2). Let

2x (2@ 101, rqeil
werra= [ s insn 9,40,

0 0

PROPOSITION 4-1. (1) When r,#0 and r,#0, W™ s a normal representa-
tion which generates a hyperfinite ll. factor.

2 ZGES:S:QW"”Z)dner and this is central.
3) ¢G=S:S:¢“1”2)dr1drz and this is a Plancherel formula of G. If r, and
rs#0, ¢ is the character which gives Wr™. For keC.(G) we have
grrroteiy={" ||
-0 J0

2r

SCScf(x’ 21, Zz)x(rlewl,rzei%)dzldzz 2dl91d02dx .

0

REMARK 4-2. Since R(WrmYs are II. factors, there is no appropriate
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normalization of traces or the Plancherel measures.
ExAMPLE 2. Dixmier group.
G is diffeomorphic to R*XC*X R, and the multiplication is given by

(t) S) Zl; 223 r)(t/; S,) Z;; Zé) rl)
=(t-+t, s+s’, e2™ Wz, 21, ™ z, 425, v+ +1t's).
- P .

For (wy, w,, HEC*X R, X?1r¥2De(C?xX R is defined by

PALSY wz’?)(zl, ron r)_:‘eXp [277:2 Re(fv_121+w222+7’r)] .

. /\ . .
Each orbit on C?X R is given for R,, R,=0 and 7 by
O(Ry, Ry M= {012 |y | =Ry, |w,| =Ry} .

Clearly all orbits are closed. We only consider the case when R,>0, R,>0.

Let H={(m, n, z1, 2., ¥): m, nEZ, z,, 22€C, rR}. Then this is the common
stabilizer group. Z* is the common little group.

Suppose that w,=R;, w,=R,. We determine the projective extension ¥ % %2:"
of XFuE2P by the trivial extension. In this case a Mackey obstruction cocycle
o is given by

a’((my, ny), (mg, ng))=e 2"7mem1  (my;, n,&€Z).

When w,=R.e2"" and w,=R,e?™™ (t#0 or s#0), we define I¥r %" by (¢, s)
-XB1-B2™  In this case we can take the same Mackey obstruction cocycle a’.
Moreover, we assume that # is irrational.

Let ¢7 be the a’-regular representation of Z2. This is a II;-normal rep-
resentation. Let &7 be the lifting of o7 to H. Let U®™rvaD=Y®1w2DRFT
This is a normal representation of H. Let V™1t %2P=Indg,,U™®r%>P  Then
V12D ig g normal representation of G. Let

W(RlvRZJF)ESISI$V(Rlegniol’R262Zi02'7)d01d02 .
0

0

Vw2 ® ig quasi equivalent to WEv D if |y, |=R,.
PrROPOSITION 4-3. (1) When R,>0, R,>0 and 7 is irrational, WELE2D 45 g
Il.-normal representation.

(2) ZGESW S?STGBW(Rl'R“’dedRZd;’ and this is central.

3) ¢G:SR/05(O m)S(O w)qS(Rl’R?'?)dengdi' and this is a Plancherel formula

of G. @E®rE2D’s qre the characters which give W E2T’s and for keCl(G) we
have
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prren(eesiy=(" " ['f"

—00 J—~00 JO0 JO0

r chck(t, S, 21, Z3, ¥)eXp [277 Re(R,e%1Z,)]

—00

exp [27i Re(e122,)1e** 7 dz,dz,dr| d6.,d6, dsdt .

REMARK 4-4. In Mautner group and Dixmier group cases, stabilizer groups
are constant almost everywhere.

4-3. Heisenberg type groups.

We investigate Heisenberg type groups which S. Kawakami defined in his
Master Thesis [9].

Let X, Y and Z be separable locally compact abelian groups, and B be a
continuous bihomomorphism from XXY to Z. G=XX (Y X Z) and the multiplica-
tion is given by

(x, v, 2)0x’, v, 2)=(x+x', y+y', z4+2'+B(x’, y)).

For ﬁez?, reZ, 1P /a&i X" denote the corresponding character of Y and Z.
The action of X on Y XZ is given by

X EXAN=AF-TB@) | where 1B (y)=Y(B(x, y)).

The orbit containing (8, 7) (O(8, 7)) is the translation of (8, ) by the subgroup
Y, of Y, where Y,={r-B(x): x=X}. O(B, r)’s are not necessarily locally closed
and so G is not necessarily of type L

We have O(8, y)=8-Y,X {y}. Since 8-Y, depends only on the Y, coset con-
taining it, we can write 5(,3, 7=0(8, 7). We have Y XZ= \J 5(5, 7,

re2, el ¥y

where each O(f, 7) is G invariant and closed, and each G orbit contained in it
is dense. As the stabilizer at (8, 7) depends only on 7, we can write this X,.
Let G,=X,X,(YXZ). For acX,, 1« denotes the corresponding character of X,.
Let 27-f-o=xaxx8x X, and F(r, B, )= {X*xX8' xX: p'eB-Y;}. F(, B, @) is a
closed subset of G, and each G orbit contained in it is dense. We have

U FG, B, )=, Plyz0(8, 1)}

BEY /Yy, aEX

(a) Prim(G).

Since C*(G)=XX acom ) and the primitive ideal space of such a C*-algebra
is already known [6], we have only to apply the arguments in to our case.
Let F=\UF(, B, @). For xTf®cF,let UT# ©=Indg X" # . Since UTF o
is irreducible, J(r, B, a)=ker (U # ) is a primitive ideal of C*G).

LEMMA 4-5. J(r, B, @)=J(7’, B/, ') if and only if y=7’, ﬁ:B’ and a=a’.

This lemma shows that there exists an injection from F={F(y, 8, a): 7€ 2,
Be¥/Y,, ac X} to Prim(G).

LEMMA 4-6. For every JePrim(G), there exists a (y, B, @) such that J=
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J, B, @)

This lemma is proved in a general situation in [6].

PROPOSITION 4-7 (Theorem 3.1 in [6]). There exists a bijective correspondense
between E and Prim(G).

(b) Some part of normal representations.

We construct a normal representation of G for each element of ¥ defined in
(a). Let 7p¥ be a Haar measure on Y. Then d, X"y Xd, is a G invariant ergodic
measure on F(y, ,B, o). Let

vabo=(” qoxars amdr g @ep).
T
We can consider V8@ a5 a representation of an abelian C*-algebra C,(F(7, ,é, ).

(XX APHE X ATY(R)AT ¥ (B7)

CAF G, B anrak—|
gives a lower semicontinuous trace %@ on Cy(F(y, 8, a)).

LEMMA 4-8. T8 g semifinite. The f.n.s. trace T op RV @.B®)
given by 0B makes VB g trace class representation and gives a G in-
variant lower semicontinuous semifinite trace on C*(G,).

PROOF. Since d,X-7u¥ X0, is a Radon measure on F(7, [3", a), C.(F(r, B, a))
is contained in n.:¢.4... This shows that @b g densely defined and so
semifinite. The second statement is a consequence from the general theory.

qg.e.d.

Let W‘T'ﬁ"“zlndgrm yaB.o, Since the trace corresponding to wabois G
invariant and semifinite and G/G, is abelian, W%« is of trace class. And
since 8, X B-7p¥ X9, is G-ergodic, Wa B is factorial.

PROPOSITION 4-9. (1) Wb s g normal representation of G.

(2) The map from FoFabo t5 “the quasi equivalence class of W Barr
& Grorm 1S an injection.

(38) For k=C.G) the value of induced character Fa B @ corresponding to
Wb g given by

f(r"é’“)(k**k)=g

ergygz k(x+x’, 3/, 2)X%(x’)

X/Xrg?r
XBHE (3 X2 dpEr(x)d p¥ (v )d pZ(2") : drp*(B)dv(x),

where p%r, p¥ and 5% are Haar measures on X,, Y and Z, and V' is the Haar
measure on X/X, determined by 7n* and p*r.

(¢) The regular representation and the Plancherel formula.

We fix Haar measures 7%, ¥ and 7% of X, Y and Z respectively. Let p%,
¢¥ and pZ be the Plancherel measures dual to %, " and 7? respectively. ¢,
denotes the trace on C*(Z) corresponding to X'.

Let W,=Indz.¢X" and ¢f=Indz:¢¢;. Then we have
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o=l W) and o= gfdut.

Next we consider the decompositions of ¢f and W,. Let »*r and 7p* be the

Haar measures on X, and Y, respectively, v" and "»¥ be the Haar measure on
X/X, and Y/Y, such that

UXZSX/XTé'WXTdvT(é) and /‘Y:Sf’/?ﬂé'rﬁydrl’y(ﬁ)'

Let ¢* and ¢# denote the traces corresponding to X* and X? respectively. We
have

WYES;X? Indg, 1 (" XX XA d p*r(@)d p¥ (B)
and
¢G:Sf o 10de, 16 (B RPP RPN d p* 1) d p¥ (B) .
T
Let
yabo=(" s xamnd@ e
:Sﬂ-?r( XXE XA (BT )NB)
and

b= Sﬁ'yr(qﬁ“@sﬁﬂ'@ﬂ)d(ﬁ Tur)(BY).

z@F @ s the G invariant lower semicontinuous trace on C*(G,) corresponding
to V&Aoo We have

Indgo,0=\]  veboduriaanrg),

SXTX?/?T
and
Il’ldzt Gy ¢T:Si'r><?/l_’rrq’ B dyXT(a)dTvY(,B) .

Let W‘T’f’"’)zlndgr,a yabo f"’B-‘”EIndGrTGr(T'ﬁ'“’. Then we have

Wiz(y oo WO b2 dpir@ds (§)
rx Y
and
¢G:er o p TP dpr@d ().
> T

THEOREM 4-10. Let G=XXY XZ) be a Heisenberg type group.
= a.B.o X YA i
(L4 _Ségfrx?/7rwr dp*r(a)d™¥ (B)(m) (cf. 3-1).
This is central.

2) ¢G:SZSX’ /7 060 d ¥ r(@)dn T ().
XYy
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This is a Plancherel formula for G.
(3) Let 98- denotes the f.n.s. trace on RIW -8 ©) corresponding to 77 # @,
Then for ke(L(G)NL(G))? we have

k(x, vy, Z):S S .L—:<m§,a)(WU,l?,a)(k)W(r,/é,a)(x v, 2)%)
2R x0Ty S

dp¥r(a)dVF(B)d () (Inversion formula) .

REMARK 4-11. The argument used here is topological and the ambiguity of
null sets doesn’t occur.

§5. Plancherel formula for group extensions.

We describe the central decomposition of the left regular representation of
an s.l.c.g. G and the Plancherel formula (or measure) of it by assuming the
existence of a suitable normal subgroup N.

Kleppner and Lipsman ([12], [13]) assumed the smoothness of (G, N) and
the isotropic type I'ness, but made no assumption about the constancy of stabilizer
groups. In contrast with their assumptions we put neither the assumption of
the smoothness nor the isotropic type I'ness, but assume the local constancy of
stabilizers.

5-1. Good normal subgroup case.

Let G and N be s.l.c.g’s and N<JG. Let u¥ be a Plancherel measure of V.

DEFINITION 5-1. We say that the pair (G, N) has the property (A) if,

(1) The regular representation of N is of type L

(2) We can take off a G invariant Borel g% null set C from N such that,
for all zeN \C, G, is closed.

(3) We can take off a G invariant Borel x¥ null set C’ from N such that,
for all zeN\C’, the transitive quasi orbit containing = is canonical (i.e. it
corresponds to some central decomposition).

LEMMA 5-2. Let (G, N) satisfy (A) and reN satisfy the conditions (2) and
(3) of (A). Suppose that U is a factor representation of G, such that U|y=
n®I. Then W=Indg_+cU is factorial and R(W)" and R(U)" are algebraically

isomorphic.
ProoOF. The condition (3) shows that the diagonal algebra of the decomposi-
tion of W|y in Mackey’s subgroup theorem is contained in R(W). g.e.d.

REMARK 5-3. When N is unimodular (2) and (3) are conclusion from (1).
When N is of type I, (G, N) satisfies the property (A).

DEFINITION 54. Let pN:SX u¥du(t) be a G ergodic decomposition. (G, N)

is said to have the property (B) if, for v a.a. t, there exists a G invariant Borel
subset E, in N which supports ¥ and the stabilizers on each point of E,; are
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equal to some closed subgroup G,.

G acts on C*(N) and R(A¥). {a,: g=G} and {&,: g=G} denote these ac-
tions respectively. {a,: g=G} is implemented by a strongly continuous unitary
representation U of G.

Let zNzS: (AF®I,)d " (7) be central and ¢N:Sﬁ¢;vd,u“’(r) be the Plancherel

formula for N. The action of G on ZR(2") (the centre of R(A")) is equivariant
to the action of G on N. ZR(A¥)¢ denotes the set of all G invariant elements.
We decompose A¥ and ¢V using ZR(2¥)°. We have

ZN;Siwde(t) and ¢N_—_SX¢ngpN(t) and for ¥ a.a. t,

<)
= iame and gr={ srama.

By Proposition 2-7, for v¥ a. a. t, ¢ is dy-relatively invariant under the
action of G and is a densely defined semitrace corresponding to AY.

By using the decomposition of semitraces we can show the unimodularity
of little groups in some special situations.

PROPOSITION 5-5. Suppose that G is unimodular, (G, N) has the properties
(A) and (B). Then N and G,’s are all unimodular, and for v¥ a.a. ¢t G,/N is
unimodular.

PROOF. Since NG and G,<G, they are unimodular (cf. § 1 of [23]). Let

¥ be a dy-relatively invariant component of ¢¥ and @Y be the f.n.s. trace on

R(AY) corresponding to ¢. We can assume that the corresponding representa-
tion A¥ is of type 1. Then gZ{V is a direct integral of canonical traces on type I
factors. Therefore the action of G, (the restriction of the action of G) on each
component is necessarily inner and keep the values of traces invariant. From
this we have

V(T =¢¥ (a,(T)=dAdx(g)¢"(T,) for VT, €R(Y)* and VgeG.

Therefore we have dy(g)=1 for every g=G,. Since N and G, are unimodular
this shows that G;/N is also unimodular for ¢ which satisfies all the good prop-
erties. g.e.d.
REMARK 5-6. When N is regularly embedded in G, this proposition follows
from Lemma 2-2 of [13].
We consider only ¢ which has good properties. Let

WtEIndNng,{,v, ¢?EIHdNTG¢?"

3]
We have ZGESX(WJXU ) dv¥ (¢) where I, is the identity operator on the representa-

tion space of W,, and ¢G:SX #FdyV (). We consider the decomposition of W,'s
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and ¢f’s. Let V,=Indy:c, A and ¢;=Indy,e,¢F. Then &, is a 4g,-relatively
invariant semitrace on C*(G,) and V, corresponds to ¢,. We consider the cen-
tral decomposition of V,’s and ¢,’s. By the definition of A} we have V, =

S; (Indy+g, A7)dpf (7). Since G, fixes each element of the diagonal algebra of the
decomposition of 1Y, by Lemma 2-10, the diagonal algebra of the decomposition
of V,is contained in R(V,). From this fact we can write @:Sﬁ (Indy+g,0F)dud (7).

Let Indmgtl?’zgth,,,;dﬂr(E) be central and Indetng?’:gatg?T,adﬂr((‘i) be
the corresponding decomposition. @:Sﬁgat&r,gdﬁ,@)dm’ () is the decomposi-

tion of ¢, into semicharacters. Since each AY is an irreducible representation of
N, we can construct an a(y)-representation ¥ of G, such that i¥|y=2¥, where
a(y) is an N invariant Mackey obstruction cocycle at 2. A*® denotes the a(7)-
regular representation of G,/N. Let 4 be the quasi equivalence classes of a(y)-

factor representations of G,/N. Let stgd o,..dp*P(e) be central. Then we
have V,=AY ®2"—<52Sj(2;3’ ®38;,.)d "D (e), where p*@ is an aly)-Plancherel meas-
ure of G;/N.

LEMMA 5-7. V,sz(M@&T, )duTP(e) is central.

PROOF. Canonical argument shows that R(V)’ is spatially isomorphic to
IQRA*®). Therefore we have

Z(RV)=ZR(V,)) =ZUQRATP)N=IQZ(RA“D)). g.e.d.
We summarize these arguments.
LEMMA 58. (1) VtzgﬁSj(zma,,g@m(e)dw(r)(m) (cf. 3-1), and this is
central.

@) ¢,= Sﬁ 56 &y, 5d 7(0)d uf¥ (v) and this is the decomposition into semicharacters.
t

() dpF@dpl and dp,dpf describe the canonical measure @i, of V, and ¢,
on Gi.
Since G keeps V. invariant, G keeps f. quasi invariant. Then we consider

the ergodic decomposition of standard measure g, under the action of G (i.e.
‘&t:SY /,'et,,dﬁ‘(r)). The decomposition of V, and &, by the fixed point subalgebra
Z(R(V))¢ are

VzE’Sch,.—dﬁt(T) and @:gygz?;,,dﬂ‘(z'), where for ¥ a.a. 7
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] - -
Ve Vidpode) and §o=|_ gu.dp.(e).
Gi Gt

Let Wi..=Indg,16 Ve Then we have W,=("W,.ds*e). By Lemma 210,
the diagonal algebra is contained in R(W,). Therefore we have ¢?zgy¢ﬁrdﬂ‘(r)
where, for §* a-a. 7, ¢f.=Indg,164¢.+

PROPOSITION 5-9. The diagonal algebra of WtESth,,dﬁt(r) is equal to the
centre of RW,). And ¢?zgy¢?,,dﬂ‘(f) is a decomposition into semicharacters.

Proor. It is sufficient to show that for §* a.a.z W, . is factorial. We have
W"’%SZ,(IndG”G Vidps(e). We show that for ¥* a.a. 7 for g,. a.a.

(Indg,s¢ Vi.e)’s are factorial. A good V. has the form ¥ R®é,,.. Then V, . is
a factor representation such that V, .|y=AY&I. Since N has the property (A)
of Definition 5-1 and since we can assume that AY satisfies the property (2) and
(3) of Definition 5-1, by Lemma 5-2, Indg,+¢ V. is a factor representation whose
commuting algebra is algebraically isomorphic to R(V,; .)’. Since we can assume
that V, ... is quasi equivalent (~) to gV, we have

Indg,16 Vi g.e~(Indg,1e (g Vi )=g-Indg, 1 Vi . =Indg,16 Vs, e

Further OO'WHESZ co-(Indg,r¢ Ve.o)d e o(¢), and if ¢’=g-¢ for some geG we
t

have that co-Indg,+¢ V', is unitarily equivalent to oo-Indg,+¢ Vi .. Since f,. is
G ergodic, by using the argument of Proposition 1 in [5], oo-W, . is factorial
and so W, . is factorial. g.e.d.
As a conclusion we have the following main theorem.
THEOREM 5-10 (Plancherel formula for group extensions).
Let (G, N) satisfy (A) and (B).

o) ngS SeWz,rdﬁ‘(r)va(z‘)(m) (cf. 3-1).
XJY
And this is central.

@ ¢°=| | st.ar@ae.

And this is a Plancherel formula of G.

(8) dvtdv¥ is a Plancherel measure of G in some sense.

REMARK 5-11. (1) The measure space (X, v") and (Y, ), the representa-
tions (W,..)’s and the semicharacters (¢¢.)’s are determined by the informations
about the Plancherel objects of N, stabilizers and little groups and the action of
G on them.

(2) When N is abelian, and if there exists a continuous cross section from
G./N to G, and the Mackey obstruction cocycle can be taken continuously as in
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the case of Dixmier group, we can describe ¢, ;'s in terms of G./N, a(r) and N.

5-2. Bad normal subgroup case.

When N doesn’t have type I regular representation, we cannot say anything
about “the induction” of the Plancherel theory in general. Therefore we will
add several assumptions on N and (G, N). Let p" be a Plancherel measure of

N and p¥ :SX;;?’ dy”(¢) be an ergodic decomposition under the action of G.

DEFINITION 5-12. (G, N) satisfies the property (C) if

(1) For p¥ a.a. reN, G, is closed.

(2) For p¥ a.a. neN, the transitive quasi orbit containing =z is canonical.

(3) (G, N) has the property (B).

(4) For p¥ a.a. ne]\7, the canonical measure of U.=Indy.s,_x is atomic.

REMARK 5-13. (1) When g concentrates on Nnorm and NnormzPrim(N),
then we have (1) and (2).

(2) When for ¢ a.a. = G,=N, then (1) and (4) are automatically satisfied.

Let ngis)@ U, . be central.

LEMMA 5-14. Let W, .=Indg_+6Ux,.. Then Wi . is a factor representation
of G such that R(W,,.)" is algebraically isomorphic to R(U,, .).

ProoOr. By the subgroup theorem, U, |y=x®I. Since U, s are subrepre-
sentations of U,, U, .|x's are also subrepresentations of U,|y=zX®I. Since
a1 is factorial, U, .|x’S are quasi equivalent to z. By the subgroup theorem,

(Indg_1¢ U”,s)|N:Sj . $-(Ur | x&@IDds and this is central by (2) of Definition
1Gr

5-12. This shows that RW . ) =RU, ) and W, . is factorial. g.e.d.
Let U,, ¢, be the same as in the good normal subgroup case. Then U,=

3] —
SﬁZUmdyf"(n)(m) is central and ¢t:5ﬁz¢ﬂ,edw<n) is the decomposition into

semicharacters. Let X pf :SY [25d0*(0) be an ergodic decomposition under G. Let
57
Wi=Inds, iU, §7=Indro6e, Wo=|_ Indsy:oUs.dps((x, <)
t
and

§9=|, Indo,s0 6 dfi(x, ©)  (for good 0).

In conclusion, we have the following theorem.
THEOREM 5-15. Suppose that (G, N) has the property (C).
(1) ZGESXSiWadD‘((S)va(t)(m) (cf. 3-1).

And this is central.
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) ¢G=SXSY 8d5t(3)dv™ (t).

And this is a Plancherel formula for G.

We present some examples in which we have the property (C).

ExAMPLE 1. Let G be an almost connected Lie group such that G/G, (G,
is the connected component of G) is abelian. We consider G, as N. We show
that this (G, N) has the property (C). By Theorem 1 of Pukanszky [18] ¥ is
concentrated in ﬁno,m and ]/V\,,O,mzPrim (N). Therefore (G, N) satisfies (1) and
(2) of Definition 5-12. Since G/N is finite, (G, ﬁno,m) is smooth and since G/N
is abelian, (G, N) satisfies (3).

Let (M, G, @, B) be a twisted W*-covariant system (M is a von Neumann
algebra, G is a locally compact group, 8 is an MY valued cocycle and 6 is a
action of G on M, and they satisfy the axiom of p.168 in [20]). Suppose that
M is a factor and G is a discrete abelian group. Let (U,, my) be the canonical
covariant representation of (M, G, 8, B) on H,QL*G) which gives rise to
Ly, (G, M) (twisted W*-crossed product).

LEMMA 5-16. In the above situation, there exists a subgroup H of G and a
map W from H to MY such that we have W W 5. =W z,.-B(g, g') for every g
and g’ in H and T is contained in Z(Lg, (G, M)) if and only if T is of the
form %}H cUo(@)mo(W p)*, where c,’s are scalars.

PrOOF. Each element of Ly, 4(G, M) is of the form T= 3 Us(g)me(Ag).
g'eG

T isin Z(Lg,p(G, M)) if and only if Us(g)T=TUy(g) for every g=G and
wo(B)T=Trs(B) for every B€M. From the first equality we have

2 Us(@Up(g ) mo(Ag)= 2 Ug(gme(Ag)Us(g) .
g'eq g'ee
And using the properties of Uy and 74, we have
2 Uolggmo(Blg, g)Ae)= X Uolgg)ms(B(g’, 2)07'(Ag).
g'ea g'ec

From this we have
(i) Blg, gNAz=p8(g’, )07 (A;) for every g and g’ in G
From the second equality we have

3%36 Us(g")mo(Asg B)Zgéla mo(B)Us(g")mo(Ag)
=g,E€3G Uo(g)mo(05(B)A,) .

This shows that
(i) Ay B=03*(B)A, for every B in M.
If 65" is outer, by Corollary 1.2 in [10], A, =0. We can assume that 63! is
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inner. This shows that Ug(g’) is in ne(M). Then we can put Wy =z (Us(g").
‘We have

(iiiy 6z*(B)=W  *BW,, for every B in M.
Let H={geG: 6§, is inner}. Then H is clearly a subgroup of G. If g and g’ are
in H, we have W, W, =W,, (g, g’) because my is an isomorphism. If we put
(iii) into (ii),

Ag B=W *BW, A, and so (W, A, )B=BW, A,) for every BEM.

W, A, is contained in Z(M). Since M is a factor, there exists a scalar ¢, such
that W, A, =cgz l. Then A =cg Wk

Conversely, such an A, satisfies (i). In fact we have Ug(gg')*=n¢(B(g, &)
Ug(g)*Ue(g)* and Uy(g’'g)*=me(B(g’, @)Us(g)*Us(g)* for every g and g’ in G.
From this #¢(B(g, g))Us(g )V =me(B(g’, 2)Us(g)*Us(g)*Us(g). Then we have
wo(Blg, g W )=mno(B(g’, g)05'W)*) for every g in G and g’ in H. Since 7w,
is injective, B(g, g )W, =p(g’, 2)07'(W,.) holds. g.e.d

COROLLARY 5-17. When G 1is moreover finite, the dimension of Z(Lg, s(G, M))
is finite and not greater than the order of G.

This corollary shows that (G, N) satisfies (4).

ExaMPLE 2. We consider another case in which G acts on ﬁnorm freely. Let
X, -, X;s] denotes a basis of a nilpotent Lie algebra g. We write only non
zero brackets.

[Xl, Xol=X,s, L[X,, Xs]:X4 , X, X4]:X5: [X:z; Xs]:Xs-

Let m:i RX,. Then M is an ideal of g. Let G be the simply connected Lie
i=2

group corresponding to ¢, and N be the connected subgroup determined by R.
G is diffeomorphic to R® by using the 2'nd canonical system of coordinates with
respect to {X;, ---, X5}, Let G={(12n,4, n., ns, ny, ng): n; £} and N={0, n,, n,,
ng, ns): n;Z}. Then G and N are discrete subgroups of G and N<G. N is a
direct product of the discrete Heisenberg group and Z (integers), and so N is
not of type I and moreover does not have type I regular representation.

Since G is unimodular, the Plancherel measure class of N is supported by
J/\\fnorm. We can compute ﬁnorm and Prim(N), and this calculation shows that
AnormzPrim(N). The Plancherel measure class is supported by the set of quasi
equivalence classes of infinite dimensional normal representations, where the
action of G is free. Therefore we conclude that this (G, N) has the property (C).
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