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\S 1. Introduction.

The purpose of this paper is to describe the Plancherel formula for some
locally compact groups and to investigate the associated objects through the in-
termediary of a suitable normal subgroup and something related with it.

A. Kleppner and R. L. Lipsman ([12], [13]) discussed this problem under the
assumptions that a normal subgroup $N$ of $G$ is “essentially” of type I (cf. Defini-
tion 5-1 for detail), the action of $G$ on $\hat{N}$ is smooth, and $G$ is isotropically of
type I almost everywhere. We can regard their results as a “little group
analysis” in the Plancherel formula context.

In this paper, when $N$ is “essentially” of type I, instead of Kleppner and
Lipsman’s smoothness (type I’ness) condition, we assume that the action of $G$ on
$\hat{N}$ is locally essentially free (Definition 5-4). Whereas it is out of extent of the
Mackey theory, we can do the “little group analysis“ about the Plancherel ob-
jects. We will be mainly interested in the non type I groups as the subjects of
this extended analysis.

The (central) $de_{\vee}^{\wedge}omposition$ of the Haar weight on $C^{*}(G)$ into $\Delta_{G^{-}}semicharac-$

ters is regarded as the Plancherel formula. A measure (class) which gives the
central decomposition of the left regular representation of $G$ and so gives the
Plancherel formula of $G$ is called Plancherel measure (class). Since the Haar
measure of $G$ is $\Delta_{G}$-relatively invariant with respect to inner automorphism, the
above “Plancherel formula” can be regarded as the “global duality” of $G$ .

In order to establish the theory of decompositions of Haar weight, we must
make free use of the inductions and the direct integral decompositions of semi-
traces. We discuss these matters in \S 2. The author has received a recent pre-
print of N. V. Pedersen (On the left regular representations of locally compact
groups), after having finished the preparation of this paper, which contains dis-
cussions of similar problems but the conclusions are slightly different. In con-
trast to Pedersen, we used and refined the decomposition of left Hilbert algebra
established by C. E. Sutherland [21]. Moreover, in this section we discussed the
case of projective semitraces in order to treat the problems in the group exten-
sion situation more closely in future.
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In \S 3, we discuss a delicate problem on central decompositions, and the
notion of the Plancherel theory. And we discuss the projective Plancherel theory.
In \S 4, we discuss the examples of the Plancherel theory for some concrete
groups. \S 5 is a general theory. We consider the problem to compose the
Plancherel theory of $G$ from those of a suitable normal subgroup $N$ and of
suitable closed subgroups of $G/N$. When $N$ is “essentially“ of type I, we show
that this system works well if we assume that the action of $G$ on $\hat{N}$ is locally
essentially free. Next, we consider the case that $N$ is not “essentially” of type I.
[22], [21] and “On the left $\cdots$

” cited above treated the case that $N$ is equal to
the kernel of modular function of $G$ (the maximal unimodular subgroup). In
this case, the central property of the obtained decomposition of the left regular
representation follows from the special choice of $N$. We discuss the case in
which $N$ is not necessarily the maximal unimodular subgroup. We present two
examples (discrete nilpotent group and almost connected Lie grouP) in which we
can apply a similar analysis.

The author would like to express his hearty thanks to Professor O. Take-
nouchi for valuable advices and constant encouragement, to Mr. S. Funakoshi,
Mr. Y. Katayama and Mr. S. Kawakami for their fruitful discussions, and the
referee for many suggestions.

\S 2. Induction and direct integral decomposition of semitraces.

2-1. Induction of semitraces.
The induction of semitraces was studied by N. V. Pedersen. For the nota-

tional convenience, we explain here the outline of his method and make some
additional remarks.

Let $A$ be a separable $C^{*}$-algebra, $\phi$ a weight on $A$ . We use the following
notations. $n_{\phi}=\{x\in A:\phi(x^{*}x)<+\infty\},$ $N_{\phi}=\{x\in A:\phi(x^{*}x)=0\}$ and $m_{\phi}=n_{\phi}^{*}n_{\phi}$ .

Let $G$ be a separable locally compact group $(s. 1. c. g.),$ $dg$ a left Haar measure,
$\Delta_{G}$ the modular function. Inner automorphisms of $G$ induce a group $\{\alpha_{g} : g\in G\}$

of automorphisms of $C^{*}(G)$ . For each element $k\in C_{c}(G)(C_{c}(G)$ is the set of con-
tinuous functions with compact supports), $\alpha_{g}k$ is defined as $(\alpha_{g}k)(g’)=\Delta_{G}(g)k(g^{-1}g’g)$

for $g’\in G$ . Let $\chi$ be a continuous homomorphism from $G$ to $R^{+}$ .
We write down the definitions of $\chi$-semitrace, $\chi$-semitraceclass representation,

$\chi$-semicharacter and $\chi$-semitrace type representation for the convenience of the
reader (cf. 2-1 and 2-2 in [16]).

DEFINITION $0$ . (A) A $\chi$-semitrace on $G$ is a lower semicontinuous weight on
$C^{*}(G)$ such that

(1) $\phi(x)=\sup\{\phi(y):y\in\overline{m}_{\phi}0\leqq y\leqq x\}$ ,
(2) $\phi(\alpha_{g}(x))=x(g)\phi(x),$ $g\in G,$ $x\in C^{*}(G)^{+}$ .
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(B) A $\chi$-semitraceclass representation is a pair $(\pi,\tilde{\phi})$ consisting of a rep-
resentation $\pi$ of $G$ and a faithful normal semifinite $(f. n. s.)$ weight on $R(\pi)$ (the

von Neumann algebra generated by the range of $\pi$ ) such that
(1) $\phi(\pi(g)T\pi(g)^{-1})=x(g)\tilde{\phi}(T),$ $g\in G,$ $T\in R(\pi)^{+}$ ,
(2) $\pi(C^{*}(G))\cap m_{\tilde{\phi}}$ is weakly dense in $R(\pi)$ .

(C) When $(\pi, \phi)$ is a $\chi$-semitraceclass representation, we call $\pi$ a $\chi$-semitrace
type representation.
(D) $\chi$-semitrace is called a $\chi$-semicharacter when the G. N. S. representation
associated with it is factorial.

Now, we consider the induction of semitraces. Let $N$ and $G$ be $s$ . $1$ . $c$ . $g$ . $s$

and $N\triangleleft G$ ( $i.e$ . $N$ is a closed normal subgroup of $G$ ). $G$ acts on $C^{*}(N)$ by re-
stricting the action of $\{\alpha_{g} ; g\in G\}$ . Let $\eta$ be a continuous homomorphism from
$G$ to $R^{+}$ , and $\chi$ denotes the restriction of $\eta$ to $N$. Suppose that a $\chi$-semitrace $\phi$

of $C^{*}(N)$ is $\eta$-relatively invariant under the action of $G$ . Let $A_{\phi}=n_{\phi}\cap n_{\phi}^{*}/N_{\phi}$ .
$A_{\phi}$ has a natural left Hilbert algebra structure. Let $H_{\phi}$ be the Hilbert space
completion of $n_{\phi}/N_{\phi}$ ( $A_{\phi}$ is dense in $H_{\phi}$), $U_{\phi}$ be the left von Neumann algebra
of $A_{\phi}$ and $\tilde{\phi}$ be the canonical weight on it (cf. [16] 2-1).

Let $\pi_{\phi}$ be the G. N. S. representation of $G$ on $H_{\phi}$ given by $\phi$ . We set
$M(G, \phi)$ be the set of Borel functions $k:Garrow U_{\phi}$ such that (i) $k(gn)=\pi_{\phi}(n)^{-1}k(g)$

for all $g\in G,$ $n\in N$. (ii) $k$ is norm bounded. (iii) $\dot{g}arrow\Vert k(g)\Vert$ is with compact support
on $G/N$. $C_{c}(G)$ is naturally embedded in $M(G, \phi)$ . $M(G, \phi)$ has a natural struc-
ture of involutive algebra which is an extension of the ordinary structure of
$C_{c}(G)$ . $\#$ denotes the involution of $M(G, \phi)$ .

Let $n(G, \phi)\equiv\{k\in M(G, \phi):\int_{G/N}\tilde{\phi}(k(g)^{*}k(g))d\dot{g}<+\infty\},$ $N(G, \phi)\equiv\{k\in M(G$ ,

$\phi):\int_{G/N}\tilde{\phi}(k(g)^{*}k(g))d\dot{g}=0\}$ . $H(G, \phi)$ denotes the completion of $n(G, \phi)/N(G, \phi)$

with respect to the inner product naturally introduced in it. Let $A(G, \phi)\equiv$

$(n(G, \phi)\cap n(G, \phi)^{\#})/N(G, \phi)$ . $A(G, \phi)$ has automatically a left Hilbert algebra
structure and is dense in $H(G, \phi)$ . Let $U(G, \phi)$ denote the left von Neumann
algebra of $A(G, \phi)$ and $\phi’\simeq$ be the canonical weight on it. The left representation
of $A(G, \phi)$ on $H(G, \phi)$ induces a unitary representation of $G$ which is unitarily
equivalent to $\overline{\pi}_{\phi}\equiv Ind_{N\uparrow G}\pi_{\phi}$ . $\phi\simeq$ denotes the image of $\phi’\simeq$ by the spatial transforma-
tion from $U(G, \phi)$ to $R(\overline{\pi}_{\phi})$ .

LEMMA 2-1 ([17] Proposition 2.1.1). $(\overline{\pi}_{\phi}, \phi^{\simeq})$ is an $\eta\cdot\Delta_{G/N}$ -semitraceclass rep-
resentation. Let $\overline{\phi}\equiv\phi\circ\overline{\pi}_{\phi}\simeq|_{C(G)+}$ . Then $\overline{\phi}$ is an $\eta\cdot\Delta_{G/N}$-semitrace on $C^{*}(G)$ . The
unitary representation of $G$ which we get from $\overline{\phi}$ by the G. N. S. construction is
equivalent to $\overline{\pi}_{\phi}$ . We call $\overline{\phi}$ the semitrace induced from $\phi$ and denote it $Ind_{N\uparrow G}\phi$ .

2-2. Direct integral decomposition of semitraces.
Let $A$ be a separable $C^{*}$-algebra. Let $\{\sigma_{t} ; t\in R\}$ be a one parameter $*-$

automorphism group of $A$ and $\phi$ be a weight on $A$ . When $\phi$ satisfies the K. M. S.
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condition with respect to $\{\sigma_{t} : t\in R\}$ (p. 94 of [21]), we say that $\phi$ is $\sigma- K$ . M. S.
We assume that each K. M. S. weight is lower semicontinuous.

When $\phi$ is a-K. M. S., $N_{\phi}$ is a closed two sided ideal and we construct a left
Hilbert algebra $A_{\phi}$ and a left representation $(\pi_{\phi}, H_{\phi})$ . Let $M_{\phi}$ be the left von
Neumann algebra, $\tilde{\phi}$ be the canonical weight on it and $\tilde{\sigma}$ be the modular auto-
morphism group determined by $\phi$ .

LEMMA 2-2 ([21] Theorem 5.3). Let $\phi$ be a densely defined $\sigma- K$ . M. S. weight

on A. Supp0se that $\pi_{\phi}\cong\int_{\Gamma}^{\oplus}\pi_{\gamma}d\mu(\gamma)$ is a decomposjtion of $\pi_{\phi}$ such that the diagonal

algebra is contained in the centre $ZR(\pi_{\phi})$ of $R(\pi_{\phi})$ . Then there exists a family
of weights $\{\phi_{\gamma} : \gamma\in\Gamma\}$ on A which satisfies the following con&tions.

(1) $x\in A^{+},$ $xarrow\phi_{\gamma}(x)$ is measurable and $\phi(x)=\int_{\Gamma}\phi_{\gamma}(x)d\mu(\gamma)$ .

(2) for $\mu a.a$ . $\gamma,$ $\phi_{\gamma}$ is $\sigma- K$ . M. S.
(3) for $\mu a.a$ . $\gamma,$ $\phi_{\gamma}$ is densely defined.
(4) for $\mu a.a$ . $\gamma$ , the representation determined by $\phi_{\gamma}$ is unitarily equivalent

to $\pi_{\gamma}$ .
REMARK 2-3. In [21], $\phi$ was assumed to be faithful and the decomposition

of $\pi_{\phi}$ central. But the statements are valid under weaker conditions here stated.
Let $\phi$ be a a-K. M. S. weight on a separable $C^{*}$-algebra $A$ . Let $G$ be an

$s$ . $1$ . $c$ . $g$ . and $\chi$ be a continuous homomorphism from $G$ to $R^{+}$ . Suppose that $G$

acts on $A$ as a continuous $*$-automorphism group $\{\alpha_{g} : g\in G\}$ and $\phi(\alpha_{g}(v))=$

$\chi(g)\phi(v)$ for $\forall g\in G,$ $\forall v\in A^{+}$ . Then there exists a $\sigma$-weakly continuous $*$-auto-
morphism group $\{\tilde{\alpha}_{g} ; g\in G\}$ on $R(\pi_{\phi})$ such that $\tilde{\alpha}_{g}(\pi_{\phi}(v))=\pi_{\phi}(\alpha_{g}(v))$ and $\hat{\phi}$ (a $g(T)$ )
$=x(g)\tilde{\phi}(T)\forall T\in R(\pi_{\phi})^{+}$ .

Now, suppose that $\pi_{\phi}$ has a direct integral decomposition such that every
element of the diagonal algebra is fixed under the action of $G$ . We have,

$\{\phi, \pi_{\phi}, M_{\phi}, \emptyset,\tilde{\alpha}_{g}\}\cong\int_{\Gamma}^{\oplus}\{\phi_{\gamma}, \pi_{\gamma}, M_{\gamma},\hat{\phi}_{\gamma},\tilde{\alpha}_{g}^{\gamma}\}d\mu(\gamma)$ ,

and for $\mu a$ . $a$ . $\gamma,$ $\{\tilde{\alpha}_{g}^{\gamma} : g\in G\}$ is a $\sigma$-weakly continuous $*$-automorphism group
of $M_{\gamma}$ .

THEOREM 2-4. For $\mu a.a$ . $\gamma,$ $\phi_{\gamma}(\alpha_{g}(v))=x(g)\phi_{\gamma}(v)$ for $\forall g\in G,$ $\forall v\in A^{+}$ .
PROOF. We prove that, for $\mu a$ . $a$ . $\gamma$ , the equality $\tilde{\phi}_{\gamma}(\tilde{\alpha}_{g}^{\gamma}(T_{\gamma}))=\chi(g)\tilde{\phi}_{\gamma}(T_{\gamma})$

holds for $\forall g\in G,$ $\forall T_{\gamma}\in M^{+}$ . Let $T\in M^{+}$ and $T \cong\int_{\Gamma}^{\oplus}T_{\gamma}d\mu(\gamma)$ . We have $\tilde{\phi}(T)=$

$\int_{\Gamma}^{\oplus}\phi_{\gamma}(T_{\gamma})d\mu(\gamma)$ and $\tilde{\phi}(\tilde{\alpha}_{g}(T))=x(g)\int_{\Gamma}\tilde{\phi}_{\gamma}(T_{\gamma})d\mu(\gamma)=\int_{\Gamma}\chi(g)\tilde{\phi}_{\gamma}(T_{\gamma})d\mu(\gamma)$ . For each $g$

$\in G$ , we put $\tilde{\phi}^{g}(T)\equiv\chi(g)\tilde{\phi}(T),\tilde{\phi}_{\gamma}^{g,1}(T_{\gamma})\equiv\chi(g)\tilde{\phi}_{\gamma}(T_{\gamma})$ and $\tilde{\phi}_{\gamma}^{g,2}(T_{\gamma})\equiv\tilde{\phi}_{\gamma}(\tilde{\alpha}_{g}^{\gamma}(T_{\gamma}))$ for
$\forall T\in M^{+},$ $\forall T_{\gamma}\in M^{+}$ . Clearly $\tilde{\phi}^{g},\tilde{\phi}_{\gamma}^{g.1}’ s$ are $f$ . $n$ . $s$ . weights, and by the continuity
of $\tilde{\alpha}_{g}^{\gamma},$ $\phi_{\gamma}^{g.2}’ s$ are also $f$ . $n$ . $s$ . We consider the measurability. To this aim we
refer measurability and weak measurability of family of weights to Definition
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4.1 in [21]. Since $\{\gammaarrow\tilde{\phi}_{\gamma}\}$ is measurable, $\{\gammaarrow\tilde{\phi}_{\gamma}^{g.1}\}$ is measurable. By the prop-
erty of $\{\alpha_{g}^{\gamma}\}$ , $\{\gammaarrow\phi_{\gamma}^{g.2}\}$ is weakly measurable. Using Theorem 4.25 in [21],

we have for $\mu a$ . $a$ . $\gamma$ ,

$\phi_{\gamma}(\tilde{\alpha}_{g}^{\gamma}(T_{\gamma}))=x(g)\phi_{\gamma}(T_{\gamma})$ for $\forall T_{\gamma}\in M_{\gamma}^{+}$ .
Since $G$ is assumed to be separable, there exists a countable dense set $\{g_{j}\}$ in $G$ .
Let $\mathfrak{N}_{j}$ be an exceptional null set relative to $g_{j}$ and $\mathfrak{N}\equiv\cup \mathfrak{N}_{j}$ . $\mathfrak{N}$ is also a $\mu$

null set. For every $\gamma\in\Gamma\backslash \mathfrak{N}$ and every $j$ we have $\tilde{\phi}_{\gamma}(\tilde{\alpha}_{g_{j}}^{\gamma}(T_{\gamma}))=x(g_{j})\tilde{\phi}_{\gamma}(T_{\gamma})$ for
every $T_{\gamma}\in M_{\gamma}^{+}$ . Since $\tilde{\phi}_{\gamma}’ s$ are $\sigma$-weakly lower semicontinuous and $\chi$ is a continuous
homomorphism, this equality holds for every $g\in G$ and every $\gamma\in\Gamma\backslash \mathfrak{N}$ .

$q$ . $e$ . $d$ .
Again, let $\chi$ be a continuous homomorphism from $G$ to $R^{+}$ . $\chi$ gives rise to

a continuous $*$-automorphism group $\{\sigma_{t}^{\chi} ; t\in R\}$ on $C^{*}(G)$ such that for $k\in C_{c}(G\rangle$

we have $(\sigma_{t}^{\chi}k)(g)=\chi^{it}(g)k(g)$ . It is to be remarked that $C_{c}(G)$ is $\{\sigma_{t}^{\chi}\}$ invariant.
LEMMA 2-5 ([2], p. $67-p$ . $68$). Let $\phi$ be a $\chi$-semitrace on $C^{*}(G)$ , then $\phi$ is

$\sigma^{\chi}- K$ . M. S.
By this lemma, we are able to apply the general theory of direct integral

decomposition and Theorem 2-4 to the case of semitraces. Let $\{e\}$ be the trivial
normal subgroup of G. $C^{*}(\{e\})$ has a $G$ invariant identical trace $\phi^{i}$ . Let $\phi^{G}\equiv$

$Ind_{\{eI}\uparrow G\phi^{i}$ . $\phi^{G}$ is a $\Delta_{G}$-semitrace of $C^{*}(G)$ . The representation of $G$ correspond-
ing to $\phi^{G}$ is the left regular representation $\lambda^{G}$ . As $n_{\phi^{G}}\supset C_{c}(G),$ $\phi^{G}$ is densely
defined. We call $\phi^{G}$ the Haar weight of $G$ .

Let $G$ and $N$ be $s$ . $1$ . $c$ . $g$ . $s$ and $N\triangleleft G$ . Let $\tilde{\phi}^{N}$ be the canonical weight on
$M^{N}\equiv R(\lambda^{N})$ corresponding to the Haar weight $\phi^{N}$ of $N$ and $\{\tilde{\sigma}_{t}\}$ be the modular

automorphism group on $M^{N}$ determined by $\phi^{N}$ . Let $\Delta_{N}$ be defined by $\int_{N}k(g^{-1}ng)dn$

$= \Delta_{N}(g)\int_{N}k(n)dn$ for $k\in C_{c}(N)$ , where $dn$ is a Haar measure of N. (The restric-

tion of $\Delta_{N}$ to $N$ is just the modular function of $N.$ )

LEMMA 2-6. $\phi^{N}$ and $\phi^{N}$ are $\Delta_{N}$ -relatively invanant under the action of $G$ .

Let $\lambda^{N}\cong\int_{\Gamma}^{\oplus}\lambda_{\gamma}^{N}d\mu(\gamma)$ be a direct integral decomposition over some standard

measure space $(\Gamma, \mu)$ . Suppose that each element of the diagonal algebra is fixed

under the action of $G$ . Let $\phi^{N}=\int_{\Gamma}\phi_{\gamma}^{N}d\mu(\gamma)$ be the corresponding decomposition.

PROPOSITION 2-7. For $\mu a$ . $a$ . $\gamma$ ,
(1) $\phi_{\gamma}^{N}$ is a $\Delta_{N}$ -semitrace of $C^{*}(N)$ , and it is $\Delta_{N}$ -relatively invariant under

the action of $G$ .
(2) $\lambda_{\gamma}^{N}$ is a semitrace type representation associated with the semitrace $\phi_{\gamma}^{N}$ .
PROOF. We consider $(G, C^{*}(N))$ and apply Theorem 2-11 which appears

after in 2-3 to this situation. $q$ . $e$ . $d$ .
REMARK 2-8. This proposition assures the possibility of inducing $\phi_{\gamma}^{N}$ to $G$
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for $\mu a.a$ . $\gamma$ .
COROLLARY 2-9. The Haar weight of $s.l$ . $c.g$ . can be decomp0sed into $\Delta_{G^{-}}$

-semicharacters.
PROOF. Put $G=N$ in Proposition 2-7. $q$ . $e$ . $d$ .

2-3. The relation between the induction and the decomposition of semitraces.
Let $G\triangleright N$ and $\phi$ be a $\chi$-semitrace on $C^{*}(N)$ which is $\eta$-relatively invariant

under the action of $G$ for a positive real character $\eta$ of $G$ . We assume first that
$n_{\phi}\supset C_{c}(N)$ . This assumption is unnecessarily strong and we will make it weaker in

Corollary 2-12. Let $\pi_{\phi}\cong\int_{\Gamma}^{\oplus}\pi_{\gamma}d\mu(\gamma)$ and the diagonal algebra be fixed elementwise

under the action of $G$ on $R(\pi_{\phi})$ determined by $\alpha$ (cf. 2.1). Then, the correspond-

ing $f.n.s$ . weight $\phi$ on $R(\pi_{\phi})$ is decomposed accordingly $( \tilde{\phi}=\int_{\Gamma}^{\oplus}\hat{\phi}_{\gamma}d\mu(\gamma))$ . We

can assume that all $\phi_{\gamma}’ s$ are $\eta$-relatively invariant. If we put $\phi_{\gamma}\equiv\phi_{\gamma}\circ\pi_{\gamma}|_{C(N)+}$ ,

we have $\phi=J_{\Gamma}\phi_{\gamma}d\mu(\gamma)$ . Let $\overline{\phi}\equiv Ind_{N\uparrow G}\phi$ and $(\pi_{\overline{\phi}}, \phi)\simeq$ be the semitraceclass rep-

resentation corresponding to $\overline{\phi}$ . Due to Mackey, we have $\pi_{\overline{\phi}}\cong\int_{\Gamma}^{\oplus}(Ind_{N}\uparrow G\pi_{\gamma})d\mu(\gamma)$ .
LEMMA 2-10. Let $G$ and $H$ be $s.l.c.g$ . $s$ and $G\triangleright H$. Let $\pi$ be a unitary rep-

resentation of $H$ on $H_{\pi}$ . Let $\{\tilde{\alpha}_{g} ; g\in G\}$ be a $*$-automorphjsm group on $R(\pi_{\phi})$

such that $(g\circ\pi)(h)=\tilde{\alpha}_{g}(\pi(h))$ for every $h\in H$. Supp0se that $\pi\cong\int_{\Gamma}^{\oplus}\pi_{\gamma}d\mu(\gamma)$ and

the diagonal algebra is fixed by $\tilde{\alpha}_{g}(g\in G)$ elementwise. If $U\equiv Ind_{H\uparrow G}\pi$ , $U\cong$

$\int_{\Gamma}^{\oplus}(Ind_{H\uparrow G}\pi_{\gamma})d\mu(\gamma)$ . The diagonal algebra of this decomp0szti0n is contained in

$R(U)$ .
PROOF. This lemma is an easy generalization of Lemma 3-4-3 of Pukanszky

[18]. $q.e.d$ .
Let $\overline{\phi}_{\gamma}\equiv Ind_{N}\uparrow G\phi_{\gamma}$ , and $\phi_{\gamma}\simeq$ be the $f.n.s$ . weight of the von Neumann algebra

given by $\pi_{\gamma}$ corresponding to $\overline{\phi}_{\gamma}$ . In this case $R(\pi_{\phi})$ is also decomposed by the
same diagonal algebra as appeared at the beginning of this section.

THEOREM 2-11. In the above situation, $\{\gammaarrow\phi_{\gamma}\}\simeq$ is a measurable family of
$f.n.s$ . weights and $\phi\simeq=\int_{\Gamma}^{\oplus}\phi_{\gamma}d\mu(\gamma)\simeq$ . From this we have $\overline{\phi}=\int_{\Gamma}\overline{\phi}_{\gamma}d\mu(\gamma)$ .

PROOF. We must treat null sets carefully. Since $N$ is separable, there
exists a countable dense subset $\{\xi_{j}\}$ of $C_{c}(N)$ containing an approximate unit in
$C_{c}(N)$ . Let $P_{1}$ be the $Q(i)$ (rational complex numbers) coefficient $*$-subalgebra of
$C_{c}(N)$ generated by $\{\xi_{j}\}$ . Since $P_{1}$ is countable, by removing some null set,

we can assume that, for every $\gamma\in\Gamma,$ $P_{1}$ is contained in $n_{\phi_{\gamma}}$ . Since $n_{\phi_{\gamma}}$ is hered-
itary, $n_{\phi_{\gamma}}$ contains the $*$-subalgebra $P_{2}$ generated by $P_{1}$ .

For $k\in C_{c}(G)$ , let $F(k)(g)(n)\equiv k(gn)(\forall g\in G, \forall n\in N)$ . $F(k)(g)$ is considered
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to be a map from $G$ to $C_{c}(N)$ . Let $h\in P_{2}$ . Then $(F(k)(g) \cdot h)(n)=\int_{N}k(gn’)h(n^{\prime-1}n)dn’$

for every $n\in N$. Let $(k\circ h)(g)\equiv(F(k)(g)\cdot h)(e)$ . Clearly $k\circ h$ belongs to $C_{c}(G)$ .
By the left invariance of $dn,$ $F(k)\cdot h=F(k\circ h)$ . Since $h\in n_{\phi_{\gamma}},$ $k\circ h\in n_{\overline{\phi}_{\gamma}}$ . Analo-
gously $k\circ h\in n_{\phi}$ . Let $\{k_{i} : i=1,2, \cdots\}$ be a countable dense subset of $C_{c}(G)$ con-
taining an approximate unit of $C_{c}(G)$ . Let $q_{1}\equiv\{k\circ h:k\in\{k_{i}\} , h\in P_{1}\}$ . $q_{1}\subset C_{c}(G)$

and $q_{1}$ contains an approximate unit of $C_{c}(G)$ , and $q_{1}\subset n_{\overline{\phi}}\cap n_{\phi_{\gamma}}$ for every $\gamma\in\Gamma$

Let $k\in C_{c}(G)$ and $h\in C_{c}(N)$ . We have

$F((k\circ h)^{*})(g)=\Delta_{G/N}(\dot{g})\alpha_{g}^{-1}(F(k)(g^{-1})\circ h^{*})$

$=\alpha_{g}^{-1}(h^{*})\Delta_{G/N}(g)\alpha_{g}^{-1}(F(k)(g^{-1})^{*})$

$=F(k^{*})(g)\alpha_{g}^{-1}(h^{*})$ .

Since $P_{1}$ is $*$-closed, $h\in P_{1}$ implies $h^{*}\in P_{1}$ . And since $n_{\phi_{\gamma}}$ is $G$ invariant, we
have $(k\circ h)^{*}\subset C_{c}(G)\cap n_{\phi_{\gamma}}\cap n_{\phi}$ . Let $q_{2}$ be the $Q(i)coefficient*$-subalgebra generated
by $q_{1}$ . We have $q_{2}\subset C_{c}(G)\cap n_{\overline{\phi}_{\gamma}}\cap n_{\overline{\phi}}$ and $q_{2}$ has an approximate unit. Let $\tilde{x}\equiv$

$\Delta_{G/N}\cdot\eta$ . For every $\gamma\in\Gamma,\overline{\phi}$ and $\overline{\phi}_{\gamma}’ s$ are $\sigma^{\overline{\chi}}- K$ . M. S. Let $q_{3}$ be the $Q(i)$ coefficient
$*$-subalgebra generated by $\{\sigma_{t}(v):t\in Q, v\in q_{2}^{*}q_{2}\}$ . $q_{3}$ is countable, dense, $*$-closed
and $\{\sigma_{t} ; t\in Q\}$ invariant. Since $C_{c}(G),$ $m_{\phi}$ and $m_{\phi_{\gamma}}s$ are $\sigma^{\tilde{\chi}}$ invariant, $q_{3}\subset C_{C}(G)$

$\cap m_{\phi}\cap m_{\phi_{\gamma}}$ . Let $q_{4}$ be the $*$-subalgebra generated by $q_{3}$ . By the “Polarization
identity”, if a weight is finite on $q_{3}^{+}$ , it is finite on $q_{4}^{+}$ .

$\tilde{\sigma}^{\chi}\sim,\tilde{\sigma}_{\gamma}^{\tilde{\chi}}’ s$ denote the modular automorphism group on von Neumann algebras
corresponding to $\sigma^{\tilde{\chi}}$ . Let $u_{3}\equiv\pi_{\phi}(q_{3}),$ $u_{4}\equiv\pi_{\phi}(q_{4}),$ $u_{3}^{\gamma}\equiv\pi_{\phi_{\gamma}}(q_{3})$ and $u_{4}^{\gamma}\equiv\pi_{\phi_{\gamma}}(q_{4})$ . $u_{3}$

and $u_{3}^{\gamma}’ s$ are countable. These subsets satisfy the same property for $(\phi\simeq,\tilde{\sigma}^{\chi})\sim$ ,

$(\phi_{\gamma}\simeq,\tilde{\sigma}_{\gamma}^{\overline{\chi}})s$ as in $C^{*}$-situation. $R( \pi_{\phi)}\cong\int_{\Gamma}^{\oplus}M_{\gamma}d\mu(\gamma)$ . We can assume that for every

$\gamma\in\Gamma,$ $M_{\gamma}=R(Ind_{N}\uparrow G\pi_{\gamma})$ . Let $\phi\simeq=\int_{\Gamma}\phi_{\gamma}’d\mu(\gamma)\simeq$ be the corresponding decomposition.

$\phi_{\gamma}’ s\simeq$ are $f$ . $n$ . $s$ . and we can assume that all $\phi_{\gamma}’ s\simeq$ are $\tilde{\chi}$-relatively invariant under
the action of $G$ . By removing some null set we can assume that, for every
$\gamma\in\Gamma,$

$u_{3}^{\gamma}\subset m_{\phi_{\gamma}}^{\simeq}’$ , and this implies that, for every $\gamma\in\Gamma,$
$u_{4}\subset m\beta_{\gamma}’$

By the construction of induced semitrace we can identify the representation
spaces of $(Ind_{N}\uparrow G\pi_{\gamma})s$ and $\pi$ di with the completion of left Hilbert algebras which

give induced semitraces. Since $H\pi_{\phi}=L^{2}(G/N)\otimes H\pi_{\overline{\phi}}$ , and $H \pi_{\phi}\cong\int_{\Gamma}^{\oplus}H(\gamma)d\mu(\gamma)$ ,

we have $H \pi_{\phi}\cong\int_{\Gamma}^{\oplus}(L^{2}(G/N)\otimes H(\gamma))d\mu(\gamma)$ . Let $k\in C_{c}(G)$ take finite values for in-

duced semitraces. By the above consideration we can remove some $\mu$ null set

$N_{k}$ from $\Gamma$ such that for $\gamma\in\Gamma\backslash N_{k}$ we have $\Vert F(k)^{\gamma}(g)\Vert^{2}=\int_{G/N}\Vert F(k)(g)^{\gamma}\Vert^{2}dg$ , where
$F(k) \cong\int_{\Gamma}^{\oplus}F(k)^{\gamma}d\mu(\gamma)$ and $F(k)(g) \cong\int_{\Gamma}^{\oplus}F(k)(g)^{\gamma}d\mu(\gamma)$ (as the decompositions of left

Hilbert algebras). Since $u_{3}^{\gamma}$ is countable, we can assume that for every $\gamma\in\Gamma$,
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$\phi_{\gamma}’\simeq$ and $\phi_{\gamma}\simeq$ are equal for the elements of $u_{3}^{\gamma}$ of the form $\pi_{\overline{\phi}_{\gamma}}(k^{*}*k)$ . By the
“Polarization identity”, $\phi_{\acute{\gamma}}\simeq$ and $\phi_{\gamma}\simeq$ are equal on $u_{3}^{\gamma}$ , and so are on $u_{4}^{\gamma}$ . $u_{6}^{\gamma}$ denotes
the $*$-subalgebra generated by $\{\sigma_{\gamma.t}(T_{\gamma}):t\in R, T_{\gamma}\in u_{4}^{\gamma}\}$ . We show that $\phi_{\gamma}=\phi_{\gamma}’\simeq\simeq$

holds on $u_{5}^{\gamma}$ . Since $u_{4}^{\gamma}$ is $*$-closed and every automorphism preserves $*$ , it is
sufficient to prove it for monomials. We define two functions on $R^{n}$ by

$c(t_{1}, \cdots t_{n})\equiv\phi_{\gamma}(\tilde{\sigma}_{\gamma.t_{1}}^{\tilde{\chi}}(T_{\gamma}^{1})\simeq\cdots\tilde{\sigma}_{\gamma.t_{n}}^{\tilde{\chi}}(T_{\gamma}^{n}))$

$c’(t_{1}, \cdots t_{n})\equiv\phi_{\gamma}’(\tilde{\sigma}_{\gamma,t_{1}}^{\overline{\chi}}(T_{\gamma}^{1})\simeq\cdots\tilde{\sigma}_{\gamma,t_{n}}^{\overline{\chi}}(T_{\gamma}^{n}))$

where $(t_{1}, \cdots t_{n})\in R^{n}$ and $T_{\gamma}^{i}\in u_{4}$ . For $n=1$ , the validity of $c=c’$ comes from
the invariance of weights under modular automorphism groups. Suppose that
$n\geqq 2$ . Since $\phi_{\gamma}\simeq$ and $\phi_{\gamma}’\simeq$ are $\tilde{\sigma}_{\gamma^{-}}^{\tilde{\chi}}K$ . M. S. and all $T_{\gamma}^{i}’ s$ are contained in $n\partial_{\gamma}\cap n_{\tilde{\phi}_{\gamma}^{*}}\cap$

$n\cap n’,$ $t_{1}arrow c(t_{1}, t_{n}),$ $t_{n}arrow c(t_{1}, t_{n}),$ $t_{1}arrow c’(t_{1}, \cdots t_{n})$ and $t_{n}arrow c’(t_{1}, \cdots t_{n})$

are continuous. For $2\leqq i\leqq n-1,$ $t_{i}arrow c(t_{1}, \cdots t_{i}, \cdots, t_{n})$ and $t_{i}arrow c’(t_{1}, \cdots, t_{i}, \cdots, t_{n})$ are
continuous because $xarrow\phi_{\gamma}(yxz)(\phi_{\gamma}’(yxz))\simeq\simeq(y,$

$Z\in n_{\phi_{\gamma}}^{\simeq}\cap n_{\tilde{\phi}_{\gamma}’\cap n\beta_{\gamma}^{*}\cap n_{\gamma}^{*})}\tilde{\frac{}{\phi}}$
; are matrix

elements of $\sigma$-weakly continuous representations of $M_{\gamma}$ . Therefore $(t_{1}, \cdots t_{n})arrow$

$c(t_{1}, \cdots, t_{n})(c’(t_{1}, \cdots, t_{n}))$ is separately continuous. Since by the construction of
$u_{4}^{\gamma}c=c’$ on $Q^{n}$ , we have $c=c’$ on $R^{n}$ . This shows that $\phi_{\gamma}\simeq|_{u_{\overline{0}}^{\gamma}}=\phi_{\gamma}’\simeq|_{u_{5}^{\gamma}}$ .

Since $u_{5}^{\gamma}$ is a $*$-closed $\sigma$-weakly dense subalgebra of $m_{\phi_{\gamma}}^{\simeq}\cap m_{\phi_{\gamma}^{l}}^{\simeq}$ invariant under
the modular automorphism group, by virtue of Theorem 5.9 of G. K. Pedersen
and M. Takesaki [15] we have $\phi_{\gamma}=\phi_{\gamma}’\simeq\simeq$ . Therefore $\{\gammaarrow\phi_{\gamma}\}\simeq$ is a measurable family

of $f$ . $n.s$ . weights and $\phi^{\simeq}=\int_{\Gamma}^{\oplus}\phi_{\gamma}d\mu(\gamma)\simeq$ . This shows that $\overline{\phi}=\int_{\Gamma}\overline{\phi}_{\gamma}d\mu(\gamma)$ . $q.e.d$ .
COROLLARY 2-12. For the proof of Theorem 2-11, it was necessary that $m_{\phi}$

had a good countable subset. Under the condition stated in the first part of this
section, we can denve the same concluston for the direct integral components of
Haar weights.

We will use this stronger result in \S 5.

2-4. Projective semitraces.
Like ordinary semitraces, we can dePne the notion of a projective semitrace

and develope a theory of induction and direct integral decomposition. For this
purpose we need the notion of twisted $c*$-algebra defined in [13]. The argu-
ments of [13] p. $104-p$ . 106 are valid without any assumption of type I’ness or
unimodularity. We will employ the same notation. Let $G$ be an $s$ . $1.c.g$ . and
to be a multiplier on G. $i.e$ . a function on $G\cross G$ with value in $T$ which is Borel
measurable and satisPes cocycle condition (cf. p. 215 in [11]). There exists a
conditional expectation $P$ from $C^{*}(G(\omega))$ to $C^{*}(G, \omega)$ . Then weights on $C^{*}(G, \omega)$

can be regarded as weights on $C^{*}(G(\omega))$ . This correspondence preserves lower
semicontinuity and densely defindness. Let $\chi$ be a continuous homomorphism
from $G$ to $R^{+}$ . $\chi$ can be lifted on $G(\omega)$ .

DEFINITION 2-13. A lower semicontinuous weights $\phi$ on $C^{*}(G, \omega)$ is called an
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$\omega-\chi$-semitrace if $\phi\circ P$ is a $\chi$-semitrace on $C^{*}(G(\omega))$ .
The following propositions hold. The proof of them are carried out by re-

duction to the ordinary case.
PROPOSITION 2-14. Let $G,$ $N$ be $s$ . $l.c.g$ . $s,$ $G\triangleright N,$ $\omega$ be a multiplier on $G$ and

$\omega’\equiv\omega|_{N\cross N}$ . Let $\eta$ be a continuous homomorphism from $G$ to $R^{+}$ , and $\chi\equiv\eta|_{N}$ .
Let $\phi$ be an $\omega’-\chi$-semitrace on $C^{*}(N, \omega’)$ which is $\eta$ -relatively invariant under the
action of $G(\omega)$ . Then we can construct a canonical $\omega-\eta\cdot\Delta_{G/N}$-semitrace on $C^{*}(G, \omega)$ .
$Ind_{N\uparrow G}^{\omega}\phi$ denotes this semitrace.

PROPOSITION 2-15. A densely defined $\omega-\chi$-semitrace on $C^{*}(G, \omega)$ can be de-
comp0sed into densely defined $\omega-\chi$-semitraces.

PROPOSITION 2-16. In the sztuation analogous to Theorem 2-11, $\phi$ can be de-
comp0sed into $\omega$-semitraces which are $\eta$-relatively invariant under the action of $G$ .

PROPOSITION 2-17. The stage theorem holds for the induction of pr0jective
semitraces.

PROPOSITION 2-18. In the pr0jective semitrace context, the pr0cesses of induc-
tion and direct integral decomp0stti0n commute.

\S 3. Plancherel theory.

3-1. A remark on the central decomposition.
Let $A$ be a separable $C^{*}$-algebra and $\pi$ be a representation of A. $\pi\cong$

$\int_{\Gamma}^{\oplus}\pi_{\gamma}d\mu(\gamma)$ is called a coarse decomposition when the diagonal algebra is con-

tained in $R(\pi)$ . When we want to carry out the central decomposition of $\pi$ , we
often decompose $\pi$ coarsely first and carry out the central decomposition of each

component. That is to say $\pi\cong\int_{\Gamma}^{\oplus}\pi_{\gamma}d\mu(\gamma)$ (coarse) and $\pi_{\gamma}\cong\int_{A}^{\oplus}\wedge\pi_{\gamma,\delta}d\mu_{\gamma}(\delta)$ (central).

But $\{\gammaarrow\int_{A}^{\bigoplus_{\wedge}}\pi_{\gamma.\delta}d\mu_{\gamma}(\delta)\}$ may not be measurable, so we cannot understand the

central decomposition of $\pi$ as a double integral directly. But by [4] and [8],

the next lemma holds.

LEMMA 3-1 ([4], [8]). Let $\pi\cong\int_{\Gamma}^{\oplus}\pi_{\gamma}d\mu(\gamma)$ be coarse and for $\mu a.a$ . $\gamma\pi_{\gamma}\cong$

$\int_{A}^{\bigoplus_{\wedge}}\pi_{\gamma.\delta}d\mu_{\gamma}(\delta)$ be central. Then for $\mu a.a$ . $\gamma$ there exists a family of Borel measures
$\{\mu_{\gamma}’\}$ on $\wedge A$ satisfies the following (1) and (2). Put $\pi_{\gamma}’=\int_{A}^{\bigoplus_{\wedge}}\pi_{\gamma,\delta}d\mu_{\gamma}’(\delta)$ for $\mu a.a$ . $\gamma$ .
Then, (1) each $\pi_{\gamma}’$ is unitanly equivalent to $\pi_{\gamma}$ , and $\{\gammaarrow\pi_{\gamma}’\}$ is measurable, (2) $\pi$ is

unitanly equivalent to $\int_{\Gamma}^{\oplus}\pi_{\gamma}’d\mu(\gamma)$ .
In the above situation we write

$\pi\cong\int_{\Gamma}\int_{A}^{\oplus}\wedge\pi_{\gamma.\delta}d\mu_{\gamma}(\delta)d\mu(\gamma)(m)$ .
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REMARK 3-2. Let $G$ be an $s.1$ . $c.g$ . and $\phi$ be a densely defined $\chi$-semitrace

on $C^{*}(G)$ . When we have $\phi=\int_{\Gamma}\phi_{\gamma}d\mu(\gamma)$ and $\phi_{\gamma}=\int_{\Delta_{\gamma}}\phi_{\gamma,\delta}d\mu_{\gamma}(\delta)$ , then we can

write as follows.

$\phi=\int_{\Gamma}\{\int_{\Delta_{r}}\phi_{\gamma,\delta}d\mu_{\gamma}(\delta)\}d\mu(\gamma)$ $(= \int_{\Gamma}\int_{\Delta_{\gamma}}\phi_{\gamma,\delta}d\mu_{\gamma}(\delta)d\mu(\gamma)$ for notational $convenience)$ .

This is the greatest merit of considering the decomposition of semitraces rather
than the decomposition of representations.

3-2. Plancherel theory.
By using the notion of semitraces, we can have a Plancherel theory for

general separable locally compact groups. Let $\lambda^{G}$ be the left regular representa-
tion of $G$ and $\phi^{G}$ be the Haar weight on $C^{*}(G)$ . Then by [3], there exists a
standard Borel measure $\mu^{G}$ on $\wedge G$ unique up to measure classes and a measurable

field of factor representations $\{\gammaarrow\lambda_{\gamma}^{G}\}$ such that we have $\lambda^{G}\cong\int_{G}^{\bigoplus_{\wedge}}\lambda_{\gamma}^{G}d\mu^{G}(\gamma)$ , where

the diagonal algebra is the centre of $R(\lambda^{G})$ . This algebra also gives the decom-
position of the canonical $f$ . $n.s$ . weight $\tilde{\phi}^{G}$ on $R(\lambda^{G})$ corresponding to $\phi^{G}$ . That

is to say, by removing some null set from $G\wedge$ if necessary, $\tilde{\phi}^{G}=\int_{G}^{\bigoplus_{\wedge}}\tilde{\phi}_{\gamma}^{G}d\mu^{G}(\gamma)$ . If

we put $\phi_{\gamma}^{G}\equiv\phi_{\gamma}^{G}\circ\lambda_{\gamma}^{G}|_{C*(G)}+$ , we have $\phi^{G}=\int_{G}\wedge\phi_{\gamma}^{G}d\mu(\gamma)$ . This is a decomposition of the

Haar weight $\phi^{G}$ into $\Delta_{G}$-semicharacters.

DEFINITION 3-3 (\S 6 in [20]). We call $\phi^{G}=\int_{G}\wedge\phi_{\gamma}^{G}d\mu(\gamma)$ the Plancherel formula

of $G,$ $\mu^{G}$ a Plancherel measure and its measure class the Plancherel measure
class. The study of the central decomposition of $\lambda^{G}$ , Plancherel measures and
Plancherel formula will be called the Plancherel theory for $G$ .

REMARK 3-4. When $G$ is not of type I, we do not know yet the whole set
of $G\wedge$. But in many interesting cases, we can determine a smaller part which
supports $\mu^{G}$ .

3-3. Projective Plancherel formula.
Let $G$ be an $s.1.c.g$ . and $\omega$ be a multiplier on $G$ (cf. 2-4). Let $\phi^{G,\omega}$ be the

$\omega-\Delta_{G}$-semitrace on $C^{*}(G, \omega)$ induced from the trivial trace on $C^{*}(\{e\})$ . We call
$\phi^{G.\omega}$ an $\omega$-Haar weight. $\lambda^{G,\omega}$ denotes the w-regular representation of $G$ and $b$

denotes the involution of $L^{1}(G, \omega)$ .
LEMMA 3-5. $\phi^{G,\omega}$ is a densely defined $\sigma^{\Delta_{G_{-}}}K$ . M. S. weight. For $k\in L^{1}(G, \omega)$

$\cap L^{2}(G),$ $\phi^{G.\omega}(k^{b}*_{\omega}k)=(k^{b}*_{\omega}k)(e)$ . Therefore the elements of $C_{c}(G(\omega))$ considered
as elements of $C^{*}(G(\omega))$ are contained in $n_{\phi^{G.\omega}}$ .

When $G$ is unimodular this is the Lemma 2-1 of [13]. $\wedge G^{\omega}$ denotes the set
of quasi-equivalence classes of $\omega$ factor representations of $G$ . There exists a
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standard Borel measure $\mu^{G.\omega}$ on $\wedge G^{\omega}$ such that $\lambda^{G.\omega}\cong\int_{G^{\omega}}\wedge\lambda_{\gamma}^{G,\omega}d\mu^{G,\omega}(\gamma)$ ($central\rangle$

and $\phi^{G.\omega}=\int_{G^{\omega}}\wedge\phi_{\gamma}^{G.\omega}d\mu^{G,\omega}(\gamma)$ .

DEFINITION 3-6. We call $\phi^{G,\omega}=\int_{G^{\omega}}\wedge\phi_{\gamma}^{G.\omega}d\mu^{G,\omega}(\gamma)$ an $\omega$-Plancherel formula of

$G$ , (the class of) $\mu^{G,\omega}$ an (the) $\omega$-Plancherel measure (class) of $G$ . The study of
the decomposition of $\lambda^{G,\omega}$ , the $\omega$-Plancherel formula and the $\omega$-Plancherel measure
(class) will be called the $\omega$-Plancherel theory of $G$ .

The projective Plancherel theory is necessary when we study the Plancherel
theory on group extension context.

\S 4. Plancherel formula for concrete groups.

4-1. Groups whose regular representations or projective regular representa-
tions are factorial.

In this case, the Plancherel measure concentrates on one point. Examples
of these groups are ICC groups and $Z^{2}$ with “irrational” multipliers.

4-2. Solvable Lie group.
EXAMPLE 1. Mautner group.
$G=R\cross {}_{s}C^{2}$ . The multiplication is given by

$(x, z_{1}, z_{2})(x’, z_{1}’, z_{2}’)=(x+x’, e^{ix’}z_{1}+z_{1}’, e^{2\pi ix’}z_{2}+z_{2}’)$ .
For $(w_{1}, w_{2})\in c^{2},$ $x^{(w_{1}.w_{2})}\in\hat{C}^{2}$ is defined by

$x^{(w_{1}.w_{1})}(z_{1}, z_{2})\equiv\exp[i{\rm Re}(\overline{w}_{1}z_{1}+\overline{w}_{2}z_{2})]$ for $z_{i}\in C$ .

When $w_{1}\neq 0$ and $w_{2}\neq 0$, the stabilizer at $x^{(w_{1}.w_{2})}$ of the action of $R$ on $\hat{C}^{2}$ is
trivial. Let $U^{(w_{1}.w_{2})}\equiv Ind_{C2\uparrow G}x^{(w_{1}.w_{2})}$ . If $w_{1}\neq 0$ and $w_{2}\neq 0,$ $U^{(w_{1},w_{2})}$ is irreducible.
We define $r_{j},$ $\theta_{j}(r_{j}>0,0\leqq\theta_{j}<2\pi)$ by $w_{j}=r_{j}e^{i\theta_{j}}(j=1,2)$ . Let

$W^{(r_{1}.r_{2})} \equiv\int_{0}^{2\pi}\int_{0}^{2\pi^{\oplus}}U^{(r_{1}e^{i\theta}1,r_{2}e^{i\theta}2)}d\theta_{1}d\theta_{2}$ .

PROPOSITION 4-1. (1) When $r_{1}\neq 0$ and $r_{2}\neq 0,$ $W^{(r_{1},r_{2})}$ is a norynal representa-
tion which generates a hyperfinite $II_{\infty}$ factor.

(2) $\lambda^{G}\cong\int_{0}^{\infty}\int_{0}^{\infty\oplus}W^{(r_{1}.r_{2})}dr_{1}dr_{2}$ and this is central.

(3) $\phi^{G}=\int_{0}^{\infty}\int_{0}^{\infty}\phi^{(r_{1},r_{2})}dr_{1}dr_{2}$ and this is a Plancherel formula of G. If $r_{1}$ and
$r_{2}\neq 0,$ $\phi^{(r_{1},r_{2})}$ is the character which gives $W^{(r_{1}.r_{2})}$ . For $k\in C_{c}(G)$ we have

$\phi^{(r_{1}.r_{2})}(k^{*}*k)=\int_{-\infty}^{\infty}\int_{0}^{2\pi}\int_{0}^{2\pi}|\int_{c}\int_{c}f(x, z_{1}, z_{2})^{\chi \mathfrak{c}r_{1}e^{i\theta}1,r_{2}e^{i\theta_{2)}}}dz_{1}dz_{2}|^{2}d\theta_{1}d\theta_{2}dx$ .

REMARK 4-2. Since $R(W^{(r_{1},r_{2})})s$ are $II_{\infty}$ factors, there is no appropriate
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normalization of traces or the Plancherel measures.
EXAMPLE 2. Dixmier grOup.
$G$ is diffeomorphic to $R^{2}\cross C^{2}\cross R$ , and the multiplication is given by

$(t, s, z_{1}, Z_{2}, r)(t’, s’, z_{1}’, z_{2}’, r’)$

$=(t+t’, s+s’, e^{2\pi it’}z_{1}+z_{1}’, e^{2\pi is’}z_{2}+z_{2}’, r+r’+t’s)$ .
For $(w_{1}, w_{2},\tilde{r})\in C^{2}\cross R,$

$x^{(w_{1},w_{2}.\tilde{r})}\in C^{2}\cross R\wedge$ is defined by

$x^{(w_{1},w_{2},\tilde{r})}(z_{1}, z_{2}, r)\equiv\exp[2\pi i{\rm Re}(\overline{w}_{1}z_{1}+\overline{w}_{2}z_{2}+rr)]$ .

Each orbit on $C^{2}\cross R\wedge$ is given for $R_{1},$ $R_{2}\geqq 0$ and $\tilde{r}$ by

$0(R_{1}, R_{2},\tilde{r})\equiv\{x^{(w_{1}.w_{2},\overline{r})} : |w_{1}|=R_{1}, |w_{2}|=R_{2}\}$ .
Clearly all orbits are closed. We only consider the case when $R_{1}>0,$ $R_{2}>0$ .

Let $H\equiv\{(m, n, z_{1}, Z_{2}, r):m, n\in Z, z_{1}, z_{2}\in C, r\in R\}$ . Then this is the common
stabilizer group. $Z^{2}$ is the common little group.

Suppose that $w_{1}=R_{1},$ $w_{2}=R_{2}$ . We determine the projective extension $\tilde{\chi}^{(R_{1},R_{2}.\tilde{r})}$

of $x^{(R_{1}.R_{2},\tilde{r})}$ by the trivial extension. In this case a Mackey obstruction cocycle
$\alpha^{\overline{r}}$ is given by

$\alpha^{r}((m_{1}\sim, n_{1}),$ $(m_{2}, n_{2}))\equiv e^{-2\pi i\tilde{r}m_{2}n_{1}}$ $(m_{i}, n_{i}\in Z)$ .
When $w_{1}=R_{1}e^{2\pi it}$ and $w_{2}=R_{2}e^{2\pi is}$ ( $t\neq 0$ or $s\neq 0$), we define $\tilde{\chi}^{(w_{1},w_{2},\tilde{r})}$ by $(t, s)$

$\tilde{\chi}^{(R_{1}.R_{2},\overline{r})}$ . In this case we can take the same Mackey obstruction cocycle $\alpha^{\overline{r}}$ .
Moreover, we assume that $\tilde{r}$ is irrational.

Let $\sigma^{\tilde{r}}$ be the $\alpha^{\overline{r}}$-regular representation of $Z^{2}$ . This is a $II_{1}$-normal rep-
resentation. Let $\partial^{\overline{r}}$ be the lifting of $\sigma^{\overline{r}}$ to $H$. Let $U^{(w_{1}.w_{2},\tilde{r})}\equiv x^{(w_{1},w_{2},7)}\otimes\partial^{\overline{r}}$ .
This is a normal representation of $H$. Let $V^{(w_{1},w_{2}.7)}\equiv Ind_{H\dagger G}U^{(w_{1},w_{2},\overline{r})}$ . Then
$V^{(w_{1}.w_{2},\overline{r})}$ is a normal representation of $G$ . Let

$W^{(R_{1}.R_{2},\overline{r})} \equiv\int_{0}^{1}\int_{0}^{1\oplus}V^{(.r)}R_{1}e^{2\pi i\theta}1,R_{2}e^{2\pi i\theta_{2}\sim}d\theta_{1}d\theta_{2}$ .

$V^{(w_{1},w_{2},\overline{r})}$ is quasi equivalent to $W^{(R_{1},R_{2},\overline{r})}$ if $|w_{i}|=R_{i}$ .
PROPOSITION 4-3. (1) When $R_{1}>0,$ $R_{2}>0$ and $\tilde{r}$ is irrational, $W^{(R_{1},R_{2},\tilde{r})}$ is a

$II_{\infty}$-normal $rePresentation$ .
(2) $\lambda^{G}\cong\int_{-\infty}^{\infty}\int_{0}^{\infty}\int_{0}^{\infty\oplus}W^{(R_{1},R_{2}.\overline{r})}dR_{1}dR_{2}d\tilde{r}$ and this is central.

(3) $\phi^{G}=\int_{R/Q}\int_{(0,\infty)}\int_{(0,\infty)}\phi^{(R_{1}.R_{2},\tilde{r})}dR_{1}dR_{2}d\overline{r}$ and this is a Plancherel formula
of G. $\phi^{(R_{1}.R_{2},\overline{r})}’ s$ are the characters which give $W^{(R_{1},R_{2},\overline{r})}’ s$ and for $k\in C_{c}(G)$ we
have
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$\phi^{(R_{1},R_{2}.\overline{r})}(k^{*}*k)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{0}^{1}\int_{0}^{1}|\int_{-\infty}^{\infty}\int_{c}\int_{c}k(t, s, z_{1}, z_{2}, r)$ exp $[2\pi i{\rm Re}(R_{1}e^{i\theta_{1}}\overline{z}_{1})]$

exp $[2\pi i{\rm Re}(e^{i\theta_{2}}\overline{z}_{2})]e^{2\pi irr}dz_{1}dz_{2}dr\sim|^{2}d\theta_{1}d\theta_{2}dsdt$ .

REMARK 4-4. In Mautner group and Dixmier group cases, stabilizer groups
are constant almost everywhere.

4-3. Heisenberg type groups.
We investigate Heisenberg type groups which S. Kawakami dePned in his

Master Thesis [9].

Let $X,$ $Y$ and $Z$ be separable locally compact abelian groups, and $B$ be a
continuous bihomomorphism from $X\cross Y$ to Z. $G\equiv X\crossY\cross Z)$ and the multiplica-
tion is given by

$(x, y, z)(x’, y’, z’)=(x+x’, y+y’, z+z’+B(x’, y))$ .
For $\beta\in\hat{Y},$ $\gamma\in\hat{Z},$ $x^{\beta}$ and $x^{\gamma}$ denote the corresponding character of $Y$ and $Z$ .
The action of $X$ on $Y\cross Z\wedge$ is given by

$x\cdot(x^{\beta}\cross x^{\gamma})\equiv x^{\beta-(\gamma\cdot B(x))}$ , where $x^{\gamma\cdot B(x)}(y)\equiv\chi^{\gamma}(B(x, y))$ .
The orbit containing $(\beta, \gamma)(0(\beta, \gamma))$ is the translation of $(\beta, \gamma)$ by the subgroup
$Y_{\gamma}$ of $\hat{Y}$, where $Y_{\gamma}\equiv\{\gamma\cdot B(x):x\in X\}$ . $0(\beta, \gamma)s$ are not necessarily locally closed
and so $G$ is not necessarily of type I.

We have $\overline{O}(\beta, \gamma)=\beta\cdot\overline{Y}_{\gamma}\cross\{\gamma\}$ . Since $\beta\cdot\overline{Y}_{\gamma}$ depends only on the $\overline{Y}_{\gamma}$ coset con-
taining it, we can write $\overline{O}(\dot{\beta}, \gamma)\equiv 0(\beta, \gamma)$ . We have $Y\cross Z=$ $U$ $\overline{o}(\beta, \gamma)$ ,

$\gamma\in\hat{z},$ $\beta\in\hat{Y}/\overline{Y}_{\gamma}$

where each $\overline{o}(\beta, \gamma)$ is $G$ invariant and closed, and each $G$ orbit contained in it
is dense. As the stabilizer at $(\beta, \gamma)$ depends only on $\gamma$ , we can write this $X_{\gamma}$ .
Let $G_{\gamma}\equiv X_{\gamma s}\cross(Y\cross Z)$ . For $\alpha\in\hat{X}_{\gamma},$ $x^{a}$ denotes the corresponding character of $X_{\gamma}$ .
Let $x^{(\gamma,\beta,\alpha)}\equiv\chi^{a}\cross x^{\beta}\cross x^{\gamma}$ , and $F(\gamma, \beta, \alpha)\equiv\{\chi^{\alpha}\cross x^{\beta’}\cross x^{\gamma} : \beta’\in\beta\cdot\overline{Y}_{\gamma}\}$ . $F(\gamma,\dot{\beta}, \alpha)$ is a
closed subset of $\hat{G}_{\gamma}$ and each $G$ orbit contained in it is dense. We have

$\bigcup_{\dot{\beta}\in\hat{Y}/\overline{Y}_{\gamma},a\in\hat{X}_{\gamma}}F(\gamma, \beta, \alpha)=\{\chi^{\delta}\in\hat{G}_{\gamma} ; x^{\delta}|_{Y\cross Z}\in\overline{O}(\beta, \gamma)\}$ .

(a) Prim $(G)$ .
Since $C^{*}(G)=X\cross {}_{\alpha}C_{0}(Y\cross Z)\wedge$ and the primitive ideal space of such a $C^{*}$-algebra

is already known [6], we have only to apply the arguments in [6] to our case.
Let $F\equiv\cup F(\gamma,\dot{\beta}, \alpha)$ . For $x^{(\gamma,\beta,a)}\in F$, let $U^{(\gamma,\beta.a)}\equiv Ind_{G_{\gamma}\uparrow G}x^{(\gamma.\beta.\alpha)}$ . Since $U^{(\gamma,\beta.a)}$

is irreducible, $J(\gamma, \beta, \alpha)\equiv ker(U^{(\gamma,\beta.\alpha)})$ is a primitive ideal of $C^{*}(G)$ .
LEMMA 4-5. $J(\gamma, \beta, \alpha)=J(\gamma’, \beta’, \alpha’)$ if and only if $\gamma=\gamma’,$ $\beta=\beta’$ and $\alpha=\alpha’$ .
This lemma shows that there exists an injection from $\tilde{F}\equiv\{F(\gamma, \beta, \alpha):\gamma\in\hat{Z}$ ,

$\beta\in\hat{Y}/\dot{\overline{Y}}_{\gamma},$ $\alpha\in\hat{X}_{\gamma}$ } to Prim $(G)$ .
LEMMA 4-6. For every $J\in Prim(G)$ , there exists a $(\gamma, \beta, \alpha)$ such that $J=$
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$J(\gamma, \beta, \alpha)$ .
This lemma is proved in a general situation in [6].

PROPOSITION 4-7 (Theorem 3.1 in [6]). There exists a bijective correspondense
between fi and Prim $(G)$ .

(b) Some part of normal representations.
We construct a normal representation of $G$ for each element of ff defined in

(a). Let $\gamma Y\mu$ be a Haar measure on $Y$ . Then $\delta_{\gamma}X^{\gamma}\mu^{Y}\cross\delta_{\alpha}$ is a $G$ invariant ergodic
measure on $F(\gamma,\dot{\beta}, \alpha)$ . Let

$V^{(\gamma,\beta.)} \alpha\equiv\int_{\overline{Y}_{\gamma}}^{\oplus}(\chi^{\alpha}\cross x^{\beta+\beta^{r}}\cross\chi^{\gamma})d^{\gamma}\mu^{Y}(\beta’)$
$(\beta’\in\beta)$ .

We can consider $V^{(\gamma.\dot{\beta},a)}$ as a representation of an abelian $C^{*}$-algebra $C_{0}(F(\gamma, \beta, \alpha))$ .
$C_{0}(F( \gamma, \beta, \alpha))^{+}\ni karrow\int_{F(\gamma,\dot{\beta}.\alpha)}(\chi^{\alpha}\cross\chi^{\beta+\beta’}\chi\chi^{\gamma})(k)d^{\gamma}\mu^{Y}(\beta’)$

gives a lower semicontinuous trace $\tau^{(\gamma.\dot{\beta}.a)}$ on $C_{0}(F(\gamma,\dot{\beta}, \alpha))$ .
LEMMA 4-8. $\tau^{(\gamma.\dot{\beta}.\alpha)}$ is semifinite. The $f$ . $n.s$ . trace $\tilde{\tau}^{(\gamma.\dot{\beta}.\alpha)}$ on $R(V^{(\gamma.\dot{\beta},\alpha)})$

given by $\tau^{(\gamma.\dot{\beta},a)}$ makes $V^{(\gamma.\beta,\alpha)}$ a trace class representation and gives a $G$ in-
variant lower semicontinuous semifinite trace on $C^{*}(G_{\gamma})$ .

PROOF. Since $\delta_{\alpha}\cross\beta\cdot\mu\cross\delta_{\gamma}$ is a Radon measure on $F(\gamma, \beta, \alpha),$ $C_{c}(F(\gamma, \beta, \alpha))$

is contained in $n_{\tau(\gamma,\beta.)}\alpha$ . This shows that $\tau^{(\gamma,\beta.)}\alpha$ is densely defined and so
semifinite. The second statement is a consequence from the general theory.

$q.e.d$ .
Let $W^{(\gamma.\beta.)}\alpha\equiv Ind_{c_{\gamma}\uparrow G}V^{(\gamma,\beta,\alpha)}$ . Since the trace corresponding to $W^{(\gamma,\dot{\beta}.a)}$ is $G$

invariant and semifinite and $G/G_{\gamma}$ is abelian, $W^{(\gamma.\dot{\beta}.\alpha)}$ is of trace class. And
since $\delta_{\alpha}\cross\beta\cdot\mu x\delta_{\gamma}$ is G-ergodic, $W^{(r,\beta.)}\alpha$ is factorial.

PROPOSITION 4-9. (1) $W^{(\gamma.\beta.)}\alpha$ is a normal representati0n of $G$ .
(2) The map from $fl\ni F^{(\gamma,\dot{\beta}.\alpha)}$ to “the quasi equivalence class of $W^{(\gamma.\dot{\beta}.\alpha)}$ ‘

$\in\hat{G}_{norm}$ is an injection.
(3) For $k\in C_{c}(G)$ the value of induced character $\overline{\tau}^{(\gamma,\dot{\beta}.\alpha)}$ corresp0nding to

$W^{er.\beta}\cdot\alpha)$ is given by

$\overline{\tau}^{(\gamma.\beta.)}\alpha(k^{*}*k)=\int_{X/x_{\gamma}}\int_{\overline{Y}_{\gamma}}|\int_{x_{\gamma}}\int_{Y}\int_{Z}k(x+x’, y’, z’)x^{\alpha}(x’)$

. $x^{\beta+\beta^{r}}(y’)\chi^{\gamma}(z’)d\eta^{x_{\gamma}}(x’)d\eta^{Y}(y’)d\eta^{Z}(z’)|^{2}d^{\gamma}\mu^{Y}(\beta’)d\nu^{\gamma}(x)$ ,

where $\eta^{x_{\gamma}},$ $\eta^{Y}$ and $\eta^{Z}$ are Haar measures on $X_{\gamma},$ $Y$ and $Z$ , and $\nu^{\gamma}$ is the Haar
measure on $X/X_{\gamma}$ determined by $\eta^{X}$ and $\eta^{x_{\gamma}}$.

(c) The regular representation and the Plancherel formula.
We fix Haar measures $\eta^{X},$ $\eta^{Y}$ and $\eta^{Z}$ of $X,$ $Y$ and $Z$ respectively. Let $\mu^{X}$ ,

$\alpha^{Y}$ and $\mu^{Z}$ be the Plancherel measures dual to $\eta^{X},$ $\eta^{Y}$ and $\eta^{Z}$ respectively. $\phi_{\gamma}$

denotes the trace on $C^{*}(Z)$ corresponding to $x^{\gamma}$ .
Let $W_{\gamma}\equiv Ind_{ZtG}\chi^{\gamma}$ and $\phi_{\gamma}^{G}\equiv Ind_{Z\uparrow G}\phi_{\gamma}$ . Then we have
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$\lambda^{G}\cong\int_{\hat{Z}}^{\oplus}W_{\gamma}d\mu^{Z}(\gamma)$ and $\phi^{G}=\int_{2}\phi_{\gamma}^{G}d\mu(\gamma)$ .

Next we consider the decompositions of $\phi_{\gamma}^{G}$ and $W_{\gamma}$ . Let $\eta^{x_{\gamma}}$ and $\gamma Y\mu$ be the
Haar measures on $X_{\gamma}$ and $\overline{Y}_{\gamma}$ respectively, $\nu^{\gamma}$ and $\gamma Y\nu$ be the Haar measure on
$X/X_{\gamma}$ and $\hat{Y}/\overline{Y}_{\gamma}$ such that

$\eta^{X}=\int_{x/x_{\gamma}}\dot{\epsilon}\cdot\eta^{x_{\gamma}}d\nu^{\gamma}(\dot{\epsilon})$ and $\mu^{Y}=\int_{\hat{Y}/F_{\gamma}}\dot{\beta}\cdot\mu d^{\gamma}\nu^{Y}(\dot{\beta})$ .

Let $\phi^{\alpha}$ and $\phi^{\beta}$ denote the traces corresponding to $x^{\alpha}$ and $x^{\beta}$ respectively. We
have

$W_{\gamma} \cong\int_{p_{\gamma^{\cross\hat{Y}}}}^{\oplus}Ind_{G_{\gamma}\uparrow G}(\chi^{\alpha}\cross x^{\beta}\cross\chi^{\gamma})d\mu^{x_{\gamma}}(\alpha)d\mu^{Y}(\beta)$

and

$\phi^{G}=\int_{f_{\gamma^{\cross}}f}Ind_{G_{\gamma}\uparrow G}(\phi^{\alpha}\otimes\phi^{\beta}\otimes\phi^{\gamma})d\mu^{x_{\gamma}}(\alpha)d\mu^{Y}(\beta)$ .

Let

$V^{(\gamma.\beta} \cdot\alpha)\equiv\int_{\beta\cdot\overline{Y}_{\gamma}}^{\oplus}(\chi^{a}\cross\chi\beta’\cross\chi^{\gamma})d(\beta\cdot\mu)(\beta’)$

and

$\tau^{(\gamma.\beta,)}\alpha\equiv\int_{\beta\cdot\overline{Y}_{\gamma}}(\phi^{\alpha}\otimes\phi^{\beta’}\otimes\phi^{r})d(\beta\cdot\gamma\mu\eta(\beta’)$ .
$\tau^{(\gamma.\beta.)}\alpha$ is the $G$ invariant lower semicontinuous trace on $C^{*}(G_{\gamma})$ corresponding
to $V^{(\gamma.\beta,)}a$ We have

$Ind_{Z’ G_{\gamma}}x^{\gamma}\cong\int_{\acute{X}_{\mathcal{T}}\cross\hat{Y}/Y_{\gamma}}^{\oplus}V^{(\gamma,\beta.)}ad\mu^{x_{\gamma}}(\alpha)d^{\gamma}\nu^{Y}(\beta)$ ,

and

$Ind_{Z\uparrow G_{\gamma}}\phi_{\gamma}=\int_{i}r_{\gamma^{x\hat{Y}/}}r_{\gamma}\tau^{(\gamma,\beta}’\alpha)d\mu^{x_{\gamma}}(\alpha)d^{\gamma}\nu^{Y}(\beta)$ .

Let $W^{(\gamma,\beta.)}a\equiv Ind_{G_{\gamma}\dagger G}V^{(\gamma.\beta.)}a\overline{\tau}^{(\gamma.\beta.)}a\equiv Ind_{G_{\gamma}\uparrow G}\tau^{(\gamma.\beta.)}a$ Then we have

$W_{\gamma} \cong\int_{\hat{X}_{\gamma}x\hat{Y}/\overline{Y}_{\gamma}}^{\oplus}W^{(\gamma,\beta},\alpha)d\mu^{x_{\gamma}}(\alpha)d^{\gamma}\nu^{Y}(\dot{\beta})$

and

$\phi^{G}=\int_{\hat{X}_{\gamma}x\hat{Y}/\overline{Y}_{\gamma}}\overline{\tau}^{(\gamma.\beta.)}\alpha d\mu^{x_{\gamma}}(\alpha)d^{\gamma}\nu^{Y}(\dot{\beta})$ .

THEOREM 4-10. Let $G=X\cross s(Y\cross Z)$ be a Heisenberg type group.
(1) $\lambda^{G}\cong\int_{\hat{Z}}\int_{\hat{x}_{\gamma}\cross\hat{Y}/\overline{Y}_{\gamma}}^{\oplus}W^{(\gamma.\beta}\cdot\alpha$

) $d\mu^{x_{\gamma}}(\alpha)d^{\gamma}\nu^{Y}(\dot{\beta})(m)$ (cf. 3-1).

This is central.

(2) $\phi^{G}=\int_{\hat{Z}}\int_{f_{\gamma}\cross\hat{Y}/\overline{Y}_{\gamma}}\overline{\tau}^{(r.\beta.\alpha)}d\mu^{x_{\gamma}}(\alpha)d^{\gamma}\nu^{Y}(\beta)$ .
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This is a Plancherel formula for $G$ .
(3) Let $\tau^{(\gamma,\beta,)}\simeq\alpha$ denotes the $f.n.s$ . trace on $R(W^{(\gamma,\beta,)}\alpha)$ corresp0nding to $\overline{\tau}^{(\gamma.\beta.)}\alpha$

Then for $k\in(L_{1}(G)\cap L_{2}(G))^{2}$ we have

$k(x, y, z)= \int_{2}\int_{\hat{X}_{\gamma}\cross\hat{Y}/\overline{Y}_{\gamma}}\tau^{(\gamma,\beta}\simeq,$

$\alpha$ ) $(W^{(\gamma,\beta}, a)(k)W^{(\gamma,\beta},$ $a$ ) $(x, y, z)^{*})$

$d\mu^{x_{\gamma}}(\alpha)d^{\gamma}\nu^{Y}(\beta)d\mu^{Z}(\gamma)$ (Inversion formula).

REMARK 4-11. The argument used here is topological and the ambiguity of
null sets doesn’t occur.

\S 5. Plancherel formula for group extensions.

We describe the central decomposition of the left regular representation of
an $s$ . $1$ . $c$ . $g$ . $G$ and the Plancherel formula (or measure) of it by assuming the
existence of a suitable normal subgroup $N$.

Kleppner and Lipsman ([12], [13]) assumed the smoothness of $(G,\hat{N})$ and
the isotropic type I’ness, but made no assumption about the constancy of stabilizer
groups. In contrast with their assumptions we put neither the assumption of
the smoothness nor the isotropic type I’ness, but assume the local constancy of
stabilizers.

5-1. Good normal subgroup case.
Let $G$ and $N$ be $s$ . $1$ . $c$ . $g$ . $s$ and $N\triangleleft G$ . Let $\mu^{N}$ be a Plancherel measure of $N$.
DEFINITION 5-1. We say that the pair $(G, N)$ has the property (A) if,
(1) The regular representation of $N$ is of type I.
(2) We can take off a $G$ invariant Borel $\mu^{N}$ null set $C$ from $\hat{N}$ such that,

for all $\pi\in\hat{N}\backslash C,$ $G_{\pi}$ is closed.
(3) We can take off a $G$ invariant Borel $\mu^{N}$ null set $C’$ from $\hat{N}$ such that,

for all $\pi\in\hat{N}\backslash C’$ , the transitive quasi orbit containing $\pi$ is canonical (i.e. it
corresponds to some central decomposition).

LEMMA 5-2. Let $(G, N)$ satisfy (A) and $\pi\in\hat{N}$ satisfy the conditions (2) and
(3) of (A). SuppOse that $U$ is a factor representatjOn of $G_{\pi}$ such that $U|_{N}\cong$

$\pi\otimes I$ . Then $W\equiv Ind_{G_{\pi}}\uparrow GU$ is factorial and $R(W)’$ and $R(U)’$ are algebraically
isomorphic.

PROOF. The condition (3) shows that the diagonal algebra of the decomposi-
tion of $W|_{N}$ in Mackey’s subgroup theorem is contained in $R(W)$ . $q$ . $e$ . $d$ .

REMARK 5-3. When $N$ is unimodular (2) and (3) are conclusion from (1).

When $N$ is of type I, $(G, N)$ satisfies the property (A).

DEFINITION 5-4. Let $\mu^{N}=\int_{X}\mu_{t}^{N}d\nu(t)$ be a $G$ ergodic decomposition. $(G, N)$

is said to have the property (B) if, for $\nu a$ . $a$ . $t$ , there exists a $G$ invariant Borel
subset $E_{t}$ in $\hat{N}$ which supports $\mu_{t}^{N}$ and the stabilizers on each point of $E_{t}$ are
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equal to some closed subgroup $G_{t}$ .
$G$ acts on $C^{*}(N)$ and $R(\lambda^{N})$ . $\{\alpha_{g} ; g\in G\}$ and $\{\tilde{\alpha}_{g} ; g\in G\}$ denote these ac-

tions respectively. $\{\tilde{\alpha}_{g} ; g\in G\}$ is implemented by a strongly continuous unitary
representation $U$ of $G$ .

Let $\lambda^{N}\cong\int_{\hat{N}}^{\oplus}(\lambda_{\gamma}^{N}\otimes I_{\gamma})d\mu^{N}(\gamma)$ be central and $\phi^{N}=\int_{\hat{N}}\phi_{\gamma}^{N}d\mu^{N}(\gamma)$ be the Plancherel

formula for $N$. The action of $G$ on $ZR(\lambda^{N})$ (the centre of $R(\lambda^{N})$ ) is equivariant
to the action of $G$ on $\hat{N}$. $ZR(\lambda^{N})^{G}$ denotes the set of all $G$ invariant elements.
We decompose $\lambda^{N}$ and $\phi^{N}$ using $ZR(\lambda^{N})^{G}$ . We have

$\lambda^{N}\cong\int_{X}^{\oplus}\lambda_{t}^{N}d\nu^{N}(t)$ and $\phi^{N}=\int_{X}\phi_{t}^{N}d\nu^{N}(t)$ and for $\nu^{N}a$ . $a$ . $t$ ,

$\lambda_{t}^{N}=\int_{\hat{N}}^{\oplus}\lambda_{\gamma}^{N}d\mu_{t}^{N}(\gamma)$ and $\phi_{t}^{N}=\int_{\hat{N}}\phi_{\gamma}^{N}d\mu_{t}^{N}(\gamma)$ .

By Proposition 2-7, for $\nu^{N}a$ . $a$ . $t,$ $\phi_{t}^{N}$ is $\Delta_{N}$ -relatively invariant under the
action of $G$ and is a densely defined semitrace corresponding to $\lambda_{t}^{N}$ .

By using the decomposition of semitraces we can show the unimodularity
of little groups in some special situations.

PROPOSITION 5-5. Suppose that $G$ is unimodular, $(G, N)$ has the properties
(A) and (B). Then $N$ and $G_{t}’ s$ are all unimodular, and for $\nu^{N}a$ . $a$ . $tG_{t}/N$ is
unimodular.

PROOF. Since $N\triangleleft G$ and $G_{t}\triangleleft G$ , they are unimodular (cf. \S 1 of [23]). Let
$\phi_{t}^{N}$ be a $\Delta_{N}$-relatively invariant component of $\phi^{N}$ and $\phi_{t}^{N}$ be the $f$ . $n$ . $s$ . trace on
$R(\lambda_{t}^{N})$ corresponding to $\phi_{t}^{N}$ . We can assume that the corresponding representa-

tion $\lambda_{t}^{N}$ is of type I. Then $\phi_{t}^{N}$ is a direct integral of canonical traces on type I
factors. Therefore the action of $G_{t}$ (the restriction of the action of $G$ ) on each
component is necessarily inner and keep the values of traces invariant. From
this we have

$\tilde{\phi}_{t}^{N}(T_{t})=\hat{\phi}_{t}^{N}(\tilde{\alpha}_{g}(T_{t}))=\Delta_{N}(g)\tilde{\phi}^{N}(T_{t})$ for $\forall T_{t}\in R(\lambda_{l}^{N})^{+}$ and $\forall g\in G$ .
Therefore we have $\Delta_{N}(g)\equiv 1$ for every $g\in G_{t}$ . Since $N$ and $G_{t}$ are unimodular
this shows that $G_{t}/N$ is also unimodular for $t$ which satisfies all the good prop-
erties. $q$ . $e$ . $d$ .

REMARK 5-6. When $N$ is regularly embedded in $G$ , this proposition follows
from Lemma 2-2 of [13].

We consider only $t$ which has good properties. Let

$W_{t}\equiv Ind_{N\uparrow G}\lambda_{t}^{N}$ , $\phi_{t}^{G}\equiv Ind_{N\uparrow G}\phi_{t}^{N}$ .

We have $\lambda^{G}\cong\int_{X}^{\oplus}(W_{t}\otimes I_{t})d\nu^{N}(t)$ where $I_{t}$ is the identity operator on the representa-

tion space of $W_{t}$ , and $\phi^{G}=\int_{X}\phi_{t}^{G}d\nu^{N}(t)$ . We consider the decomposition of $W_{t}’ s$
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and $\phi_{t}^{G}’ s$ . Let $V_{t}\equiv Ind_{N\uparrow G_{t}}\lambda_{t}^{N}$ and $\overline{\phi}_{t}\equiv Ind_{N\uparrow G_{t}}\phi_{t}^{N}$ . Then $\overline{\phi}_{t}$ is a $\Delta_{G_{t}}$-relatively
invariant semitrace on $C^{*}(G_{t})$ and $V_{t}$ corresponds to $\overline{\phi}_{t}$ . We consider the cen-
tral decomposition of $V_{t}’ s$ and $\overline{\phi}_{t}’ s$ . By the definition of $\lambda_{t}^{N}$ we have $V_{t}\cong$

$\int_{\hat{N}}^{\oplus}(Ind_{N\uparrow G_{t}}\lambda_{\gamma}^{N})d\mu_{t}^{N}(\gamma)$ . Since $G_{t}$ fixes each element of the diagonal algebra of the

decomposition of $\lambda_{t}^{N}$ , by Lemma 2-10, the diagonal algebra of the decomposition

of $V_{t}$ is contained in $R(V_{t})$ . From this fact we can write $\overline{\phi}_{t}=\int_{\hat{N}}(Ind_{N\uparrow G_{t}}\phi_{\gamma}^{N})d\mu_{t}^{N}(\gamma)$ .
Let $Ind_{N}\uparrow c_{t}\lambda_{\gamma}^{N}=\int_{G_{t}}^{\bigoplus_{\wedge}}V_{\gamma.\delta}d\overline{\mu}_{\gamma}(\delta)$ be central and $Ind_{N\uparrow G_{t}}\phi_{\gamma}^{N}=\int_{G_{t}}\wedge\overline{\phi}_{\gamma,\delta}d\overline{\mu}_{\gamma}(\delta)$ be

the corresponding decomposition. $\overline{\phi}_{t}=\int_{\hat{N}}\int_{G_{t}}\wedge\overline{\phi}_{\gamma.\delta}d\overline{\mu}_{\gamma}(\delta)d\mu_{t}^{N}(\gamma)$ is the decomposi-

tion of $\overline{\phi}_{t}$ into semicharacters. Since each $\lambda_{\gamma}^{N}$ is an irreducible representation of
$N$, we can construct an $\alpha(\gamma)$-representation $\overline{\lambda}_{\gamma}^{N}$ of $G_{t}$ such that $\overline{\lambda}_{\gamma}^{N}|_{N}=\lambda_{\gamma}^{N}$ , where
$\alpha(\gamma)$ is an $N$ invariant Mackey obstruction cocycle at $\lambda_{\gamma}^{N}$ . $\lambda^{\overline{\alpha(\gamma)}}$ denotes the $\overline{\alpha(\gamma)}-$

regular representation of $G_{t}/N$. Let $\Delta$ be the quasi equivalence classes of $\overline{\alpha(\gamma)}-$

factor representations of $G_{t}/N$. Let $\lambda^{\overline{\alpha(\gamma)}}\cong\int_{\Delta}\sigma_{\gamma}$

, . $d\mu^{\overline{\alpha(\gamma)}}(\epsilon)$ be central. Then we

have $V_{\gamma} \cong\lambda_{\gamma}^{N}\otimes\lambda^{\overline{\alpha(\gamma)}}\cong\int_{\Delta}^{\oplus}(\lambda_{\gamma}^{N}\otimes\hat{\sigma}_{\gamma.\epsilon})d\mu^{\overline{a(\gamma)}}(\epsilon)$ , where $\mu^{\overline{a(\gamma)}}$ is an $\overline{\alpha(\gamma)}$-Plancherel meas-

ure of $G_{t}/N$.
LEMMA 5-7. $V_{\gamma} \cong\int_{\Delta}^{\oplus}(\lambda_{\gamma}^{N}\otimes\partial_{\gamma.\epsilon})d\mu^{\overline{\alpha(\gamma)}}(\epsilon)$ is central.

PROOF. Canonical argument shows that $R(V)’$ is spatially isomorphic to
$I\otimes R(\hat{\lambda}^{\overline{\mathcal{O}(\gamma)}})’$ . Therefore we have

$Z(R(V_{\gamma}))=Z(R(V_{\gamma}))’\cong Z(I\otimes R(\hat{\lambda}^{\overline{\alpha(\gamma)}})’)=I\otimes Z(R(\hat{\lambda}^{\overline{a(\gamma)}}))$ . $q.e.d$ .

We summarize these arguments.

LEMMA 5-8. (1) $V_{t} \cong\int_{\hat{N}}\int_{\Delta}^{\oplus}(\lambda_{\gamma}^{N}\otimes\hat{\sigma}_{\gamma.\epsilon})d\mu^{\overline{a(\gamma)}}(\epsilon)d\mu_{t}^{N}(\gamma)(m)$ (cf. 3-1), and this is

central.

(2) $\overline{\phi}_{t}=\int_{\hat{N}}\int_{\partial_{t}}\overline{\phi}_{\gamma,\delta}d\overline{\mu}_{\gamma}(\delta)d\mu_{t}^{N}(\gamma)$ and this is the decomposition into semicharacters.

(3) $d\mu^{\overline{a(\gamma)}}d\mu_{t}^{N}$ and $d\mu_{\gamma}d\mu_{t}^{N}$ descnbe the canonical measure $\overline{\mu}_{t}$ of $V_{t}$ and $\overline{\phi}_{t}$

on $\wedge G_{t}$ .
Since $G$ keeps $V_{t}$ invariant, $G$ keeps $\overline{\mu}_{t}$ quasi invariant. Then we consider

the ergodic decomposition of standard measure $\overline{\mu}_{t}$ under the action of $G(i.e$ .
$\overline{\mu}_{t}=\int_{Y}\overline{\mu}_{t,\tau}d\overline{\nu}^{t}(\tau))$ . The decomposition of $V_{t}$ and $\overline{\phi}_{t}$ by the fixed point subalgebra

$Z(R(V_{t}))^{G}$ are

$V_{t} \cong\int_{Y}^{\oplus}V_{t}$ . . $d\overline{\nu}^{t}(\tau)$ and $\overline{\phi}_{t}=\int_{Y}\overline{\phi}_{t,\tau}d\overline{\nu}^{t}(\tau)$ , where for $\overline{\nu}^{t}a.a$ . $\tau$
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$V_{t,\tau} \cong\int_{G_{t}}^{\bigoplus_{\wedge}}V_{t,\text{\’{e}}}d\overline{\mu}_{t,\tau}(\epsilon)$ and $\overline{\phi}_{t,\tau}=\int_{\partial_{t}}\overline{\phi}_{t.\epsilon}d\overline{\mu}_{t.\tau}(\epsilon)$ .

Let $W_{t.\tau}\equiv Ind_{G_{t}}\uparrow c^{V_{t}}$ ,.. Then we have $W_{t} \cong\int_{Y}^{\oplus}W_{t.\tau}d\overline{\nu}^{t}(\tau)$ . By Lemma 2-10,

the diagonal algebra is contained in $R(W_{t})$ . Therefore we have $\phi_{t}^{G}=\int_{Y}\phi_{t.\tau}^{G}d\overline{\nu}^{t}(\tau)$

where, for $\overline{\nu}^{t}a\cdot a$ . $\tau,$
$\phi_{t.\tau}^{G}=Ind_{G_{t}\uparrow G}\overline{\phi}_{t,\tau}$ .

PROPOSITION 5-9. The &agonal algebra of $W_{t} \cong\int_{Y}^{\oplus}W_{t,\tau}\text{\’{a}}\overline{\nu}^{t}(\tau)$ is equal to the

centre of $R(W_{t})$ . And $\phi_{t}^{G}=\int_{Y}\phi_{t.\tau}^{G}d\overline{\nu}^{t}(\tau)$ is a $decompo\alpha iion$ into semicharacters.

PROOF. It is sufficient to show that for $\overline{\nu}^{t}a$ . $a$ . $\tau W_{t.\tau}$ is factorial. We have

$W_{t.\tau} \cong\int_{G_{t}}^{\bigoplus_{\wedge}}(Ind_{G_{t}\uparrow G}V_{t,\epsilon})d\mu_{t.\tau}(\epsilon)$ . We show that for $\overline{\nu}^{t}$

$a$ . $a$ . $\tau$ for $\overline{\mu}_{t.\tau}a.a$ .
$(Ind_{G_{t}\uparrow G}V_{t,\epsilon})s$ are factorial. A good $V_{t}$ , , has the form $\overline{\lambda}_{\gamma}^{N}\otimes\hat{\sigma}_{\gamma}$ . ,. Then $V_{t}$ , , is
a factor representation such that $V_{t,\epsilon}|_{N}=\lambda_{\gamma}^{N}\otimes I$ . Since $N$ has the property (A)

of Definition 5-1 and since we can assume that $\lambda_{\gamma}^{N}$ satisfies the property (2) and
(3) of Definition 5-1, by Lemma 5-2, $Ind_{G_{t}\uparrow G}V_{t.\epsilon}$ is a factor representation whose
commuting algebra is algebraically isomorphic to $R(V_{t}$ . . $)$ ’. Since we can assume
that $V_{t.g\cdot\epsilon}$ is quasi equivalent $(\sim)$ to $g\cdot V_{t}$ . ,, we have

$Ind_{G_{t}\uparrow G}V_{t,g\cdot\epsilon}\sim(Ind_{G_{t}tG}(g\cdot V_{t,\epsilon})\cong g\cdot Ind_{G_{t}\uparrow G}V_{t,\epsilon}\cong Ind_{G_{t}\uparrow G}V_{t,\epsilon}$ .

Further $\infty\cdot W_{t.\tau}\cong\int_{G_{t}}^{\oplus}\wedge\infty\cdot(Ind_{G_{t}}\uparrow GV_{t.\epsilon})d\overline{\mu}_{t.\tau}(\epsilon)$ , and if $\epsilon’=g\cdot\epsilon$ for some $g\in G$ we

have that $\infty\cdot Ind_{G_{t}}\uparrow GVt.e$ is unitarily equivalent to $\infty\cdot Ind_{G_{t}}\uparrow GVt,$
$\epsilon’$ . Since $\overline{\mu}_{t,r}$ is

$G$ ergodic, by using the argument of Proposition 1 in [5], $\infty\cdot W_{t},$ . is factorial
and so $W_{t.p}$ is factorial. $q.e.d$ .

As a conclusion we have the following main theorem.
THEOREM 5-10 (Plancherel formula for group extensions).

Let $(G, N)$ satisfy (A) and (B).

(1) $\lambda^{G}\cong\int_{X}\int_{Y}^{\oplus}W_{t,\tau}d\overline{\nu}^{t}(\tau)d\nu^{N}(t)(m)$ (cf. 3-1).

And this is central.

(2) $\phi^{G}=\int_{X}\int_{Y}\phi_{t.\tau}^{G}d\overline{\nu}^{t}(\tau)d\nu^{N}(t)$ .
And this is a Plancherel formula of $G$ .

(3) $d\overline{\nu}^{t}d\nu^{N}$ is a Plancherel measure of $G$ in some sense.
REMARK 5-11. (1) The measure space (X, $\nu^{N}$ ) and $(Y,\overline{\nu}^{t})$ , the representa-

tions $(W_{t,\tau})s$ and the semicharacters $(\phi_{t.\tau}^{G})s$ are determined by the informations
about the Plancherel objects of $N$, stabilizers and little groups and the action of
$G$ on them.

(2) When $N$ is abelian, and if there exists a continuous cross section from
$G_{t}/N$ to $G_{t}$ and the Mackey obstruction cocycle can be taken continuously as in
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the case of Dixmier group, we can describe $\overline{\phi}_{\gamma,\delta}’ s$ in terms of $G_{t}/N,$ $\alpha(\gamma)$ and $N$.
5-2. Bad normal subgroup case.
When $N$ doesn’t have type I regular representation, we cannot say anything

about “the induction” of the Plancherel theory in general. Therefore we will
add several assumptions on $N$ and $(G, N)$ . Let $\mu^{N}$ be a Plancherel measure of

$N$ and $\mu^{N}=\int_{X}\mu_{t}^{N}d\nu^{N}(t)$ be an ergodic decomposition under the action of $G$ .

DEFINITION 5-12. $(G, N)$ satisfies the property (C) if
(1) For $\mu^{N}a$ . $a$ . $\pi\in\hat{N},$ $G_{\pi}$ is closed.
(2) For $\mu^{N}a$ . $a$ . $\pi\in\hat{N}$, the transitive quasi orbit containing $\pi$ is canonical.
(3) $(G, N)$ has the property (B).

(4) For $\mu^{N}a$ . $a$ . $\pi\in\hat{N}$, the canonical measure of $U_{\pi}\equiv Ind_{N}\uparrow G_{\pi}\pi$ is atomic.
REMARK 5-13. (1) When $\mu^{N}$ concentrates on $\hat{N}_{norm}$ and $\hat{N}_{norm}\cong Prim(N)$ ,

then we have (1) and (2).

(2) When for $\mu^{N}a$ . $a$ . $\pi G_{\pi}=N$, then (1) and (4) are automatically satisfied.
Let $U_{\pi} \cong\sum_{\epsilon}\oplus U_{\pi,\epsilon}$ be central.

LEMMA 5-14. Let $W_{\pi}$ , $.\equiv Ind_{G_{\pi}}\uparrow GU\pi.\epsilon$ . Then $W_{\pi,\epsilon}$ is a factor representation
of $G$ such that $R(W_{\pi}$ , . $)$

’ is algebraically isomorphic to $R(U_{\pi}$ , . $)$ ’.
PROOF. By the subgroup theorem, $U_{\pi}|_{N}\cong\pi\otimes I$ . Since $U_{\pi,\epsilon}’ s$ are subrepre-

sentations of $U_{\pi}$ , $U_{\pi}$
, . $|_{N}s$ are also subrepresentations of $U_{\pi}|_{N}\cong\pi\otimes I$ . Since

$\pi\otimes I$ is factorial, $U_{\pi}$
, . $|_{N}s$ are quasi equivalent to $\pi$ . By the subgroup theorem,

$( Ind_{G_{\pi}}\uparrow GU_{\pi,\epsilon})|_{N}=\int_{G/G_{\pi}}^{\oplus}s\cdot(U_{\pi,\epsilon}|_{N}\otimes I)d\dot{s}$ and this is central by (2) of Definition

5-12. This shows that $R(W_{\pi}$ , . $)’\cong R(U_{\pi}$ , . $)$
’ and $W_{\pi}$

, , is factorial. $q$ . $e$ . $d$ .
Let $U_{t},\overline{\phi}_{t}$ be the same as in the good normal subgroup case. Then $U_{t}\cong$

$\int_{\hat{N}}^{\oplus}\sum_{\epsilon}U_{\pi,\epsilon}d\mu_{t}^{N}(\pi)(m)$ is central and $\overline{\phi}_{t}=\int_{\hat{N}}\sum_{\epsilon}\phi_{\pi}$

, . $d\mu_{t}^{N}(\pi)$ is the decomrosition into

semicharacters. Let $\sum_{\epsilon}\mu_{t}^{N}=\int_{Y}\overline{\mu}_{\delta}^{t}d\overline{\nu}^{t}(\delta)$ be an ergodic decomposition under $G$ . Let

$W_{t}\equiv Ind_{G_{t}\uparrow G}U_{t}$ , $\phi_{t}^{G}\equiv Ind_{G_{t}}\uparrow G\phi_{t}$ , $W_{\delta} \equiv\int_{c_{t}}^{\oplus}\wedge Ind_{c_{t}}\uparrow GU_{\pi,\epsilon}d\overline{\mu}_{\delta}^{t}((\pi, \epsilon))$

and

$\phi_{\delta}^{G}\equiv\int_{c_{t}}\wedge Ind_{G_{t}\uparrow G}\phi_{\pi,\epsilon}d\overline{\mu}_{\delta}^{t}((\pi, \epsilon))$ (for good $\delta$).

In conclusion, we have the following theorem.
THEOREM 5-15. Suppose that $(G, N)$ has the property (C).

(1) $\lambda^{G}\cong\int_{X}\int_{Y}^{\oplus}W_{\delta}d\overline{\nu}^{t}(\delta)d\nu^{N}(t)(m)$ (cf. 3-1).

And this is central.
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(2) $\phi^{G}=\int_{X}\int_{Y}\phi_{\delta}^{G}d\overline{\nu}^{t}(\delta)d\nu^{N}(t)$ .

And this is a Plancherel formula for $G$ .
We present some examples in which we have the property (C).

EXAMPLE 1. Let $G$ be an almost connected Lie group such that $G/G_{0}(G_{0}$

is the connected component of $G$ ) is abelian. We consider $G_{0}$ as $N$. We show
that this $(G, N)$ has the property (C). By Theorem 1 of Pukanszky [18], $\mu^{N}$ is
concentrated in $\hat{N}_{norm}$ and $N_{norm}\cong Prim(N)$ . Therefore $(G, N)$ satisfies (1) and
(2) of Definition 5-12. Since $G/N$ is finite, $(G,\hat{N}_{norm})$ is smooth and since $G/N$

is abelian, $(G, N)$ satisfies (3).

Let $(M, G, \theta, \beta)$ be a twisted $W^{*}$-covariant system ($M$ is a von Neumann
algebra, $G$ is a locally compact group, $\beta$ is an $M^{U}$ valued cocycle and $\theta$ is a $\beta$

action of $G$ on $M$, and they satisfy the axiom of p. 168 in [20]). Suppose that
$M$ is a factor and $G$ is a discrete abelian group. Let $(U_{\theta}, \pi_{\theta})$ be the canonical
covariant representation of $(M, G, \theta, \beta)$ on $H_{M}\otimes L^{2}(G)$ which gives rise to
$L_{\theta.\beta}(G, M)$ (twisted $W^{*}$-crossed product).

LEMMA 5-16. In the above situation, there exists a subgroup $H$ of $G$ and a
map $W$ from $H$ to $M^{U}$ such that we have $W_{g}W_{g’}=W_{gg’}\cdot\beta(g, g’)$ for every $g$

and $g’\iota nH$ and $T$ is contained in $Z(L_{\theta,\beta}(G, M))$ if and only if $T$ is of the
form $\sum_{g\in H}c_{g}U_{\theta}(g)\pi_{\theta}(W_{g})^{*}$ , where $c_{g}’ s$ are scalars.

PROOF. Each element of $L_{\theta.\beta}(G, M)$ is of the form $T= \sum_{g’\in G}U_{\theta}(g’)\pi_{\theta}(A_{g’})$ .
$T$ is in $Z(L_{\theta.\beta}(G, M))$ if and only if $U_{\theta}(g)T=TU_{\theta}(g)$ for every $g\in G$ and
$\pi_{\theta}(B)T=T\pi_{\theta}(B)$ for every $B\in M$. From the first equality we have

$\sum_{g’\in G}U_{\theta}(g)U_{\theta}(g’)\pi_{\theta}(A_{9’})=\sum_{S’\in G}U_{\theta}(g’)\pi_{\theta}(A_{g’})U_{\theta}(g)$ .

And using the properties of $U_{\theta}$ and $\pi_{\theta}$ , we have

$\sum_{S’\in G}U_{\theta}(gg’)\pi_{\theta}(\beta(g, g’)A_{g’})=\sum_{g’\in G}U_{\theta}(gg’)\pi_{\theta}(\beta(g’, g)\theta_{g}^{-1}(A_{g’}))$ .

From this we have
(i) $\beta(g, g’)A_{g’}=\beta(g’, g)\theta_{g}^{-1}(A_{g’})$ for every $g$ and $g’$ in $G$

From the second equality we have

$\sum_{9’\in G}U_{\theta}(g’)\pi_{\theta}(A_{g’}B)=\sum_{g^{J}\in G}\pi_{\theta}(B)U_{\theta}(g’)\pi_{\theta}(A_{g’})$

$= \sum_{g^{r}\in G}U_{\theta}(g’)\pi_{\theta}(\theta_{g’}^{-1}(B)A_{g’})$ .

This shows that
(ii) $A_{g’}B=\theta_{g’}^{-1}(B)A_{g’}$ for every $B$ in $M$ .

If $\theta_{g}^{-}$ } is outer, by Corollary 1.2 in [10], $A_{g’}=0$ . We can assume that $\theta_{g^{1}}^{-1}$ is
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inner. This shows that $U_{\theta}(g’)$ is in $\pi_{\theta}(M)$ . Then we can put $W_{g’}\equiv\pi_{\theta}^{-1}(U_{\theta}(g’))$ .
We have

(iii) $\theta_{g’}^{-1}(B)=W_{g}^{*}BW_{g}$ , for every $B$ in $M$ .
Let $H\equiv$ { $g\in G:\theta_{g}$ is inner}. Then $H$ is clearly a subgroup of $G$ . If $g$ and $g’$ are
in $H$, we have $W_{g}W_{g},$ $=W_{gg},\beta(g, g’)$ because $\pi_{\theta}$ is an isomorphism. If we put
\langle iii) into (ii),

$A_{g},B=W_{g}^{*}BW_{g},A_{g}$ , and so $(W_{g},A_{g},)B=B(W_{g’}A_{g’})$ for every $B\in M$ .
$W_{g’}A_{g^{r}}$ is contained in $Z(M)$ . Since $M$ is a factor, there exists a scalar $c_{g’}$ such
that $W_{g’}A_{g^{\iota}}=c_{g’}I$ . Then $A_{g’}=c_{g’}W_{g}^{*}$ .

Conversely, such an $A_{g’}$ satisfies (i). In fact we have $U_{\theta}(gg’)^{*}=\pi_{\theta}(\beta(g, g’))$

$U_{\theta}(g’)^{*}U_{\theta}(g)^{*}$ and $U_{\theta}(g’g)^{*}=\pi_{\theta}(\beta(g’, g))U_{\theta}(g)^{*}U_{\theta}(g’)^{*}$ for every $g$ and $g’$ in $G$ .
From this $\pi_{\theta}(\beta(g, g’))U_{\theta}(g’)^{*}=\pi_{\theta}(\beta(g’, g))U_{\theta}(g)^{*}U_{\theta}(g’)^{*}U_{\theta}(g)$ . Then we have
$\pi_{\theta}(\beta(g, g’)W_{g’})=\pi_{\theta}(\beta(g’, g)\theta_{g}^{-1}(W_{g’})^{*})$ for every $g$ in $G$ and $g’$ in $H$. Since $\pi_{\theta}$

is injective, $\beta(g, g’)W_{g’}=\beta(g’, g)\theta_{g}^{-1}(W_{g’})$ holds. $q.e.d$ .
COROLLARY 5-17. When $G$ is moreover finite, the dimension of $Z(L_{\theta,\beta}(G, M))$

is finite and not greater than the order of $G$ .
This corollary shows that $(G, N)$ satisfies (4).

EXAMPLE 2. We consider another case in which $G$ acts on $\hat{N}_{norm}$ freely. Let
$[X_{1}, \cdots, X_{5}]$ denotes a basis of a nilpotent Lie algebra $\mathfrak{g}$ . We write only non
zero brackets.

$[X_{1}, X_{2}]=X_{3}$ , $[X_{1}, X_{3}]=X_{4}$ , $[X_{1}, X_{4}]=X_{5}$ , $[X_{2}, X_{3}]=X_{5}$ .

Let $\mathfrak{N}=\sum_{i=2}^{5}RX_{i}$ . Then $\mathfrak{N}$ is an ideal of $\mathfrak{g}$ . Let $\tilde{G}$ be the simply connected Lie

group corresponding to $\mathfrak{g}$ , and $\tilde{N}$ be the connected subgroup determined by $\mathfrak{N}$ .
$G$ is diffeomorphic to $R^{5}$ by using the $2’ nd$ canonical system of coordinates with
respect to $\{X_{1}, \cdots, X_{5}\}$ . Let $G\equiv\{(12n_{1}, n_{2}, n_{3}, n_{4}, n_{5}):n_{i}\in Z\}$ and $N\equiv\{(0,$ $n_{2},$ $n_{3}$ ,
$n_{4},$ $n_{5}$) $:n_{i}\in Z$ }. Then $G$ and $N$ are discrete subgroups of $G$ and $N\triangleleft G$ . $N$ is a
direct product of the discrete Heisenberg group and $Z$ (integers), and so $N$ is
not of type I and moreover does not have type I regular representation.

Since $G$ is unimodular, the Plancherel measure class of $N$ is supported by
$\hat{N}_{norm}$ . We can compute $\hat{N}_{norm}$ and Prim $(N)$ , and this calculation shows that
$\hat{N}_{norm}\cong Prim(N)$ . The Plancherel measure class is supported by the set of quasi
equivalence classes of infinite dimensional normal representations, where the
action of $G$ is free. Therefore we conclude that this $(G, N)$ has the property (C).
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