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1. Introduction.

Let N denote the natural numbers and let SN denote the Stone-Cech com-
pactification of N. For each MCN, we denote M*=ClgyM—N. Let F be a
closed subset in N*. We introduce a topology in X=N\U{F} as follows; each
point of N is isolated and a neighborhood filter of {F} in X is {(NNU)J{F}:
Uelly}, where U= {U} is the neighborhood filter of F in BN.

A countable space with one non-isolated point is denoted by N\J{q}. Here
g is the non-isolated point and its filter of neighborhoods restricted to N is
denoted by F,={F.:acA}. We denote F,=N\{ClsnF,: acA} and call F, the
representation of ¢ in AN. Clearly NV {F;} is homeomorphic to N\U{g}. Each
countable space with one non-isolated point is denoted by the form N\JU{F},
where F is a closed subset in N*. In this paper we sometimes use N\U{F} as
a countable space with one non-isolated point.

Let p denote a free ultrafilter on N. Let ¥ denote a certain nice class of
spaces such that each X% cannot contain N\U{p} as a subspace. Then does
finite (or countable) product of elements of ¥ contain N\U{p} as a subspace?
We have much concern with this problem.

In the previous paper ([5]), we showed that, assuming the continuum hypo-
thesis (CH), there exist Fréchet spaces (see Definition 2-2) X and Y such that XXY
contains N\ {p} as a subspace. In this paper, we shall show the following;

1 (CH). There exist strongly Fréchet spaces (see Definition 2-2) X and YV
such that XXY contains N\U{p} as a subspace.

2. Let X be a bi-sequential space (see Definition 2-2) and Y be any topol-
ogical space. If XXY contains NU {p} as a subspace, then Y contains N {p}
as a subspace.

3. There exists a non-metrizable Lasnev space T such that countable pro-
duct of T does not contain N\U{p} as a subspace, where a LaSnev space is the
closed continuous image of a metric space.
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The author would like to express his thanks to Professor K. Nagami who
called the author’s attention to this problem.
In this paper all spaces are assumed to be topological spaces.

2. Properties of Lasnev spaces.

DEFINITION 2-1 ([1]). A space X is said to be Fréchet if, whenever x &
ClxA for some ACJX, there exists a sequence {x(n):neN}CA such that
lim x(n)==x.

n-—rco

DEFINITION 2-2 ([4]). A space X is said to be bi-sequential if, whenever §
is a filter in X with a cluster point x, then there exists a countable filter base
$ in X which converges to x and all of whose elements intersect all elements
of %. If the definition of a bi-sequential space is modified by restricting F to
be a countable filter base, the resulting concept is said to be strongly Fréchet.

LEMMA 2-1 ([3]). () NVI{F} is a Fréchet space if and only if F=
Cllg ~(Inty.F).

(2) N\J{F} is a strongly Fréchet space if and only if F={xeN*: for each
zero set Z in N* such that x€Z, ZN\Inty.F+0}.

(3) NV{F} is a bi-sequential space if and only if F is the union of zero
sets in N*,

A family $={H,: a= A} of subsets of a space X is said to be hereditarily
closure preserving if for each BC A and K,CH,, \J{ClxK,: a=B}=Clx(\J{K,:
acB}). A family $={H,: a= A} of subsets of a space X is said to be a net-
work at x< X if, for each open neighborhood U of x, there exists H,=9 such
that xeH,CU. 9 is said to be a network of X if it is a network at each
point of X.

DEFINITION 2-3. Let X be a space. A sequence {§,:n<N} of closed
coverings of X is said to be a LaSnev sequence if the following three conditions
are satisfied.

(1) 9, is hereditarily closure preserving for each neN.

(2) If xeX and if for each neN, H,€9, and xH, then {H,: neN} is
hereditarily closure preserving or a network at the point x.

(3) U{P,:neN} is a network of X.

LEMMA 2-2 ([2]). A space X is LaSnev if and only if X is Fréchet and has
a Lasnev sequence.

LEMMA 2-3. Let {U;:i€N} be a family of clopen subsets in N*. Then
N{U;: ieN} =ClyInty.N{U;: i€ N}).

PrOOF. Since Inty.N\{U;:7eN}CU;, Cly(IntyN\{U;: i€ NHCH{U;: i€N}.
We shall show the converse implication. Choose ' -

xen{U;:ieN}—ClyInty.N{U;: i€ N}).
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Let V be a clopen subset of N* such that

x€V and VANCly(Inty.n{U;:iEN})=0.
Then xeV\N{U;:i=N} and

Inty(VAN{U;::ieND=Vnnty.N{U;: ieN}=0.

This is impossible since each non-empty zero set in N* has non-empty interior
in N*. The proof is completed.

LEMMA 2-4. Let X=N\J{F} be a LaSnev space and let $,={H,: acA,}
neN be a LaSnev sequence of X. Put HE=Clgy(H,—{F})—N and $%={H¥%:
asA,, HENF#0}. Then we have

(1) 9% is a locally finite covering of Inty.F for each n<N.

(2) OF is countable.

PrROOF. We shall show that \UD¥ is dense in Inty.F for each n<=N, where
UPr=U{H,: H,=H*}. Since X is Fréchet and H*"\F+0, H¥NInty.F#0 by
Lemma 2-1. Assume that JU$¥ is not dense in Inty.F. Then we can choose
K (CN) such that 0+ K*N\Inty.F and K*\H*=0 for each H€9,. Then KNH
is finite for each He9,. Put H,=K~H, for each a=A,. Then H} is closed
in Xand K=\J{H}: asA,}. Since {F}CiyK and {F} &ClxH, for each acA,,
9, is not hereditarily closure preserving. This is a contradiction.

Now we shall show that £ is locally finite in Inty.F. Assume that 9F is
not locally finite at x=Inty.F. Choose K,CN such that xe K*ClInty.F. Then
{HE®, : K¥XN\H*+0} is infinite. Choose K’'=/{k,, ks, ---} CK, such that k;
Hor€9, and Hpy#Hu if i#7. Then K*CK¥*nInty.F. {F}<ClxK’ and
{F}e&{k;:i=1,2, ---}. This is a contradiction since §, is hereditarily closure
preserving.

Since UP* is dense in Inty.F and OF is locally finite in Inty.F, % is a
covering of Inty.F.

Next we shall show that $F is countable for each nN. Assume that §3
is uncountable for some neN. For each H*<$,, choose K.CH,NN such that
K*#0 and K*ClInty.F. Put K=U{K,: H*=$*}. For each meK, there exists
Komy such that meK,m. Fix such Ky for each me K and put

Br=1{K,: KanKam is infinite}.

Since §* is locally finite in Inty.F and Kymy*Clnty.F, B, is finite for each
meK. Pick K,€{Kz: H}€93} —\J{Bn: meK}. Then KoN\Kacm) is finite for
each meK and K,=I{K."\Kam): meK}. Clearly {F} €CixK, but {F} &
K.N\Kacm for each meK. This is a contradiction since 9, is hereditarily
closure preserving. The proof is completed.

THEOREM 2-1. Let X=N\U{F} be a La$nev space. Then, for each p<F,
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there exists a zero set Z, in N* such that peZ,CF or otherwise peZ,C
N*—Inty.F.

Proor. Let $,={H.:acA,, n€N} be a Lasnev sequence of X. Assume
that there exists p=F such that the condition of the theorem is not satisfied.
Then we shall show that there exists H,,yE9, such that peH¥,, for each
neN. If there exists neN such that pe&H* for each He9,, put Z,=
NAN*—H*: H*€9i}. Then Z, is a zero set in N* since 9% is countable by
Lemma 2-4. Moreover, Z,CN*—Inty.F since §% is a covering of Inty.F. This
contradicts our assumption.

We shall show that {H,,: nE€N} is neither a network at {F} nor here-
ditarily closure preserving. This contradicts that $, is a Lasnev sequence.

(I) {Hawm:neN} is not a network at {F}.

By Lemma 2-3, Cly.(Intys\{H¥tny: nEN)=N\{H*wm: neN}. By our as-
sumption, N{H%wm : neN}N\WN*—F)#0. Choose KCN such that

0+ K*C(Inty\{HEmy: neNPHNAN*—F).

Put V=(N—K)U{F}. Then V is a neighborhood of {F} in X. Since H,n»—V
is infinite for each n&N, Hymy €V for each neN. This shows that {Huwm) :
neN} is not a network at {F}.

(II) {Hacny: n=N} is not hereditarily closure preserving.

By Lemma 2-3 and by our assumption, we obtain Inty{ N\ {H%X : nEN}NF)
#0. Choose K= {k;, ks, -~} N such that k,<Eni1, EaEHyny for each neN
and K*C(nty.N{H%w : neN})NF. Then ClyK=K\J{F}. Therefore {Hy:
ne N} is not hereditarily closure preserving. The proof is completed.

In the following sections we shall sometimes use M\J {p} instead of N\U {p}
to avoid the confusion. If MU {p} can be embedded in a certain space, then
we identify MU {p} with the image of the embedding.

3. Bi-sequential and strongly Fréchet spaces.

LEMMA 3-1. Let X;=NI{F} for eachi=1, 2, -, n. If there exists MCN™
such that the neighborhood filter of :LI=I1 {Fi} restricted to M is an ultrafilter on
M and moreover if p=(pi, ps, ***, pn)e(Cle)nM)nill F;, then MmgKi s an

element of the ultrafilter for each K;CN and p;=K¥.
PROOF. Let M be the ultrafilter on M mentioned in the theorem. Let $;
={F,:a=A;} be the filter on N such that F;=N{ClgnF,: a€A;}. We shall

show MnA 1_11 Foco g K,#0 for each (a(l), a(2), -, a(n))e I=11 A,. This shows
MATIK:eM. Since picF¥a,nK¥, there exists L,CFaK; such that pe L¥
i=1
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for each /=1,2, ---, n. Since pe&ClgnynM, Mmii:{ L,#0. Therefore 0+
Mmig LiCMmille Fa(i)mi];II K;. The proof is completed.

LEMMA 3-2. Let X;=N\JI{F;} for eachi=1, 2, ---, n. If there exists MCN"
such that the neighborhood filter of i! {F:} restricted to M is an ultrafilter on
M, then (CZ(‘QN)TLM>/'\11=—_! F; is a singleton.

PROOF. Let M be an ultrafilter on M mentioned in the lemma. Assume
that (Cl<rgN)nM)mi_f[1Fi is not a singleton. Choose p, qE(Clqu)nM)r\ifIl F;, p=

(P, Doy =5 D)y ¢=(q1, G2, ", ¢n) and p#q. Without loss of generality, we assume
p1#q:. Let K be a subset of N such that p,eK* and ¢, &K*. Since

(KX fIzN,)qu&O for each LeM by Lemma 3-1, (KX 112 N)AMeM, where N,

is a copy of N for each ;= N. Similarly, ((N——K)mf[Ni)f\Meim. This is a
contradiction. The proof is completed. o

LEMMA 3-3. Let Fo={F.: asA,} be a filter on N for each nN and let
TFrCBnr1. If F=I{Fn: nEN} is a free ultrafilter on N, then there exists n(0)
eN such that F=Fnco-

Proor. Put Fo,=N\{ClgnFs: acA,}. Since § is an ultrafilter, N {F,: n€ N}
is a singleton. Assume &, is not the ultrafilter § for each neN. Then we
can choose {F.cx : ks N} such that Firren S Fucry for each ke N. Choose x(k)
€Fny—Fncen. Then Clgy{x(k): k&N}—{x(k): k €N} is homeomorphic to
N*. On the other hand, Clgy{x(k): keN}—{x(k): ke NICN{F,:neN}=
singleton. This is a contradiction. The proof is completed.

DEFINITION 3-1 ([1]). A subset U of a space X is said to be sequentially
open if each sequence in X converging to a point in U is eventually in U. X
is said to be a sequential space if each sequentially open subset of X is open.
A space is said to be subsequential if it can be embedded in a sequential space.

LemMMA 3-4 ([5]). N\J{p} is not subsequential for each free ultrafilter p
on N.

Let X be a space and p=X. We denote by X,, the space with the same
underlying set as X, for which each point of X— {p} is isolated and the neigh-
borhoods of the point p in X, is the same as p in X.

The following Lemma 3-5 is easy to prove, so we omit the proof.

LEMMA 3-5. (1) Let X be a LaSnev space. Then X, is LaSnev for each
peX.

(@) Let X be a bi-sequential space. Then X, is bi-sequential for each pEX.

LEMMA 3-6. Let p=N*. Let K be a subset of N such that peClayK.
Then N\J{p} is homeomorphic to K\J{p}
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ProOF. Let L be an infinite subset of K such that K— L is infinite and
peClgyL. Define ¢ as follows;

p(n)=n for each neL,

$(p)=p,
¢/N—L is a one to one and onto map from N—L to K—L.

Then clearly ¢ is a homeomorphism from NV {p} to K\ {p}. The proof is
completed

THEOREM 3-1. Let X be a bi-sequential space and Y be any space. If
M\I{p} can be embedded in XXY, then M\J{p} can be embedded in Y, where
b is a free ultrafilter on M.

ProOr. Put Mi=MN\({p.} XY) and M,=M\(XX {p,}), where p=(pi, po).
If peCly,y(M,—{p}), then M\U{p} can be embedded in X by Lemma 3-6,
which is impossible by Lemma 3-4. Thus, without loss of generality, we can
assume M,\UM,=0. Let ny and =y be the projections from XXY to X and Y,
respectively. Put mx(M\Y {p})NXp,, =NV {p} and mz(M\J{p))NXp, =N\ {p.}.
Let F; and F, be the representations of p, and p, in BN, respectively. By
Lemma 3-2, (ClgnreMINF1XFo)=¢=(q1, ¢2). Since N\J{F;} is bi-sequential by
Lemma 3-5, then there exists a zero set Z in N* such that ¢, €ZCF, by
Lemma 2-1. Let {K,: n=N} be asequence of subsets of N such that K,.,CK,
and Z=N\{ClgyK,: neN}. Let G, be the filter generated by the filter base
{MNKXF): K,CK, FE%,}. Then 6,C@®,,, for each neN. We shall show
that \V{®,: neN} is an ultrafilter on M. Choose F&,, then, since ZCF, and
F,CF* by the definition of F; (see Introduction), there exists K, such that
K,CF. This shows MN(FXFg)e®, for each Fg&F,. Thus pC\U{B,: neN}.
Since p is an ultrafilter and U {®,: ne N} is a filter, p=I {G,: nN}.

By Lemma 3-3, there exists n(0) such that G,y=p. Put L=rp(M"\(Kuw
XY?)). We shall show that L\V{LNFs: Fg=®,} is homeomorphic to M\ {p}.
Assume that, for each Fyze,, there exists kgeF; such that | M ryi(ks)| =2.
It is easy to choose nge MN\rny'(ks) and m,e MNny'(k,) such that ns+m,. Put
A={ng: Fse®,} and B={mg: FyeF.}. Then AVBCM and A~B=0. By the
definition of A and B, AN(Kn X Fg)#0 and BN(K,,XFg)#0 for each Fz&F..
These are impossible since &, is an ultrafilter and AnB=0. Hence, we can
assume that there exists FgeF. such that [MNzy'(n)|=1 for each n&Fj.
Then, clearly, L\V{LNFg: Fy&,} is homeomorphic to MU {p} by Lemma 3-6.
The proof is completed.

THEOREM 3-2 (CH). There exist strongly Fréchet spaces X,Y and peN*
such that N\J{p} can be embedded in XXY, where p is a free ultrafilter on N.

Proor. V.I. Malyhin ([3]) used the continuum hypothesis to construct a
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strongly Fréchet space X=N\U {F} which has the following properties;

(1) Bdyy.F={p}, where p is a P-point in N*,

(2) F—{p} is a clopen subset of N*—{p} and F is a closed subset of N*.
Put Y=NU{G}, where G=(N*—F)JU{p}. Then Y is strongly Fréchet by
Lemma 2-1.

Put p={P,: acA}. Note that F—P¥ and G—P7} are clopen in N* for each
acA. Since (F—PHN(G—P¥)=0, there exist disjoint subsets F, and G, of N
such that F¥=F—P¥ and G¥=G—P¥, respectively. Put = {F,UP,\J{F} :ac A}
and 6={G,JP,\J{G}:acsA}. Then clearly § and @& are neighborhood filters
of {F} in X and {G} in Y, respectively. Define ¢: NU{p} -=XXY as follows;

$(n)=(n, n) and ¢(p)={F} x {G}.
We shall show that ¢ is an embedding. The implication
P (FJP)X (G PNNA)DPun Py,

implies ¢ is continuous, where 4= {(n, n): neN}. We shall show ¢ is an open
map. Since FoNGa=FanPa=GoN\Po=0, J(P)=((F,IP)X(GJP,))N4. The
above equality implies that ¢ is an open map. Clearly ¢ is one to one, hence ¢
is an embedding. The proof is completed.

Theorem 3 of is strengthened as follows.

COROLLARY 3-1 (CH). There exist strongly Fréchet spaces X and Y such
that X XY is not subsequential.

Proor. By Lemma 3-4, N\U {p} is not subsequential. Hence this corollary,
is a direct consequence of Theorem 3-2.

The author does not know Theorem 3-2 and Corollary 3-1 are still true
without the continuum hypothesis.

4. Lasnev space T.

Let R={0}\U{l/n:neN} be a convergent sequence and let S=P{R(n):
ne N}, where @ denotes the disjoint union and R(n) denotes a copy of R for
each neN. Let A={0(n)eR(n): 0(n)=0, neN} and let T=S/A, the quotient
space obtained from S by identifying A to a point {A}. It is easy to show
that the quotient map v: S—T is closed and hence T is a Lasnev space.

THEOREM 4-1. T™ is sequential for each neN.

ProOF. Clearly T* is sequential. Assume T'* is sequential for each 2 <n—1
(n=2). We shall show that each sequentially open subset of 7™ is open in T™".
Let U be a sequentially open subset in 7" and (xi, xs, -+, xo)=U.

Case . x;# {A}; for each i<n.

In this case z7'(x;) is an open subspace of 7" and is homeomorphic to 77",
where z; is the projection from T" to T;, T;=T. Hence there exists an open
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neighborhood W of (x,, x5, -+, x5) such that WCU by the inductive assumption
Case II. x;,={A}; for each i<n.

Since U\ _lfl[ly(R(ki)) is a sequentially open subset of f[lu(R(k,-)) and Iz[lp(R(ki))
is a metrizable subspace of T, UnN ﬁv(R(ki)) is open in f{u(R(ki)). We can
i=1 =

choose inductively a sequence {t,:me& N} of increasing natural numbers satisfy-
ing the following condition;

T (e DU T (R(RD)

for each k;=m, where [¢;J={1/s:s=t,;}\J{0}.

Put U(k,, ks, -+, k”):iljl”([tki]) and put W=\J{U(ky, ks, -, kz): k;=N,i=n}.
Then WCU and W is a neighborhood of H {A}; in T™ since Uk:u(i@l[ti]) is
a neighborhood of {A}, in T, W= kliv(Uk) and v !(WU,)=U, By land I, U

is open in 7™ The proof is completed.
THEOREM 4-2. Let {X,:neEN} be a family of spaces. If N\J{p} can be

embedded in ij[l Xa, then there exists n(0)eN such that N\J{p} can be embedded

n(0)
n nl;Ian, where p is a free ultrafilter on N.
PROOF. Put p=(pi, ps, ---). Let W,={Us: B=B,} be the neighborhood
filter of p, in X, for each neN. Put

Ta= INNWUgay XU gy X =+ XUﬁ<n>kanI+1Xk)3 (B, B2, -, ﬁ(n»EfIle}

Then F,CFrs: and F, is a filter on N for each neN. Clearly U {%,: nSN}
is the ultrafilter p. Therefore, by Lemma 3-3, there exists n(0)eN such that

Facoy is the ultrafilter p. Then N\U{p} can be embedded in :ﬁ:Xn. The proof
is completed.

COROLLARY 4-1. Let p be a free ultrafilter on N. Then N\J{p} cannot be
embedded in T°.

PrOOF. Since T™ is sequential for each neN by Theorem 4-1, N\U {p}
cannot be embedded in T for each n=N by Lemma 3-4. Hence this corollary
is a direct consequence of Theorem 4-2. The proof is completed.

REMARK 4-1. According to Y. Tanaka ([6], Theorem 1-3), T“ is not
sequential. The author does not know whether 7 is subsequential or not.

PrOBLEM 4-1. Can NU{p} not be embedded in a countable product of
Lasnev spaces?

Perhaps Theorem 2-1 is useful to solve the above problem. The author
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thanks the referee for many valuable suggestions and, in paticular, for simpli-
fying an original proof of Theorem 4-1.
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