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Impossibility criterion of being an ample divisor*)
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(Received Nov. 4, 1980)

In [So 1], Sommese gave many examples of manifolds that cannot be ample
divisors in any manifold. His theory works also to construct non-smoothable
singularities (see [So 2]). In this note we give the following criterion:

THEOREM. Let $A$ be a manifold such that $H^{1}(A, T[-L])=0$ for any ample
line bundle $L$ on $A$ , where $T$ is the tangent bundle of A. Then $A$ cannot be an
ample divisor in any manifold unless $A\cong P^{n}$ .

As we shall see in \S 1, this result follows easily from a characterization
theorem of projective spaces due to Mori-Sumihiro [MS]. In \S 2, we show that
various types of manifolds, including many of those in [So 1], satisfy the above
criterion. In \S 3, similarly as in [So 2], we construct examples of non-smooth-
able singularities.

Notation, convention and terminology.

Usually we employ the notation which is commonly used in algebraic geo-
metry. We work in the category of C-schemes of finite type. In most cases
everything is assumed to be proper over $Spec(C)$ . Point means a closed point.
Variety is an irreducible, reduced scheme. Manifold is a non-singular variety.
Vector bundles are confused with locally free sheaves. Line bundles are regarded
as linear equivalence classes of divisors, and their tensor products are denoted
additively.

Now we list up some symbols.
$[D]$ : The line bundle associated with a (Cartier) divisor $D$ .
$\mathcal{F}[L]$ : $\mathcal{F}\otimes_{0}\mathcal{L}$ , where $\mathcal{F}$ is a coherent sheaf and $\mathcal{L}$ is the invertible sheaf

corresponding to a line bundle $L$ .
$T^{M}$ : The tangent bundle of a manifold $M$.
$E_{X}$ : The pull back of a vector bundle $E$ on $Y$ by a morphism $X\rightarrow Y$ .

Sometimes we write simply $E$ instead of $E_{X}$ , when there is no danger of con-
fusion.

$*)$ This article was completed when the author was a Miller Fellow at the University
of California, Berkeley, during the term 1979-1981.
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For example, if $D\subset M,$ $T_{D}^{M}$ denotes the restriction of the tangent bundle of $M$

to $D$ .

\S 1. Proof of the criterion.

(1.1) Our starting point is the following result.
THEOREM (Mori-Sumihiro [MS]). Let $D$ be an effective ample divisor on a

manifold M. Suppose that $H^{0}(M, T^{M}[-D])\neq 0$ . Then $M\cong P^{n}$ . Moreover, if
$n\geqq 2,$ $D$ is a hyPerplane on it.

(1.2) THEOREM. Let $A$ be a smooth ample divisor on a manifold $M$ with
dim M$=n$ such that $H^{1}(A, T^{A}[-tA]_{A})=0$ for any $t>0$ . Then $M\cong P^{n}$ and $A$ is
a hyPerplane on it.

PROOF. We have a natural exact sequence $0\rightarrow T^{A}\rightarrow T_{A}^{M}\rightarrow[A]_{A}\rightarrow 0$ on $A$ .
Taking cohomologies after tensoring $[-tA]$ , we get $ H^{1}(A, T^{A}[-tA])\rightarrow$

$H^{1}(A, T^{M}[-tA]_{A})\rightarrow H^{1}(A, [(1-t)A])$ . The first term vanishes for $t>0$ by as-
sumption and the third term vanishes for $t>1$ by the vanishing theorem of
Kodaira. So $H^{1}(A, T^{M}[-tA]_{A})=0$ for $t\geqq 2$ . Hence $H^{1}(M, T^{M}[-2A])=0$ by
[Fl, (2.2)]. Therefore $H^{0}(M, T^{M}[-A])\rightarrow H^{0}(A, T^{M}[-A]_{A})$ is surjective. On the
other hand, in view of the exact sequence $ H^{0}(A, T^{M}[-A]_{A})\rightarrow H^{0}(A, [0])\rightarrow$

$H^{1}(A, T^{A}[-A]_{A})=0$ , we infer that $H^{0}(A, T^{M}[-A])\neq 0$ . Thus we obtain
$H^{0}(M, T^{M}[-A])\neq 0$ , and we apply (1.1) to prove the assertion.

(1.3) COROLLARY. Let $A$ be a manifold such that $H^{1}(A, T^{A}[-L])=0$ for
any ample line bundle $L$ on it. Then $A$ cannot be an ample divisor in any mani-
fold unless $A\cong P^{n}$ .

(1.4) DEFINITION. If $H^{q}(A, T^{A}[-tL])=0$ for any positive integer $t$ and
$q=0,1$ , we say that $A$ satisfies the NS-condition with respect to $ L\circ$ If $A$ satisfies
the NS-condition with respect to any ample line bundle on it, we say that $A$

satisfies the NS-condition.
If $A\cong P^{n}$ , then $H^{0}(A, T^{A}[-L])\neq 0$ for the tautological line bundle $L$ . Hence

if $A$ satisfies the NS-condition, then $A$ cannot be an ample divisor in any mani-
fold by (1.3).

If $A$ satisfies the NS-condition with respect to any line bundle $L$ such that
$\kappa(L, A)=\dim A$ , then we say that $A$ satisfies the strong NS-condition.

REMARK. $NS$ ’ means presumably ”negatively stable”, “non-smoothable” or
something like this (cf. (3.11)).

\S 2. Manifolds that satisfy the $NS$-condition.

(2.1) PROPOSITION. Let $G_{n,r}$ be the Grassmann variety $parametrjzng_{L}^{v}r-$

codimensional linear subspaces of an $n$ dimensional vector space. Then $G_{n,r}$ satisfies
the sirong NS-condition unless $r=1,$ $r=n-1$ or $(n, r)=(4,2)$ .
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This fact is well known among experts. Here we present an outline of our
proof. Let the notation be as in [F2, \S 4]. We may assume $n-r\geqq 3$ and $r\geqq 2$ .
The tangent bundle of $G_{n,r}=F_{\{r\}}$ is isomorphic to $\mathcal{H}_{0}m(E_{n-r}^{*}, E_{r})$ and $Pic(F_{\{r\}})$

is generated by $H_{r}=\det E_{r}$ . So, similarly as in [F2, (4.18)], it suffices to show
that $H^{1}(F, E_{j/j-1}^{\vee}\otimes E_{i/i-1}\otimes[-tH_{r}])=H^{1}(F, -H_{j}+H_{j-1}-tH_{r}+H_{i}-H_{i-1})=0$ for any
$t>0,$ $n\geqq j\geqq r+1,$ $r\geqq i\geqq 1$ . If n $>jandi>1,$ $weusenaturalmorphismF_{\{j,j-1,r,i,i-1\}}$

$\rightarrow F_{tj-1,r,i\}}$ . Since $H_{j}+H_{i-1}$ is relatively ample and since the relative dimension
of the natural morphism is greater than one, aPplying [Fl, Corollary A6], we
have the assertion. If $j<n-1$ , we use $F_{R}\rightarrow F_{R-\{j\}}$ , where $R$ is the set $\{j,$ $j-1$ ,
$r,$ $i,$ $i-1$ }. If $i\geqq 3$ , we use $F_{R}\rightarrow F_{R-\{i- 11}$ . Thus, it suffices to consider the remain-
ing cases in which $(i, j)=(1, n),$ $(1, n-1)$ or $(2, n)$ . If $(i, j)=(1, n)$ , we can
apply [Fl, Corollary A6] to $F_{R}\rightarrow F_{R-\{r\}}$ , since $n-r\geqq 3$ and $r\geqq 2$ . If $(i, j)=$

$(1, n-1)$ , we use $F_{R}\rightarrow F_{R-\{j,rI}$ . If $(i, j)=(2, n)$ and $r>2$ , we use $F_{R}\rightarrow F_{R-\{r\}}$ . If
$(i, j)=(2, n),$ $r=2$ and $t>1$ , we use $F_{R}\rightarrow F_{R-\{2,1\}}$ . If $(i, j)=(2, n),$ $r=2$ and $t=1$ ,
we use $F_{R-\{2\}}\rightarrow F_{R-\{2,1\}}$ . In any case [Fl, Corollary A6] proves the required as-
sertion.

(2.2) PROPOSITION. Any abelian variety $A$ with $\dim A\geqq 2$ satisfies the strong
NS-condition.

This fact is well known since $\kappa(L, A)=\dim$ $A$ implies that $L$ is ample.
(2.3) PROPOSISION. Let $A$ be a non-trivial product $A_{1}\times\cdots\times A_{k}$ of mani-

folds $A_{1},$ $\cdots$ $A_{k}$ . SuPpose in addition that $A_{i}$ is immersed in an abelian variety

for each $i$ such that dim $A_{i}=\dim A-1$ . Then $A$ satisfies the NS-condition.
REMARK 1. A manifold is immersed in an abelian variety if and only if its

cotangent bundle is generated by global sections.
REMARK 2. The assumption of (2.3) is satisfied in either of the following

cases: a) $k\geqq 3$ . b) $A=A_{1}\times A_{2}$ , both $A_{1}$ and $A_{2}$ are immersed in an abelian
variety. c) $A=A_{1}\times A_{2},$ $\dim A_{1}\geqq 2$ and $A_{1}$ is immersed in an abelian variety.
d) $A=A_{1}\times A_{2},$ $\dim A_{1}\geqq 2$ and $\dim A_{2}\geqq 2$ .

Proof of the proposition. Let $\pi_{i}$ ; $A\rightarrow A_{i}$ be the projection and let $T_{i}$ be the
pull back of the tangent bundle of $A_{i}$ to $A$ . In order to show $H^{q}(A, T^{A}[-L])$

$=0$ , it suffices to prove $H^{q}(A, T_{i}[-L])=0$ for each $i$ . When $\dim A_{i}\leqq\dim A-2$,

we can apply [Fl, Corollary A6]. Otherwise, $(T_{i})^{\vee}$ is generated by global sec-
tions. Thus we have an exact sequence $0\rightarrow T_{i}\rightarrow[0]^{\oplus r}\rightarrow\pi_{i}^{*}Q\rightarrow 0$ for some vector
bundle $Q$ on $A_{i}$ . For any ample line bundle $L$ on $A$ , we get $H^{0}(A, \pi_{i}^{*}Q[-L])$

$=0$ by [Fl, Corollary A6]. So, using the long exact sequence and the vanish-
ing theorem of Kodaira, we easily infer that $H^{1}(A, T_{i}[-L])=0$ . $H^{0}(A, T_{i}[-L])$

$=0$ is proved by applying [Fl, Corollary A6] to $\pi_{i}$ .
(2.4) REMARK. Let $A,$ $A_{1},$ $\cdots$ , $A_{k}$ be as in (2.3) and let $F_{i}$ be the fiber of

$\pi_{i}$ (Note: $F_{i}=A_{1}\times\cdots\times A_{i-1}\times A_{i+1}\times\cdots\times A_{k}$ ). Suppose in addition that
$H^{q}(F_{i}, [-L])=0$ for $q<{\rm Min}(2, \dim F_{i})$ and for any $L\in Pic(F_{i})$ with $\kappa(L, F_{i})=$
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dim $F_{i}$ . Then $A$ satisfies the strong NS-condition. Proof is similar to that in
(2.3).

(2.5) PROPOSITION. Let $f:A\rightarrow S$ be a surjective morphism everywhere of
maximal rank between manifolds. (Hence $F_{y}=f^{-1}(y)$ is smooth for any $y\in S$).

Let $L$ be a line bundle on $A$ and let $T_{y}$ denote the tangent bundle of $F_{y}$ . Suppose
that $H^{0}(F_{y}, -tL)=0=H^{0}(F_{y}, T_{y}[-tL])$ for every $y\in S$ and any $t>0$ , and that
$H^{1}(F_{x}, -tL)=0=H^{1}(F_{x}, T_{x}[-tL])$ for some $x\in S$ and any $t>0$ . Then $A$ satisfies
the NS-condition with respect to $L$ .

PROOF. By [$H$ , p. 288, Corollary 12.9] we see $f_{*}(X^{-t})=0$ , where $\mathcal{L}^{-t}=$

$O_{A}[-tL]$ . Moreover, in view of [$H$ , p. 284, Proposition 12.4], we have a co-
herent sheaf $\mathcal{T}$ on $S$ such that $R^{1}f_{*}(\mathcal{L}^{-t}\otimes_{\mathcal{O}_{S}}\mathcal{M})=\mathcal{H}_{\circ m_{O_{S}}}(\mathcal{T}, \mathcal{M})$ for any coherent
$O_{S}$-module $\mathcal{M}$ . Considering the case $\mathcal{M}=O_{x}$ , we see $\mathcal{T}_{x}=0$ . So $\mathcal{T}$ is a torsion
sheaf. Hence $0=\mathcal{H}\circ m_{S}(\mathcal{T}, O_{S})=H^{0}(S, R^{1}f_{*}\mathcal{L}^{-t})$ . Using the Leray spectral
sequence, we infer $H^{q}(A, [-tL]\otimes E)=0$ for $q=0,1$ and for any vector bundle
$E$ on $S$ . In particular, $H^{q}(A, T^{S}[-tL])=0$ . On the other hand, by a similar
argument as above, we infer $H^{q}(A, T^{A/S}[-tL])=0$ where $T^{A/S}$ is the relative
tangent bundle. Now, using the exact sequence $0\rightarrow T^{A/S}\rightarrow T^{A}\rightarrow T_{A}^{S}\rightarrow 0$ , we prove
the assertion.

(2.6) COROLLARY. Let $f,$ $A$ and $S$ be as above and $suPpose$ that $H^{0}(F_{y}, T_{y}[-L])$

$=0$ for every $y\in S$ and for any ample line bundle $L$ on $A$ , and that $F_{x}$ satisfies
the NS-condition for some $x\in S$ . Then $A$ satisfies the NS-condition.

(2.7) PROPOSITION. Let $f:B\rightarrow A$ be a finite unramified covering of a manifold
A. Let $L$ be a line bundle on A. Then, $A$ satisfies the NS-condition with respect
to $L$ if $B$ satisfies the NS-condition with respect to $L_{B}$ . In particular, if $B$

satisfies the (strong) NS-condition, then so does $A$ .
By the assumption, $T^{B}\cong T_{B}^{A}$ . Hence the proposition follows from [Fl, (4.17)].

(2.8) PROPOSITION. Let $f:N\rightarrow A$ be a k-sheeted finite branched cyclic cover-
ing with smooth branch locus $B$ (cf. [W]). Let $R\subset N$ be the ramification locus
endowed with the reduced structure. (Note: $f_{R}$ : $R\rightarrow B$ is an isomorphism). Let $L$

be a line bundle on $A$ such that $H^{q}(R, [jR-tL]_{R})=0$ for any $2\leqq j\leqq k,$ $q=0,1$

and any $t>0$, and suppose that $N$ satisfies the NS-condition with respect to $L_{N}$ .
Then $A$ satisfies the NS-condition with respect to $L$ .

PROOF. Note that $f^{*}[B]=[kR]$ in Pic $(N)$ . Let $\mathcal{I}$ be the ideal of $R$ in $N$

and let $\mathcal{F}=f^{*}(O_{B}[B])$ (Note: $\mathcal{F}$ is an $O_{N}/\mathcal{I}^{k}$-module, but is not an $O_{N}/\mathcal{I}$-module).

The cokernel of the natural monomorphism $\mathcal{O}_{N}[T^{N}]\rightarrow O_{N}[f^{*}T^{A}]$ is isomorphic
to $\mathcal{F}/\mathcal{I}^{k-1}\mathcal{F}$ as an $O_{N}$-module. Set $\mathcal{F}_{j}=\mathcal{I}^{j}\mathcal{F}/\mathcal{I}^{j+1}\mathcal{F}$ . Then $\mathcal{F}_{j}=\mathcal{O}_{R}[(k-])R]$ as
an $O_{N}$-module. So $H^{q}(\mathcal{F}/\mathcal{I}^{k-1}\mathcal{F}[-rL])=0$ for $q=0,1$ and for any $t>0$ by as-
sumption. Combining them we infer $H^{q}(N, T_{N}^{A}[-tL])=H^{q}(N, T^{N}[-tL])=0$ .
Now we apply [Fl, (4.17)] to obtain $H^{q}(A, T^{A}[-tL])=0$ .

(2.9) COROLLARY. Let $f,$ $N,$ $A,$ $B$ and $R$ be as above and suppose that dim $A$
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$\geqq 3$ and that the normal bundle of each connected component of $R$ is seminegative.
Then $A$ satisfies the NS-condition if so does $N$.

PROOF. $[R]_{R}$ is seminegative. If $L$ is ample on $A$ , then $L_{R}$ is ample and
so is $[tL-jR]_{R}$ . So the condition in (2.8) is verified by the vanishing theorem
of Kodaira.

(2.10) PROPOSITION. Let $A$ be the blowing up of a manifold $M$ with nm-
singular center $C$ such that codim $C_{i}\geqq 3$ for each connected compOnent Ci of $C$ .
Then $A$ satisfies the NS-conditim either if $M$ satisfies the strong NS-condition,
or if dim $C=0$ and $M$ satisfies the NS-condition.

PROOF. Let $E_{i}$ be the connected component of the exceptional divisor on
$A$ lying over $C_{i}$ , with $\pi_{i}$ ; $E_{i}\rightarrow C_{i}$ being the natural morphism. Then $E_{i}=P(N_{i}^{\vee})$

where $N_{i}^{\vee}$ is the conormal bundle of $C_{i}$ in $M$. Moreover $[E_{i}]_{E_{i}}=-H_{i}$ , which
corresponds to $O(-1)$ , the dual of the tautological line bundle of $E_{i}=P(N_{i}^{\vee})$ .

We will show $H^{q}(A, T^{A}[-L])=0$ for $q=0,1$ and for every ample line
bundle $L$ on $A$ . Set $F=L+\Sigma_{i}d_{i}E_{i}$ , where $d_{i}$ is the degree of the restriction
of $L$ to a fiber of $\pi_{i}$ (of course it is a projective space of dimension codim $C_{i}-1$ ).

Then the restriction of $F$ to each fiber of $\pi_{i}$ is trivial. Hence $F$ is the pull
back of a line bundle on $M$, which is denoted by $F$ by abuse of notation. We
have $\kappa(F, M)=\kappa(F, A)\geqq\kappa(L, A)=\dim A=\dim M$ since $d_{i}>0$ . Moreover, $F$ is
ample on $M$ if dim $C=0$ (cf. [Fl, (5.7)]). Hence $H^{q}(A, T_{A}^{M}[-F])=H^{q}(M, T^{M}[-F])$

$=0$ by assumption.
We claim that $H^{q}(A, T_{A}^{M}[-F+\Sigma_{i}\mu_{i}E_{i}])=0$ for any non-negative integers

$\mu_{i}$ . To prove this, we use the induction on $\mu=\sum_{i}\mu_{i}$ . If $\mu=0$ , then $\mu_{i}=0$ for
each $i$ and the assertion is true. If $\mu_{i}>0$ for some $i$, then $H^{q}(E_{i}, T^{M}[-F+\Sigma_{j}\mu_{j}E_{f}])$

$=H^{q}(E_{i}, o(-\mu_{i})\otimes\pi_{i}^{*}(T^{M}[-F])_{C_{i}})=0$ since $R^{q}(\pi_{i})_{*}O(-\mu_{i})=0$ for $q<co\dim C_{i}-1$ .
Now, using the exact sequence $ H^{q}(A, T^{M}[-F+\sum_{j}\mu_{j}E_{j}-E_{i}])\rightarrow$

$H^{q}(A, T^{M}[-F+\sum_{j}\mu_{j}E_{j}])\rightarrow H^{q}(E_{i}, T^{M}[-F+\sum_{j}\mu_{j}E_{j}])$ , we prove the claim by
the induction. In particular, we get $H^{q}(A, T^{M}[-L])=0$ for $q=0,1$ .

Let $C$ be the cokernel of the natural monomorphism $O_{A}[T^{A}]\rightarrow \mathcal{O}_{A}[T_{A}^{M}]$ . By
the preceding argument it suffices to show $H^{0}(C[-L])=0$ . One easily sees
that $C=\oplus_{f}O_{E_{j}}(T_{j}(-1))$ , where $T_{i}$ is the relative tangent bundle of $\pi_{i}$ . There-
fore $H^{0}(C_{i}[-L])=H^{0}(E_{i}, T_{i}[E_{i}-L])=0$ , since $H^{0}(E_{x}, T_{i}[E_{i}-L])=$

$H^{0}(P^{r-1}, T^{P}(-1-d_{i}))=0$ for every fiber $E_{x}\cong P^{r-1}(r=rank(N_{i})=co\dim C_{i})$ of $\pi_{i}$ .
This completes the proof. $q$ . $e$ . $d$ .

REMARK. By the above argument, we prove the following: If $M$ satisfies
the NS-condition with respect to an ample line bundle $L$ on $A$ , that is,
$H^{q}(T^{M}A[-tL])=0$ for $q=0,1$ and $t>0$ , then $A$ satisfies the NS-condition with
respect to $L$ .

(2.11) Combining the foregoing results we can find many manifolds which
satisfy the NS-condition. For example, in view of (2.1) and (2.6), we infer that
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many flag manifolds satisfy the NS-condition. Hyperelliptic surfaces satisfy the
NS-condition by (2.2) and (2.7). We don’t list up all such examples. Before
closing the section, we just present the following sample result.

(2.12) PROPOSITION. Let $A$ be a manifold with dim $A\geqq 3$ satisfying the NS-
condition. Let $\iota$ be a holomorphic involution of $A$ with only isolated fixed points.
Then the standard resolution $M$ of $ A/\iota$ satisfies the NS-condition.

PROOF. Let $C$ be the set of fixed points of $\iota$ . Let $A^{\prime}$ be the blowing up
of $A$ with center $C$. Then $\iota$ lifts to a holomorphic involution $\iota^{\prime}$ of $A^{\prime}$ . The
set of fixed points of $\iota^{\prime}$ is the exceptional divisor $E$ over $C$ . Therefore $A^{\prime}/\iota^{\prime}$

is smooth, and this is nothing other than M. $A^{\prime}$ satisfies the NS-condition by
(2.10). On the other hand, $A^{\prime}$ is a two-sheeted branched covering of $M$ with
ramification locus $E$ . Each connected component of $E$ is isomorphic to $P^{n}$ with
$n=\dim A-1$ , and its normal bundle is $O(-1)$ . So $M$ satisPes the NS-condition
by (2.9).

(2.13) COROLLARY. Kummer manifold of dimension $\geqq 3$ satisfies the NS-
condition.

\S 3. Non-smoothable singularities.

(3.1) DEFINITION. A deformation family of polarized manifolds is a quad-
ruple $(A, X, \pi, L)$ , consisting of manifolds $A$ and $X$ which may not be com-
plete, a proper surjective morphism $\pi;A\rightarrow X$ everywhere of maximal rank,
and a line bundle $L$ on $A$ which is relatively ample with respect to $\pi$ . Then,
for each $x\in X,$ $A_{x}=\pi^{-1}(x)$ is a projective manifold polarized by the restriction
$L_{x}$ of $L$ to $A_{x}$ .

(3.2) PROPOSITION. Let $(A, X, \pi, L)$ be a deformation family of polarized
manifolds. Let $q$ be a posjtjve integer and let $E$ be a vector bundle on $A$ with
$E_{x}$ being the resfriction to $A_{x}$ . Suppose that there is $0\in X$ such that
$H^{q}(A_{o}, E_{o}[tL])=0$ for any $t>0$ . Then there is a neighbourhood $U$ of $0$ such that
$H^{q}(A_{x}, E_{x}[tL_{x}])=0$ for any $t>0$ and any $x\in U$ .

PROOF. Let $P=P(E)$ and $H=O_{P}(1)$ . Let $P_{x}$ be the fiber over $x\in X$ and let
$H_{x}$ be the restriction of $H$ to $P_{x}$ . Let $K$ be the canonical bundle of $P$. Then
$K=-rH+\det E+K^{A}$ , where $r=rank(E)$ . Moreover, the restriction $K_{x}$ of $K$ to
$P_{x}$ is the canonical bundle of $P_{x}$ . Now, we easily see that $H-K$ is relatively
ample with respect to $P\rightarrow A$ . Therefore, $H+tL-K$ is relatively ample with
respect to $P\rightarrow X$ for $t\gg O$ , or precisely speaking, for any $t\geqq c$ with $c$ being a
fixed constant. So, $H^{q}(A_{x}, E_{x}[tL])=H^{q}(P_{x}, H_{x}+tL_{x})=0$ for any $t\geqq c$ and any
$x\in X$ by the vanishing theorem of Kodaira. On the other hand, by the upper-
semicontinuity theorem, there is a neighbourhood $U$ of $0$ such that
$H^{q}(A_{x}, E_{x}[tL_{x}])=0$ for any $x\in U$ and any $t$ with $0<t<c$ . Clearly this $U$ has
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the required property.
(3.3) COROLLARY. Let $A,$ $X,$ $\pi,$ $L,$ $E$ and $0$ be as above and let $q$ be an

integer such that $q<\dim A_{0}$ and that $H^{q}(A_{0}, E_{0}[-tL_{0}])=0$ for any $t>0$ . Then
there is a neighbourhood $U$ of $0$ such that $H^{q}(A_{x}, E_{x}[-tL_{x}])=0$ for any $t>0$

and any $x\in U$ .
For a proof, use the Serre duality on $A_{x}$ .
(3.4) COROLLARY. Let $A,$ $X,$ $\pi,$

$L$ and $0$ be as above and suPpose that $A_{0}$

satisfies the NS-condition with respect to $L_{0}$ . Then, there is a neighbourhood $U$

of $0$ such that $A_{x}$ satisfies the NS-condition with respect to $L_{x}$ for any $x\in U$ .
For a proof, apply (3.3) to the case $E=T^{A/X}$ .
(3.5) DEFINITION. A Lefschetz pair is a pair (V, $A$ ) consisting of a projec-

tive scheme $V$ and an ample effective divisor $A$ on $V$ . Such a pair is said to
be smooth if both $V$ and $A$ are non-singular.

A flat family of Lefschetz pairs is a quadruple (V, $A,$ $X,$ $\pi$ ) consisting of
schemes $V$ and $X$, a projective flat morphism $\pi;V\rightarrow X$, and an effective divisor
$A$ on $V$ which is relatively ample with respect to $\pi$ , such that the restriction
$\pi_{A}$ ; $A\rightarrow X$ of $\pi$ to $A$ is flat. Moreover, $X$ is assumed to be connected and
smooth unless specifically stated to the contrary. Of course, $(V_{x}, A_{x})$ is a
Lefschetz pair for any $x\in X$ .

A Lefschetz pair (V, $A$ ) is said to be smoothable if there is a flat family
$(\mathcal{V}, \mathcal{A}, X, \pi)$ of Lefschetz pairs and two points $0,$ $x\in X$ such that $(V_{0}, A_{0})\cong$

(V, $A$ ) and that $(V_{x}, A_{x})$ is smooth. (X is assumed to be connected as usual.)

(3.6) THEOREM. Let (V, $A$ ) be a Lefschetz pair such that $A$ is a manifold
which satisfies the NS-condition with respect to $[A]_{A}$ . Then (V, $A$ ) is not smooth-
able.

PROOF. Suppose that there is a flat family of Lefschetz pairs $(\mathcal{V}, \mathcal{A}, X, \pi)$

such that $(V_{0}, A_{0})\cong(V, A)$ and $(V_{x}, A_{x})$ is smooth for some $0,$ $x\in X$ . In view
of (3.4), we infer that there is a neighbourhood $U$ of $0$ such that $A_{x}$ is a mani-
fold satisfying the NS-condition with respect to $[\mathcal{A}]_{A_{x}}$ for every $x\in U$ . On the
other hand, the set { $x\in X|V_{x}$ is smooth} is dense in the manifold $X$ since it is
non-empty and Zariski-open. Therefore there is $y\in U$ such that $V_{y}$ is smooth.
Then $A_{y}$ is an ample divisor in the manifold $V_{y}$ . This contradicts (1.2), since
$A_{y}$ satisfies the NS-condition with respect to $[A_{y}]$ .

REMARK. If (V, $A$ ) is a Lefschetz pair such that $A$ is smooth, then $V$ can
have at most isolated singularities, because the singular locus of $V$ does not
meet $A$ .

(3.7) COROLLARY. Let $V$ be a subscheme in $P^{N}$ and suppose that there is a
hypersurface section $A$ of $V$ such that $A$ is a smooth manifold satisfying the NS-
condition with respect to $C(1)$ . Then $V$ is not smoothable in $P^{N}$ in the sense of
[So 2].



362 T. $F_{U\int ITA}$

PROOF. Let $H$ be the hypersurface in $P^{N}$ such that $A=V\cap H$. Suppose
that there is a smoothing deformation $\{V_{x}\}$ of $V$ in $P^{N}$ . Then the family
$\{(V_{x}, A_{x}=V_{x}\cap H)\}$ would be a smoothing deformation of the Lefschetz pair
(V, $A$ ). This contradicts (3.6).

(3.8) COROLLARY. Let $V$ be a projective cone in $P^{N}$ over a base manifold
A which satisfies the NS-condition with respect to 0(1). Then $V$ is not smoothable
in $P^{N}$ .

(3.9) Now, combining with the results in \S 2, we obtain many examples of
non-smoothable singularities. In particular, the ones in (2.1.1) and (2.1.2) of [So

2] are obtained by our (2.2) and (2.3). (2.3) gives also a partial answer to Ques-
tion (3.1) of [So 2]. However, the example (2.1.3) of [So 2] does not seem to
be obtained by our method.

(3.10) Let us speculate here on the relation of our criterion to Schlessinger’s
theory (cf. [Sc] and [P]).

Let $A$ be a submanifold of $P^{N}$ contained in a hyperplane $P^{N-1}$ , and let $V$

be the projective cone over $A$ with vertex $v$ off this hyperplane. Let $U=$

$V-A-\{v\}$ . Then $U$ is a principal $C^{\times}$ -bundle over $A$ . The infinitesimal defor-
mations (meaning flat families over Artinian rings) of $U$ are parametrized by
$\tau_{U}=H^{1}(U, T^{U})$ , which is decomposed as $\bigoplus_{t\in Z}\tau(t)$ according to the $C^{\times}$ -action. Set

$\tau^{+}=\bigoplus_{t>0}\tau(t)$ and $\tau^{-}=\bigoplus_{t<0}\tau(t)$ . Then the infinitesimal deformations of $U$ coming

from $V$ are parametrized by $\tau^{-}\oplus\tau(0)$ , and $\tau(0)$ corresponds to those which pre-
serve the cone structure. Moreover, $\tau(t)$ can be related to cohomologies on $A$

and $\tau(t)\cong H^{1}(A, T^{A}(t))$ if in addition $H^{q}(A, O(t))=0$ for $q=1,2$ and for any $t\in Z$ .
Thus, it is natural to expect that $V$ is not smoothable when $\tau^{-}=0$ , like (3.8).

However, besides the formulations, there are slight differences between his
viewpoint and ours. Namely, he considers all the deformations of $V$ which may
not be realized in $P^{N}$ . As a price, he needs some additional assumptions on
the singularity of $V$ at the vertex. Compare [P] also.

(3.11) We call attention to the following phenomena too (compare $[P,$ $p$ .
46]).

For a polarized manifold $(A, L)$ , let $P(A, L)=P([0]\oplus L)$ . The subbundle
$L$ defines a section $A_{0}$ of $\pi;P(A, L)\rightarrow A$ such that its normal bundle is $-\pi^{*}L$ .
So $A_{0}$ can be contracted to a normal point by Grauert’s criterion. Let $P(A, L)$

$\rightarrow P^{\prime}(A, L)$ be the contraction morphism and let $v(A, L)$ be the image point of
$A_{0}$ . Note that, if $A$ is a projectively normal submanifold of $P^{N}$ with hyperplane
section $H$, then $P^{\prime}(A, H)$ is nothing other than the projective cone over $A$ .

Suppose that $A$ is an ample divisor on a manifold $M$ and let $L=[A]_{A}$ . Then
$P^{\prime}(A, L)$ is smoothable provided that $H^{0}(M, [tA])\rightarrow H^{0}(A, tL)$ is surjective for
any $t>0$ .

To see this, let $M_{\infty}$ be a section of $\pi;P(M, [A])\rightarrow M$ such that $ M_{\infty}\cap M_{0}=\emptyset$
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and $[M_{\infty}]=O(1)$ . $M_{\infty}$ is linearly equivalent to $M_{0}+\pi^{*}A$ . Let $\Lambda$ be the pencil
containing them. Let $\Lambda^{\prime}$ be the image of $\Lambda$ on $P^{\prime}(M, [A])$ . Any general mem-
ber of $\Lambda^{\prime}$ is isomorphic to $M$. The member $D$ corresponding to $M_{0}+\pi^{*}A$ is
almost isomorphic to $P^{\prime}(A, L)$ , namely, $D/v(M, [A])\cong P^{\prime}(A, L)/v(A, L)$ . More-
over, the surjectivity of $H^{0}(M, [tA])\rightarrow H^{0}(A, tL)$ implies that this extends to an
isomorphism $D\cong P^{\prime}(A, L)$ . Thus, $\Lambda^{\prime}$ gives rise to a smoothing family of $P^{\prime}(A, L)$ .
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