Isometric immersions into spheres

By Thomas HASANIS

(Received Dec. 17, 1979)

Recently ([1], [2]) new quantitative results concerning isometric immersions of complete Riemannian manifolds into euclidean space were obtained using a powerful theorem of Omori's [6]. Here we shall prove analogous results (theorem 1 and 2 below) concerning immersions into spheres. We begin with some auxiliary formulae for the sphere.

Let S_{λ}^{n+q} be the (n+q)-sphere of radius λ with the standard Riemannian metric induced by inclusion in R^{n+q+1} . For a point P_0 of S_{λ}^{n+q} say the north pole, and a nonnegative number h, let $C(P_0, h)$ be the (n+q-1)-hypersphere of S_{λ}^{n+q} with constant mean curvature h centered at P_0 and lying in the northern hemisphere. Note that $C(P_0, 0)$ is a great (n+q-1)-hypersphere in S_{λ}^{n+q} , the "equator". Let $D(P_0, h)$ be the closed geodesic ball around P_0 with $\partial D(P_0, h) = C(P_0, h)$. We take as origin of R^{n+q+1} the point P_0 and let φ be the position vector of a point in $D(P_0, h)$. If O is the center of the sphere S_{λ}^{n+q} , we set $e_0 = \lambda^{-1} P_0 O$. If we denote by N the outer unit normal of S_{λ}^{n+q} in R^{n+q+1} , then by easy computations we obtain

(1)
$$d^{2}(P_{0}, C(P_{0}, h)) = 2\lambda^{2} [1 - h\lambda(1 + h^{2}\lambda^{2})^{-1/2}],$$

where $d(P_0, C(P_0, h))$ is the distance in R^{n+q+1} , and

(2)
$$\lambda^{-1}\langle N, \varphi \rangle = \frac{1}{2} \lambda^{-2} \langle \varphi, \varphi \rangle \leq \frac{1}{2} \lambda^{-2} d^2(P_0, C(P_0, h)) = 1 - h \lambda (1 + h^2 \lambda^2)^{-1/2},$$

where \langle , \rangle is the standard inner product in R^{n+q+1} .

Also, for all unit vectors e which are tangent to S_{λ}^{n+q} at any point of $D(P_0, h)$ we have

$$|\langle e, e_0 \rangle| \leq (1 + h^2 \lambda^2)^{-1/2}$$

The proofs of the results in this paper will consist in simple applications of by Omori's theorem A in [6] which we now formulate.

THEOREM A. Let M be a complete Riemannian manifold with sectional curvature bounded from below, consider a smooth function $f: M \to R$ with $\sup f < \infty$; then for any $\varepsilon > 0$ there exists a point $p \in M$, which depends on ε , where $\|\operatorname{grad} f\| < \varepsilon$ and $\nabla^2 f(X, X) < \varepsilon$, for all unit vectors X of $T_p M$ (by $\nabla^2 f$ we denote the

T. Hasanis

Hessian form of f).

A useful modified form of Theorem A is the following [2]

THEOREM B. Let M be a complete Riemannian manifold satisfying, for some constant a the condition $-\infty < -a^2 \le Ric(X, X)$ for all unit vectors X; if the smooth function $f: M \to R$ is bounded from above, then for any $\varepsilon > 0$, there exists a point on M where $\|\operatorname{grad} f\| < \varepsilon$ and $\Delta f < \varepsilon$ (By Δf we denote the Laplacian of f).

Now, we come to the main results of this paper.

THEOREM 1. Let M be a complete n-dimensional Riemannian manifold with scalar curvature R bounded from below; assume that there exists an isometric immersion φ of M into the euclidean sphere S_{λ}^{n+q} with $q \leq n-1$, so that $\varphi(M)$ is included in $D(P_0, h)$ with h>0; then the sectional curvature K of M satisfies:

$$\limsup_{M} K \ge \lambda^{-2} + \frac{1}{2} h^{2} [1 + h \lambda (1 + h^{2} \lambda^{2})^{-1/2}].$$

PROOF. If $\inf K = -\infty$, then $\inf R > -\infty$ easily implies $\sup K = \infty$ and the theorem follows. We may therefore assume $\inf K > -\infty$. We take as origin the point P_0 and we consider the function $f = \langle \varphi, \varphi \rangle/2$ on M. Identifying φ with a tangent vector to R^{n+q+1} , we compute easily

(4)
$$\nabla^2 f(X, X) = \langle X, X \rangle + \langle L(X, X), \varphi \rangle,$$

where L stands for the second fundamental form of M in R^{n+q+1} . The function f is bounded and thus by Theorem A for any natural number m there exists a point $P_m \in M$ so that

$$\nabla^2 f(X, X) < \frac{1}{m}$$

for all unit vectors X tangent to M at P_m . Now, we have

(5)
$$L(X, Y) = L_1(X, Y) - \frac{1}{2} \langle X, Y \rangle N,$$

where L_1 is the second fundamental form of M in S_{λ}^{n+q} . Thus, for a nonzero vector $X \in T_{p_m}M$ we must have

$$1+\langle L_1(X, X), \varphi\rangle \|X\|^{-2}-\frac{1}{\lambda}\langle N, \varphi\rangle < \frac{1}{m}$$

or, using (2)

$$h\lambda(1+h^2\lambda^2)^{-1/2}-\frac{1}{m}<-\langle L_1(X, X), \varphi\rangle\|X\|^{-2}.$$

Thus for all nonzero vectors X of $T_{p_m}M$ we have

(6)
$$\|\varphi\|^{-1} \left[h \lambda (1 + h^2 \lambda^2)^{-1/2} - \frac{1}{m} \right] < \|L_1(X, X)\| \|X\|^{-2}.$$

From (6) and h>0 we conclude that, for a nonzero X at $P_m \in M$ and m sufficiently large, we have $L_1(X, X) \neq 0$ and therefore we can use as in [3] the following well-known algebraic lemma ([4], p. 28): let $L_1: R^n \times R^n \to R^q$ be a symmetric bilinear mapping satisfying $L_1(X, X) \neq 0$ for $X \neq 0$; if $q \leq n-1$, there exist linearly independent X, Y so that $L_1(X, Y)=0$ and $L_1(X, X)=L_1(Y, Y)$. Applying (6) for two such vectors X, Y in $T_{p_m}M$ we get:

$$\begin{split} \|\varphi\|^{-2} \Big[h\lambda(1+h^2\lambda^2)^{-1/2} - \frac{1}{m} \Big]^2 &< \|L_1(X, X)\| \cdot \|L_1(Y, Y)\| \|X\|^{-2} \|Y\|^{-2} \\ &\leq (\langle L_1(X, X), L_1(Y, Y) \rangle - \|L_1(X, Y)\|^2) (\|X\|^2 \|Y\|^2 - \langle X, Y \rangle^2)^{-1} \end{split}$$

or

(7)
$$\|\varphi\|^{-2} \left[h \lambda (1 + h^2 \lambda^2)^{-1/2} - \frac{1}{m} \right]^2 < K_M(X \wedge Y) - \lambda^{-2}$$

since by the Gauss equation we have

$$K_{\mathbf{M}}(X \wedge Y) = \lambda^{-2} + (\langle L_1(X, X), L_1(Y, Y) \rangle - \|L_1(X, Y)\|^2)(\|X\|^2 \|Y\|^2 - \langle X, Y \rangle^2)^{-1}$$

where $X \wedge Y$ is the plane spanned by X and Y.

Now, $\|\varphi\|^2 \le 2\lambda^2 [1-h\lambda(1+h^2\lambda^2)^{-1/2}]$ and using (7) we get

$$\frac{1}{2} \lambda^{-2} \left[1 - h \lambda (1 + h^2 \lambda^2)^{-1/2}\right]^{-1} \left[h \lambda (1 + h^2 \lambda^2)^{-1/2} - \frac{1}{m} \right]^2 < K_m(X \wedge Y) - \lambda^{-2}.$$

Then, letting m go to infinity, we deduce

$$\lim \sup K \!\! \geq \!\! \lambda^{-2} + \frac{1}{2} h^2 (1 + h^2 \lambda^2)^{-1} \! \left[1 - h \lambda (1 + h^2 \lambda^2)^{-1/2} \right]^{-1}$$

or

$$\limsup K \leq \lambda^{-2} + \frac{1}{2} h^2 [1 + \lambda h (1 + h^2 \lambda^2)^{-1/2}].$$

The following corollary is an easy consequence of Theorem 1.

COROLLARY 1. If M is a complete n-dimensional submanifold of S_{λ}^{n+q} where $q \le n-1$, with $-\infty < -a^2 \le sectional$ curvature $\le \lambda^{-2}$, then M has accumulation points in every great (n+q-1)-hypersphere of S_{λ}^{n+q} . If, in addition, M is compact, then it has points in common with every great (n+q-1)-hypersphere of S_{λ}^{n+q} .

THEOREM 2. Let M be a complete n-dimensional Riemannian manifold with Ricci curvature bounded from below; assume that there exists an isometric immersion φ of M into the euclidean sphere S_{λ}^{n+q} , so that $\varphi(M)$ is included in $D(P_0, h)$ $(h \ge 0)$; if the mean curvature vector H_1 of the immersion φ satisfies $|H_1| \le l$, then $l \ge h$.

PROOF. We consider S_{λ}^{n+q} as included in R^{n+q+1} . If H, H_1 are respectively the mean curvature vectors of M in R^{n+q+1} and in S_{λ}^{n+q} , then by formula (5)

above we get easily

$$H=H_1-\frac{1}{\lambda}N$$
.

Consider again the bounded function $f = \langle \varphi, \varphi \rangle / 2$ on M. Taking the trace of (4) we have

$$\Delta f = n(1 + \langle H, \varphi \rangle)$$

or

$$[\Delta f = n(1 + \langle H_1, \varphi \rangle - \frac{1}{\lambda} \langle N, \varphi \rangle).$$

Now, using inequality (3) and the assumption, we get

$$|\langle H_1, \varphi \rangle| \leq l\lambda (1+h^2\lambda^2)^{-1/2}$$
 and thus $\langle H_1, \varphi \rangle \geq -l\lambda (1+h^2\lambda^2)^{-1/2}$.

Finally, by using the last inequality and the inequality (2) we deduce

$$\Delta f \geq n(h-l)\lambda(1+h^2\lambda^2)^{-1/2}$$
.

If, we had h>l, then $h-l=\varepsilon>0$ and so

$$\Delta f \ge n \varepsilon \lambda (1 + h^2 \lambda^2)^{-1/2} = \text{const.} > 0$$

which contradicts Theorem B. So $l \ge h$ and the proof is complete.

Note that if $\varphi: M \to S_{\lambda}^{n+q}$ with $\varphi(M) \subset D(P_0, h)$ is a minimal isometric immersion, we may take l=0 and thus $\Delta f \geq nh\lambda(1+h^2\lambda^2)^{-1/2} \geq 0$. Now, using the maximum principle, we obtain the following corollaries.

COROLLARY 2. A compact connected minimal submanifold M of S_1^n intersects every great (n-1)-sphere of S_1^n . Moreover, if M is contained in a closed hemisphere of S_1^n then M must be contained in the boundary of this hemisphere.

COROLLARY 3. A complete connected non-compact minimal submanifold of S_1^n with Ricci curvature bounded below, has accumulation points on every great (n-1)-sphere of S_1^n . Moreover, if M is contained in a closed hemisphere and has at least one point on the boundary of this hemisphere, then M must be contained in this boundary.

REMARK. Theorem 2 and Corollary 2 generalize the results in [7] concerning hypersurfaces to submanifolds. Corollaries 2 and 3 give partial answers to a question posed by Nakagawa and Shiohama [5; p. 415], manely whether a complete minimal submanifold of a euclidean sphere is contained in an open or closed hemisphere.

I wish to thank D. Koutroufiotis for his aid in this work.

References

- Ch. Baikousis and Th. Koufogiorgos, Isometric immersions of complete Riemannian manifolds into euclidean space, Proc. Amer. Math. Soc., 79 (1980), 87-88.
- [2] Th. Hasanis and D. Koutroufiotis, Immersions of bounded mean curvature, Arch. Math., 33 (1979), 170-171.
- [3] H. Jacobowitz, Isometric embedding of a compact Riemannian manifold into euclidean space, Proc. Amer. Math. Soc., 40 (1973), 245-246.
- [4] S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. II, Interscience Tracts in Pure and Appl. Math. no. 15, New York, 1969.
- [5] H. Nakagawa and K. Shiohama, Notes on minimal immersions, J. Math. Soc. Japan, 23 (1971), 409-415.
- [6] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan, 19 (1967), 205-214.
- [7] J. Wason, Position of compact hypersurfaces of the *n*-sphere, Proc. Amer. Math. Soc., 68 (1978), 90-91.

Thomas HASANIS

Department of Mathematics
University of Ioannina
Ioannina, Greece

Added in proof (May, 1981). Theorem 1 has been generalized recently by L. Jorge and D. Koutroufiotis, "An estimate for the curvature of bounded submanifolds", to appear in the Amer. J. Math. Theorem 2 has been generalized recently by L. Jorge and F. Xavier, "An inequality between the exterior diameter and the mean curvature of bounded immersions", to appear.