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\S 1. Introduction.

In this paper, the existence problem of global solutions of stochastic differ-
ential equations will be discussed.

First of all we introduce the notations and definitions. Let $I$ denote the
interval $ 0\leqq t<\infty$ and $R^{d}$ denote Euclidean d-space. For $x\in R^{d}$ and $y\in R^{d}$ , let
$\langle x, y\rangle$ be the inner product of $x$ and $y$ and let $|x|$ be the Euclidean norm of

$x$ . For a $d\times d$ -matrix $M=(m_{ij})$ , define $|M|=(\sum_{i.j=1}^{d}m_{ij}^{2})^{1/2}$ . We shall denote by

$C_{2}$ the family of scalar functions defined on $I\times R^{d}$ which are twice continuously
differentiable with respect to $x\in R^{d}$ and once with respect to $t\in I$ . Let $(\Omega, F, P)$

be a probability space with an increasing family $\{F_{t} ; t\geqq 0\}$ of $sub-\sigma$-algebras of
$F$ and let $w(t)=(w_{i}(t)),$ $i=1,$ $\cdots$ , $d$ , be a d-dimensional Brownian motion process
adapted to $F_{t}$ . Consider the stochastic differential equation

\langle 1.1) $dX(t)=b(t, X(t))dt+\sigma(t, X(t))dw\langle t)$ ,

where $b(t, x)=(b_{i}(t, x)),$ $i=1,$ $\cdots$ , $d$ , is a d-vector function and $\sigma(t, x)=(\sigma_{ij}(t, x))$ ,
$i,$ $j=1,$ $\cdots$ , $d$ , is a $d\times d$-matrix function, which are defined on $I\times R^{d}$ and Borel
measurable with respect to the complete set of variables. Equation (1.1) is
equivalent to the system of $d$ equations

\langle $1.1)^{\prime}$ $dX_{i}(t)=b_{i}(t, X(t))dt+\sum_{j=1}^{d}\sigma_{ij}(t, X(t))dw_{j}(t)$ , $i=1,$ $\cdots$ , $d$ .

Throughout this paper, we assume the following:

\langle 1.2) $b(t, x)$ and $\sigma(t, x)$ are continuous in $(t, x)$ , and for any $T>0,$ $R>0$,

there exists a constant $C_{TR}>0$ depending only on $T$ and $R$ such that

$|b(t, x)-b(t, y)|+|\sigma(t, x)-\sigma(t, y)|\leqq C_{TR}|x-y|$

if $t\leqq T,$ $|x|\leqq R$ and $|y|\leqq R$ .
Then, for any natural number $n$ , we can construct functions
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$b^{(n)}(t, x)=(b_{i}^{(n)}(t, x))$ and $\sigma^{(n)}(t, x)=(\sigma_{\ell j}^{(n)}(t, x))$ , $i,$ $j=1,$ $\cdots$ , $d$ ,

which satisfy the following conditions;

(1.3) $b^{(n)}(t, x)=b(t, x)$ and $\sigma^{(n)}(t, x)=\sigma(t, x)$ for $t\leqq n$ and $|x|\leqq n$ ,

$\langle 1.3)^{\prime\prime}$ $|b^{(n)}(t, x)-b^{(n)}(t, y)|+|\sigma^{(n)}(t, x)-\sigma^{(n)}(t, y)|$

$\leqq K_{n}|x-y|$ for $t\leqq n,$ $x\in R^{d}$ and $y\in R^{d}$ ,

(1.3) $|b^{(n)}(t, x)|^{2}+|\sigma^{(n)}(t, x)|^{2}\leqq K_{n}(1+|x|^{2})$

for $t\leqq n$ and $x\in R^{d}$ , where $K_{n}$ is a constant depending only on $n$ . As is well
known, by (1.3) and $(1.3)^{\prime\prime\prime}$, there exists a pathwise unique solution $X^{(n)}(t)$ which
is dePned up to $t\leqq n$ of the stochastic differential equation

$(l.4)$ $dX^{(n)}(t)=b^{(n)}(t, X^{(n)}(t))dt+\sigma^{(n)}(t, X^{(n)}(t))dw(t)$ .
By $X^{(n)}(t;t_{0}, x_{0})$ we mean the solution of (1.4) with the initial condition $ X^{(n)}(t_{0}\rangle$

$=x_{0}\in R^{d}(t_{0}\geqq 0)$ . Define the stopping time $\tau_{n}(t_{0}, x_{0})$ by

$\tau_{n}(t_{0}, x_{0})=\inf\{t;|X^{(n)}(t;t_{0}, x_{0})|\geqq n\}$

(define $\tau_{n}(t_{0},$ $x_{0})$ by $\tau_{n}(t_{0},$ $ x_{0})=\infty$ if there is no such time) and set $e_{n}(t_{0},$ $ x_{0}\rangle$

$=\min\{n, \tau_{n}(t_{0}, x_{0})\}$ . Then, $\{e_{n}(t_{0}, x_{0});n\geqq 1\}$ is a monotone increasing family of
stopping times, for which

$\sup_{t_{0}gt\leqq e_{n}(t_{0}.x_{0})}|X^{(n)}(t;t_{0}, x_{0})-X^{(m)}(t;t_{0z}x_{0})|=0$

with probability one if $m>n$ . Define a random process $X(t;t_{0}, x_{0})$ by

$X(t;t_{0}, x_{0})=X^{(n)}(t;t_{0}, x_{0})$ for $t<e_{n}(t_{0}, x_{0})(n=1, 2, )$ .
The process $X(r;t_{0}, x_{0})$ is called the solution of (1.1) with the initial condition
$X(t_{0})=x_{0}$ . A random time $e(t_{0}, x_{0})=\lim_{n\rightarrow\infty}e_{n}(t_{0}, x_{0})$ is called the explosion time of

$X(t;t_{0}, x_{0})$ . Also we dePne an event $N_{t_{0},x_{0}}$ by

$N_{t_{0},x_{0}}=$ { $e(t_{0},$ $ x_{0})<\infty$ and $\lim_{t\uparrow q(t_{0},x_{0})}|X(t;t_{0},$
$ x_{0})|=\infty$ }.

Then we note the following result (see \S 3).
REMARK. If $b(t, x)$ and $\sigma(t, x)$ satisfy (1.2), then $N_{t_{0},x_{0}}=\{e(t_{0}, x_{0})<\infty\}$ ,

almost surely.
We shall use the differential generator

$L=\frac{\partial}{\partial t}+\sum_{i=1}^{d}b_{i}(t, x)\frac{\partial}{\partial_{X_{i}}}+\frac{1}{2}\sum_{i,j=1}^{d}a_{ij}(t, x)\frac{\partial^{2}}{\partial_{X_{i}}\partial_{X_{j}}}$

associated with the stochastic differential equation (1.1), where $ a(t, x)=(a_{ij}(t, x)\rangle$

is a $d\times d$-matrix defined by
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$a(t, x)=\sigma(t, x)\sigma(t, x)^{*}$ ($*means$ the transpose).

We are interested in the question whether $ e(t_{0}, x_{0})=\infty$ or not. In this study,
the Liapunov function approach provides an effective method. For example, we
can show the following theorem by the same method of the proof of [7, Corol-
lary] if we note the above Remark.

THEOREM 1.1. Let $b(t, x)$ and $\sigma(t, x)$ satisfy (1.2) and suppose there exists a
function $V(t, x)\in C_{2}$ which satisfies the following conditions;

(1.5) $LV(t, x)\leqq 0$ for all $t\geqq 0$ and $|x|\geqq r_{0}(r_{0}>0)$ ,

(1.6) $\lim_{|x|\rightarrow\infty}\inf_{0\leq t\leqq T}V(t, x)=\infty$ for each $T>0$ .
Then, $P(e(t_{0}, x_{0})=\infty)=1$ for all $(t_{0}, x_{0})\in I\times R^{d}$ .

For example, let $\sigma(t, x)$ be a unit matrix and let

(1.7) $|b(t, x)|\leqq\alpha(t)\beta(|x|)$ for all $t\geqq 0$ and $|x|\geqq r_{0}(r_{0}>0)$ ,

where $\alpha:[0, \infty$) $\rightarrow[0, \infty$ ) is continuous, $\beta:[r_{0}, \infty$ ) $\rightarrow(0, \infty)$ is monotone increas-
ing, differentiable and such that

(1.8) $\int_{r_{0}}^{\infty}\frac{du}{\beta(u)}=\infty$ .
Set

$V(t, x)=\int_{r_{0}}^{Ix1}du/\beta(u)-\int_{0}^{t}A(u)du$ for $|x|\geqq r_{0}$ ,

where $A(t)=\alpha(t)+(d-1)/2r_{0}\beta(r_{0})$ , and extend it smoothly to $|x|<r_{0}$ . Then, by
(1.7) and (1.8), we can see that $V(t, x)$ satisfies (1.5) and (1.6). So, the above
theorem may correspond to the result of continuability of solutions of differential
equations as we can imagine from the following; let $b(t, x)$ be continuous and
let (1.7) hold, where $\alpha$ is nonnegative and continuous, and $\beta$ is positive, con-
tinuous and satisfies (1.8). Then every solution of non-random differential equa-
tions

$dX(t)/dt=b(t, X(t))$

is continuable to $ t=\infty$ (see Yoshizawa [10, p. 13]).

On the other hand, Hasminskii [3, p. 113] shows the following result.
THEOREM 1.2. Let $b(t, x)$ and $\sigma(t, x)$ satisfy (1.2) and suppose there exist a

nonnegative function $V(t, x)\in C_{2}$ satisfying the condition

(1.9) $LV(t, x)\leqq cV(t, x)$ with a constant $c>0$ for all $(t, x)\in I\times R^{a}$

and such that
lim $infV(t, x)=\infty$ for each $T>0$ .

$\mathfrak{l}x|\rightarrow\infty 0\leq t\leq T$
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Then, $P(e(t_{0}, x_{0})=\infty)=1$ for all $(t_{0}, x_{0})\in I\times R^{d}$ .
In this paper, we will generalize Theorem 1.1 in case $\sigma(t, x)$ is bounded (see

Theorem 2.1), and also generalize Theorem 1.2 (see Theorem 2.2). In Theorem
2.1, it is remarkable that the radial unboundedness condition (1.6) is not imposed
on the Liapunov function. In Theorem 2.2, the condition (1.9) is replaced by a
general form such that $LV(t, x)\leqq\alpha(t)\beta(V(t, x))$ for certain functions $\alpha$ and $\beta$ .
The second order Ito processes will be taken as examples of applications.

\S 2. Liapunov functions.

Here we apply Liapunov’s second method to systems of stochastic differential
equations. Let $e(t_{0}, x_{0})$ be the explosion time of $X(t;t_{0}, x_{0})$ of the solution of
(1.1) with the initial condition $X(t_{0})=x_{0}\in R^{d}$ . To begin with, we seek sufficient
conditions so that $X(t;t_{0}, x_{0})$ does not explode.

THEOREM 2.1. Let $b(t, x)$ and $\sigma(t, x)$ satisfy (1.2). Let $\sigma(t, x)$ be bounded
and suppose there exist a nonnegative function $V(t, x)\in C_{2}$ which satisfies
\langle 2.1) $LV(t, x)\leqq A(t)-B(i)g(|b(t, x)|)+C(t)V(t, x)$

for all $t\geqq 0$ and $|x|\geqq r_{0}(r_{0}>0)$ , where

$A:[0, \infty)\rightarrow(-\infty, \infty)$ is continuous,

$B:[0, \infty)\rightarrow(0, \infty)$ is continuous,

$C:[0, \infty)\rightarrow(-\infty, \infty)$ is continuous,

$g:[0, \infty)\rightarrow[0, \infty)$ is continuous,

and there exist $k_{1}>0$ and $k_{2}\geqq 0$ such that

\langle 2.2) $k_{1}t\leqq g(t)$ for all $t\geqq k_{2}$ .
Then, $P(e(t_{0}, x_{0})=\infty)=1$ for all $(t_{0}, x_{0})\in I\times R^{d}$ .

PROOF. We define $U(t, x)$ by

$U(t, x)=V(t, x)$ exp $(-\int_{0}^{t}C(s)ds)$ .

Then, by (2.1), we have, $LU(t, x)\leqq h(t, x)$ for all $t\geqq 0$ and $|x|\geqq r_{0}$ , where

$h(t, x)=A(t)$ exp $(-\int_{0}^{t}C(s)ds)-B(t)g(|b(t, x)|)\exp(-\int_{0}^{t}C(s)ds)$ .
Assume that $P(e(t_{0}, x_{0})<\infty)>0$ for some $(t_{0}, x_{0})\in I\times R^{d}$ . Then, by Remark in
\S 1, we note that $P(N_{t_{0}.x_{0}})>0$ . Consider a sample of $N_{t_{0}.x_{0}}$ in the following.
Let $\rho=\sup\{t;|X(t;t_{0}, x_{0})|=r_{0}\}$ . For simplicity of the notation we write as
$X(t)=X(t;t_{0}, x_{0})$ and $e=e(t_{0}, x_{0})$ , omitting $t_{0}$ and $x_{0}$. By Ito’s formula concern-
ing stochastic differentials, we see that



No expl0si0n criteria 195

$ dU(t, X(t))\leqq h(t, X(t))dt+\langle gradU(t, X(t)), \sigma(t, X(t))dw(t)\rangle$

for $\rho\leqq i<e$ . Integrate the above equation from $\rho$ to time $t<e$ , with the result
that

\langle 2.3) $U(t, X(t))-U(\rho, X(\rho))\leqq\int_{\rho}^{t}h(s, X(s))ds+z(t)-z(\rho)$ ,

where $z(t)$ is a new Brownian motion process run with the clock

$\varphi(t)=\int_{t_{0}}^{t}$ \langle$gradU(s,$ $X(s)),$ $a(s,$ $X(s))$ grad $U(s,$ $ X(s))\rangle$ $ds$ ,

and $a=\sigma\sigma^{*}$ (see McKean [6, p. 45]).
$\epsilon_{0}=\epsilon_{0}(\omega)>0(\omega\in N_{t_{0}.x_{0}})$ such that

$\delta\epsilon_{0}\int_{\rho}^{t}g(|b(s, X(s))|)ds$

Now there exist some $\delta=\delta(\omega)>0$ and

$\leqq\int_{\rho}^{t}B(s)g(|b(s, X(s))|)$ exp $(-\int_{0}^{s}C(v)dv)ds$

for $\rho\leqq t<e$ , since $\int_{0}^{t}C(s)ds$ is bounded on $[t_{0}, e]$ and $B(t)$ is positive on $[t_{0}, e]$ .
Hence, by (2.3), we get,

\langle 2.4) $\delta\epsilon_{0}\int_{\rho}^{t}g(|b(s, X(s))|)ds$

$\leqq U(\rho, X(\rho))+\int_{\rho}^{t}A(s)$ exp $(-\int_{0}^{s}C(v)dv)ds+z(t)-z(\rho)$

for all $\rho\leqq t<e$ . We proceed with an argument according to each of the two
cases; $\varphi(e)<\infty,$ $\varphi(e)=\infty$ , respectively. First we consider the case where $\varphi(e)$

$<\infty$ . Letting $i$ tend to $e$ , we see that the right-hand side of (2.4) is finite so
that

\langle 2.5) $\int_{\rho}^{e}g(|b(s, X(s))|)ds<\infty$ .

On the other hand, $X(t)=(X_{i}(t))$ satisfies the stochastic differential equations
$dX_{i}(t)=b_{i}(t, X(t))dt+dy_{i}(t)$ ($i=1,$ $\cdots$ , d) for $t<e$ , where $y_{i}(t)$ is a new Brownian

motion process run with the clock $\psi_{i}(t)=\sum_{j=1}^{d}\int_{t_{0}}^{t}|\sigma_{ij}(s, X(s))|^{2}ds$ . Since $\sigma(t, x)$

is bounded by the assumption, we note that $\psi_{i}(e)<\infty$ for each $i$ . Now consider

$|X(t)-X(\rho)|\leqq d\int_{\rho}^{t}|b(s, X(s))|ds+\sum_{i=1}^{d}|y_{i}(t)-y_{i}(\rho)|$

and note that by (2.2)
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$|b(s, X(s))|\leqq k_{2}$ if $|b(s, X(s))|\leqq k_{2}$ ,

$|b(s, X(s))|\leqq g(|b(s, X(s))|)/k_{1}$ if $|b(s, X(s))|>k_{2}$ ,

so in either case
$|b(s, X(s))|\leqq k_{2}+g(|b(s, X(s))|)/k_{1}$ .

Therefore,

(2.6) $|X(t)-X(\rho)|$

$\leqq dk_{2}(t-\rho)+d\int_{\rho}^{t}g(|b(s, X(s))|)ds/k_{1}+\sum_{i=1}^{d}|y_{i}(t)-y_{i}(\rho)|$

for all $\rho\leqq t<e$ . Letting $t$ tend to $e$ , we see that the right-hand side of (2.6) is
finite by (2.5), while the left-hand side becomes infinity since $|X(e-)|=\infty$ on
$N_{t_{0}.x_{0}}$ . Thus we are led to contradiction. Next we consider the case where
$\varphi(e)=\infty$ . Since $g$ is nonnegative by the assumption, we see that the left-hand
side of (2.4) is nonnegative. Let $i$ tend to the time $e$ in (2.4). Then, we get,

$0\leqq U(\rho, X(\rho))+\int_{\rho}^{e}A(s)$ exp $(-\int_{0}^{s}C(v)dv)ds$

$+\lim_{t\rightarrow\infty}\inf z(t)-z(\rho)=-\infty$ ,

which is also absurd. Hence the proof is complete.
The idea of the proof of Theorem 2.1 is due to Peterson [9], who investi-

gated the continuability of solutions of non-random differential equations $dX(t)/dt$

$=b(t, X(t))$ under the assumption of the existence of a nonnegative and con-
tinuous function $V(t, x)$ such that

$V^{\prime}(t, x)\leqq-B(t)g(|b(t, x)|)+C(t)V(t, x)$ ,

where $B,$ $C$ , and $g$ satisfy the same conditions as in Theorem 2.1 and $V^{\prime}(t, x)$

is the upper right-hand derivative along solutions of $dX(t)/dt=b(t, X(t))$ .
EXAMPLE 2.1. Let $w(t)=(w_{1}(t), w_{2}(t))$ be a two dimensional Brownian motion

process and let us consider a system of stochastic differential equations

$dX_{1}(t)=X_{2}(t)dt+\delta(t, X_{1}(t\rangle, X_{2}(t))dw_{1}\langle t)$ ,
(2.7)

$dX_{2}(t)=-\alpha(t)\beta(t)f(X_{1}(t))dt+\gamma(b, X_{1}(t),$ $X_{2}(t))dw_{2}(t)$ ,

where the coefficients satisfy the following conditions;
(i) $\alpha:[0, \infty$ ) $\rightarrow(0_{f}\infty)$ is once continuously differentiable such that $\alpha^{\prime}(t)>0$

for all $t\geqq 0$,
(ii) $\beta:[0, \infty$) $\rightarrow(0,..\infty)$ is once continuously differentiable such that $\beta^{\prime}(t)<0$

for all $t\geqq 0$ ,
(iii) $f:(-\infty, \infty)\rightarrow(-\infty, \infty)$ is once continuously differentiable such that
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$yf(y)>0(y\neq 0)$ and $F(y)\equiv\int_{0}^{y}f(s)ds\geqq kf^{2}(y)$

with a constant $k>0$ for all $y\in(-\infty, \infty)$ ,
(iv) $\gamma:[0, \infty$) $\times(-\infty, \infty)\times(-\infty, \infty)\rightarrow(-\infty, \infty)$ and $\delta:[0, \infty$ ) $\times(-\infty, \infty)\times$

$(-\infty, \infty)\rightarrow(-\infty, \infty)$ have continuous first partials such that

$\gamma(t, x_{1}, x_{2})\neq 0$ for all $t,$ $x_{1},$ $x_{2}$ ,

$\gamma^{2}(t, x_{1}, x_{2})+\delta^{2}(t, x_{1}, x_{2})(1+|f^{\prime}(x_{1})|)\leqq m$

with a constant $m>0$ for all $t,$ $x_{1},$ $x_{2}$ .
Equation (2.7) can be written as a vector stochastic differential equation of the
form (1.1), where

$b(t, x)=(x_{2}, -\alpha(t)\beta(t)f(x_{1}))$ ,

$\sigma(t, x)=\left(\begin{array}{llllll}\delta(t, & x_{1}, & x_{2}) & & 0 & \\ & 0 & & \gamma(t, & x_{1}, & x_{2})\end{array}\right)$ ,

$t\geqq 0$ and $x=(x_{1}, x_{2})\in R^{2}$ . If $\delta(t, x_{1}, x_{2})\equiv 0$ in (2.7), then $X_{1}(t)$ is called the second
order Ito process which corresponds to the response of the oscillator

$\ddot{y}+\alpha(t)\beta(t)f(y)=\gamma(t, y,\dot{y})\dot{w}_{2}$

with the formal white noise $\dot{w}_{2}$ , where by we mean the symbolic derivative
$d/dt$ . Therefore, in the particular case when $\delta(t, x_{1}, x_{2})\equiv 0$ , we know by Gold-
stein [2] that $X_{2}(t)$ represents the mean square derivative of $X_{1}(t)$ and $X_{2}(t)$ is
of unbounded variation in every finite interval with probability one, up to the
explosion time. Suppose that the conditions (i), (ii), (iii) and (iv) hold and set
$V(t, x)=x_{2}^{2}/2\alpha(t)+\beta(t)F(x_{1})$ for $t\geqq 0$ and $x=(x_{1}, x_{2})\in R^{2}$ . Then, since

$x_{2}^{2}=|b(t, x)|^{2}-\alpha^{2}(t)\beta^{2}(t)f^{2}(x_{1})$ , $f^{2}(x_{1})\leqq V(t, x)/k\beta(t)$

and $\beta^{\prime}(t)F(x_{1})\leqq 0$ by the assumption. we obtain that

$LV(t, x)=\frac{\beta(t)}{2}\delta^{2}(t, X_{1}, x_{2})f^{\prime}(x_{1})+\frac{1}{2\alpha(t)}\gamma^{2}(t, X_{1}, x_{2})$

$-\frac{\alpha^{\prime}(t)}{2\alpha^{2}(t)}x_{2}^{2}+\beta^{f}(t)F(x_{1})$

$\leqq\frac{m}{2}(\beta(t)+\frac{1}{\alpha(t)})-\frac{\alpha^{\prime}(t)}{2\alpha^{2}(t)}|b(t, x)|^{2}+\frac{\alpha^{\prime}(t)\beta(t)}{2k}V(t_{y}x)$

for all $t\geqq 0$ and $x\in R^{2}$ . Therefore, Theorem 2.1 will apply if we take $A(t)=$

$m(\beta(t)+1/\alpha(t))/2,$ $B(t)=\alpha^{\prime}(t)/2\alpha^{2}(t),$ $C(t)=\alpha^{\prime}(t)\beta(t)/2k,$ $g(t)=t^{2},$ $k_{1}=1$ and $k_{2}=1$ .
Next we obtain the following generalization of Theorem 1.2.
THEOREM 2.2. Let $b(t, x)$ and $\sigma(t, x)$ satisfy (1.2) and suppose there exists a
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nonnegative function $V(t, x)\in C_{2}$ which satisfies
\langle 2.8) $LV(t, x)\leqq\alpha(t)\beta(V(t, x))$ for all $(t, x)\in I\times R^{d}$ ,

where $\alpha:[0, \infty$) $\rightarrow[0, \infty$) is continuous and $\beta:[0, \infty$) $\rightarrow[0, \infty$ ) is monotone in-
creasing, concave such that

(2.9) $\int_{0}^{\infty}\frac{du}{1+\beta(u)}=\infty$ ,

and

(2.10) $\lim_{|x|r}\inf_{0\leqq t\leqq T}V(t, x)=\infty$ for each $T>0$ .

Then, $P(e(t_{0}, x_{0})=\infty)=1$ for all $(t_{0}, x_{0})\in I\times R^{d}$ .
PROOF. We consider the solution $X^{(n)}(t;t_{0}, x_{0})$ of (1.4) with the initial con-

dition $X^{(n)}(t_{0})=x_{0}\in R^{d}$ for large $n>\max\{|x_{0}|, t_{0}\}$ . Let $\tau_{n}(t_{0}, x_{0})$ be the first
exit time from the ball $\{x;|x|<n\}$ for $X^{(n)}(t;t_{0}, x_{0})$ and let $e_{n}(t_{0}, x_{0})=$

min $\{n, \tau_{n}(i_{0}, x_{0})\}$ . For notational simplicity we write as $X^{(n)}(t)=X^{(n)}(t;t_{0}, x_{0})$,
$\tau_{n}=\tau_{n}(t_{0}, x_{0})$ and $e_{n}=e_{n}(t_{0}, x_{0})$ , omitting $t_{0}$ and $x_{0}$ . Also, for any $t\geqq t_{0}$ we put
$t_{n}=t\wedge e_{n}$ , here and hereafter $p\wedge q$ is the smaller of $p$ and $q$ . By Ito’s formula
concerning stochastic differentials, we see

$V(t_{n}, X^{(n)}(t_{n}))=V(t_{0}, x_{0})+\int_{t_{0}}^{t_{n}}LV(u, X^{(n)}(u))du$

$+\int_{t_{0}}^{\iota_{n}}\langle gradV(u, X^{(n)}(u)), \sigma^{(n)}(u, X^{(n)}(u))dw(u)\rangle$ ,

because $b^{(n)}(t, x)=b(t, x)$ and $\sigma^{(n)}(t, x)=\sigma(t, x)$ for $t\leqq n$ and $|x|\leqq n$ (see $(1.3)^{\prime}$ ).

Take the mathematical expectation in the above. Then, since $E(\sup_{u\leqq n}|X^{(n)}(u)|^{2})$

is bounded by the condition $(1.3)^{\prime\prime\prime}$ (see Friedman [1, p. 102]) and since (2.8)
holds, we obtain,

$EV(t_{n}, X^{(n)}(t_{n}))\leqq V(t_{0}, x_{0})+A(t)\int_{t_{0}}^{t}E\beta(V(u_{n}, X^{(n)}(u_{n})))du$ ,

where $A(t)=\max_{u\leqq t}\alpha(u)$ and $u_{n}=u\Lambda e_{n}$ . Let $T^{\prime}>t_{0}$ be arbitrary and be fixed,

which is to be determined later. Now we set

$Q^{(n)}(t)=EV(t_{n}, X^{(n)}(t_{n}))$ and $R^{(n)}(t)=(T^{f}-t_{0})^{-1}\int_{t_{0}}^{t}Q^{(n)}(u)du$ for $T^{\prime}\geqq t\geqq t_{0}$

so that $R^{(n)}(t)$ is continuous, monotone increasing in $t$ and satisfies $ 0\leqq R^{(n)}(t)\leqq$

$M_{n}(M_{n}\equiv \sup_{t\leqq n,1xI\leqq n}V(t, x))$
for $T^{\prime}\geqq t\geqq t_{0}$ , since $0\leqq Q^{(n)}(t)\leqq M_{n}$ . Since $\beta$ is concave

by the assumption, we get, by Jensen’s inequality,

$Q^{(n)}(t)\leqq V(t_{0}, x_{0})+A(T^{\prime})(T^{\prime}-t_{0})\beta(R^{(n)}(t))$

for $T^{f}\geqq t\geqq t_{0}$ . Noting that $(1+\beta(R^{(n)}(t)))^{-1}\leqq 1$ and $\beta(R^{(n)}(t))(1+\beta(R^{(n)}(t)))^{-1}\leqq 1$
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for $T^{\prime}\geqq t\geqq t_{0}$ , divide the both sides of the above by $1+\beta(R^{(n)}(t))$ and then inte-
grate from $t_{0}$ to $t(\leqq T^{\prime})$ . Then,

(2.11) $\int_{0}^{R^{(n)_{(t)}}}\frac{du}{1+\beta(u)}\leqq F(T^{\prime} ; t_{0})$

for all $T^{\prime}\geqq t>t_{0}$ , where $F(t;t_{0})=V(t_{0}, x_{0})+A(t)(t-t_{0})$ . Assume that there exist
some $t_{0}$ and $x_{0}$ such that $P(e(t_{0}, x_{0})<T)\equiv\delta>0$ for some $ T<\infty$ . Let $T^{\prime}>T$ be
arbitrary and be fixed. We choose $n$ so large that $n>\max\{|x_{0}|, T^{f}\}$ and con-
sider $X^{(n)}(t;t_{0}, x_{0})$ for such $n$ in the following. Take any $t$ such that $T<t\leqq T^{\prime}$ .
Then, since $\{\tau_{n}<t\}=\{e_{n}<t\}\supseteqq\{e_{n}<T\}\supseteqq\{e(t_{0}, x_{0})<T\}$ , we see

$Q^{(n)}(t)\geqq E[V(t_{n}, X^{(n)}(t_{n}));e_{n}<t]$

$\geqq V{}_{n}P(e_{n}<t)$

$\geqq V_{n}\delta$

$(V_{n}=\inf_{0\leqq t\leqq T^{\prime} ,|x1\geqq n}V(t, x))$

for all $t\in(T, T^{\prime}$]. Therefore, we have,

$ R^{(n)}(t)\geqq(T^{\prime}-t_{0})^{-1}\int_{T}^{t}Q^{(n)}(u)du\geqq(t-T)(T^{\prime}-t_{0})^{-1}V_{n}\delta$

for all $t\in(T, T^{\prime}$]. Accordingly, by (2.11), we obtain,

(2.12) $\int_{0}^{(T^{\prime}- T)(T^{\prime}- i_{0})-1_{V_{n}\delta}}\frac{du}{1+\beta(u)}\leqq F(T^{\prime} ; t_{0})$ .

Letting $n$ tend to infinity in the above, we see that the right-hand side of (2.12)

is finite, while the left-hand side becomes infinity, since (2.10) and (2.9) hold.
Thus, we are led to contradiction. Therefore, for any $t_{0},$ $x_{0}$ and T $ P(e(t_{0}, x_{0})\geqq T\rangle$

$=1$ and the proof is complete.
The result of Theorem 2.2 contains the result of Theorem 1.2 if we take

$\alpha(t)=c$ with a constant $c>0$ and $\beta(v)=v$ .
If we take $V(t, x)=|x|^{2}$ in Theorem 2.2, then we can obtain the following

sufficient condition on the growth of the drift and diffusion coefficients in order
that $X(t;t_{0}, x_{0})$ has the infinite explosion time with probability one.

COROLLARY. Let $b(t, x)$ and $\sigma(t, x)$ satisfy (1.2) and suppose that

$2\langle x, b(t, x)\rangle+|\sigma(t, x)|^{2}\leqq\alpha(t)\beta(|x|^{2})$ ,

where $\alpha$ and $\beta$ satisfy the same assumptions as in Theorem 2.2.
Then, $P(e(t_{0}, x_{0})=\infty)=1$ for all $(t_{0}, x_{0})\in I\times R^{d}$ .
In a particular case of the one dimension, another sufficient condition of the

infinite explosion time was obtained by the author [8] with the following result;
if

$|xb(t, x)|+\sigma(t, x)^{2}\leqq\alpha(t)\beta(|x|)$ ,
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where $\alpha(t)$ is a nonnegative locally integrable function and $\beta(r)$ is a continuous
nondecreasing positive function with $r^{2}=O(\beta(r))$ as $ r\rightarrow\infty$ and $r(\beta(r))^{-1}$ not inte-
grable near $\infty$ , then $P(e(t_{0}, x_{0})=\infty)=1$ for all $t_{0}\geqq 0$ and $x_{0}\in(-\infty, \infty)$ .

EXAMPLE 2.2. Let $w(t)=(w_{1}(t), w_{2}(t))$ be a two dimensional Brownian motion
process and let us consider a system of stochastic differential equations

$dX_{1}(t)=X_{2}(t)dt+\delta(t, X_{1}(t),$ $X_{2}(t))dw_{1}(t)$ ,
\langle 2.13)

$dX_{2}(t)=(-g(t, X_{1}(t),$ $X_{2}(t))X_{2}(t)-a(t)f(X_{1}(t))+h(t))dt$

$+\gamma(t, X_{1}(t),$ $X_{2}(t))dw_{2}(t)$ ,

where the coefficients satisfy the following conditions;
(i) $ a:[0, \infty$) $\rightarrow[c, \infty$) $(c>0)$ is once continuously differentiable such that

$a^{f}(t)>0$ for all $t\geqq 0$ ,
(ii) $f:(-\infty, \infty)\rightarrow(-\infty, \infty)$ is once continuously differentiable such that

$yf(y)>0(y\neq 0)$ and $F(y)\equiv\int_{0}^{y}f(s)ds\rightarrow\infty(|y|\rightarrow\infty)$ ,

(iii) $ g:[0, \infty$ ) $\times(-\infty, \infty)\times(-\infty, \infty)\rightarrow[0, \infty)$ has continuous first partials,
(iv) $ h:[0, \infty$ ) $\rightarrow(-\infty, \infty)$ is continuous,
(v) $\gamma:[0, \infty$ ) $\times(-\infty, \infty)\times(-\infty, \infty)\rightarrow(-\infty, \infty)$ and $\delta:[0, \infty$ ) $\times(-\infty, \infty)\times$

\langle $-\infty,$ $\infty$ ) $\rightarrow(-\infty, \infty)$ have continuous first partials such that

$\gamma(t, x_{1}, x_{2})\neq 0$ for all $t,$ $x_{1},$ $x_{2}$ ,

$\gamma^{2}(t, x_{1}, x_{2})+\delta^{2}(t, x_{1}, x_{2})|f^{f}(x_{1})|\leqq m(t)(1+|x_{2}|^{p})$

for all $t,$ $x_{1},$ $x_{2}$ , here $m(t)$ is nonnegative and continuous and $0\leqq p\leqq 2$ .
Equation (2.13) can be written as a vector stochastic differential equation of the
form (1.1), where

$b(t, x)=(x_{2}, -g(t, x_{1}, x_{2})x_{2}-a(t)f(x_{1})+h(t))$ ,

$\sigma(t, x)=\left(\begin{array}{llllll}\delta(t, & x_{1}, & x_{2}) & & 0 & \\ & 0 & & \gamma(t, & x_{1}, & x_{2})\end{array}\right)$

for $t\geqq 0$ and $x=(x_{1}, x_{2})\in R^{2}$ . Similarly as in Example 2.1, $X_{1}(t)$ is called the
second order Ito process if $\delta(t, x_{1}, x_{2})\equiv 0$ in (2.13), which corresponds to the
response of the oscillator

$\ddot{y}+g(t, y,\dot{y})\dot{y}+a(t)f(y)=h(t)+\gamma(t, y,\dot{y})\dot{w}_{2}$

with the formal white noise $\dot{w}_{2}$ . Now let the conditions (i), (ii), (iii), (iv) and
\langle $v$) hold. We set $V(f, x)=a(t)F(x_{1})+x_{2}^{2}/2$ for $t\geqq 0$ and $x=(x_{1}, x_{2})\in R^{2}$ . Then
we see that
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$LV(t, x)=a^{\prime}(t)F(x_{1})-g(t, x_{1}, x_{2})x_{2}^{2}+h(t)x_{2}$

$+a(t)\delta^{2}(t, x_{1}, x_{2})f^{\prime}(x_{1})/2+\gamma^{2}(t, x_{1}, x_{2})/2$

$\leqq(a^{\prime}(i)/a(t))(a(t)F(x_{1}))+|h(t)||x_{2}|$

$+m(t)(1+a(t))(1+|x_{2}|^{p})/2$

$\leqq 2[a^{\prime}(t)/a(t)+|h(t)|+m(t)(1+a(t))]$

$\times[1+V(t, x)+V(t, x)^{1/2}+V(t, x)^{p/2}]$ .
Accordingly, Theorem 2.2 will apply if we take $\alpha(t)=2[a^{\prime}(t)/a(t)+|h(t)|+$

$m(t)(1+a(t))]$ and $\beta(v)=1+v+v^{1/2}+v^{p/2}$ .
In a particular case of non-random second order differential equation

$\ddot{y}+g(t, y,\dot{y})\dot{y}+f(y)=h(t)$ ,

we know the following; if $f,$ $g$ and $h$ satisfy the same assumptions as in
Example 2.2, then every solution of this differential equation is continuable to
$ t=\infty$ (see LaSalle and Lefschetz [5; Example 2, \S 23, Chapter 4]).

Under the same notations as in Example 2.2, let us consider the response
of the oscillator $\ddot{y}+f(y)=\dot{w}_{2}$ . Then McKean [6, p. 107] shows that the explo-
sion time becomes almost surely inPnity by assuming only that $yf(y)>0(y\neq 0)$ .

A function $V(t, x)$ which appears in Theorem 2.1 and Theorem 2.2 respec-
tively is said to be Liapunov function of $X(t;t_{0}, x_{0})$ .

\S 3. Remarks on the event $N_{t_{0},x_{0}}$ .
Here we show the result of Remark in \S 1. To begin with, for simplicity

of the consideration, we treat with the solution $X(t;0, x_{0})$ in the following. We
put $X(t)=X(t;0, x_{0})$ and $e=e(O, x_{0})$ . Also we put $X^{(n)}(t)=X^{(n)}(t;0, x_{0})$ and
$e_{n}=e_{n}(0, x_{0})$ . Then, define a random process $Y^{(n)}(t)=(Y_{1}^{(n)}(t), Y_{2}^{(n)}(i))$ by $Y_{1}^{(n)}(t)$

$=t$ and $Y_{2}^{(n)}(t)=X^{(n)}(t)$ . Obviously, $Y^{(n)}(t)$ satisPes the stochastic differential
equations;

$dY_{1}^{(n)}(t)=dt$ ,
\langle 3.1)

$dY_{2}^{(n)}(i)=b^{(n)}(Y^{(n)}(t))dt+\sigma^{(n)}(Y^{(n)}(t))dw(t)$ $(Y^{(n)}(0)=(0, x_{0}))$,

up to the time $t\leqq n$ . Next we take a one dimensional Brownian motion process
$w^{\prime}(t)$ in order that $\tilde{w}(t)\equiv(w^{\prime}(t), w(t))$ becomes a $(d+1)$-dimensional Brownian
motion process. Then, consider the stochastic differential equation

(3.2) $d\tilde{Y}(t)=5(\tilde{Y}_{1}(t),\tilde{Y}_{2}(t))dt+\tilde{\sigma}(\tilde{Y}_{1}(t),\tilde{Y}_{2}(t))d\tilde{w}(t)$

$(\tilde{Y}(t)=(\tilde{Y}_{1}(t),\tilde{Y}_{2}(t)),\tilde{Y}(0)=(0, x_{0}))$ ,
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where $5(y_{1}, y_{2})$ is a $(d+1)$-vector function and $\tilde{\sigma}(y_{1}, y_{2})$ is a $(d+1)\times(d+1)-$

matrix function which are defined on $I\times R^{d}$ and such that

$\tilde{b}(y_{1}, y_{2})=(1, b(y_{1}, y_{2}))$ , $\tilde{\sigma}(y_{1}, y_{2})=(^{\frac{0}{0}}0|^{\underline{0\cdots\cdots\cdots\cdots\cdots 0}}\sigma(y_{1},y_{2}))$ .

To define the meaning of the solution of (3.2) we do the same way as in \S 1.
For any natural number $n$ , we choose functions $5^{(n)}(y_{1}, y_{2})$ and $\tilde{\sigma}^{(n)}(y_{1},$ $ y_{2}\rangle$

which are defined on $I\times R^{d}$ and such that

(3.3) for any $|y|\leqq n$ $(y=(y_{1}, y_{2})\in I\times R^{d})$ ,

$\tilde{b}^{(n)}(y_{1}, y_{2})=(1, b(y_{1}, y_{2}))$ , $\tilde{\sigma}^{(n)}(y_{1}, y_{2})=\tilde{\sigma}(y_{1}, y_{2})$ ,

(3.3) $5^{(n)}(y)$ and $\tilde{\sigma}^{(n)}(y)$ satisfy the Lipschitz condition
with respect to $y\in I\times R^{a}$ .

Then, by $(3.3)^{\prime\prime}$ , there is a pathwise unique solution $\tilde{Y}^{(n)}(t)=(\tilde{Y}_{1}^{(n)}(t),\tilde{Y}_{2}^{(n)}(t))|$

defined on the entire interval $[0, \infty$ ) of the stochastic differential equation

(3.4) $d\tilde{Y}^{(n)}(t)=5^{(n)}(\tilde{Y}^{(n)}(t))dt+\tilde{\sigma}^{(n)}(\tilde{Y}^{(n)}(t))d\tilde{w}(t)$ $(\tilde{Y}^{(n)}(0)=(0, x_{0}))$ .
Set $e_{n}=n\sim\wedge\inf\{t;|Y^{(n)}(t)|\geqq n\}$ and define a random process $\tilde{Y}(t)=(\tilde{Y}_{1}(t),\tilde{Y}_{2}(t)\rangle$

by $\tilde{Y}(t)=\tilde{Y}^{(n)}(t)$ for $t<\tilde{e}_{n}(n\geqq 1)$ . By $\tilde{Y}(t)$ we dePne the solution of (3.2). The
explosion time $ e\sim$ of $\tilde{Y}(t)$ is defined by $ e\sim=\lim_{n\rightarrow\infty}e_{n}\sim$ .

REMARK 3.1. For the time homogeneous solution $\tilde{Y}(t)$ , N. Ikeda and S.
Watanabe [4, \S 2, Chapter IV] show that $|\tilde{Y}(e\sim-)|=\infty$ for $ e\sim<\infty$ if the drift and
diffusion coefficients are continuous.

Now, take $n$ so large that $n/8$ is a natural number, previously. Then, by
(1.3), (3.3) and the pathwise uniqueness of the solutions of (3.1) and (3.4), we
can show the following resuIt.

REMARK 3.2.
(i) $e_{n/4}\leqq\delta_{n}$ and $(t, X(t))=\tilde{Y}(t)$ for $t<e_{n/4}$ ,

(ii) $\tilde{e}_{n/8}\leqq e_{n/4}$ and $(t, X(t))=\tilde{Y}(t)$ for $t<\tilde{e}_{n/8}$ ,

and therefore,

(iii) $ e=e\sim$ and $(t, X(t))=\tilde{Y}(t)$ for $t<e$ .
By Remark 3.1 and Remark 3.2, we obtain the result of Remark in \S 1,

where $t_{0}=0$ . For any initial time $t_{0}\geqq 0$ , we have only to take the same argu-
ment as in the preceding.

ACKNOWLEDGEMENTS. I express my hearty thanks to the referee for sug-
gesting the improvement of the proof of Theorem 2.1, and for many valuable



No expl0si0n criteria 203

advices. I also thank Professor N. Ikeda for calling my attention to the fact
of Remark 3.1, and to Professor M. Motoo for many useful advices during the
preparation of the manuscript.

References

[1] A. Friedman, Stochastic Differential Equations and Applications, vol. 1, Academic
Press, New York, 1975.

[2] J.A. Goldstein, Second order Ito processes, Nagoya Math. J., 36 (1969), 27-63.
[3] R.Z. Hasminskii, Stability of Systems of Differential Equations in the Presence of

Random Disturbances (In Russian), Nauka, Moscow, 1969.
[4] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes,

Kodansha, Tokyo, 1981.
[5] J.P. LaSalle and S. Lefschetz, Stability by Liapunov’s Direct Method with Applica-

tions, Academic Press, New York, 1961.
[6] H.P. Jr., McKean, Stochastic Integrals, Academic Press, New York, 1969.
[7] K. Narita, Remarks on explosion of inhomogeneous diffusion processes, Sci. Rep.

Tokyo Kyoiku Daigaku Sect. A, 11 (1972), 235-244.
[8] K. Narita, Sufficient conditions for no explosion of inhomogeneous diffusion pro-

cesses, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 12 (1973) , 95-100.
[9] W.C. Peterson, Generalized Liapunov functions, J. Math. Anal. Appl., 66 (1978) ,

333-338.
[10] T. Yoshizawa, Stability Theory by Liapunov’s Second Method, Publication No. 9,

The Mathematical Society of Japan, Tokyo, 1966.

Kiyomasa NARITA
Department of Mathematics
Faculty of Technology
Kanagawa University
Rokkakubashi, Kanagawa-ku
Yokohama 221
Japan


	\S 1. Introduction.
	THEOREM 1.1. ...
	THEOREM 1.2. ...

	\S 2. Liapunov functions.
	THEOREM 2.1. ...
	THEOREM 2.2. ...

	\S 3. Remarks on the event ...
	References

