J. Math. Soc. Japan
Vol. 33, No. 4, 1981

Homomorphisms of Galois groups of solvably
closed Galois extensions

By Ko6ji UCHIDA
(Received Jan. 7, 1980)

Let %, and k, be algebraic number fields of finite degrees. Let £, and £,
be solvably closed Galois extensions of %, and k,, respectively. Let Gi=G(£,/k1)
and G,=G(£,/k,) be their Galois groups. If G,and G, are isomorphic as topol-
ogical groups, it is known that £, and £, are isomorphic fields, more precisely :

THEOREM [3]. Let g : Gi—G, be an isomorphism of topological groups. Then
there corresponds a unique isomorphism t: £2,—82; such that t-o(g1)=git for any
g2:1€G1.

Looking at the statement above, it is natural to ask if the isomorphism o
can be replaced by a homomorphism.

CONJECTURE. Let o : Gi—G, be a continuous homomorphism such that o(Gy)
is open in G,. Then there corresponds a unique injection . 2,—8 of fields such
that v o(g)=git for any g.€G..

This conjecture means 7(£2,) is Gi-invariant, 7(k,)Ck; and A=k, -7(2;) isa
Galois extension of %.; which corresponds to the kernel of o. The Galois group
G(A,/k,) is isomorphic to an open subgroup of G,. Then our conjecture may
also be regarded as an extension of the theorem above to a non-solvably-closed
extension A,/k;.

In the following, let ki, ks, 2i, 2,, G: and G, be as above, though we do
not assume k&, is of finite degree in the corollary of Let ¢:Gi—G,
be a homomorphism as in the conjecture, except in where we do
not assume o(G,) is open. Let /4, be the subfield of £, corresponding to the
kernel of ¢. Let E, be an extension of k, contained in £2,, and let U, be the
corresponding subgroup of G,. Let E; be the subfield of 2, corresponding to
o™ Y(U,). We call E; is the field corresponding to E, by o.

1. Let p, be a finite prime of k,. Let G, be a decomposition subgroup of
p1in Gi. If 0(G,,)#(e) and if o(G,,) is contained in some decomposition sub-
group of a finite prime p, of %, p. is uniquely determined by p;. Thus we get
a mapping ¢ : p;—p, from a set of finite primes of %, into a set of finite primes
of k,. We will see below that almost all primes of %, are in the image of ¢.



596 K. UcHmpA

We fix a prime number /. Let p, be not above /. Then a Sylow /-subgroup
G,,.1 of G,, is non-abelian and given by the extension

1—>Tl—>Gv1,z'—>Zl——>1,

where Z, is the additive group of [-adic integers and T;=Z, is the inertia sub-
group of G, ;. All the continuous homomorphic images of such a group are
classified as below :

i) Trivial group, Z,.

i) Gy,

iii) Groups containing non-trivial elements of finite orders.
We note that every non-trivial closed normal subgroup of G,,,, contains an open
subgroup of T,. This classification is the same as the classification by the co-
homological dimensions. In the third case, centers of such groups contain ele-
ments of order /. We now apply the above for (G, ).

i) If cda(Gy,)=1, the kernel of ¢ contains T;. Then the ramification
index of p, in the extension A4,/k; is not a multiple of /.

ii) If cd o(Gy,1)=2, o is an isomorphism on G, ;. Let N=Ker oNG,,.
Then

1—> N—> G,,—> o(G,) —> 1

is exact, and a Sylow [-subgroup of N is trivial. Let U be any open subgroup
of o(G,,) and let V be the inverse image of U in G,,. As

1 N 14 U 1

is exact, and as H(N, Z/1Z)=0, =1, 2, ---, we have isomorphisms
HYWU, Z]1Z)=HYV, Z/1Z), =1, 2, .

As V is an open subgroup of G,, HXV, Z/iZ)=Z/IZ. Then H*U, Z/IZ)=
Z/1Z shows that the field corresponding to o(G,,) is £,-Henselian by [2, Lemma
2]. Hence there exists a prime p, of %, such that ¢(p)=p,. As o(G,) is in-
finite, p, is a finite prime. As cd o(G,,,)=2, ¢(G,,,) must be an open
subgroup of G,, ;. Then we see that p, is not above /. As G,,, maps
isomorphically onto an open subgroup of G,,, the inertia subgroup 7T, maps
into the inertia subgroup of G,,;. Let E, be a finite Galois extension of k,
contained in £2,. Let E; be the corresponding extension of %; by ¢. If the
ramification index of p, in the extension E,/k, is not a multiple of /, the rami-
fication index of p, in E,/k; cannot be a multiple of /, as shown by the argu-
ment above.

iii) If cdo(Gy,1)=o0, I must be 2 because cd;G,=2 for [#2. As noted
above, the center of ¢(G,,,.) contains a subgronp M of order 2. The field cor-
responding to M has a unique real prime. Let v be the restriction of this
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prime onto the field corresponding to o(G,,,»). Let w,, w,, --- be the extension
of v in £,. As decomposition subgroups are conjugate, all of them coincide with
M. Then it must be w,=w,= ---, and the field corresponding to o(G, . .) is £.
Henselian by a real prime. This shows ¢(G,, .)=M is of order 2.

PROPOSITION 1. Almost all finite primes of k, are in the image of ¢. Movre
precisely, every finite prime 9, of ks, except finite number of primes is the image
of a finite prime p, of ky such that cd o(G,,, )=2.

PROOF. First we show that we can replace ., by any finite extension E,
contained in 2,. Let E, be the extension of k; corresponding to E, by . We
assume our assertion is true for E,. For every finite prime P, of E, except
finite number of primes, there exists a prime P; of E; such that ¢(P,)=P, and
cd o(Gp,)=2. Let p, be the restriction of P, onto 2. As Gp, is an open sub-
group of G,,, o(G,,,) is a non-abelian infinite group. This shows cd a(G,, ;)="2.
Then p, maps to the restriction of P,. Then our assertion is also true for k..
Now we can assume that %, contains the [-th roots of unity and that %, is
totally imaginary if /=2. Then ¢d,G,=2 and the case iii) cannot happen. We
assume that there exist infinitely many finite primes q;, q;, -+ in some ideal
class such that they are not images of primes of k, as in our assertion. Let
q,/q;=(a;). Then the extension k,(«/a,, «¥as, ---) is an infinite abelian extension
of type (/, [, ---). Only prime divisors of [ and q;, q,, --- are ramified in this exten-
sion. Let E; be the corresponding extension of £,. Then E, is an infinite abelian
extension of %, of type ([, /, ---). As we don’t have the case iii), every finite
prime of k; except the divisors of / is not ramified in this extension. But this
is a contradiction because such an extension must be of finite rank.

2. Let %k be an algebraic number field of finite degree. Let p be a prime
number, and let Z, be the additive group of the p-adic integers. Let Z3 denote
the direct sum of s copies of Z,. A Galois extension of 2 is called a Zj3-exten-
sion if the Galois group is isomorphic to Z5. We say k has Z,rank s if &
has a Zj-extension and does not have any Z3''-extension. It is known that
s=r,+1 where 7, is the number of complex primes of k. Let F, be the finite
extension of %k, which corresponds to o(G,). Let E, be a totally imaginary
quadratic extension of F,. Let E; be a quadratic extension of %; corresponding
to E, by 0. As G(2,/E,) is a homomorphic image of G(£2,/E.), the Z,-rank
of E; is not less than the Z,-rank of E,. As E, is totally imaginary, the Z,-
rank of E, is not less than [F,: Q]+1. If Leopoldt conjecture is true in E,
for a prime number p, i.e., if s=r,+1in E,, the above shows [k:: Q]J=[F,: Q1.

From now on we assume k,=Q. As E; is a quadratic field in this case,
the Z,-rank of E; is 1 or 2. This shows [F,: Q]=1, i.e. o is surjective and
k,=Q. We now put [=2, and apply the argument of Section 1 in our case.
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As @ has a unique Z,-extension, the Z,-extension corresponds to itself by o.
Let p be any odd prime number. As the decomposition group of p in this
extension is infinite, ¢(G,,.) is infinite. Thus the case iii) does not occur when
kle.

LEMMA 1. The field K, of the 2™-th roots of unity corresponds to itself by
o for mz3. If it has Z,-rank s, the Zi-extension of K, corresponds to itself
by o.

PROOF. As 2 is the only prime which is ramified in the extension Q{(,/—1,
v/ 2) of k,=Q, i) and ii) show that every prime except 2 is not ramified in the
corresponding extension of k,=Q. As this extension has the abelian Galois
group of type (2, 2), it must be Q(v/—1, ~/2). That is, Q(+~/—1, v/ 2) corre-
sponds to itself by o¢. The Z,-extension of Q corresponds to itself, as shown
above. Then K, must correspond to itself for any m=3. As it has a unique
Z%-extension, and as a Zj-extension corresponds to a Zj-extension, the Z3-
extension must correspond to itself.

LEMMA 2. The mapping ¢ is defined for every odd prime number, and ¢ is
the identity.

PROOF. Let ¢ be any odd prime number. The field corresponding to Q(«/q )
by ¢ is not contained in Q(+~/—1, +/2) by Lemma 1. Then an odd prime p is
ramified in the corresponding field. As the case iii) does not occur, the argu-
ment in Section 1 shows the case ii) occurs for p, i.e., cd 0(G,,)=2. Then
there corresponds an odd prime » such that ¢(p)=r. As ii) shows, » must be
ramified in Q(+/¢). This shows r=gq, i.e., every odd prime number ¢ is in the
image of ¢. Now let p be an odd prime such that ¢(p) is defined. We choose
m large enough as p does not split completely in K,,. Let s be the Z,-rank of
K. The number of the prime divisors of p in K, is at most the half of the
degree of K,. Hence s is greater than the number of the prime divisors. We
consider inertia subgroups of the prime divisors of p in the Zj-extension. If
all of them are of rank at most one, K, has an unramified Z ,-extension, which
is a contradiction. Hence at least one of them contains a subgroup isomorphic
to Z3. Then a decomposition group of a prime divisor of ¢(p) in the Z}-exten-
sion contains a subgroup isomorphic to Zi. If @(p)=r+p, the decomposition
group of » does not contain such a subgroup. This shows ¢(p)=p. Let p be
any odd prime number. There exists an odd prime number » such that ¢(»)=p.
Then the above shows p=¢(»)=r. Thatis, ¢ is defined for every prime p and
¢(p)=p.

THEOREM 1. The conjecture is true for k;=Q.

ProOOF. Let L, be any finite Galois extension of k,=Q contained in £,.
Let L, be a finite Galois extension of k2,=@ corresponding to L, by ¢. Let p
be any odd prime which splits completely in L,. As ¢ is defined at p, p also
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splits completely in L,. This shows L,CL,. As they have the same degree,
it must be L;=L,. Then A4, coincides with £,, and ¢ is induced from an auto-
morphism of G,. Then there exists a unique isomorphism

T. Qz —_—> 92:/11(:.91

such that 7-0(g:)=g,r for any g,=G..

COROLLARY 1. Let 2 be a solvably closed Galois extension of Q. Let A be
a Galois extension of Q. If G(A/Q)=G(2/Q), it must be A=1.

PrROOF. Let £, be a solvably closed Galois extension of @ which contains
A. Then the isomorphism above induces a surjective homomorphism G(2,/Q)—
G(£2/Q). We note that A is the field corresponding to the kernel of this homo-
morphism. Then shows A=20.

3. We will now prove uniqueness in our conjecture.

LEMMA 3. If £, is not contained in Q,, 2.2, is an infinite extension of §,.

PrROOF. A finite extension of %, in £, is not contained in £2,. Hence we
may assume k; is not contained in £,. Let K be a Galois extension of @ of
finite degree which contains both k; and k,. Let H=G(K/Q). Let p be any
prime number, and let F, be a prime field with p elements. We put A=F,H
and let

1 A E H 1

be a split group extension with the natural operation of H on A. Let L be a
Galois extension of @ containing K with Galois group E. Let M be the maximal
abelian p-extension of k; contained in L. Let H; be a subgroup of H corre-
sponding to k;. Then the field MK corresponds to a subgroup

B= Y (h—DA
hi€EH;

of A. Let kj=Fkik,N2, and let H, be a subgroup of H corresponding to k.

By our assumption, %k, is not contained in k3, i.e., H; does not contain H,. Then

B does not contain hZ) (h,—1)A. This shows MK cannot be obtained as a
2€Hg

composition of K and an abelian extension of k5. As M is a subfield of 2,, M£,
is contained in 2,£2,. We now show that MQ, is not contained in %,2,. There
exists a natural isomorphism

G(k1825/ kiks) = G(2:/ k7).

If M£, is contained in k.9, Mk./k k, is an abelian extension contained in £,82,.
The above isomorphism shows that there exists an abelian extension F of k;
contained in 2, such that Mk,—Fk;,. Then MK=FK is a composition of K
and an abelian extension F of k5, which is a contradiction. As M, is not
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contained in k.2, and as M is a p-extension of k,, [MQ,: k.£2,] is a multiple
of p. Then 2,2, contains a subfield whose degree is a multiple of p over £,
for any p. Then £,2, must be an infinite extension of £,.

COROLLARY. If there exists an algebraic number field E of finite degree
such that EQ,=ER,., 2, must be equal to £..

PrOOF. As £.2, is contained in Ef, by our assumption, 2,82, is a finite
extension of ;. Similarly 2,02, is a finite extension of £,. Then £, and 2,
are the same by

PROPOSITION 2. An injection t in our conjecture is unique if it exists.

PrOOF. Let r and p be injections from £, into £ such that

T'U(gl):gﬂ' and po’(gl):glp

for any g,€Gy. Then ky-7(£2,)=Fk,- p(£2;), because both of them correspond to
the kernel of . As t(£2,)/z(k,) and p(£2:)/p(k:) are solvably closed, the above
shows ©(£2,)=p(82,). That is, p-z~' is an automorphism of z(£2,). It holds

girpti=p-o(g)ci=pc7 g

on (£2,), i.e., p-v7! commutes with G; on 7(2;). As G,/Ker ¢ is naturally iso-
morphic with the Galois group of z(£2:)/kiNt(£2:), p-z~' commutes with the
Galois group. Then [2, Lemma 3] shows p-z7'=1, i.e., p=r.

4. We will now prove our conjecture when ¢ has good local behavior.

THEOREM 2. Let o: G,—G, be a continuous homomorphism such that ¢ is
defined everywhere, i.e., o(G,)#(e) for every finite prime py of ki, and there
exists a finite prime P, of ks such that o(G,)CG,,. We further assume that
every o(G,,) is open in G,,. Then o(Gy) is open in G,, and there corresponds a
unique injection t: 2,—82y such that t-o(g)=gv for any g.<G.

Let Q, be the rational p-adic numbers, and let Q, be its algebraic closure.
Let D=G(Q,/Q,) be the Galois group.

LEMMA 4. Let D, and D, be open subgroups of D. Let ¢:D,—D, be a
continuous surjection. Then fields corresponding to D, and D, have the same
residue class field. The inertia subgroup of D, maps onto the inertia subgroup
of D,.

PROOF. Let N be the kernel of ¢. Let / be a prime number other than p.
As shown by the argument of Section 1, ¢ is an isomorphism on a Sylow [-
subgroup of D;. This shows HYN, Q,/Z,)=0 and

HYD,, Q,/Z)=H'D,, Q./Z)).

That is, Sylow [-subgroups of D,/[Di, D,] and D,/[D,, D.] are isomorphic. As
[ is any prime number other than p, torsion parts of D,/[D,, D,]and D,/[D,, D]
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are isomorphic except p-primary parts. This shows corresponding residue class
fields have the same number of elements, and they are the same. Let T, be
the inertia subgroup of D,, and let T,=0¢"(T.). The above argument for open
subgroups of D; and D, shows that the field corresponding to T'; is unramified,
As D,/T=D,/T,= Z, T must be the inertia subgroup of D,

We first prove that o¢(G,) is open in G, in our theorem. Let F, be the
extension of %k, corresponding to ¢(G,). We have to prove [F.:%,] is finite.
Let p,=¢(p,). As o(G,,) is open in G,,, it is clear that p, and p, lie above the
same prime number. shows Np, is equal to the number of the residue
classes of the field corresponding to ¢(G,,). In particular, Np,=Nbp, holds. This
inequality is also valid when k, is replaced by a finite extension contained in
F,. Let E, be a Galois extension of %, contained in £,. Let E,; be the corre-
sponding extension of k; by o. If p, is unramified in E,, p, is unramified in
E,. Let P, and P, be the sets of the finite primes of %k, and k%, respectively.
We want to show P,—¢(P,) is finite. If it is infinite, there exist infinitely many
primes belonging to P,—¢@(P,) in some ideal class. Let qi, qs, -~+ be such primes,
and let q;/q;=(a;). Then ky(+/as +/as, ---) is an infinite abelian extension of %,
contained in £,. Any prime other than divisors of 2 is unramified in the field
corresponding to k(v as, /as, ---) by o. Then it must be a finite extension of
k,. This shows F, contains an infinite abelian extension FE, contained in
koA, A/, --+). Let p; be a prime of &, of degree 1 which is not above 2.
Then p,=¢(p,) must be of degree 1 and any extension of p, in E, must be also
of degree 1. As P, is unramified in E,, p, splits completely in E,. As Np,=
Np,, and as there exist at most [k;: Q] primes p, such that ¢(p)=p, for a
fixed b,

. 1 1 1
SI—JPJOE"J\LT;/IOg s—1 =Tky: O]

where the sum is taken over the primes p, of %, such that p,=d(p,) for some
prime p, of degree one. This is a contradiction because primes of density more
than [k,: Q] split completely in an infinite Galois extension E,. Thus P,—¢(P,)
is finite. This shows that ¢ maps the primes above p onto the primes above
p for almost all p. Then Np,=Np, shows [k;: Q1=[k,: Q]. As this is also
true for any finite extension of %, contained in F,, it must be [k;: QI=[F,: Q1.
This shows ¢{(G,) is open in G,. Uniqueness of r is then proved by Proposition
2. We now show existence of z. Let K be a finite Galois extension of Q which
contains both k; and k,. Let H=G(K/Q), and let S, and S, be subgroups of H
corresponding to %; and k,, respectively.

LEMMA 5. Every element of S, is conjugate to an element of S, in H.

PrOOF. Let s be any element of S;,. There exists a prime number p un-
ramified in K such that s is a Frobenius automorphism of a prime divisor B,
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of pin K. Then p,=P;\k; is a prime of degree 1 in %,. As shown above,
p.=¢(p,) is of degree 1 in k,. Let P, be a prime divisor of p, in K. Let h be
an element of H such that PB,=P%* Then hAsh~? is in S,.

LEMMA 6. Let L be a finite Galois extension of Q. Let E; be a finite Galois
extension of ks, contained in £2,, and let E, be the corresponding extension of k;
by . If L contains ky and E,, L also contains E,.

PROOF. Let p be any prime number such that all prime divisors of » in £,
are images of primes in k, through ¢. If p splits completely in L, every prime
divisor of p in E, has relative degree 1 over k,. Then the correspondence ¢
shows every prime divisor of p in E, has relative degree 1 over k;. As every
prime divisor of p in k, is also of degree 1, every prime divisor of p in E, is
of degree 1. This shows E,CL.

Let K, be any finite Galois extension of k. contained in £,. Let K, be the
corresponding Galois extension of k; by o. Let H;=G(K;/k;). Then an injec-
tion o : H,—H, is naturally induced. We will show that there exists an injec-
tion 7: K,—K; such that z-o(h,)=h,cr on K, for any h,=H,. Then we can
easily get a desiring injection 7: £2,—2,. Most of the argument below is the
same as in [3]

Let K be a finite Galois extension of ¢ which contains both K; and K.
Let H=G(K/Q), S;=G(K/k;) and N;=G(K/K;). Then H;=S;/N;. Let hy, ---,
hin be a system of generators of H, and let h,;=a(h,;). Let s;; be an element
of S; such that s;;N;=h;;. Let S;, be N; and let S;;, =1, ---, m, be a subgroup
of S; which is generated by s;; and N,;. Let F;; be a subfield of K which cor-
responds to S;;. Then F,; corresponds to Fy; by . Let p be a prime number
such that p=1mod|H| and let F, be a prime field of characteristic p. Let A=
FyHu,+ - +FpyHu, be an H-module which is isomorphic to a direct sum of
m-+1 copies of F,H. Let

1 A E H 1

be a split group extension. Let L be a Galois extension of @ which contains
K and whose Galois group is isomorphic to £. Let L;be a subfield of L which
corresponds to F,Hu,+ -+ +F,Hu;ov+FpHuj+ - +FyHuy,. Then L; is a
Galois extension of Q whose Galois group is isomorphic to a split extension of
H by F,Hu; Let Z; be a character of S;;/N; whose order is equal to the order
of Si;/N;. Values of X; are considered to be elements of F,. As ¢ induces an
isomorphism from S;;/N; onto S,;/N,, X;67* is a character of S,;/N, which is
also denoted by Z; by abuse of the notation. Let M,; be the maximal abelian
p-extension of K, contained in L; such that the operation of S,;/N. on the
Galois group G(M,;/K;) coincides with the scalar multiplication of the values of
%, As M,; is a subfield of 2,, there exists an extension M,; of K, correspond-
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ing to M,; by o. shows M,; is contained in L, As the Galois group
G(M,;/ Fy;) is isomorphic to a subgroup of G(M,,/F,;), the operation of S;;/N;
on G(M,;/K,) is also the scalar multiplication of the values of X;. Let B;; be
the subgroup of F,Hu; which corresponds to an intermediate field KM;; As
G(M;;/K;) and F,Hu;/B;; are isomorphic as S;;/N;-modules, (¢;;—X;(t:;))FpHu;
is contained in B;; for any t¢;;€S;;, That is, Cij——:t”g”(tij—xj(tij))FpHu,- is

contained in B;;, As N, operates trivially on F,Hu;/C,; the intermediate field
corresponding to C,; comes from some abelian p-extension of K,. Then the
maximality shows B,;=C,;. Let A; be the subgroup of A corresponding to

K 17’n[0 M;;. We have shown
=

ADY X =X t)FpHu;

J t1j€815

and
AZ:Z. 2 (fgj—Xj(fgj))FpHUj.

J t2j€8gj
As IIM,; corresponds to II M,; by o, shows every element of
G(L/TIM,;) is conjugate to an element of G(L/IIM,;) in E. As G(L/K) is a
normal subgroup of E, every element of A,=G(L/KIIM,;) is conjugate to an
element of A,=G(L/KTIM,;) in E. We put

a=_ 3 (Dot 3 (o1 (s1)us e As

1€N
Then there exists an element A< H such that has A,, i.e.,

A (m—1De X (n,— DF,H

and
h(s1;—X(s1;)) € lE(tzj—Xj(tzj))FpH, j=1, -, m.
2j
This shows
>n.h 2 (n—1)=0
’nz n1
and

tE taX (o) h(S1;—X5(515))=0.
2j

Let n, be any element of N;. We calculate the coefficient of An; in the first
equality. As the number of pairs (n,, nj) such that n,hAni=hn, is smaller than
p, there necessarily exists an element n,& N, such that n;ai=hn,. This shows
hN,h 'CN,. Then h~' induces an injection from K, into K;. As the coefficient
of hs,; is zero in the second equality, there exists an element #,;&S,; such that

hSU:l‘th and Xj(tzj):Xj(Slj).
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Then h,;=s,;N;=t;N; by the definition of X;. As h~%,;=s,,;h"", actions of A™'h,;
=h"'o(hy;) and hy;h7' are equal on K,;. Then r=~h"! is a desired element, be-
cause H, is generated by Ay, -+, him. Thus we have shown the existence of
7 in our theorem.

COROLLARY. Let ki and k; be algebraic number fields. We assume that k,
s of finite degree. Let £2, and 2, be solvably closed Galois extensions of ki and
ks, respectively. If their Galois groups G(£2./k,) and G(2,/ks) are isomorphic,
ke is also of finite degree.

PrOOF. Let F, be a subfield of k. of finite degree. Let L, be the maximal
Galois extension of F, contained in £,. Then L, is solvably closed. There
exists a natural homomorphism p: G(£2,/k;)—G(Ly/F;). Combining with the
given isomorphism ¢ : G(2,/k,)—G(82,/k,), a homomorphism

o: G(Ql/k1> —> G(Lz/Fz)

is induced. As L, is solvably closed, ¢ maps any decomposition subgroup of a
finite prime injectively into a decomposition subgroup. As shown in [1, Theorem
17, the isomorphism ¢ induces isomorphisms of decomposition subgroups. Hence
o maps any decomposition subgroup injectively into a decomposition subgroup.
Then the image must be open in a decomposition subgroup [1, Theorem 17.
Thus p satisfies the condition of our theorem. Then it must be [F;: Q]<[k,: Q]
as shown in the proof of our theorem. As F, is arbitrary, [k,: Q] is not
greater than [2,: Q.
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