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Introduction.

In their paper [10], R. Schoen and S. T. Yau have studied compact Lie group
actions on the manifold which admits a map of degree one into a Riemannian
manifold with non-positive sectional curvature. One of our purpose of this paper
is to prove the topological part of results of Theorem 7 in [10] without differ-
ential geometrical methods. Since a Riemannian manifold with non-positive sec-
tional curvature is aspherjcal, $i$ . $e$ . a manifold whose universal covering is con-
tractible, we restrict ourselves to manifolds which admit a map of degree one
into an aspherical manifold. In this note, we shall first prove a result which is
analogous to [5] and then apply it to the study of a compact connected Lie
group action on the manifold which admits a map of degree one into an aspherical
manifold. We shall also consider the degree of symmetry of a connected sum
$M\# N$, where $M$ is a closed manifold and $N$ is an aspherical manifold.

We would like to thank Professor R. Schultz for sending [7], which gives
independent proofs for some results in this note and his valuable suggestions.
We would also like to thank the referee for his valuable suggestions.

In this note, we shall only consider continuous action and the term “manifold”
will mean compact connected topological manifold without boundary. Note that
manifolds have the homotopy type of a finite CW complex [12].

1. Statement of results.

Unless the contrary is stated, the manifold is assumed to be oriented from
now on.

Let $M$ be an m-dimensional manifold. Assume there is a map $f:Marrow N$,
where $N$ is an aspherical manifold such that $f^{*}:$ $H^{k}(N:Z)arrow H^{k}(M:Z)$ is non-
trivial for some integer $k(1\leqq k\leqq\dim M)$ , where $Z$ denotes the group of integers.
We shall prove the following
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THEOREM A. Let $M,$ $N$ and $k$ be as above. Assume $M$ admits almost effective
action of a compact connected Lie group G. Then the following statements are
all valid.

(1) dim $G’\leqq(m-k)(m-k+1)/2$, where $G’$ is the semi-simple part of $G$ .
(2) If $k=m$ , then $G$ is a torus whose rank is at most the rank of the center

of the fundamental group of $M,$ $G_{x}$ is finite for all $x\in M$ and the Euler charac-
teristic $\chi(M)$ is zero.

(3) If $k=m,$ $f_{*}:$ $\pi_{1}(M)arrow\pi_{1}(N)$ is surjective and $\pi_{1}(N)$ is centerless, then $G$

is trivial.
REMARKS. (1) If $M$ is aspherical, then we can take the identity map as $f$.

Hence the statement (2) implies Theorem 5.6 in [5].

(2) According to [9], we call $M$ a hypertoral manifold if there are l-dimen-
sional cohomology classes $w_{1},$ $w_{2},$ $\cdots$ , $w_{m}$ such that $(w_{1}\cup w_{2}\cup\cdots\cup w_{m})[M]=1$ .
It is clear that $M$ is a hypertoral manifold if and only if there is a map $f:Marrow T^{m}$

of degree one. Thus we obtain Theorem A in [2].
(3) The following Proposition was pointed to us by Professor R. Schultz.
PROPOSITION. Let $M$ be an m-dimenstonal manifold with the fundamental

group $\pi_{1}(M)=Z\oplus Z\oplus\cdots\oplus Z$ (m-times). Then $M$ is hypertoral.
(4) Let $M$ and $N$ be manifolds of the same dimension $m$ . It is easy to see

that there is a map $f:M\# Narrow N$ such that $f^{*}:$ $H^{m}(N;Z)arrow H^{m}(M\# N:Z)$ is an
isomorphism. It follows from this observation and Theorem A above that we
obtain the following

PROPOSITION (cf. [11]. Corollary 2 to Theorem 3). Let $M,$ $N$ and $N’$ be m-
&men\alpha onal, n-dimenstonal manifolds and $(m-n)$-dimenstonal asphencal manifold,
respectively. Then we have $S_{t}^{s}(M\#(N\cross N’))\leqq n(n+1)/2$, where $S_{t}^{s}(X)$ , the topological
semi-srmple degree of symmetry of $X$, is the maximal dimenszon of compact con-
nected semisrmple Lie group which acts on $X$ almost effectively.

Finally we shall consider the degree of symmetry of a connected sum $M\# N$,
where $M$ is an m-dimensional manifold and $N$ is an m-dimensional aspherical
manifold. We shall prove the following

THEOREM B. Let $M$ and $N$ be as above. Assume $M$ is not a homotopy sphere.
Then we have $S_{t}(M\# N)=0$ , where $S_{t}(X)$ , the topol0gical degree of symmetry, $is$

the maximal dimenszon of compact connected Lie group which acts on $X$ almost
effectively.

2. Proof of Theorems.

In this section, we shall prove Theorems A and $B$ stated in Section 1. To
prove Theorem $A$ , we consider a slightly more general situation. Unless the
contrary is stated, the manifold $M$ is assumed to admit a map $f$ into a finite
dimensional Eilenberg-Maclane space $N$ such that $f^{*}:$ $H^{k}(N:Z)arrow H^{k}(M;Z)$ is



Degree of symmetry 55

non-trivial for some integer $k(1\leqq k\leqq\dim M)$ . Let a compact connected Lie group
$G$ act on $M$ effectively. We define the evaluation map $ev^{x}$ : $Garrow M$ by $ev^{x}(g)=gx$

for $x\in M$. Now we obtain the following
LEMMA 1. If the image of $ev_{*}^{x}$ : $\pi_{1}(G, E)arrow\pi_{1}(M, x)$ is contained in the kernel

of $f_{*}:$ $\pi_{1}(M, x)arrow\pi_{1}(N, f(x))$ , then the composition $f\cdot i$ is homotoPic to the constant
map, where $i:G(x)arrow M$ is the incluston.

PROOF. It follows from the homotopy exact sequence of the fibering $G_{x}arrow$

$Garrow G(x)$ that the index of ${\rm Im} ev_{*}^{x}$ in $\pi_{1}(G(x))$ is finite. Moreover it follows from
the assumption that the correspondence between $\pi_{1}(G(x))/ev_{*}^{x}(\pi_{1}(G))(=the$ set
of cosets) and $\pi_{1}(G(x))/Ker(f|G(x))_{*}$ is surjective, which implies $\pi_{1}(G(x))/$

$Ker(f|G(x))_{*}$ and hence ${\rm Im}(f|G(x))_{*}$ is finite. It is well known that $\pi_{1}(N)$ has
no element of finite order (see [4] Chapter 9 for example). It follows that ${\rm Im}(f|$

$G(x))_{*}$ is trivial. Since $N$ is an Eilenberg-Maclane space $K(\pi_{1}(N), 1)$ , the com-
position $f\cdot i$ is homotopic to the constant map. This completes the proof of
Lemma 1.

Let $\tilde{N}$ be the universal covering space of $N$ and $\tilde{M}$ the pullback of $\tilde{N}$ by $f$.
If $f_{*}:$ $\pi_{1}(M)arrow\pi_{1}(N)$ is surjective, then $\tilde{M}$ is also a covering space. If $f_{*}$ is not
surjective, $\tilde{M}$ is not arcwise connected. In this case, consider the covering space
$N’$ of $N$ corresponding to the subgroup ${\rm Im} f_{*}$ . It is well known that the map
$f:Marrow N$ can be lifted to a map $f’$ : $Marrow N’$ such that $f$ is homotopic to the com-
position $p’\cdot f’$ , where $P’$ : $N’arrow N$ is the projection. Since $f^{\prime*}:$ $H^{k}(N’ : Z)arrow H^{k}(M:Z)$

is non-trivial, we may assume $f_{*}:$ $\pi_{1}(M)arrow\pi_{1}(N)$ is surjective.
We have the following
LEMMA 2. Assume the $hypothe\alpha s$ in Lemma 1. Then the action of $G$ on $M$

can be lifted to the action of $G$ on $\tilde{M}$ and the natural mappjng $\tilde{M}/Garrow M/G$ is a
covering projection such that the following diagram is commutative, where $\tilde{q},$ $q$

are the orbit maps.

$pM\downarrow$

$\simarrow\tilde{M}qqt$

$/G$

$\overline{p}$

$Marrow M/G$ .

PROOF. It follows from a result in [5] (Theorem 4.3 in [5]) that the action
of $G$ on $M$ can be lifted to an action of $G$ on $M$. It follows from Lemma 1
that :for every point $x$ in $M,$ $p^{-1}(G(x))=G(x)X\pi_{1}(N)$ as fiber bundle over $G(x)$ .
This implies that the action of $\pi_{1}(N)$ on $\tilde{M}/G$ is free and hence $\tilde{M}/Garrow M/G$ is
a covering projection. It is easy to see that the above diagram is commutative.
This completes the proof of Lemma 2.

Note that the covering $\tilde{N}arrow N$ can be considered as the universal $\pi_{1}(N)$-bundle.
Let $g:M/Garrow N$ be the classifying map of the fiber bundle $\tilde{M}/Garrow M/G$ . It fol-
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lows from Lemma 2 that $f$ is homotopic to the composition $g\cdot q$ . Recall that
$f^{*}:$ $H^{k}(N:Z)arrow H^{k}(M:Z)$ is not zero. Therefore $g^{*}:$ $H^{k}(N:Z)arrow H^{k}(M/G:Z)$ is
not zero, which implies that dim $M/G$ is at least $k$ . In particular, the dimension
of a principal orbit is at most $m-k$ . It follows from a well known result that
dim $G$ is at most $(m-k)(m-k+1)/2$ . Thus we have proved the following

PROPOSITION 3. Assume the hypothesis in Lemma 1. Then we have dim $G\leqq$

$(m-k)(m-k+1)/2$ .
REMARK. In the proof of Proposition 3 we have used the fact that $M$ and

$M/G$ have the homotopy type of a Pnite CW complex. This fact is guaranteed
by the works of P. E. Conner, R. Oliver and J. E. West ([3], [8] and [12]).

Now we assume that $G$ is semisimple. Then $\pi_{1}(G)$ is finite and hence the
hypothesis in Lemma 1 is satisfied since $\pi_{1}(N)$ has no element of finite order.
Thus Proposition 3 implies the part (1) of Theorem A.

Consider the case in which $k$ is equal to $m$ . It follows from the above argu-
ments that $G$ is a torus. Now we can show the following

PROPOSITION 4. The action of $G$ on $M$ is injective; in other words, $ev_{*}^{x}$ :
$\pi_{1}(G, e)arrow\pi_{1}(M, x)$ is injective for every point $x$ in $M$.

PROOF. Assume $ev_{*}^{x}(a)=1$ . Let $h:S^{1}arrow G$ be a homomorphism representing
the class $a$ . Assume $a\neq 1$ . Then the action of $S^{1}$ on $M$ induced from $h$ is non-
trivial, because $G$ acts on $M$ effectively. It is clear that the action $(S^{1}, M)$

satisfies the hypothesis in Lemma 1. It follows from Proposition 3 that we have
dim $S^{1}=0$ , which is absurd. This completes the proof of Proposition.

Now we shall prove the rest of Theorem A. Assume that $k$ is equal to $m$ .
It follows from Theorem 4.2 in [5] that ${\rm Im} ev_{*}^{x}$ is contained in the center of
$\pi_{1}(M)$ which implies the first part of (2). If there is a point $x$ such that dim $G_{x}$

$>0$, then Proposition 4 does not hold for this point $x$ . Next assume $\chi(M)\neq 0$ .
Then the fixed point set is not empty, which contradicts the fact dim $G_{x}=0$ for
every point $x$ in $M$. If $f_{*}$ is surjective, then $f_{*}(({\rm Im} ev_{*}^{x})$ is a central subgroup
of $\pi_{1}(N)$ . The assumption implies that $f_{*}(({\rm Im} ev_{*}^{x})=1$ . Now Proposition 3 implies
the part (3) of Theorem A. This completes the proof of Theorem A.

Finally we shall prove Theorem B. Let $M$ and $N$ be m-dimensional manifolds
and $N$ aspherical. Assume the connected sum $M\# N$ admits a non-trivial $S^{1}$-action.
Put $X=M\# N$. If $\pi_{1}(M)\neq 1$ , then $\pi_{1}(X)$ is centerless. Then the part (2) of
Theorem A leads to a contradiction. Thus we have $\pi_{1}(M)=1$ . Consider the
covering space $X_{Z}$ of $X$ corresponding to the subgroup ${\rm Im} ev_{*}^{x}=Z$ of $\pi_{1}(X)=$

$\pi_{1}(N)$ . Assume $\Gamma=\pi_{1}(N)/Z$ is not trivial. It follows from a result in [6]
(Theorem 3.1 in [6]) that $X_{Z}$ is equivariantly homeomorphic to $S^{1}\cross M’(M’=$

$X_{Z}/S^{1})$ . Note that $M’$ is simply connected. On the other hand, it follows from
the argument in [1] that $X_{Z}$ is homeomorphic to the space
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$(\#)$ $(N_{Z}- intD^{m}\cross\Gamma)\bigcup_{S^{m-1}\cross\Gamma}(M-intD^{m})\cross\Gamma$ ,

where $N_{Z}$ is the covering space of $N$ corresponding to the subgroup $Z$ of $\pi_{1}(N)$ .
Since $N_{Z}$ is also aspherical and $\pi_{1}(N_{Z})=Z,$ $N_{Z}$ is homotopy equivalent to $S^{1}$ .
It follows from the excision property that $H_{i}$ ($N_{Z},$ $N_{Z}$–int $D^{m}\cross\Gamma:Z$ ) $=0$ for $i\neq m$ ,
which implies that $H_{i}$ ($N_{Z}$–int $D^{m}\cross\Gamma:Z$ ) $=0$ for $2\leqq i\leqq m-2$ . The Mayer-Vietoris
exact sequence applied to the space $(\#)$ implies that $H_{i}(X_{Z} : Z)=H_{i}$ (($M$–int $D^{m}$)
$\cross\Gamma:Z)$ for $2\leqq i\leqq m-2$ . Since $M$ is assumed to be simply connected and not a
homotopy sphere, there is an integer $i$ such that $H_{i}(M’ : Z)\neq 0$ . Let $r$ be the
minimal value of $i$ such that $H_{i}(M’ : Z)\neq 0$ . It is easy to see that $2\leqq r\leqq m-2$ .
Thus we have that $H_{r}(M’ : Z)=H_{r}$($(M$–int $D^{m})\cross\Gamma;Z$ ). Let $\tilde{X}$ be the universal
covering space of $X$. Since $\tilde{X}$ is also the universal covering space of $X_{Z}$, we
have $\tilde{X}=R^{1}\cross M’$ and $\pi_{1}(X_{Z})=Z$ acts on $H_{r}(\tilde{X}:Z)=H_{r}(M’ ; Z)$ trivially. But this
is proved to be impossible. In fact, it follows from the argument in [1] that $\tilde{X}$

is homeomorphic to the space

( $\tilde{N}$–int $D^{m}\cross\pi_{1}(N)$ )
$\bigcup_{S^{m-1}\cross\pi_{1}(N)}$

($M-$ int $D^{m}$ ) $\cross\pi_{1}(N)$ ,

where $\tilde{N}$ is the universal covering space of $N$. It is easy to see that $H_{r}(M’ ; Z)$

$=H_{r}(\tilde{X};Z)=H_{r}((M-intD^{m})\cross\pi_{1}(N);Z)$ on which $Z$ acts non-trivially. Thus
we have shown that $\Gamma$ is trivial, in other words, $ev_{*}^{x}$ : $\pi_{1}(S^{1}, e)arrow\pi_{1}(X, x)$ is an
isomorphism. It follows again from a result in [6] (Theorem 3.1 in [6]) that
$X$ is equivariantly homeomorphic to $S^{1}\cross(X/S^{1})$ . Note that $X/S^{1}$ is simply con-
nected. Consider the universal covering space $\tilde{X}$ of $X$. Then we have $\tilde{X}=R^{1}\cross$

$(X/S^{1})$ and $\tilde{X}$ is proved to be homeomorphic to the space

$(*)$ ($N$–int $D^{m}\cross Z$ ) $\bigcup_{s^{m-1\cross Z}}$ ( $M$–int $D^{m}$ ) $\cross Z$ .
Let $s$ be the minimal value of $i$ such that $H_{i}$ ( $M$–int $D^{m}$ ; $Z$ ) $\neq 0$ . Since $M$ is not
a homotopy sphere, $s$ is smaller than $m-1$ . Since $X/S^{1}$ is compact, $H_{s}(\tilde{X}:Z)$

is finitely generated. However the space $(*)$ has non-finitely generated s-dimen-
sional homology group. This is a contradiction and completes the proof of
Theorem B.
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