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Let us begin with the following simple example of a parabolic unilateral
problem

ou/ot—Au=0, u=z¥

in 2x(, T] 0.1)
Qu/ot—Au)u—¥)=0
u=0 on [I'X(0, T] 0.2)
ulx, 0)=u(x)=¥(x) in Q. (0.3)

Here £ is a domain in R¥ with sufficiently smooth boundary I, and ¥ is a
function such that FeW?2?(Q) and ¥|,<0. We wish to make p small; how-
ever, assume

1<p<2<p*=pN/(N—p). (0.4)
In view of Sobolev’s imbedding theorem it follows that
War(Q)CHY (DL (D), p'=p/(p—1). (0.5)

Let L, be the realization of —A in L%£2) under the Dirichlet boundary condition,
and M, be the multivalued mapping defined by

DM)={us LY(2): u=" a.e. in £}, 0.6)
Mu={ge LY(2): g<0 a.e. in 2,
g(x)=0 if w(x)>¥(x)}. (0.7)

Note that M,=0lx where [ is the indicatrix of the closed convex set K=D(M,).
The problem (0.1)-(0.3) is formulated in L?(f) as

du(t)/dt+(Ly,+Mpu(t)=0 (0.8
u(0)=u,. 0.9)
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It can be shown that L,+M, is m-accretive, and hence we can apply a result
of M.G. Crandall and T.M. Liggett to construct the solution u(t) of
(0.9) in some sense by an exponential formula. We are interested in the differ-
entiability of this solution with respect to ¢ assuming only ¥=u,= L?(2) or
u,€D(L,+M,) for the initial value u,. With the aid of a comparison theorem
we can show u()e L*8) for ¢+>0. Hence noting that P=H(Q) in view of
we may consider u(f) as the solution of

du(t)/dt+0¢(u(t))=0 (0.10)

in (0, T], where ¢: L*(2)—[0, co] is the convex function
1
pu)=1{ 2

0 otherwise.

|Vul2dx if ¥<ueHLYD),
0

Thus we may apply a general result on the subdifferential of a convex function
to establish the differentiability of w(¢) in L% ). With the aid of another
application of a comparison theorem we can show that du(t)/dt< L™(Q) for any
r>2, if t>0. We note L,+M,50¢ in general under our hypothesis as the
following counter example shows. Suppose ¥ is such that FeW? ()WL 2(2)
=D(L,) and 0=—A¥« L*$2). Let v be an arbitrary element of D($). Then
v—Te L?(2) by virtue of [0.5). Hence with the aid of an integration by part

0=(—AY, v—=¥)=(T, VoV =g(v)—¢(¥),

which implies ¥'€ D(9¢). However ¥e D(L,+M,)=D(L,)N\D(M,) since AU« L D).
In this paper we consider the more general problem

in £x(0, T] (0.11)
Qu/ot+_Lu—f)u—¥)=0
—ou/one B(x, u) on ['X(0, T] (0.12)
ulx, 0=u,x) in £2. (0.13)

Here £ iz not assumed to be bounded. _£ is a not necessarily symmetric linear

elliptic operator of second order, and 0/0n is the differentiation in the outward
conormal direction with respect to .. S(x, -) is a maximal monotone graph in
R* with 0= 3(x, 0) for each fixed x&I. ¥ is a function such that

Yew?r(Q), 0¥/on+p~(x, T)=<0 on I’ 0.14)

. with p satisfying (0.4). B (x, 7), which will be defined later, is roughly speaking
min B(x, 7).
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First we formulate the elliptic boundary value problem
Lu=fin £, —ou/oneBf(x, u) on I (0.15)

in L*{2) as some variational problem. With the aid of a result of H. Brézis
the problem thus formulated is expressed as L,u=f with some single-
valued m-accretive operator L, in L*£2). Since (14+2L,)"! is a contraction for
A>0 also in L? norm, 1=<¢<oo, an m-accretive operator L, in L%(£2) is defined
as the smallest closed extension of the operator with graph G(L,)N(LY(Q2) X LY Q)),
where G(L,) is the graph of L,. Thus for 1=<g<co the problem is for-
mulated in LY£) as L,u=f. Following the idea of B. D. Calvert and C. P. Gupta
it is shown that D(L)CW*9£2) for 1<¢=2, which will be used frequently
in the subsequent argument.
In addition to we assume also

Yewr(Q), LT¥sLV(D).

Then it is shown that A,=L,+ M, is m-accretive in L4Q) for 1=¢=<p, where
M, is the mapping defined by (0.6) and (0.7). For p<q=2 A, is defined as the
m-accretive extension of L,+M, If feW0, T; LYRQ)) and ¥<u,= LYD),
the problem (0.11)-(0.13) is expressed as

du(t)/dt+Aut)2f(t), O0<t<T,
w(0)=1,.

With the aid of Theorem 5.1 of M. G. Crandall and A. Pazy it is possible
to construct the solution of this problem by an exponential formula. Suppose
further feW*Y0, T ; LYDNL"(2)) for 1=¢<2=<r. Then by a comparison
theorem it follows that u(¢)e L*(Q) for ¢>0. Instead of we have

du(t)/dt+Au(t)=f(t) (0.16)

this time where A is the mapping defined by Au=(Lu-+0¢u)NL*), L is the
linear isomorphism from H*(2) onto H(£2)* associated with £ and ¢ is some
proper convex function on H*(£) associated with 8 and ¥. It will be shown
that the solution of constructed by the exponential formula is differentiable
a.e. (Theorem 6.I). As in the problem (0.1)-(0.3) we can show that du(t)/dt¢
e L"(2) for t>0 with the aid of a comparison theorem following F.]J. Massey,
III [11] and L.C. Evans [8], [9] The main theorem of the present paper is

Theorem 7.1 Related results are found in the above papers of Massey and
Evans. In the equation of the form
du/ot+ Lu-+puw)sf (0.17)

is studied, and in [8] various types of problems including are
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investigated.
The result of this paper was announced in and [14].

§1. Assumptions and notations.

All functions considered in this paper are real valued.

Let 2 be a not necessarily bounded domain in R¥. We assume that the
poundary I" of £ is uniformly regular of class C? and locally regular of class
C* in the sense of F.E. Browder [3]. W™ ?(£2) denotes the usual Sobolev space
and H™(Q2)=W™22). The norm of W™ 2(f) is denoted by | | m , and that of
L?(2) is simply by | ||, if there is no fear of confusion. W*~'/?2([") is the

set of the boundary values of functions belonging to W*2(£). W*-Y??([") is a
Banach space with norm

Chdi-up, p=inf {Jully, p: ucsW*?(Q), u=h on I'} .

We denote by — strong convergence and by — weak convergence. For a mapping
A multivalued in general D(A), R(A) and G(A) stand for its domain, range and
graph respectively.

Let

+sz

o - v+cuv)dx 1.1
j i=1 X;

be a bilinear form defined in H*(2)X H*(£2). The coefficients a;, b; are bounded
and continuous in £ together with first derivatives and ¢ is bounded and

measurable in £. {a;;(x)} is uniformly positive definite in £, i.e. for some
positive constant &

3 ai(0EEZH1E,,  xeQ, ESRY. (1.2)

1, j=1

We assume that there exists a positive constant « such that
N .
c2a, c— z:labi/ax,ga a.e. in Q. (1.3)
i=

We denote by £ the linear differential operator associated with the bilinear

form [1.1):
r=— % 0

i, j=1 a.x]

(a”a )+ Eb,a te.

The conormal derivative with respect to .£ is denoted by

0/on= % ai;v;0/0x;
e

%,7=1
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where v=(y,, ---, vy) is the outward normal vector to I
Let j(x, ) be a function defined on I'X R such that for each fixed xeI”
j(x, 7) is a proper convex lower semicontinuous function of » such that

i(x, =j(x, 0)=0. (1.4)

We denote by p(x, -)=0j(x, -) the subdifferential of j(x, ) with respect to 7.
As for the regularity with respect to x we assume that for each t€R and
A>0 (14+28(x, -))"%(t) is a measurable function of x (cf. B.D. Calvert and C.P.
Gupta [5]). Unless j(x, r)=o0 for r+0 (namely the boundary condition is of

Dirichlet type), we assume that

bivigo on I. (1.5)

Let ¥(x) be a function satisfying

Tew»(Q), (1.6)
Vewr(Q), L¥eL(Q), (1.7)
dW(x)/on+B(x, V)0  xel (1.8)

where p is an exponent satisfying

1<p <2< p*=Np/(N—p) (1.9)
and

min {z: z€ B(x, )} if reD(B(x, +)),
B (x, )= oo if r& D(B(x, -)) and r=sup D(B(x, ),
—oco if r& D(B(x, -)) and r=inf D(B(x, -))
(cf. p. 55 of H. Brézis [2]).

§2. Preliminaries (1).

In this section we collect some preliminary results mainly due to H. Brézis
and B.D. Calvert and C.P. Gupta [5] concerning the boundary value problem
Lu=f in Q, —ou/on<B(u) on I Here B(u) stands for the (multivalued in
general) function x— f(x, u(x)). In our case the proofs are simpler than those
of the corresponding results of since £ is linear and we can use the Yosida
approximation of B(x, :) according to [Proposition 2.1 below.

Let a(u, v) be a bilinear form such that

a(u, W=colul., usH Q) 2.1
for some ¢,>0. It will be shown in that such a constant c, exists
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under our hypothesis. Let @ be a proper convex, lower semicontinuous convex
function defined in L*(I") such that @=co on HY*['). Then it is known that
for any f& L*£) there exists a unique solution us HY(£), @(u|r)<oo, of the
inequality

a(u, v—w+O@| =Pl Nz, v—u), veH (D). (2.2)
Furthermore 'the solution is characterized by |
Lu=f in £ in the distribution sense, (2.3)

—ou/onsod(ulr) (2.4)

where ¢ is the restriction of ¢ to HV%(I") (cf. Theorem 1.7 of [Z].
For ¢>0 let

1

O (wy=o-| (u=Jwral+0( )

be the Yosida approximation of @ where J.=(14+¢0®)"'.
PROPOSITION 2.1. For fe LX) let u.= HY(R2) be the solution of the inequality

a(ue, v—u)+@.(v|r)—=@lulr)=(f, v—u), veH(Q).
Then
—0u./on=0u.|r)e L*I"). (2.5)

As e—0 u, converges to the solution u of (2.2) in the strong topology of H' ()
and

lim—l—gp (e—Ju)?d'=0 . ‘ 2.6)

e~0 &

ProOF. This proposition was proved by H. Brézis (Theorem 1.8 of [2])
under the assumption that 2 is bounded. In case £ is unbounded the proof is
essentially unchanged and hence we only sketch it. If we put

a(u, v)=(a(u, v)+a(v, w)/2,
then a@(u, u)=a(u, u)=colul?.. Hence alu, u)?=a(u, u)’* may be considered
as a norm of H*{2). As in Theorem 1.8 of [2], a(u,., u.) and E_ISF (ue—J.u)dll

are bounded as ¢—0. If u.,—u* in H'(Q), then u. |r—u*|r in HY*[) and
Jepte, | r—u*|p in LXI'). Letting e=¢,—0 in

a(ue, V)+0.(v|r)=(f, v—u)+alu., u)+0(Ju.lr)
we get

a(u*, v)+ 0| rm=(f, v—u*)+lim sup alu.,, u.,)+0w*| ).

Hence @(u*|r)<oo and
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a(u*, w¥)=liminf a(u.,, u.,)=lim sup a(u.,, u.,)
Sa(u*, v)+ Q| r)—@w*| r)—(f, v—u¥).

Letting v=u* we get a(u*, v*)=lim a(u.,, u.,), and hence u.,—u* in H Q).
It is easily seen that u* is a solution of (2.2), and hence u*=u and u.,—u in

HYO). is established in Theorem 1.8 of [2]. The proof of is easy
and is omitted.

LEMMA 2.1. Suppose X is a uniformly Lipschitz continuous increasing function
in R such that %(0)=0. Then for any us HY(Q)

a(u, X(w)=zalu, X(uw)) . 2.7

PrROOF. Let £ be the indefinite integral of X such that £(0)=0. is
easily established by noting

0u/0x:X(w)y=0C(u)/0x;,  uX(w)=Cl(u)

and using [(1.2), (1.5).
LEMMA 2.2. For any usH'(2)

a(u, u)=zmin {0, a} [ul},.. (2.8)

PrROOF. (2.8) is clear from the proof of Lemma 2.1.
In what follows @ : L*(I")—[0, ] denotes the function

| ite, upar it jae 1)

D(u)= 2.9

0 otherwise

where j(u) is the function j(x, u(x)). By the proof of of 7(x, u(x))
is measurable for ue L*(") and @ is proper convex, lower semicontinuous on
L¥I).

DEFINITION 2.1. L, is the operator with domain and range contained in
L) such that L,u=f if fe L¥*Q), ue H(Q), ®(u|r)<co and (2.2) holds.

Note that L, is single valued since (2.3) holds if L,u=f. It is known that
the following proposition holds.

PROPOSITION 2.2 L, is m-accretive and R(L,)=L* Q).

For the Yosida approximation @, of @ we have

0D (u)(x)=P(x, u(x)) (2.10)

where f.(x, -) is the Yosida approximation of B(x, -). To simplify the notation
we write S.(u) to denote the function f.(x, u(x)).

We denote by L,. the operator defined as L, with @, in place of @ in
D 0 . If L, .u.=f, then
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—0u./on=_B.(u)e L¥I") (2.11)

(Theorem 1.8 of [2]) and in view of Proposition 2. u.—u in H({) where u
is the solution of L,u=f.

DEFINITION 2.2. For 1=<g<oo the operator L, with domain and range con-
tained in L%%2) is defined by

G(Lp=the closure of G(L)N(LY(2)x LY8)) in LYDHXLYD).

LEMMA 2.3. Let X be a uniformly Lipschitz continuous increasing jfunction
in R such that X(0)=0. Then for any u, veD(L,)

(Lou—Lyv, X(u—v))=za(lu—v, X(u—v)). (2.12)

PROOF. is easily established by approximating %, v by the solutions
of L, u.=Lyu, L, .v.=L,v, and noting [2.1I).
LEMMA 2.4. Suppose 1=q<oco, 2>0, f, g€ LX(NLYD),

ut+ALu=f, v+AL,v=g. (2.13)
Then u, ve LYYD) and
(A+Aa)llu—vl,=lf—2l,. (2.14)
Proor. First consider the case 1<g<2. Let
[tz i [t|=1/n,
Xu(t)=
n?-9 if lti<l/n.

In view of Lemmas 2.1 and 2.3

alu—v, Xp(u—v)S(Loau—Lyv, Xo(u—v)). (2.15)
It follows from [2.13) and [2.15)] that
(L2 —v, L(u—v)=Z(F—g, Lu(u—0)). (2.16)

Applying Hélder’s inequality to the right side of and noting for ¢’=q/(g—1)

SQIXn(u—v)Iq'dx

IA

]u—vlqu—i—nz'qg (u—v)dx

Sm-v]zl/n lu-vi<l/n

I

Sg(u— Xl (u—v)dx,
we get

(l—l—la){s |u—v;<1dx}”" @217)

lu-viz1/n
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1/q
=] w—vita—v)dz} "I gl

Letting n—oco in (2.17) we see that u—ve LYLQ) and holds. Applying
for v=g=0 we get uc LY). Other cases are handled analogously.
In what follows we write for ¢>1

F(r)=|r|**% (2.18)
and
1 if >0
sign»=4 0 if r=0 (2.19)
—1 if r<O0.

PROPOSITION 2.3. For 1=q<oo L, is m-accretive and R(Lp)=L%$2). For
u, vE€D(Ly)

allu—v|8=(Lau— Lov, Flu—v)) if  ¢>1, (2.20)
allu—v|,=(Lu—L,v, sign(u—7v)) if  gq=1, (2.21)
alullg=| Lqull, for ¢=1. (2.22)

ProOF. The first part of the proposition is an easy consequence of
2.4. Letting n—oo in we get and [2.21) for u, veD(L,)N\LYY),

Lyu, L,ve LY2). For general u, ve D(L,) these two inequalities are established
by approximating u, v according to the definition of L, Letting v=0 in (2.20)

we obtain [2.22).
LEMMA 25. If 1<¢<2, then D(L)CW*%82) and there exists a constant c,
such that for any u, ve D(L,)

(Lgu—Lgv, Fu—v)=cllu—vli,. (2.23)

For the proof of this lemma we refer to Proposition 3.2 of [5].

§ 3. Preliminaries (2).

Let ¥ and p be such that (1.6), [1.7), [1.8) and [1.9) hold. In view of Sobolev's
imbedding theorem

W=2(QCH Q)T LY(2), p'=p/(p—1). @.D
Let P be the operator defined by

(Pu)(x)=max {u(x), ¥(x)} .
Then
u—Pu=—(T—u)*, (3.2)
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Fu—Pu)=—((T—u)*)? (3.3)

(recall for the definition of F,).

LEMMA 3.1. If ¢(r) is a uniformly Lipschitz continuous function which
vanishes for r<O0, then for any usD(L,)

(Lou, J(T—u))=(LY, g(¥T—u)). (3.4)

Proor. First note that by ¥—u belongs to L¥ Q)N L7 (2), and so does
¢(¥—u) if u=D(L,), and hence both sides of are meaningful. Let u, be
such that L, .,u.=L,u. Then by Proposition 2.1l

—ou./on=B.(u)e L*I"), (3.5)
we—u in HYD), 3.6)
egrﬁs(us)"’dl’—> 0. 3.7)

In view of V—u.c H(Q), ¢(¥—u.)= H(£2). By Sobolev’s imbedding theorem

0¥ /oneWr-yr. ([ LPW-DIN=-p(]") (3.8)

S T—u) | reWrey ()T LAN-DIE-([) 3.9)
Since

N—p N-—2 1 1

P(N—1) + 2IN—=1) <1, Z+_2—>l

there exist exponents ¢, » such that

N—p _1_ N—z2 _1
= r

pPIN—-1) = ¢=p’ 2N-D1 =
In view of [3.8), (3.10)
a¥/one L), g(¥—u.)|re L)

1
2 2

IA

1 1
E-—}—?——l . (3.10)

which implies

o¥/on-p(¥—u.)|re LXd). 3.11)
Therefore
+a(T—u., g(¥—u.).
Hence

(Lz,euu ¢(w—ue)):(-£u6y ¢<w_us))
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.
r\ on on

=LY, G-+ )e(@—u)dl

—a(T—u,, ¢(T—u.).

By and (3.6) ¥—u.— ¥—u in LA(Q)NL?(2) as ¢—0, and hence ¢(¥F—u.)
—¢(¥—u) in LN(NL?(2). Thus

lim (L, ctte, ¢(T—u)=(Lou, g(¥—u)), 3.13)
lim (LY, ¢(T—uN=(LY, g(¥T—u)). (3.14)
As for the boundary integral in

(2 2eyrasar

:Sr@a?w” %1:[ )¢(w—<1+€ﬁ>'1us>dl“ (3.15)

o Ou. »
+Sz~(’§n“‘ an Yp(F—u)—g(F—(1+ep) u)dl .

If (P x)—Q+ef)ulx)+0, x<I, then ¥T(x)>1+ef(x, ) ulx), which

implies B~(x, ¥(x))=B(x, ulx)). Hence in view of and 0¥ (x)/on
=ou.x)/on. Consequently

S ( oY  odu.
r\ on on
For some constant C

|§(T—u)—p(T—(1+eB)  u.)|
<Clu.—1+epf)u.|=Ce| B(ual,

Yo (T—(1+ep)u)dl'<0. (3.16)

and hence by

ou. "
1], St (=)~ g(F—(sfyudl .

=<Ce pu)rdl —0

as e—0. If p=2N/(N+1), then
dW/anew-1r s LXT).

Consequently as ¢—0

lS,,%Zi<¢< Uf—ue>—¢(¥f—(1+eﬁ)-lus»dr]
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ov
< CeSP S—|1Bualdl 3.18)

§Ce{§r(%)zdf}llz{sp 55(%)2@}”2 0.

If p<2N/(N+1), we put §=N+2—2N/p. Then 0<8<1 and
N—»p 6 (N=2)1—-6) _

ST T e =L (3.19)
Noting |B.(u.)|=e'|u.l,
v
lSlfa-;;(gzi(Q’f—us)—gﬁ(W—(lJreﬁ)’lue))dr
§CeSF |%~f—| | B(u)|dl’ (3.20)

<ceo| |2 1 gl uati-0ar.

By (3.6) u.|r is bounded in HY*([")C L2V-L/&¥-2(" Hence by the
final member of does not exceed

o

ce'f,

Ao 1-8
‘3 u u - -
LBV -1 /(N =P )H e( e)”L (F)” a”LZ(N 1) /(N 2)(1‘),

which tends to 0 as e—0. Combining this with (3.16), (3.17) we obtain

linaljupgr(%gi— %‘; )$(T—u)dl'<0. (3.21)
By [Lemma 2.1
a(¥—u., ¢(¥—u))=0. (3.22)

follows from [(3.12), [(3.13), [(3.14), [(3.21) and [3.22).
LEMMA 3.2. For ueD(L,), 1<q=<p,

(Lou, Flu—Pu))=(L ¥, F(u—Pu)). (3.23)
PrROOF. Let ¢, be the function defined by
ri? if r=zl/n,
du(r)=4 n* % if 0<r<l/n, (3.24)
0 if r=0,

and unD(L)NLYL2) be such that Lyuns LYD), um—u, Lottm— Lyu in*LUQ).
By
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Letting n—oc in we get
(Lottm, Flom—Pun)2(LY, F(un—Pun)). (3.26)

By Lemma 1.1 of there exists a constant K such that
IFu—Follg=Klu—vl§™,  ¢'=q¢/(q—1D (3.27)

for u, ve LYLQ). Hence letting m— oo in [3.26) we get the desired result.
Let sign? be the function defined by

1 if >0,
signfir:{
0 if r=0.
LEMMA 3.3. For ueD(Ly)
(Lyu, signd (T—u))=(LY, sign? (F—u)). (3.28)

PrOOF. Let ¢, be the function such that
1 it r=1/n,
Gn(r)={ nr if 0<r<l/m,
0 if »=0,

and un,€D(L)NLY(L2) be such that Lyun,<s LY(2), un—u, Loun— Liu in LY($),
Un(x)—u(x) a.e. in 2. By

- (Lathmy, $n(T—um)=(LY, ¢u(T—un)). (3.29)
Now,

(Lytim, ¢n(w'_um>)_<[l1u, ¢n(w—u))
:(Lzum_-[/lu; ¢n(w—um)) (3.30)

It is obvious that the first term on the right of tends to 0 as m—oo,
The integrand of the second term is bounded by 2| L,u| in absolute value and
converges to 0 a.e. as m—oco. Hence as m—oo

(Lotim, ¢n( w‘"‘um)) —> (Llu; ¢n( w"—'u)) . (331)

Similarly we see that the right side of tends to (LY, ¢.(¥—u)) as m—oo.
Hence

(Lyt, po(T—u) (LY, ¢(T—uw)).
Finally letting n—co we get [3.28).
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§4. Elliptic unilateral problem in L%Q), 1=¢=2.

Let M, be the multivalued mapping defined by
DM)={ucsLq2): u=¥ a.e. in £},
Mu={ge LY2): g=0 a.e, g(x)=0 if u(x)>¥(x)}.

D(M,) is not empty for 1=<¢=p* since ¥=LYQ2) for these values of ¢. For
A>0 and ue LYQ), 1=5g=p*

Pu=1+2IM) 'u. 4.1)

DEFINITION 4.1. For 1=¢=p* the operator A, is defined as follows:
(i) A=L,+M, for 1=¢=<p,
(i) for p<g=p*
G(Ay)=the closure of G(A,)N(LU2)X LU(Q)) in LYL)X LYLY).
For 2>0 denote by M, ; the Yosida approximation of M, By
M, ju=(u—Pu)/2. 4.2)

PROPOSITION 4.1. For 1<q=<p A, is m-accretive and R(A,)=LY$).
PROOF. It is easy to show that A, is accretive. For fe LY(£2), 1>0, u, be
the solution of

Lqu;-l-Mq,;u;:f. (43)
u; is the fixed point of the mapping
1 —> (L4+ ALY (f+ Pu) 44)

which is a strict contraction from L% Q) to itself in view of and
Proposition 2.3. Forming the scalar product of and Fy(u;—Pu;), and
noting [(4.2), we get

(Lqua, Flur—Pu))+ur—Pualll/2=(f, Folur—Puy)). 4.5)
By

(Lquyz, Flurs—Pu))=(LV, Fo(u,—Puy))

(4.6)
(L), Fluri—Pu))z— L) ol uz—Pusllg .

From and (4.6) it follows that
lua—Puz[§/ 2= flgH L) Pl — Pugllg
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which implies

Mg, 2uxlle= 1 fllg+ (L )l 4.7

I Lozl =20 flla+ LT g - (4.8)

Write with 2, #>0, take the difference, multiply by Fy(u;—u,) and inte-
grate over £. This yields

(Lgua—Lou,, Fluz—u)+(My, aur— Mg, upy F(uz—u,)=0. (4.9)
By Lemma 2.5 (4.9), and the accretiveness of M,

Cq”ul_uy“g,q

(4.10)
+(Mg, 22— Mg, 1ty Fo(uz—up)—Fo(Pua—Pu,))=<0.
Applying Hoélder’s inequality and we get
collua—u,ld
aiaT Rl (4.11)

§K”Mq, luZ_Mq,pupllqluMq, lul_ﬂMq,,uupHg_l .

In view of the right side of (4.11) goes to 0 as 2, u—0. Hence there
exists an element u of W'%£) such that

Uy —u in W-9Q). (4.12)

From and the demiclosedness of L, it follows that L,u;— L,u in L%%),
and also My, u;—f—Lu in LYL). By (4.12) Pu;—u in LYQ). By
M, iu;eM,Pu,;. Hence f—LusMu, or fe Aju. Since fe LYf) is arbitrary,
A, is surjective. From it follows that (14+Aa)|u—a ), <1l f—Fll, if fe(l+24)u,
fe@+a4)na, 2>0. Hence A, is m-accretive.

LEMMA 4.1. If fe L{(QNL(D), g=1, r=1, then for any A>0

(A+AL)7f=(1+2L)7'f . (4.13)

Proor. The conclusion follows easily from the definition of L, L, and
PROPOSITION 4.2. For p<q=p* A, is m-accretive.
PROOF. Let f, fe LP(Q)NLYQ) and ¢>0. Put

u=(1+edp)f, a=(+eAd,) V.
By Sobolev’s imbedding theorem
Wt r(Q) LYD) . (4.14)
In view of [Lemma 2.5 and (4.14) u, a= LY($2). Let u,, f; be the solutions of
(Lyel, i eM, Du;=f,  (A4+eLl,+eM, Do, =f. (4.15)




382 H. TANABE

u; is the fixed point of the strictly contractive mapping

-1 Af+ePy
A+e

A€
Tv=(1+ pi L,)
from L?(Q) to itself. Since f, ¥e LP(QN\LUY)

(Af +ePv)/(A+e)e LP()NLUD)

if veL?(QNLYLQ). Hence by T is also a strict contraction from
LD LYED) to itself. Consequently may be rewritten as

(+eLoteMy Du;=f,  (I4eLy+eM, Da=f. (4.16)
Since L, and M, ; are accretive
luz—aall =N =Fllq. (4.17)

Since u;—@;—»u—a in WHP(2)C LY2) by the proof of [Proposition 4.1 we get
from

lu—a|, < f—Fl,. (4.18)

Once this is established for f, fe LP(2)NLYR) the remaining part of the proof
is accomplished in the usual obvious manner.
PROPOSITION 4.3. A, is m-accretive and R(A)=LYRQ). If for f, fe L\(Q)

Awutg=f, geMu, A1ﬁ+g:f’ geMa,
then
alu—al,+lg—glh=1—7l:. (4.19)

PROOF. As is easily seen
(g—8&, sign®(u—a))=0

if geMu and geM,4. Combining this with the accretivity of A,
follows. Suppose f€ L{(Q)NL?(L2). Let u,; be the solution of

Llux—I—Ml,;u;:f. (420)
u, is the fixed point of the mapping
Tv=14+AL)*(Af+Pv).

In view of [Proposition 2.3, Lemma 4.1 and the fact f, ¥ L{(QNL?(2) T is a
strict contraction from L}(2)N\L?(£2) to itself. Hence [4.20) may be rewritten as

Lyu,+M, u=f. 4.21)

Multiply both sides of by sign! (¥—u;) and integrate over £2. Noting
(3.2) we get
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(Lyuy, signd (T—u,;)— My, u,l,=(f, signd (F—uy)).
Using
[My aual = —(f, signd (T—u,)+H(L T, signd (T—u;))

= P [’ s [P (4.22)
From [2.22), [(4.20), [4.22) it follows that
alluil SN Liualh =20 i+ L), (4.23)

By the proof of Proposition 4.1 u;—u in W*?(2), L,u,—L,u, M, ,u,—g=
f—Lyu in L?(2) and geMpyu. Since u;, Lyu;=Lu;, Mp u;=M,, u; are
bounded in L'(£2) in view of (4.23), u, L,u, g all belong to L*(2). Since

utLyu=f—gtucs L Q)NLYQ)
if follows from that

u=14Ly) "(f—g+u)=A+L)(f—g+u),
or
L1u+g:f’ geMlu-

Thus we have proved R(A)DLY2)NL?(Q).
Suppose next f, fe L)\ L?(2) and

Lu+g=f, geMu, Latg=f, ssMun.

~

In view of [Proposition 2.3 u, # are uniquely determined by f, /. Let u,, #; be
the solutions of

L1u1+M1,2u/2:f, Llﬁl—{—Ml,lﬁl:f- (4.24)

Then by the above argument u;—u, fi;—a in Wh2(2), My u;—g, My it,— &
in L?(£). Multiplying both sides of

Liws— Lyt My yu,— M, 0, =f—Ff
by sign’ (u;—#,;) and noting
((uy—Pu)—(@;—Piy), sign® (u,—2))

=|(uz—Pu)—(@,— Pl
we get
(Lyuz— L@y, sign® (ua—a))+ | My, qur—M,, 28,0,

=(f—Ff, sign® (u;—a3)).
From this equality and [Proposition 2.3 it follows that
alluz— |+ I My, sua— My a2 S f—Fl (4.25)
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In view of Fatou’s lemma

lu—all,<liminf|lu,— .. (4.26)

Let 2,={x:x€8, |x|<r} for r>0. Then M, u;—g, M, 5;,—g in LY2,).
Hence

SQ Ig—éldx_ﬁ_hm iI]ng [M;,z’ug—-jwl,zil;]dx

Sliminf | M, ju;—M, 8.0 .
Since >0 is arbitrary

lg— gl <lim inf || My, yuz— M, 12, . (4.27)
From [4.25), [(4.26) and [(4.27) it follows that
alu—al,+llg—gl=1f—F. (4.28)

Finally suppose f, f are arbitrary elements of L(2). Let {f.}, {fn} be
sequences of LY(2)N\L?(2) tending to f, f respectively in L(2), and wun, fin,
Za, §» be such that

Llun+gn:fn; gnEMlun; Llﬁn+§n:fn; énEMlﬁn

An application of yields the existence of the elements u, g L'(2) such
that u,—u, g.—g in LY2). Replacing by a subsequence if necessary we may
assume u,(x)—u(x), g.(x)— g(x) at almost every x=£. Since g,=<0 a.e. in
2 the same is true of g. If u(x)> ¥ (x), then u,(x)>¥(x) if n is sufficiently
large, and hence g,(x)=0 for these values of z, which implies g(x)=0. Con-
sequently we have proved geM,u. Since L, is a closed operator u=D(L,)
and L,u+g=f. Hence we have established R(A4;,)=L(2). Letting n—oo in

a”un_ﬁnl|1+l|gn'—én[[1§an—‘fnlll
we obtain [4.19).
LEMMA 4.2. j(¥*|p)elX).

ProOF. By and
0=j(x, THN=B(x, TN TH()=—0W(x)/on- TH(x). (4.29)
By the assumption and Sobolev’s imbedding theorem
%ELNN—D/(N—MF), U+| e HVA()C L2 -0 =o().

If we choose ¢ and r so that (3.10) holds, then 0¥ /one L¥I"), U+| e L),
and hence 0¥/on-¥*|r= L*I"). Combining this and (4.29) we get the desired
result.

Let ¢: L*¥£2)—[0, oo] be the function defined by



Differentiability of solutions 385

%_SQ( $ a2 iu—+au2>dx—l-grj(u|1")dr'

()= 15721 Y ox; ox;
Plu —l it UsueH\Q), ju|peld), (4.30)
0 otherwise.

In view of Lemma 4.2 ¥*+|r€D(¢), and hence ¢ is proper convex. Let B be
the linear differential operator

N 0
B= > b; -+ c—a.

=t axi

LEMMA 4.3. Let feL*£), ucD(p). Then f€op(u)+Bu if and only if
a(u, v—u)+0|r)—Ou|r)z(f, v—u) (4.31)

for every v satisfying ¥<veHYQ), j(v|r)e L"), where @ is the function
defined by (2.9). 0¢+ B is demiclosed. '

PrROOF. The proof of the first part is straightforward. The demiclosedness
of 0¥4-B is verified without difficulty with the aid of the first part of the
lemma and noting that a(u, u)'/% is a norm of H(Q).

By [(1.9) and Proposition 4.2 the mapping A, is defined and m-accretive in
L¥ ().

LEMMA 44. A,=0¢+B.

PROOF. Suppose first that fe Ayu, f, us L*(£2). Let u,; be the solution of

Lous+My qur=f=Lous+M, u;, (4.32)

where we used as in the proof of Proposition 4.2 Let veD(y).
From and the definition of L, it follows that

a(uy, v=u)+OW| r)—P(u| r)=(f—M,, ;uz, v—uz). (4.33)

If u:(x)—Pu;(x)<0 at some point x, then u;(x)< T (x)=v(x) there. Consequent-
ly M, u:-(v—u,)=<0 a.e. Hence from it follows that

aluz, v—u)+0w|r)— 0l r)=(f, v—ui). (4.34)

By the proof of Proposition 4.1 v;—u in W*P()C L¥(2). It is easily shown
that u satisfies [4.31). The remaining part of the proof is omitted.
LEMMA 4.5. Suppose fe L{(NLY Q). Then for ¢>0, 1=¢=<2

(I+eA)f=(1+eA) f=(1+eA,)f. (4.35)

PrOOF. In case p<q=2 (4.35) is an immediate consequence of the definition
of A, In case 1=¢=p (4.35) is easily established with the aid of
4.1 and 4.3.
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REMARK. It follows from that if feLYQNL(Q), 1=9<r=2,
then (14-¢Ay) f=1+eA,)"f for ¢>0.
PROPOSITION 4.4. For 1=¢=2

DAp={uc LY(2):u=¥ a.e} (4.36)

where the left side of (4.36) is the closure of D(A,) in LY£).

PrROOF. It is obvious that the left side of is contained in the right
side.

(i) We first prove [4.36) for 1<g=p. Let F=usLi(). We set
un=0+n"'L) (u+nL¥).
Then
U—up+n'L¥—n'Lu,=¥—u=0. (4.37)

Form the inner product of and (¥—u,)*)?"'. This yields
[(T—u)f+n" (L= Losn, (T—un)*)*)=0. (4.38)
By and

(Lottn, (T=un)N)N=(LY, (F—ua)h) ). (4.39)

Combining [4.38) and [(4.39) we get ¥<u,. Hence u,=D(L)N\D(My)=D(A).
Since CHQ)CD(L,), D(L,) is dense in L%(2). Hence |v—(1+n"*L) *v||,—0 as
n—oco for any veL4$). Thus it follows easily that u,—u in LY82), and
hence ueD(A)).

(i) In case ¢=1 the proof is almost identical with that of (i). Form the
inner product of and signd (¥—u,), and use

(iii) In this step we consider the case ¢g=2. Noting and
D(0¢+ B)=D(0¢)=D(¢) it suffices to show

DigDfuc L) :uz=V a.e}. (4.40)

Let X be a smooth function such that X(0)=0, X(¢)>0 for >0, X(#)=1 for =1
and 0=X(#)=1 for all t=0. Set p(x)=dist(x, 02) and X,(t)=X(np(x)). Then
Y.€C¥2) if n is sufficiently large. Let u be an arbitrary element such that
U<ucsL¥£). Let v, be a sequence in H*(2) such that v,—u in L2*{) and
wa(x)=max {v,(x), ¥(x)}. Then ¥<w,cHY(Q) and

S (u—wn)zdx:S (max {u, U} —max {v,, U})*dx
Q Q (4.41)

ggg(u—vn)zdx —>0 as n—oo,

Put Un=1—=X)T*+Aw,. Then ¥<u,eH L) and j(u.|r)=jT* r)elXI)
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by Lemma 42l Hence u,sD(¢$). Now,

Sg(u——un)zdx:SK”n(u—un)zdx—i—S (w—wyrdz. (4.42)

pzl

By (4.41) the second term on the right of [4.42) tends to 0 as n—oco, while as
for the first term

j (u—unydng (= U —Ln(wn— U dx
o<1/n p<i/n

gzg (u— W*)de+ZS (w,— THPdx —> 0
p<i/n

po<l1/n
since

S w%dx§2$ (wn—u)zdx+25 udx.
p<l/n Q2 o<li/n

Hence u,—u in L* ) which implies u € D(¢).

(iv) In the final step we consider the case p<g<2. Suppose that ¥=<u
e LY). If we define

u(x) if |x|=n, ux)=Zn
un(x):{ (4.43)
Uix) otherwise, ,

then U<y, LY (N LHD), and

Slu——unlquég |u—11f1qu+5 lu—T|%dx —> 0
2 lz1>n u>n

as n—oo. Thus it suffices to show that any element u satisfying ¥<ue LY(Q)

NL¥2) belongs to D(A,). Let
Uun=1+n"1A) 'u=1+n"14)"u=>10+n"4)u.

Here we recall By (i) and (iii) x€D(A,)"D(A,). Hence as n— o,
up—u in LP@NLQ)C LYD). Since u,=D(A,) it follows that ueD(A)).

REMARK. From the proof of (iv) of [Proposition 4.4| it follows that for
U<uc LYQ) there exists a sequence {u,} CD(A,)NLYL) such that u,—u in
LY.

8§5. LZ-estimate of solutions.

For feW%0, T ; LYQ)), 1=¢=2, u,cD(A,) and 0=<s=<t<T, set

Uft, s; flu,=Ilim ﬁ {1—{—l-_ﬁ—i(Aq—f(s—l——:?(t——s)))}_luo. (5.1)

n—oo {=1
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The convergence of the right side of (5.1) was established by M. G. Crandall
and A. Pazy (Theorem 5.1 of [7]). If 1<¢=<2 and u,=D(4,), then u(t)
=Uy(t, 0;f)u, is the unique strong solution of

du(t)/dt-+FAu(t)=f(t), 0=t=T, (5.2)
u(0)=u.o, (5.3)

i.e. u(t) is an absolutely continuous (actually Lipschitz continuous) function in
[0, T] with values in LY%), u(t)eD(A,) and holds a.e. in [0, 7], and [(5.3)
holds.

LEMMA 5.1. If usD(L,), 0=veW?>2(2), ov/on=0¥/on)* on I, then

(Lpu—Lv, (u—v)")P1)=0. (5.4)

ProoF. First we note (0¥/on)*eW?-V/?-2(["), Let us begin with the case
useD(L)NL?(2), Loucs LP(2). Let ¢, be the function defined by (3.24) with p
in place of ¢q. Let u. be the solution of L, .u.=L,u. Noting veH(2) and

(Lou, ¢n(ue—v))=(Ls, cthe, pn(u.—v))

(5.5)
=| _Bdwdgn(u—v)dl+ alus, falui—v)).

If u(x)>v(x) at some point x, then u.(x)>0, which implies B.(x, u(x))=0.
Hence
Srﬁs(ue)qﬁn(ue— )dI['=0.
Combining this and (5.5)
(Lou, pu(uc—v))Za(ue galu—v)). (5.6)

Repeating the arguments running from to and using the hypothesis
we get

oU\+
(Lv, ¢n(ue— ”)):_SF(W) Pa(uc—v)dl+a(v, ¢p(u.—)) 57
éa(v: ¢n(ue—v)) .
Combining and (5.7), and using
(Lou—Lv, ¢pp(u—v))=Za(u.—v, ¢a(u.—v))
(5.8)

Z_a(us—— v, ¢n(u5_ v))ZO .

In view of [Proposition 2.1 and [3.I) u.—v—u—v in L?(Q) as ¢—0, and so
Gn(u.—v)— @ (u—v) in L? (). Hence first letting ¢—0 and then n—co in
(5.8) we get in this special case. The conclusion in the general case is
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easily obtained by noting
()P 1—(sH)P Y ZK |r—s|?!, r=0, s=0.

Let Gy(t), 1=g<oo, be the semigroup generated by the realization of —_C
under the Neumann boundary condition du/0n=0 on I. G,(t) is an integral
operator with kernel G(¢, x, y) satisfying

OéG(ty X, y)éCt_N/2H<t: x“}’)» (59)
1(0/0x:)G(t, x, y)| =Ct=¥*DI2H(t, x—y), (5.10)
[(0/0)G(t, x, y)|=Ct N*'H(t, x—y), (5.11)

where H(t, x)=exp (—c|x|?/t), and C and ¢ are some positive constants. Part
of the above estimates were established in [12]. G(¢, x, ¥) does not depend on
g, and we write simply G(t) instead of G,(?).

LEMMA 5.2. Let feWv¥0, T; L?(2)) and ¥*=Zv, = LYD2). Let v be such
that

vel([o, T1; LX)NCWO, T1; W=»(£2)), (5.12)
ov/ot+Lv=fr+(LU)* in 2%, 7T), (5.13)
ov/on=@0¥/on)* on I')X(, T), (5.14)
v(x, 0)=vo(x) in 2. (5.15)

Then v(x, H= T+ (x) a.e. in 2%, T).
ProOF. The conclusion is easily established by integrating by part in

@v/ot+Lv, v)=0,  (@/9t+LY¥—v), (T—v)")=0,

where v~ =min {v, 0}. Here we note u(t)e H(2)C L?'(2) for t>0.

LEMMA 5.3. Let u be the strong solution of (5.2) and (5.3) with feW*¥0, T ;
L*(2), u,=D(A,) and gq=p. Let v be the function satisfying (5.12)-(5.15)
with v, replaced by u§. Then

U<u=zv a.e.in X0, T). (5.16)
PrOOF. Let g be such that
du(t)/dt+Lyu(t)+gt)=f(1), gtyeMyu(t) a.e. (5.17)
Then
ou—wv)/ot+Lyu—Lv+g=f—f+—(L¥)*<0. (5.18)
Hence

(0(u—v)/0t, (u—v)")?)

(5.19)
H(Lpu—Lv, (u—v)")? H+(g, (u—v)H?"H=0.

In view of v=0 a.e. in 2X(0, T), and hence implies
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(Lyu—_Lv, (u—v)")?"1)=0. (5.20)
If u>v somewhere, then by u> ¥ and hence g=0 there. Consequently

(g, (u—v)")PH=0. (5.21)
Combining (5.19), and we get
[(u(®)—vEN* =l (ue—ub)*ll,=0. (5.22)

Thus we conclude u<v a.e. in 2x(0, T). ¥<u is clear since u(t)=D(A,) for
every t<[0, T], and the proof of the lemma is complete.

PROPOSITION 5.1.  Suppose that f€W Y0, T ; LYQ), 1=¢=2, and ¥=u,
e LYD). Let u(t)=ULt, 0;f)u, and v be the solution of (5.13), (5.14), (5.15)
with uf in place of v,. Then

UV<u<v a.e. in 2x0, 7). (5.23)

ProOF. Let f,eWr 0, T ; LYDNL?2)) and uonsD(A,)NLYL) be such
that fn—Ff, won—1uo in W40, T ; LYD)), LYN) respectively. Here we recall
the remark after [Proposition 4.4, Let

un(t):Uq(t; 0; fn)uOn:Up(t7 0 ’ fn)uOn

where the second equality is due to the remark after and v, be

the solution of (5.15) with f3%, u, in place of f*, v, respectively.
Then for each fixed >0

va(t)—v(?)

=G(O)ud—ut)+| Glt—s)fHs)—f*(sNds —> 0

in LY) as n—co. In view of
UV<uy,<v, a.e in 2x0, T). (5.24)

By the fact that Uy(¢, 0; f,) is a contraction and Theorem 4.1 of M. G. Crandall
and A. Pazy un(t)—u(t) in LY2). Going to the limit in [5.24) we conclude
(5.23).

Let w be the solution of the boundary value problem

ow _(jllf

=0 in 2 "onrl
w= mn , 7)7— a;l—) on .

In view of the a priori estimate of the elliptic boundary value problem

ol s=C[(3Y ], | (5.25)
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The function v in [Proposition 5.1 is expressed as

v(B)=w— GO w+G()ut
+S:G(t—s)( FHE) (L W) ds . (5.26)

In order to estimate the right side of we use the following lemma, a
proof of which is found in Lemma 2.6.1 of [10].

LEMMA 54. Let G(x, y) be a kernel which is measurable in XXY where
X and Y are open subsets of R¥. Suppose

SXIG(X, Wdx<K* for all yeY,
and

[, 16 isdyske  for a zeX.
Let 1=p, q, r=o0, 1/r=1/p+1/q—1, and set

(GHD=\ Gz, fG)dy

for feL?(Y). Then |G|, <K|fll,
Suppose feW" X0, T ; LYDNLHD)), 1=¢=2, and ¥=u,cLY(2). In view
of [3.1) and [(5.25)

lw—Gwuls2iwlsc[(20) ], . 5.27)
(5.9) implies

Sgcu, %, yNdx=Ct¥a-ore, | (528
Sgcu, x, yNdy=Ct¥a-on (5.29)

with some constant C. Hence with the aid of
IG@utll,=Ct¥e-ab|yf],, (5.30)
”S:G(t—s)(_c w>+ds|| <Ctyat-phien|( LT, | (5.31)

)

We used N(2'—p~1)/2+1>1/2>0 in the derivation of [5.31). Hence v(t)= L¥(Q)
if £>0 and

o¥\*

leote=c|(5,) ], Fervermusl, 5:32)
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+| 17 ladstCve-r by ey,

In view of [Proposition 5.1 u(t)e L*(Q) if +>0 and
lu(t).< || ¥.+the right side of [5.32). (5.33)

Furthermore applying [Proposition 4.4 and noting the remark after
we conclude that for 0<z=¢t<T

u(®)=Us(t, 7; Nu(o). (5.39)

§ 6. Differential equations in Hilbert space.

In order to derive the differentiability of the right side of and establish
some estimates of the derivative we investigate a certain differential equation
in Hilbert space in this section.

Let H and V be Hilbert spaces such that VCH algebraically and topologi-
cally, and V is dense in H. The norm and inner product of H are denoted by
| | and ( , ) respectively, and those of Vare by | | and (( , )). Identi-
fying H with its dual we consider VCHC V*. The norm of V* is denoted by
| llx. The pairing between V and V* is also denoted by ( , ).

Let a(u, v) be a bilinear form defined on VXV such that for some positive
constants C and «

la(u, V)| =Cllulllvl,  alu, Wzalul®. (6.1)
The associated linear operator is denoted by L:
alu, v)=(Lu, v) for u,veV. (6.2)

L is a bounded operator from V onto V*. L is also considered as an operator
from L%0, T; V) to L*0, T ; V*) by (Lu)(t)=Lu(?).

Let ¢ be a proper convex, lower semicontinuous function defined on V.
Let @ be a convex function on L2, T ; V) defined by

S:gé(u(t))dt it gwe L0, T),

O(u)= (6.3)

00 otherwise.

Following H. Brézis [2] we say feM,,(u) for a fixed uw,cH if usD(®),
feL¥0, T; V*) and

(v, v—wat+0w)~0w=['7, v—rwdt = 1O,
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for each veD(®), v'eL¥0, T ; V*) where v'=dv/dt. Let A be the mapping
defined by
Au=(Lu+o0@w)NH. (6.4)

By Theorem 2 of F.E. Browder L+06¢ is maximal monotone in VX V*,
and so is A in HXH. Furthermore by Theorem 4 of R(L+09)=V*, and
hence R(A)=H.

For feW*X0, T; H) and u,=D(A) we set

U(t, 0; f)ue=lim TT {H—%(A— f(%t))}—luo. (6.5)

n-co (=1

The main result of this section is as follows (cf. Theorem 3.2 of [1L]).
THEOREM 6.1. Suppose f€W 0, T; H) and u,=D(A). Then u(t)=
U(t, 0; fHu, is the strong solution of

du(t)/dt+Au(t)2f(1), (6.6)
u(®=u,, (6.7
and there exists a constant K such that

D" SK(ue—v ]+t A0+ | A ds .

SANDAOEOIED

where D* is the right derivative, A° is the minimal cross section of A, and v
is an arbitrary element of D(A).

LemMA 6.1. If u,=D(A), then u(t)=U(t, 0; flu, is a function belonging
to L*0, T; V) and satisfies the variational inequality

S:(v’—l—Lu, v—u)d t+O(v)— D(w) 6.9)

gSZ(f, v—u)dt——%l v(0)—uo|*

for all veD(®), v'e L0, T; V*), i.e. f—LusM,(u).

PROOF. Under the hypothesis of the lemma wu(¢) is the strong solution of
(6.6), (6,7). Let M=L-+0®. M™'isan everywhere defined single valued mapping
on V*to V satisfying a uniform Lipschitz condition. Hence u($)=M*(f(#)—u’(}))
is a measurable function with values in V. Let heV* and 7 be such that

d(u)=(h, w)+7 (6.10)
for any ucV. Let veD(¢). Then
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BWZUO—u' ()= Lu(t), v—u(t)+p(u(t)
=(f(t), v—u(t))+%7dt~lu(t)—vlz—a(u(t), v)
+a(u(t), u(t))+(h, u(t)+r
20, v—uO)+ 3 L= | +alu(D)]

—Clu®llvll—Itallelu@it+7 .
Hence us L¥0, T; V). Let veD(®), v'eL*0, T; V*). Then
d(v(E)N=(f(t)—u'(t)— Lu(t), v(t)—u(t)+d(u(t))
=), v(t)—u@)N+@'@)—u'(#), v(t)—u())
— (@), v(O)—u@)—(Lu(t), v(H)—u@)+@u?)),
which implies v D(®). Integrating this inequality over [0, 7] we get [6.9)
Let A be the operator defined by
(u, v))=Au, v) for u, veV. (6.11)

A is a linear bounded operator from V onto V* and | Aulsx=|u| for any ueV.
Since A-'0¢ is the subdifferential of ¢ when V is identified with V* by Riesz’
theorem,

1 ,
¢e(u)=—ze—ﬂu—]sull2+¢(feu) (6.12)
is the Yosida approximation of ¢, where
Je=1-+ed0¢)". (6.13)
We denote by @. the function defined by (6.3) with ¢. in place of @. Set
Aau=(Lu+0dp.(u))NH. (6.14)

The operator defined by with A replaced by A. is denoted by U.(t, 0; f).
LEMMA 6.2. Let u(t)=U(t, 0; Hu,, ult)=U.t, 0; N, ue=D(A), Uy
eD(A). If uee—uo in H, then u.—u in L0, T; V).
PROOF. Let veD(®), v’ L¥0, T; V*). In view of

T 1
0.z('(f, v—uddt—= 10O —ual?
0 2 (6.15)

—S:(v’+Lus, v—u)dt+P(u.).
In view of (6.12) and



Differentiability of solutions 395

T
0

1 T
0=\ lu—Jauldt+| g dt
= AL+ [T, wodr (6.16)
g Jo 0

T
— Il 1w de+T7
Combining (6.15) and

T 1 T
@.MZS f, v—us)dt——lv(O)—umlz—S (v, v—u.dt
0 2 0
T T 1 ¢r
—‘Soa(ue’ v)dt+goa(uey us>dt+'§50“ue~.]sue“2dt
T T
+ h, wodt=11s{ 1wl dt 4T

Hence | Ju.ltdt and o= Ju—Ju.]%ds is bounded as e—0. Let {u,} be a

subsequence such that u., —u*in L*0, T; V). Then J. u.,—u*in L*0, T; V).
Letting e=e¢,—0 in

T 1 T
0.2 (f, v-uddt—Z 10O —unl*=| @', v—uodt

r r (6.17)
—\ (L, v)dt+| atue, u)dt+ 0 )

we get

T 1 T
0= (', v—undt—— 10O—u = { ", v—uat

—S:(Lu*, v)dt+S:a<u*, w¥)d i+ O(u®) |

or f—Lu*eM,(u*). Here we used that a(u, u)"* is a norm of V as was

indicated in the proof of [Proposition 2.1 By f—LueM,(u). By
virtue of Theorem IL.3 of H. Brézis u*eC(0, T]; H) and

1 T
Slutt—w = aw—u*, u—unds=0,

which implies w=wu* and wu.—u in L¥0, T; V). Noting u' L0, T; H)
CL¥0, T; V*) and usD(®) let ¢—0 in (6.17) with v=u. Then we get

T T
SO alu, uw)ydt=lim soupS0 alue, u)dt.
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Thus we conclude u.—u in L¥0, T; V) since {S:a(u, u)dt}” is a norm of
L¥0, T; V).
The following lemma is proved in a routine manner and the proof is omitted.
LEMMA 6.3. Let u.=(14+cA) *u, for uo=D(A). The u.—u,in H as e—0.
PrOOF OoF THEOREM 6.1. It suffices to show the theorem in the special case

min ¢(u)=@(0)=0 (6.18)

since the general case is easily reduced to this case. Hence in what follows we
assume [6.18). Next suppose that the theorem was established when u,eD(A)
and feW*%0, T; H). For u,cD(A) and feW"¥0, T; H) let u,;=D(A) and
;€W %0, T ; H) be such that u,;—u, in H and f;—fin W*'(0, T; H). Then
with the aid of Theorem 4.1 of Ut, 0; fpue;—U(E, 0; fHuein C(LO, T]; H).
Hence (6.8) for u(¢)=U(¢, 0; f)u, follows. Finally by virtue of Lemmas [6.2
and it suffices to prove the theorem for A, in place of A with constant K
in (6.8) independent of e. Thus in what follows we assume u,sD(A,)
and feW*%0, T ; H), and set u(t)=U.(t, 0; )u,.
Form the scalar product of

w4+ Lu+0¢.(u)=f (6.19)
and u. This and

0=0.(W)=00:(u), u)
yield

-l L, WS, ).
Integrating (6.20) over [0, ¢] and noting
u( = wol+]179) ds
we get

1 . ¢ t
S e+ { (Lu, wds+{ g 621

<+ (luol 41 71d5)".
Set for 2>0

un(O= Wt R=u(®),  fuO=p (D=1

It follows from and the monotonicity of d¢. that
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%?Cit— [ uhl2+(Luh, uh)é(fh’ uh) .

Using and the Schwarz inequality we get

L P =S TATS

Integrating this inequality over [0, T—h]

1(T-2 |
A

aJo

T'-h
un(T—m)[*+al  lundt = ua@)+

Since u(¢) is a Lipschitz continuous function with values in H on [0, T], the
right side of the inequality just obtained is bounded as h—0. Hence u'e
L¥0, T; V). Since
09:(u(2))—0¢(u(s)Hllx=e~ut)—uls)l
0¢.(u(t)) is absolutely continuous and (9¢.(u))<L*0, T; V*). Hence u”e
L*0, T; V*) and
w4+ Lu 4 (0¢.(w)) =1". (6.22)

Multiplying both sides of by ¢

d d
—(tu)—u'+tLu'+t——0d (u)=tf".
dt dt ¢ (6.23)

Forming the scalar product of 4’ and (6.23), noting
((d/dt)(0p.(u(t)), u'(t)=0

in view of the monotonicity of d¢., and integrating over [0, ¢], we get
1 ¢ ¢
—2—|tu’(t)lz—Soslu’lzds—l—go(sLu’, su’)ds

¢ (6.24)
§50<Sf/’ su’)ds.

Note here that ©'=C(0, T]; H) since v'L*0, T; V) and uw”"<L¥0, T; V¥
Since ¢. is Fréchet differentiable, ¢.(u) is absolutely continuous, and as is easily
seen at a Lebesgue point of u'=L%*0, T; V)

(d/dt)@(u(t)=(0¢(u()), u'(t)).

Consequently multiplying both sides of by tu’ and integrating the equality
thus obtained over [0, t] we get

g:slu’lzds—i-S:(Lu, su')ds (6.25)
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- E( ( ’ ) .

%l tu’(t)[2+S:(sLu’+Lu, su’)ds

. , (6.26)
§S0¢e(u)ds+go(f+sf’, su')ds.

Noting
(LvtLu, z—() Ly, 0

for u, ve 'V, we get from (6.26)

St s( )Ly, wds

¢ : (6.27)
+So¢s(u)ds+go(f-{—sf’, su’)ds.

Combining (6.27) and (6.21) we obtain

o= s 2, w11

, (6.28)
-!—Solf—l-sf’[s]u’]ds.

Applying the following lemma to (6.28) we complete the proof.
LEMMA 6.4. Let o be a real valued continuous function on [0, T] and m

be a nonnegative integrable function on [0, T]. Let a be a nonnegative increasing
Sfunction on [0, T]. If

a(t)2§a(t)2+2_g:m(s)a(s)ds
in [0, T, then

Lo (t)] éa(l‘)—l—S:m(s)ds :

This lemma is proved in p. 157 of H. Brézis when a is constant. The
case where ¢ is increasing is easily reduced to the case a is constant.
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§7. Final result.

The goal of this paper is the following theorem.
THEOREM 7.1. Suppose that T<u,= LUQ) and feWr0, T ; LYDNLT(D)),
1=¢g=2=v. Then
. t i -1
utty=lim [T (145{4:~1(51))) e,
which exists and is continuous in [0, T with w(0)=u, in the strong topology of
LYD), is a strong solution of

du(t)/dt+ Au(t)sf(t)
in (0, T]. The right derivative D*u(t), which exists at every t>0in the strong
topology of L* ), belongs to L™(2) and the following inequality holds:

HD+u(t)HT§C{t—.@—1(H Ulot+llvl.+tllAs U|Iz+[(g—f>+]1—1/p, p)

T ol LD+ A ds @D

50 S P d s+ {17 lds)

where v is an arbitrary element of D(A,), Asv is the element of A,v of the
minimal norm, and B=NQ@2 '—r /2, y=N(g '—r™1/2, 6=N(p~*—r1)/2.

Let a(u, v) again be the bilinear form defined by and ¢ be the convex
function on HY() defined by either

[, i unar it w=uem @), jwlpeL),
p={ 17 1.2

co otherwise

or
¢(“):¢1(u)+¢2(u) s

1 (7.3)
& (w)=0ulr), ¢2(u)=~27—||u—Pull%, 2>0

where @ is the function defined by (2.9). The effective domain D(¢) of ¢
defined by is not empty since ¥+ D(¢) in view of
The following lemma is easily established and the proof is omitted.
LEMMA 7.1. Let A be the mapping defined by

Au=Lu+0dw)NL*2).
If ¢ is the function defined by (7.2), then A=A, If ¢ is defined by (7.3), then
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A:L2+Mz,l-

In view of and we can apply to u(t)=
Uyt, 0; flue in t>7>0 taking H=L*) and V=H' (). It follows that wu(t)
is differentiable in L% ) a.e. in (0, 7], and

[t =)D u(®) S K{Ju@)— vl +—2)] 430l

: : (7.4)
+| 17 edo+ of () +F()da}
for t>7z>0 and veD(A4,).

REMARK. If we use the expression A,=0d¢-+B and consider B as a pertur-

bation to d¢, we get an estimate analogous to but with 1++/f—7 as a
factor in the right hand side.

LEMMA 7.2. If p<q=2, then for any fe LYQ) and ¢>0
(A+e(Lg+My D)) Y —> (1+eA)™Yf
in LUD) as 1—0.

PrRoOOF. If fe L?(Q)N\LYLQ) it follows from the proof of [Proposition 4.1
that

(A4-e(Lo+Mq, )7 f=Ad-e(Lp+Mp, )7
— (I4eA) Y f=01+eA) S

in WtP(Q)C LY). The conclusion in the general case follows easily from that
in this special case.

For 2>0, t=s>7t>0 let
I—s
n

u1(t)=lim ﬁ{1+

n-oo i=1

(Lot M= (st Lt=9))} uts).

In view of [Theorem 6.1l and [Lemma 711 u,(¢) is the strong solution of

du,/dt+Lou;+M, qu;=f, S<IZT, (7.5)
u(s)=u(s). (7.6)

By virtue of Theorem 4.1 of and
u;—u in C({[s, T1; L¥(D)) (7.7

as 4—0.
LEMMA 7.3. For w, w€D(L,) and 0=veH¥Q), dv/on=0 on I,

(Low—Lo—_Lv, (w—0—0v)")=0. (7.8)

PROOF. is shown by approximating w, @ by the solutions w., . of
LZ,Ewe:LZu]J Lz’slT)E:sz, and noting

(Lv, (w——v))=alv, (W—D—v)*).
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Now we follow the argument of [8], [9], to show u/($)eL™(£) for
t>0. For h>0 let v. be the solution of
v./ot+Lv.=((x, t+h)—f(x, t))* in QX(, T),
ov./on=0 on I'x(s, T),
v.(x, s)=(ulx, s+hy—ulx, s)* in 2.

For h>>0, 2>0 let v; be the solution of

0v:/0t+ Lv,=(f(x, t-+h)—f(x, t)* in 02X, T),
0v;/on=0 on I'xX(s, T),
valx, s)=(u(x, s+h)—u,(x, s))* in 2.

v. is expressed as

V(=G —s)(ul(s+h)—u(s)*

: 7.9
+ Git—ox Ao+ 1)~fia)do

By v:=0, v_<0 a.e. in 2X(s, T). Similarly v;=0 a.e. in 2X(s, T). By
(7.7)

Vi—> Uy in C({s, T]; L¥Q)) (7.10)
as A—0. Set uy »(t)=u;(t+h)—u,;(t). With the aid of
(Loua(t+h)— Lou(t)— Lo (1), (ua,n(t)—v2(1)*)=0. (7.11)

If uyalx, H)—va(x, t)>0 at some point (x, t), then wu;(x, t+h)>u(x, t) since
v;=0, and so M, u;(x, t-Fh)=M, u,(x, t) there as is easily seen by [4.2).

Hence
(M, quz(t+h)—Ma, u2(t), (ua, n(H)—v2(2)")=0. (7.12)

In view of [7.10) and [(7.11)

1 d o |
'Z——dt—ll(uz,h—vz)+ll§:(ux,h—vx, (U2, n—v)%)

=it +h)—ui()—vi(t), (wa, n(t)—va(2)*)
=(fE+R)—=FO—=E+HR)—F))F, (uaaw®)—vi@NH=0.

Hence
(22, () =v2(EN =N (w2, n(S)— 12, 2()P) =0,

which implies u; ,<v;. Letting 2—0

u(t-+h)—u(t)=v.(t) (7.13)
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in view of and (7.9). Analogously we can show
v-()Su(t+h)—u(t). (7.14)
With the aid of (529), (7.9), and (7.14) we get
I (u(t+h)—u@)/hl,=(v (Ol +lv-(Ol )/ h
=C(t—=s)VT2H R (u(s+h)—u(s)/hlls

+\ 1o+ =FoN/ldo

Letting 21—0
I D*u(t)],=C(t—s)¥N ™ 1=27D02 Dry(s)|l, (7.15)

+\ 17 @ldo .

Combining (5.33) with #/3 in place of ¢, (7.4) with 2¢/3 and 3/t in place of ¢
and 7 respectively, and with s=2¢/3, we obtain [7.I).
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