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Introduction of new coordinates to the Schottky space

—The general case—
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0. Introduction.

In the previous paper we introduced new coordinates to the Schottky
space with respect to a standard system of loops 2, and we defined the aug-
mented Schottky space. As we shall explain in §1, a standard system of loops
is a special case of a basic system of loops.

In this paper, in §2, we will introduce new coordinates to the Schottky
space in the general case, namely, in the case where Y is a basic system of
loops. In § 3, by using these coordinates, we will define the augmented Schottky
space in the general case. We will discuss, in §4, relations between the aug-
mented Schottky space and compact Riemann surfaces with or without nodes.

This paper was written while the author stayed at the State University of
New York at Stony Brook. He wishes to express his deepest gratitude to Pro-
fessors I. Kra, B. Maskit and P. Matelski for many suggestions and giving him
the opportunity to devote himself to this work.

1. Multi-suffix and examples.

1-1. Let S be a compact Riemann surface of genus g=2. If mutually dis-
joint simple loops on S, di, ds, -, 0,, have the following property, then we call

2=1{0,, 05, -+, Oy} a basic system of loops: Each component of S— knj 0; (we call
i=1

it a cell) is a sphere with three disks removed, that is, a planar and triply con-
nected domain. We have n=3g—3. If, in particular, the number of nondivid-
ing loops in 2 is equal to g, we call X' a standard system of loops (see [4] pp.
155-157, more in detail).

Let G be a fixed marked Schottky group generated by A{”, A{®, -, A®:
GO=CA®, A®, -, AP>. Let Cy, Cgs1; Coy Coan; o Cy, Cop be defining curves
of A®, A®, -+, AP, respectively, namely, they are mutually disjoint Jordan

This research was partially supported by Grant-in-Aid for Scientific Research (No.
56540117), Ministry of Education.
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curves on the Riemann sphere which comprize the boundary of a 2g-ply con-
nected region w (we call it a standard fundamental domain for G) and A®
maps C; onto Czy; and AP (w)New=¢@ for each j=1, 2, ---, g. - If mutually dis-
joint Jordan curves on (f, Cy, -+, Cop, 71, ***, T2g-s have the following properties,
then we call $={Cy, ---, Cag; 71, =, Tog-s} @ basic system of Jordan curves for

G®: () 7, (j=1,2, -, 2g—3) lie in ». (2) Each component of w— \J 7, (we
=1

call it a cell again) is a triply connected domain.

REMARK. We denote by ea;(=1,2, -, g) and 7,;(j=1, 2, ---, 2g—3) the
images of C; and 7, respectively, under the natural projection I7: 2(G®)—
QGC®)/G®=S®, Then the set X={ay, «:*, ag; 71, =+, T2¢-4} IS a basic system
of loops on S®. Then Y is called the basic system of loops associated with 3.

282-3
1-2. Let &, be the component of w— \J 7; one of whose boundary curves
j=1 .

is C,. Let 6 be an arbitrary boundary curve of &, other than C,. We denote
by H(5) the union of closures of all cells which lie in the opposite part of &,
with respect to 4.

We let 7(5) be the following number: If H(6)+ @, i(6) is the smallest value
of i with C;C H(6) or Cpri C H(S); if H(5)= (then & should be one of C,, C,,
wo, Cyp), i(6) is the ¢ with §=C; or 6=C,;.

Now we denote the boundary curves of &, other than C; by #0) and 7(1)
according with the following rule: We should have #(7(0))<:i(7(1)) and, if
{(7(0)=14(7#(1)), then Ci¢w» CH(70)) and Cyyiary CH(F(L)).

1-3. For 7,=0 and 1, we denote by (G,: 7)) the cell which lies in the
opposite side of &, with respect to 7(¢,) and one of whose boundary curves is
#(4,). For the sake of simplicity, we write &(7,) for (d,: 7(%,)). We shall denote
the boundary curves of &(7,) other than 7(7,) by 7@, 0) and 7(z,, 1) in the same
way as above.

Let 6 be an arbitrary boundary curve of &(7,) other than 7(5,). We denote
by H(6) the union of closures of all cells which lie in the opposite part of &(7,)
with respect to 4.

We let #(8) be the following number: If H(6)+ @, i(§) is the smallest value
of 7 with C;CH(@) or C,u;CH(S); if H(E)=0,i(6) is the i with 6=C; or
5=Cg+i.

Now we denote the boundary curves of &(7,) other than 7(¢,) by 7@, 0) and
F(45, 1) according with the following rule: We should have i(7(zy, 0))<i(7(%, 1))
and, if #(7(,, 0))=4(7(,, 1)), then Ci(?(to,o)) C H(7(i, 0)) and Cg+th(i0,1)> C H(¥(,, 1)).

1-4. For 7,=0 and 1(»=0, 1), we denote by (6(%,): 7 (i, 7,)) the cell which
lies in the opposite side of &(i,) with respect to (i, 7;) and one of whose bound-
ary curves is 7(é, 7). For the sake of simplicity, we write (i, ¢;) for (a(7);
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7(io, 71)). We shall denote the boundary curves of (7, 7;) other than 7(i,, 7,) by
#(1o, 11, 0) and §(iy, 75, 1) in the same way as above.

Let 6 be an arbitrary boundary curve of &(:,, 7;,) other than 7(,, 7,). We
denote by H(§) the union of closures of all cells which lie in the opposite part
of (i, ;) With respect to 4. '

We let (§) be the following number: If H(5)# @, i(§) is the smallest value
of 7 with C;C H(@) or C,ui CH(), if HO)=@,i(8) is the i with §=C; or
6=Cjyui.

Now we denote the boundary curves of &(7, 7;) other than (i, 7)) by
7, 71, 0) and (i, 71, 1) according with the following rule: We should have
1(F (o, 11, 0) Si(F (o, 71, 1)) and, if «(F (@, 45, 0)=i(7(,, 73, 1)) then Ci¢ugiy C
H(§(i, 1, 0)) and Cg+i(?<i0,il,1>) C H (7 (@, 75, 1))

1-5. The above process is repeated. In general, for ;,=0and 1 (=0, 1, --,
W), suppose §(io), (i, 11, ===, 7(to, 41, =+, 7,) have determined. We denote by
(6o, 11y *+* 5 Tu-1): T(o, 11, ==+, 7,)) the cell which lies in the opposite side of
(o, 11, -+, 1u-1) With respect to §(io, 71, -, ¢,) and one of whose boundary
curves is 7, 75, -+, 7,). For the sake of simplicity, we write &(io, 71, =+, 7,)
for (&, i1, =, ip-1): 7(fo, 71, -+, 7). We shall denote the boundary curves of
(o, 11, -+, 1) other than (i, 7y, -+, 7,) by 7(io, 71, --+, 7p, 0) and 7(to, 75, ==+, 74, 1)
in the same way as above.

Let § be an arbitrary boundary curve of (i, 7;, -~ , ¢,) other than 7(i,, 7,
-, 1,). We denote by H(6) the union of closures of all cells which lie in the
opposite part of (i, 71, -, ,) With respect to 4.

We let i(5) be the following number: If H(5)# @, i(§) is the smallest value
of 7 with C;CH(@) or CpryCH®G); if H(O)=@, i(6) is the 7 with §=C; or
6=Cgss.

Now we denote the boundary curves of &(i, iy, --+, 7,) other than §(7,, 7,
oy 8 by T(o, 61, 0, 44, 0) @and 7z, 4y, -+, 1,4, 1) according with the following
rule: We should have (7(i, #1, -+, 7,, 0)=i(7(o, 74, -, £ 1)) and, if (7(, 74,
oy 0 0)=1(F (o, 11, -5 1, 1)) then CiGegig,enn i 03 C H(7(lo, 11, =+, is, 0)) and
Cg+i(?(i0.i1,‘--,i‘u,1)) C H({ (o, 11, -+, Ly 1)

1-6. Examples. Here we present two illustrative examples.

EXAMPLE 1. Let G@=<{A{™, A®, A{®> be a marked Schottky group. Let
defining curves C,, C,, -+, Cs and curves 7,, 7., s be as in Fig. 1. Then we
have a Riemann surface S® and loops a,, @., @s, 71, 72, 7s as in Fig. 2, where
a;=II(C;) and y,=II(7;) and II: 2(G®)— S© is the natural projection. We
express the Fig. 1 as a tree in Fig. 3. Here every white circle O denotes a
cell and every segment denotes an element of ={Cy, -, Cs; 71, 72, 7s}. If we
represent the cells and elements of 3 in Fig. 3 by using multi-suffixes, we have
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7(0, 0)

Figure 3. Figure 4.

as

Figure 1’ Figure 2’.



Schottky space 27

700, 0, 0)

#(1) 70,1, 1)
Figure 3. Figure 4’.

Fig. 4. We have the following: 7(0)=7,, #(1)=C,, 7(0,0)=C4, #(0, 1)=7,, 70, 1,0)
=C,, 70, 1, 1)=7%,, 700, 1, 1, 0)=C; and 70, 1, 1, 1)=C,.

ExaMPLE 2. Let G be the same marked Schottky group as in Example
1. Let defining curves C;, C,, -+, Cs and curves 7,, 7, s be as in Fig. 1’. Cor-
responding to them, we have the following Fig. 2/, Fig. 3’ and Fig. 4’. Observe
70)=71, 71)=Cs, 7(0, 0)=7,, (0, )=7s, (0, 0, 0)=C,, 70, 0, N=Cs, 7(0, 1, 0)=C;
and 70, 1, 1)=C.,.

2. Introduction of new coordinates.

2-1. We fix a marked Schottky group G®@=<(A®, .-, APy, Let §={C,
o, Cogy T1, =+, Teg-s} be a fixed basic system of Jordan curves for G®. In
this section, we will introduce new coordinates to the Schottky space with
respect to 5.

Let G=<(A,, A, -+, Ag> be a marked Schottky group. Let A; (12;]>1), p;
and p,4; be the multiplier, the repelling and the attracting fixed points of Aj,
respectively. We normalize G by setting p,=0, p,+;=c0 and p,=1. Then a
point in the Schottky space &, is identified with

F=(A1, =+, Ag, Dg+2) Dss Dgts, = » Pgy P2g) EC*472.

Now we will introduce new coordinates with respect to 3':

=1, =, g, P1, ng_3)ecsg—3 .

First define ¢; by setting t;,=1/4;(¢=1, 2, ---, g). Thus t;,eD*={z|0<|z| <1}.
Next in order to define p; associated with 7,=7(o, i1, =, i) €& (=1, 2, -+,
2g—3), we determine integers k(7), {(j), m(j) and n(j), which are =1 and =2g
as follows: k())=1, Cip=7(, 11, === - fpe1, 1=, 0, -, 0), Cneyy=7(lo, 11, =+, Ty
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, 0) and Cop=7(t0o, t1, =+, 4, 1,0, -+, 0).

For each j=1, 2, ---, 2g—3, the coordinate p; is now defined as follows:
We determine T,€M&b by Ti{(pr»)=0, Tipip)=cc and T (pmcp»)=1 and set
0i=T {(pncp) v

REMARK. Let {Cy, -+, Cop; 71, =+, T2z-s; be a basic system of Jordan curves
satisfying the following condition: For each j=1, 2, .-, 2g—3, 7} is homotopic
to 7, in the standard fundamental domain w. Let p; be the coordinate associated
with 7j. Then p;=pj.

By the same method as in the proof of Proposition 4 in [4], we have the
following. »

PROPOSITION. Two equivalent marked Schottky groups G=<{Ay, -+, Az and
G=<(A4,, -, A, that is, A,=UA, U™, USMob, have the same coordinates t;
and p;.

Thus we can define a mapping ¢ of &, into D*® X (C\ {0, 1})*4~* by setting
o([[Gl)=(ts, -+, tg, p1, ***, p2g-3), Where [G] denotes the equivalence class of G,
that is, a point in ©,. We denote by &,(3) the image of &, under the mapping ¢.

2-2. Next we consider the converse. Let G® and 5 be as in §2-1. Since
c;ef (j=1, 2, -, 2g) are represented as (i, i1, - , i), We may write p(i, iy,
, i) for the fixed points p;. Furthermore 7,€¥ (=1, 2, ---, 2g—3) are repre-
sented as 7,0, 71, ---, 7,) and so we may write p(z, 7y, ==, 7,) for p;
We will show that 2;, p; and pg.; (=1, 2, -+, g) are uniquely determined
by a given point

t=(ty, =, tg, P1, s Pag-a) EDFEX(CNAD, 1})%47

under the normalized condition p,=0, (0, 0, -+, 0)=c0 and p(1, 0, 0, ---, 0)=1.

The first step. We determine (0, 1,0, ---,0) and p(1,1,0,---,0) by the
process opposite to the above: We determine 7 eMob by 7(0)=0, T(1)=co and
T(c0)=1 and set p(0, 1,0, -+, 0)=T"%(p(0)) and p(1, 1,0, -+, 0)=p(1).

The second step. Suppose p(io, 21, =+, 24-1, 0, -+, 0) and p(do, 41, -+, Zp-1, 1,
0, ---, 0) are determined. Then by the process opposite to the above, we deter-
mine p(iy, 1, **, Gp-1, 0, 1,0, ==+, 0) and p(G, 74, =+, 44y, 1, 1,0, -+, 0): We de-
termine T€Mob by T(0)=0, T(p(,, z'l, oty 1,0, 0, 0)) =00, T(p(i, iy, «
fy-1, 0,0, -, 0)=1 and set p(o, iy, =+, 24-1,0, 1,0, -, 0):T‘1(p(z’o, i1,y Ly,
O)) we determine TeMoéb by T(0)=0, T(p(zo, i, oty 1o, 0, 0, 0))=00, T(p(i,
i1 yl4-1, 1,0, -, 0)=1and set p(i, i1, =+, 2p-1, 1, 1, 0, -, 0)=T"Yp0(, 71, -
1/1—1, 1))

By the induction, we determine pi, pg+1, =+, Dg, D2g-

The third step. We define 4;(/=1, 2, ---, g) by setting 1,=1/¢,.

By the above, we determine Aj;(z)eMob by z as follows: The multiplier,
the repelling and the attracting fixed points of A,(z) are 2;, p; and p,.;, respec-

b

b
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tively. Thus we obtain a mapping ¢ of D**X(C\{0, 1})*4~* into M6b? by set-
ting () =<{A(r), As(z), -+, A,(x)> (we denote it by G(z)).

2-3. THEOREM 1. Let the mapping ¢: &, — D** X {C~{0, 1})*¢~% and ¢:
D*E X (C\ {0, 1})22-2 — Mob?® be as above. Then ¢o=id. and ¢ |S,(2)=id., where
id. and ¢|S,(2) denote the identity mapping and the restriction of the mapping
¢ to the set ©4(X), respectively.

3. Augmented Schottky spaces.

3-1. Let GO=CA®, A®, -, AP), S={Cy, -+, Caog; T1, =+, T2g-s} and X
={ay, =+, Ag; 71, , Teg-sr be a fixed marked Schottky group, a basic system
of Jordan curves for G and the basic system of loops associated with & as
in §2, respectively. By identifying C; and C,;(G=1, 2, ---, g), we have different
figures from ones in §1, namely we have figures for 2. For example, we have
the following Fig. 5 and Fig. 5’ instead of Fig. 3 and Fig. 3/, respectively.

(287
T 1§
7s
«
a3 r2 az s
7
I ! I TZ 7'1
(447 @
Figure 5. Figure 5.
Let 7i1, 742, =, Tur> be a sequence of 7, in ¥ as follows: They separate
pi from p,.; and they are arranged from p; to p,... We say the sequence of
elements in X, (a;; 71, Tie, =, Tuo), the “cycle” containing «;, and denote it

by L;. Obviously there are g “cycles” L;(1=1, 2, ---, g) and each L; corresponds
to the generator A{® of G®. For example, in Fig. 5, there are three “cycles”
(a1 71), (g 7s) and (as; 7s, 7a, 71) corresponding to A{®, A{® and A{®, respec-
tively, and in Fig. 5/, there are three “cycles” (a;; 71, 72), (@2 73, ¥s) and (as;
7s, 71) corresponding to A{®, AS® and A{®, respectively.

Let IC{1, 2, -, g}, JC{L, 2, ---, 2g—3}, |I| =number of elements in I and
| /I=number of elements in J. We define a subset I(J) of {1,2, -, g} as
follows.

Let J={j1, -, jm}. For each i=1,2, .- ,m, let L; 1, -, L;, ryp be the
“cycles” containing 7;. Then we define I(J) by setting
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I(H=<{l, 2, -, gt la;=2 is contained in a “cycle” L;,
for some [/ (1=/=<k(y)) and for some j&J}.

REMARK. The set I(J) may be empty. If all y;, j&/J, are dividing loops,
then I(J/)=@. Thus if Y is a standard system of loops, then I(J)=@ for all J.

3-2. We will define subsets 67-7G,(5) of ©,(3)=6,(3)Ud6,5)cD¢x
C?¢-3, where D= {zl1z]<1}. We set X=067"6&,(2). From now on we assume
that I(J) is a subset of I.

(1) When I=@ and J=@, we define X as @g(f ), the Schottky space.

(2) When I+@ and J=@, we define X by the same method as in [4], and
we denote it by §7&,(5).

(3) When J+ @ and I=@ (hence I(J)=@), we define X by the same
method as in [4], and we denote it by 567S,().

(4) When J#@, I(])=I1+@, we will define X as the set of all points z=
(ty, =, tg, P1, ===, P2g-») Satisfying the properties (i)-(v) which will be described
in §3-5, and denote it by 877G (3.

(5) When J#@, I(J)+@ and INI(J)# @, we define 67-7&,(3) by combin-
ing the methods of the above (2), (3) and (4) altogether.

3-3. Now we will define sets 67¢>7&,(5). Let J={j1, f2 =, Jm} (J1< /=<
o <gm) and I()={iy, s, =, 1o} (11 <0<+ <d).

The figure of tree defined in § 1 is divided into |J|+1 (=m+1) parts by cut-
ting along m Jordan curves 7;(j€]).

The first step. We consider the following sequences:

Case 1. p(o)#1, pli, 1)#1, -+, plo, i1, =, ix)F1, and 7, i1, =, ipge1) 1S
one of the defining curves C,, Cs, -+, Cs,.

Case 2. p(ip)#1, plio, 1)1, -+, pl, 11, =+, 1p) #1, plo, 11, -+, Ly =1

We perform the same process as in the previous section by using 0, co and
1 instead of p,, p(0, 0, ---, 0) and p(1, 0, ---, 0), respectively. Then we can deter-
mine a number for each p(%, 7;, -+, 7,,) (0=v,=y,). Namely, we get the following:

1) Suppose p(io, 73, ==, 4y, DFL, p (o, 21, o+, bugy L, 0FL, -, 0o, 3, =+, 1y,
1,0, -, 0#1 (vo=p) and 7, 71, -+, 45, 1, 0, ==+, 0) is one of the defining curves
C,, Cs, =+, Cy,. Then we can determine p(io, 75, -+, 2y, 1, 0, ==+, 0) from p(z, 7,
-+, 1,,) by the same way as in §2.

2) Suppose p(is, i1, =+, 1y, DFL, p(o, 11, -+, Gug, 1, 00FL, oo, 0o, 11, -+, 1,y
1,0, -, 0)#1, p(, 7y, -+, 4,,, 1,0, -+, 0)=1. Then we determine a number from
oo, 71, ---, 1,,) by the same way as in §2. We denote the number by p*(7,, 7,
s, 0y, 1,0, -+, 0) and call it the right distinguished point associated with 7(i, iy,
o4y, 1,0, 0, 0),

In particular, if p(0)#1, p(0, 0)#1, ---, p(0, 0, ---, 0)+1 and 70, 0, ---, 0) is

NEIRE NI

h h+1
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one of the defining curves C,, C, -+, Cyp, then we set p(0, 0, ---, 0)=co under
N e

h+1
our normalization and if p(0)+#1, p(0, 0)#1, ---, p(0, 0, ---, 0)#1, p(0, 0, ---, 0)=1,
»——,’:—/ ———

k+1
then we set »*(0, 0, -+, 0)=co. Next if p(1)#1, p(1, 0)#1, -, p(1, 0, ---, 0)#1
k+1 h'
and 71,0, ---,0) is one of the defining curves C,, Cs, -:-, Cy;, then we set
h'+1
(1, 0, ---, 0)=1under our normalization, and if p(1)#1, p(1, 0)*#1, -, p(1, 0, ---, 0)
iy ey W
#1, p(1,0, ---, 0)=1, then we set p*(1, 0, -, 0)=1.
N — N——

k' +1 k'+1

Suppose that there are m,—1 numbers of sequences of Case 1. We denote
p: and m,—1 points determined in the above by powy, Perow, Doy, Perory =,
Docgys Detosgs Docaggrnds Docaggrrs ** 5 Pocme- ThED We SaY Pocgern, ** 5 Dotme
distinguished points of the first kind.

Suppose that there are n,+1 numbers of sequences of Case 2. We write
Dhimgrs s Phcmorngsn fOr the me+1 points p*(io, 7y, =+, iy, 1, 0, -+, 0) deter-
mined in the above. We call them distinguished points of the second kind.

We set Aoiy=1/teiy (=1, 2, -+, go). Let A, be the Mobius transformation
whose multiplier, the repelling and the attracting fixed points are Ay, Poci> and
Derocir, TESPECtively. We denote by Go(z) the group generated by Aow, Ao,
e, Aoy that is Go(7)=<Aow, Ao, ***, Aoz

3-4. The second step. Next we consider the general case. Let ¥;=7(,
i1, =y dge) ((=1,2, -, m). We treat the following two cases:

Case 1.  p(io, =+, fue0)=1, p(o, =+, fppra)#1, -+, (o, =+, 1, )#1 and F(,,
«+, 4u,+1) is one of the defining curves Cs, Cs, -+, Cqy.

Case 2. p(lo, 11, =, tpe) =1, p(Go, 01, =+, Tppaa) F1, -, 0o, 71, o, 1py) F1
and p(io, i1, ey, Z.,ul,+l):1'

We use 0, co and 1 instead of pi, p(to, 21, ==+, Tpy+1, 0, --+, 0) @and plao, 75, -,
fu41, 1, 0, -+, 0), respectively (see p. 28 and use g;+1 instead of p—1 there).
For each v; (i;+2=<v,=<p,), we determine p or a number (we call it the right
distinguished point associated with §(i,, i1, -, 4,;,, 1, 0, ---, 0) and denote by p*(z,
i1, 5 0y, 1,0, -+, 0)) from p(dy, 7y, -+, 4,,) by the same way as in p. 28.

Suppose that there are m; numbers of sequences of Case 1. We denote the
m, points determined in the above by piw, Periw, *** ) Dicep, Pariceps Diceg +vs
Drgrn, 5 Piamp. Then we say piag,+v, =, Pimp distinguished points of the
first kind. Suppose that there are n, numbers of sequences of Case 2. We
write plong+v, Plompsn, s Pimp+ny for the m, distinguished points, and we
call them and py(iy, 71, -, 14,41) (=0) distinguished points of the second kind. In
particular, we call pi(iy, i1, =+, i,,41) the left distinguished points associated with
7o, 13, =, 14,+1) and write it p7).
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We set ;iy=1/t;y =1, 2, ---, g1). Let A, be the Mobius transformation
whose multiplier, the repelling and the attracting fixed points are A;¢», Py and

Pe+1cr, respectively. We denote by Gj(r) the group generated by A, -,
Al(gl)} that isy Gjl(T):<Al(l)) Tty Al(gl)>-

3-5. By the above things, we get m-+1 (m=|J|) numbers of groups G(z),
G;/(7), -+, G;, (). Furthermore we obtain distinguished points of the first kind
Pieg+vr =5 Pimp (=0, 1, -+, m), and distinguished points of the second kind
p?(m;ﬂ), Tt p?(mﬁnl) ((=0,1, ---, m), Di (I=1, 2, -, m) and p-((;(n0+1)-

Now we write the properties (i)-(v) as follows.

(1) p;=1 for j€J and p,;#1 for j& ]

(ii) t;=0 for i€I(J) and ;%0 for s I(]).

(iii) For each (=0, 1, ---, m, G;,(z) is a Schottky group or the trivial group,
where G;(7)=G(7).

(iv) For each (=0, 1, ---, m, m;—2g, distinguished points of the first kind
Diceg;+, s Diemp and n+1 distinguished points of the second kind pfcm;+n,
oy Plempeap and pj,(ptng+n for [=0) are distinct.

(v) For each [=0, 1, ---, m, the above m;—2g,+n,+1 distinguished points
lie in some standard fundamental domain for G; (7).

3-6. We give definitions of the following sets by using 07-76,(2): &L(3)
= | 08B (3), 65(5)=\J TP LG, (5), &LI(E)=_ |\J 518,(5)I(L)CK),
KCI LCJ KcI,LcJ

exSH=6LS) with I={1,2, -, g}, §,(5)=&%3) with J={1, 2, ---, 2g—3},
and 6% $=6&L7 (%) with I={1, 2, ---, g} and J=1{1, 2, ---, 2g—3}.

DEFINITION. We call the set &%) the augmented Schottky space associated
with 5.

REMARK 1. If Y is the standard system of loops associated with X, then
we write &%) for @’};(f). In this case, &%) is the augmented Schottky
space in [4].

REMARK 2. If I(J)=, then &;/(3) is a domain (see Proposition 5 in [4]),
but if I(J)# @, then &%7(5) is not a domain.

REMARK 3. 87¢7&,(5) is the intersection of 6,(5) (C DfxC?¢-%) with
|I(J)]4-1J| numbers of complex hyperplanes such that t;=0 (Z€I(])) or p,=
1 (el

4. Augmented Schottky spaces and Riemann surfaces with or without
nodes.

4-1. Throughout this section, let G®=<(A®, -+, AYY, ¥={Cy, -, Cog; 1
o, Tog-st and Y={ay, -, ag; 71, -+, T24-s; be a fixed marked Schottky group,
a basic system of Jordan curves for G and the basic system of loops on S©
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=2(G®)/G® associated with 5.

Let €67 76,(8) with I(J)+@. Let J={ji, -+, jm}. By the same way
as in the previous section, we have m-+1 Schottky groups (including the trivial
group) G(7), G;/(7), -+, G;,(z). For each [=0, 1, ---, m, 2(G;,(2)/G;(r)=S;,(z)
is a compact Riemann surface of genus g;, where G;(t)=G(z) and S; (7)=S,(7).
Let II,,: G;,(z))— S,,(z) be the natural projection. We set Piug+mw=
II;(prg+w) (=1, 2, -+, my—2g,), and we call them the distinguished points of
the first kind on S;(z). Set pfm+m=I;,(pim+0) k=1, 2, .-, n, for [=1, 2,
wo,m;y k=1,2, -+, ni+1 for [=0) and pj=11,(p7)(=1,2, -+, m). We call
them the right and the left distinguished points of the second kind on S;[(7),
respectively.

For each distinguished point p;eg,+s Of the first kind with piegem=70:
for 7 (1=i<g), there are [’ and %’ such that pgii=puce, +s>. By joining
Diceg i+ and Prog,+r, and p;, and pj, for all distinguished points, we have a
compact Riemann surface of genus g,+g:+ - +gn(=g) with [I(J)|41]/]| nodes,
S(z), where p},=n:i(pm+w) With Ticm+ =7/,

For the cases of r€&,(Y), r€d’6,(L) and z€6776,5) with I(J))=0,
see [4]

Next let r€6776,(2) with J# @, I(J)# @ and I~NI(J)#=@. By combining
the method above and the method in we obtain a compact Riemann surface
of genus g with |I|4|J| nodes, S(z). We call S(z) the Riemann surface with
nodes associated with t.

4-2. Before we consider the converse, we need some preparation.

For each 7, we let Ciw, Ciw, 5 Cicry Cgrivcr, 5 Cororcy and Cjepy, -+,
Cjmrs Cgijrs -5 Casjocny be the defining curves in £ in the interior and to the
exterior to 7; respectively, where (1)< -+ <#(k), /(1)< - <'(0); J()K -+ < j(m),
7)< - <j'(n). Then we say that the loop 7; gives a partition {i(1), ---, i(k),
gti' (L), -y g+ OYVIATQ), oo, jOm), g+, ey g4 ()} of (L, 2, -, 28}
From now on we use these partitions associated with 2.

REMARK. Noting that each C; contains only one fixed point p; of A{®
among the set of 2g fixed points of generators in the interior, we see that 7,
divides the set of the fixed points into two parts pico, =, Pickr, Derircr, =+ »
Dag+iren @nd Pjcy, =+, Dicmds Dg+ircds 5 Dg+icmy. Lhe partition of the set {1, 2,
-+, 2g} by a loop 7; only depends on the 2g fixed points but not on a choice
of defining curves.

4-3. Let S be a marked Riemann surface with nodes. We call the set
={ai, -, ay; 11, ***, T2g-s} of loops and nodes on S satisfying the following

P . g
condition a basic system of loops and nodes: Each component of S— \J a}—
i=1
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1}137;- is a planar and triply connected region of type [3, 0], [2, 1], [1, 2] and
[0, 3], where a surface of type [m, n] means a sphere with m disks removed and
n points deleted.

Cut the Riemann surface S along the loops and nodes a«j (:=1, 2, ---, g).
We denote by af and aj.; the resulting two topological circles or two points
for each 7. We note that each 7} divides the set {af, a¥, -, af,} into two
parts {afw, -, @i, Afrow, 1, o) and {afw, 1, Yoy, Ahei, o,
ayipemt, Where (1)< - <i(R), /(1)< - <'(l); J)< - <j(m), /(1)< - < j'(n).
We say that y; gives a partition {i(1), ---, i(k), g+¢'(1), ---, g+’ {FQ), -,
Jm), g+;'(1), -+, g+j5(n)} of the set {1, 2, ---, 2g}. We write 2"={af, -+,
afe; 11, -+, Teg-st and call it the set of Jordan curves and points induced from 2.

From now on we assume that Y” satisfies the following condition: Each
75 U=1, 2, ---, 2g—3) gives the same partition of {1, 2, ---, 2g} as 7;, We say
X’ being compatible with 3 and denote by Y”~%.

4-4. Let S, 3’ and X" be as in §4-3. Furthermore we assume that X’
has the following Property (A).

Property (A): Let Lj., -+, Ljnp», be “cycles” containing 7;€2 and let
a;; (=1, 2, -+, n(j)) be the elements in X' contained in L;; (see §3-1 for the
definitions of L; ;, r;and a;,;). If rj€2’ is a node, then «} ;€2'(i=1, 2, ---, n(y))
are nodes.

By the same way as in [4], we can determine

TS:(tli Tty tg’ ,01; ttty p2g—3)€@§(g)

such that S coincides with the Riemann surface associated with zg.

4-5. By collecting the above results, we have the following theorem.

THEOREM 2. Let GO=CA®, -, A®> be a fixed Schottky group and ¥ a
fixed basic system of Jordan curves for G©.

(1) For t€d"76,(%) with IDI(]), there exists a compact Riemann surface
S(z) of genus g with |I|+|]| nodes associated with t in the sense of §4-1.

(2) Conversely, given a compact Riemann surface S of genus g with nodes,
a basic system of loops and nodes X’ on S, and the set of Jordan curves and
points 3" induced from X’ such that (i) X”~3 and (ii) 3’ has Property (A).
Then there exists a te&X5) such that S coincides with the Riemann surface
associated with t in the sense of §4-1.
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