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1. Introduction and statement of results.

A number of authors ([6], [14], [15]) have recently considered the (Ito)

stochastic equation

(1.1) $dX_{i}(t)=X_{i}(i)\{a_{i1}dW_{1}+a_{i2}dW_{2}\}$

$+X_{\hat{1}}(t)\{k_{i}-b_{\mathfrak{i}1}X_{1}^{\theta_{1}}(t)-b_{i2}X_{2}^{\theta_{2}}(t)\}dt$ , $i=1,2$

on the first quadrant $Q\equiv\{X_{1}>0, X_{2}>0\}$ . Here $a_{ij},$ $b_{ij},$ $k_{i}$ and $\theta_{i}$ are constants
which satisfy

(1.2) $a_{11}a_{22}-a_{12}a_{21}\neq 0$ , $\theta_{i}>0$ .
The interest in these equations arises from their interpretation as a description
of a system of two competing species or a predator-prey model in a randomly
varying environment. In this interpretation $X_{f}\langle t$ ) represents the amount of
species $i$ present at time $t$ . Turelli [15] gives a thorough discussion of the
validity of this interpretation. Even though there are difficuIties in justifying
(1.1) as the correct model for competing species in a randomly varying environ-
ment, it is believed that its solution behaves similar to real systems as far as
absorption and explosion is concerned. In this paper we take (1.1) for granted
and discuss the question of recurrence or transience of the system.

Specifically, we introduce

$\xi_{M}^{\prime}=\inf\{t\geqq 0:|X(t)|\geqq M\}$ ,

$\xi_{M}^{\prime\prime}=\inf$ { $t\geqq 0:X_{1}(t)\leqq M^{-1}$ or $X_{2}(t)\leqq M^{-1}$},

$\xi^{\prime}=\varliminf_{H}\xi_{\acute{r}}$ , $\xi^{\prime\prime}=\lim_{r\rightarrow\infty}\xi_{M}^{\prime\prime}$ .

$\xi^{\prime}$ and $\xi^{\prime\prime}$ are called the explosion time, respectiveIy absorption time. For
$X(O)\in Q$ fixed the solution of (1.1) is unique up till time $\xi^{J}$ A $\xi^{\chi}([5]$ Theorem

1) The first author was supported by the NSF through a grant to Cornell University.
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5.2.1, [13], Ch. 3.2). We give necessary and sufficient conditions for2)

(1.3) $P^{x}$ {$\xi^{\prime}\wedge\xi^{\prime\prime}<\infty$ or $\lim_{t\rightarrow\infty}X_{i}(t)=0$ or $\infty$ for some $i$} $=0$ .
$lt$ is known (see also beginning of sect. 2) that under condition (1.2) the prob-
ability in (1.3) is independent of $x$ , and that if (1.3) holds, then for all $x\in Q$

and non-empty open sets $U\subset Q$

\langle 1.4) $P^{x}$ { $\exists$ arbitrarily large $t$ for which $X(t)\in U$} $=1$ .
When (1.3) and (1.4) hold we call the X-process recurrent, and transient other-
wise. As is well known, recurrence is not sufficient to guarantee the existence
of an invariant probability distribution for $X$. When (1.3) holds, the process may
still be only null recurrent, $i$ . $e$ . it is still possible that for every $M>0$

\langle 1.5) $\lim_{t\rightarrow\infty}P^{x}$ { $M^{-1}\leqq X_{i}(t)\leqq M$ for $i=1$ and $i=2$} $=0$ .
(Again if (1.5) holds for one $x\in Q$ it holds for all $x\in Q$ (see section 2)). Even
though $X(\cdot)$ will return infinitely often to any open set of $Q$ in this case, we
surely do not want to say that the “two species coexist” if (1.5) prevails. It is,
however, reasonable to talk about this if for every $\epsilon>0$ there exists an $ M<\infty$

such that

\langle 1.6) $\lim_{t\rightarrow\infty}\inf P^{x}$ {$\xi^{\prime}\wedge\xi^{\prime\prime}>t$ and $M^{-1}\leqq X_{i}(i)\leqq M$ for $i=1$ and $2$ } $\geqq 1-\epsilon$ .
Again, (see sect. 2) under (1.2), if (1.6) holds for all $\epsilon>0$ for some $x\in Q$ , then
it holds for all $x\in Q$ . If this is the case we call the X-process positive recur-
rent. It is known that then the X-process has an invariant probability measure
$\mu$ ; moreover the probability in (1.6) actually has a limit as $ t\rightarrow\infty$ which equals
$\mu([M^{-1}, M]\times[M^{-1}, M])$ , independently of $x$ (see [10], Theorems 4.4.1 and 4.7.1).

To state our theorems we introduce the coefficients

(1.7) $b_{i}=k_{i}-\frac{1}{2}(a_{i1}^{2}+a_{i2}^{2})$ .
THEOREM 1. Assume that (1.2) holds, as well as

(1.8) $b_{i}>0$ , $b_{ii}>0$ , $i=1,2$ .
a) Let $b_{12}$ and $b_{21}>0$ . Then

(1.9) $b_{22}b_{1}-b_{12}b_{2}>0$ and $b_{11}b_{2}-b_{21}b_{1}>0\Rightarrow X$ is positive recurrent,

(1.10) $b_{22}b_{1}-b_{12}b_{2}\geqq 0$ and $b_{11}b_{2}-b_{21}b_{1}=0\Rightarrow X$ is null recurrent,

(1.11) $b_{22}b_{1}-b_{12}b_{2}<0$ or $b_{11}b_{2}-b_{21}b_{1}<0\Rightarrow X$ is transient.

2) $P^{x}\{\}$ denotes the probability measure governing paths starting at $X(0)=x$ .
$a\wedge b=\min\{a, b\}$ .



Recurrence Properties of Lotka. Volterra models 337

b) Let $b_{12}\leqq 0\leqq b_{21}$ . Then

(1.12) $b_{11}b_{2}-b_{21}b_{1}>0\Rightarrow X$ is positive recurrent,

(1.13) $b_{11}b_{2}-b_{21}b_{1}=0\Rightarrow X$ is null recurrent,

(1.14) $b_{11}b_{2}-b_{21}b_{1}<0\Rightarrow X$ is transient.

c) Let $b_{12}<0$ and $b_{21}<0$ . Then

(1.15) $b_{11}b_{22}-b_{12}b_{21}>0\Rightarrow X$ is positive recurrent,

(1.16) $b_{11}b_{22}-b_{12}b_{21}\leqq 0\Rightarrow X$ is transient.

THEOREM 2. Assume that (1.2) holds as well as

(1.17) $b_{ii}>0$ , $i=1,2$ and $b_{1}<0<b_{2}$ .
a) If $b_{12}\geqq 0$ then $X$ is transient.
b) Let $b_{12}<0\leqq b_{21}$ . Then

(1.18) $b_{22}b_{1}-b_{12}b_{2}>0\Rightarrow X$ is positive recurrent,

(1.19) $b_{22}b_{1}-b_{12}b_{2}=0\Rightarrow X$ is null recurrent,

(1.20) $b_{22}b_{1}-b_{12}b_{2}<0\Rightarrow X$ is transient.

c) Let $b_{12}<0$ and $b_{21}<0$ . Then

(1.21) $b_{11}b_{22}-b_{12}b_{21}>0$ and $b_{22}b_{1}-b_{12}b_{2}>0\Rightarrow X$ is pOsitive recurrent,

(1.22) $b_{11}b_{22}-b_{12}b_{21}\geqq 0$ and $b_{22}b_{1}-b_{12}b_{2}=0\Rightarrow X$ is null recurrent,

(1.23) $b_{11}b_{22}-b_{12}b_{21}\leqq 0$ or $b_{22}b_{1}-b_{12}b_{2}<0$ , but not

$b_{11}b_{22}-b_{12}b_{21}=b_{22}b_{1}-b_{12}b_{2}=0\Rightarrow X$ is transient.

THEOREM 3. Assume that (1.2) holds as well as

(1.24) $b_{ii}>0$ and $b_{i}<0$ , $i=1,2$ .
Then $X$ is transient.

REMARKS. (i) Theorems 1-3 cover all cases with $b_{i}\neq 0,$ $b_{ii}>0$ . The cases
which are not given explicitly follow by interchanging the role of the indices
1 and 2.

(ii) For $b_{ij}>0$ Gillespie and Turelli [6] already conjectured the necessary
and sufficient conditions for positive recurrence and proved sufficiency of their
condition. Theorem 1 a) confirms their conjecture; also parts b) and c) are in
agreement with the method suggested in [6] if in [6] one adds conditions to
prevent the process to escape to $\infty$ . The case of Gillespie and Turelli with
$b_{ij}>0$ corresponds to a competition model. The above theorems also give the
recurrence classification when $b_{12}\leqq 0\leqq b_{21}$ or vice versa (a predator-prey model)
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or $b_{12}<0$ and $b_{21}<0$ (sometimes viewed as a model for symbiosis). As we see
from Theorem 2, if we allow $b_{12}<0$ then it is possible to have positive recur-
rence even though $b_{1}<0$ . This is in contrast to the situation of the two species
competition example (2) of $[$6 $]$

(iii) It is remarkable that the criteria in Theorems 1-3 are independent $of_{-}$

$\theta_{1}$ and $\theta_{2}$ . It seems likely that in some of the cases where positive recurrence
is proved by means of a Lyapounov function one can even replace $X_{i}^{\theta_{i}}$ by more
general positive functions which tend to $\infty$ as $ X_{i}\rightarrow\infty$ at a suitable rate.

We shall only prove representative parts of Theorem 1. All remaining cases
are similar to one of the explicitly treated cases. Most difficult are (1.18) and
(1.21) whose proof is similar to that of (1.12) in sect. 3.

2. Proof of Theorem 1 (with the exception of (1.12)).

As in [6] we make a logarithmic transformation. Ito’s formula shows that
$Y_{i}(t)\equiv\theta_{i}$ log $X_{i}(t)$ satisfies

(2.1) $dY_{i}(t)=\theta_{i}\{a_{i1}dW_{1}(t)+a_{i2}dW_{2}(t)\}+\theta_{i}\{b_{i}-b_{i1}e^{Y_{1}(t)}-b_{i2}e^{Y_{2}(t)}\}dt$

$=\sigma_{i}dW_{2+i}(t)+\{B_{i}-B_{i1}e^{Y_{1}(t)}-B_{i2}e^{Y_{2}\zeta t)}\}dt$ ,

where
$B_{f}=\theta_{i}b_{i}$ , $B_{ij}=\theta_{i}b_{ij}$ ,

$\sigma_{i}^{2}=\theta_{i}^{2}\{a_{i1}^{2}+a_{i2}^{2}\}>0$ and

(2.2) $W_{2+i}(t)=\frac{\theta_{i}}{\sigma_{i}}\{a_{i1}W_{1}(t)+a_{i2}W_{2}(t)\}$ .

$W_{2+i}(t)$ is a one-dimensional Brownian motion for $i=1,2$ , but $W_{3}$ and $W_{4}$ are
not independent, in general. Note that the criteria in Theorem 1 are unchanged
when $b_{i},$ $b_{ij}$ are changed into $B_{i},$ $B_{ij}$ . $Y(\cdot)$ is a diffusion in the whole plane
with generator

(2.3) $L=\frac{1}{2}\sum_{i,j=1}^{2}A_{ij}\frac{\partial^{2}}{\partial y_{i}\partial y_{i}}+\sum_{i=1}^{2}\{B_{\iota}-B_{i1}e^{v\iota-B_{i2}e^{r_{2}}\}\frac{\partial}{\partial y_{i}}}$ ,

where

(2.4) $A_{ij}=\theta_{i}\theta_{j}\{a_{i1}a_{j1}+a_{i2}a_{j2}\}$ .
Denote the explosion time of $Y$ by

3) After completion of this paper we learned of the paper “Some basic properties
of stochastic population models“ by M. Barra et al., pp. 155-164 in Systems Theory in
ImmunoSogy, Lecture Notes in Biomathematics, vol. 32, Springer VerIag, l978. This
paper deals with case b) of Theorem 2 and Theorem 3.
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$\zeta\equiv Iim\inf_{M\rightarrow\infty}\{t\geqq 0:|Y(t)|\geqq M\}$ .

Then one easily sees that

{$\xi^{\prime}\wedge\xi^{\prime\prime}<\infty$ or $\lim_{\rightarrow\infty}X_{i}(t)=0$ or $\infty$ for some $i$ }

$=$ {$\zeta<\infty$ or $\lim_{t\rightarrow\infty}|Y(t)|=\infty$ }.

Moreover, since the matrix A in (2.4) is constant and strictly positive definite
(by (1.2))

(2.5) $P^{y}$ {$\zeta<\infty$ or $\lim_{t\rightarrow\infty}|Y(t)|=\infty$ }

can take on only the values $0$ or 1 and its value is independent of $y$ (see [1],

Theorem 3.2). Thus $X$ is transient if and only if $Y$ is transient in the sense
that (2.5) equals 1 for some (and hence all) $y$ . Similarly $X$ is recurrent if (2.5)

equals $0$ for some $y$ . FinaIIy $X$ is positive recurrent if and only if for all $e>0$

there exists an $M$ such that

(2.6) $Iim\inf_{t\rightarrow\infty}P^{y}$ {$\zeta>t$ and $|Y(t)|\leqq M$} $\geqq 1-\epsilon$ .

Again, this will hold or fail for all $y$ simultaneously. In fact this condition is
equivalent to the finiteness of the expected first hitting time by $Y$ of $K$, for
any compact set $K$ and any starting point $Y(O)$ . (See [10], Theorem 4.7.1,
remark on top of p. 172 and Lemma 4.2.2; also [1], Theorem 32 and final
remark.)

In view of the above remarks it suffices to prove $(1.9)-(1.16)$ with $b_{i},$ $b_{ij}$

replaced by $B_{i},$ $B_{ij}$ and $X$ by $Y$. From now on we shall only discuss tbe $Y$

process. Also $B_{i}>0$ throughout, as in Theorem 1.
PROOF OF (1.9) AND (1.15). As in [6], [14], we obtain positive recurrence

in these cases by constructing a suitable positive supermartingale for Y. In
particular we take

(2.7) $Wy_{1},$ $ y_{2}\rangle$ $=Cy_{1}-2y_{\iota}y_{2}+Dy_{2}$ ,

with
$C>0$ , $D>0$ , $CD>1$ .

Then $V\geqq 0$ and $ V(y_{1}, y_{l})\rightarrow\infty$ as $|y|\rightarrow\infty$ , and

(2.8) $LV(y)=\Gamma_{0}+2y_{1}\{\Gamma_{1}+\Gamma_{11}e^{y1}+\Gamma_{1Z}e^{y_{2}}\}+2y_{a}\{\Gamma_{a}+\Gamma_{21}e^{y_{1}}+\Gamma_{22}e^{y_{2}}\}$

with
$\Gamma_{0}=CA_{11}-2A_{12}+DA_{22}$ ,

$\Gamma_{1}=B_{1}C-B_{2}$ , $\Gamma_{2}=B_{2}D-B_{1}$ ,

$\Gamma_{11}=B_{21}-B_{11}C$ , $\Gamma_{22}=B_{12}-B_{22}D$ ,
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$\Gamma_{12}=B_{22}-B{}_{1z}C$ , $\Gamma_{l1}=B_{11}-B_{21}D$ .
If $LV(y)\leqq-1$ for $y$ outside some compact set, then by pp. 115, 116 and

Theorem 3.7.1 of [10] $Y$ (and hence $X$ ) will be positive recurrent. Now assume
(as in (1.9))

$B_{12}>0$ , $B_{21}>0$ ,
(2.9)

$B_{22}B_{1}-B_{12}B_{2}>0$ and $B_{11}B_{2}-B_{21}B_{1}>0$ .
In this case we take

$C=\frac{B_{22}}{B_{12}}>\frac{B_{2}}{B_{1}}$ , $D=\frac{B_{11}}{B_{21}}>\frac{B_{1}}{B_{2}}$ .

One easily checks that for this $C$ and $D(2.9)$ implies

$CD>1$ , $\Gamma_{i}>0$ , $\Gamma_{ii}<0$ , $i=1,2$ and $\Gamma_{12}=\Gamma_{21}=0$ .
This immediately implies L $ V(y)\rightarrow-\infty$ , as $|y|\rightarrow\infty$ , and hence positive recurrence.

Next assume the hypotheses of (1.15). Specifically

(2.10) $B_{12}<0$ , $B_{21}<0$ and $B_{11}B_{22}-B_{12}B_{21}>0$ .
We now take $C$ and $D$ such that4)

$C>\frac{B_{2}}{B_{1}}\vee 1$ , $D>\frac{B_{1}}{B_{2}}v1$ , and $-\frac{B_{21}}{B_{11}}<\frac{C-1}{D-1}<\frac{B_{22}}{-B_{12}}$ .

(This is possible by (2.10).) Again we have $CD>1$ as well as
(2.11) $\Gamma_{i}>0$ , $\Gamma_{ii}<0$ , $\Gamma_{1i}+\Gamma_{2i}<0$ , $i=1,2$ and $\Gamma_{12}>0$ , $\Gamma_{21}>0$ .
If $ y_{1}\rightarrow-\infty$ and $y_{2}$ remains bounded above, then the principal contribution to
$LV(y)$ is

2 $y_{1}\{\Gamma_{1}+\Gamma_{12}e^{y_{2}}\}+2y_{2}\Gamma_{2}$

and this tends to $-\infty$ , since $\Gamma_{i}>0$ and $\Gamma_{12}>0$ . If $ y_{1}\rightarrow-\infty$ and $ y_{2}\rightarrow+\infty$ then
we have

$ y_{1}\{\Gamma_{1}+\Gamma_{11}e^{y_{1}}+\Gamma_{12}e^{y_{2}}\}\sim\Gamma_{12}y_{1}e^{y_{2}}\rightarrow-\infty$

as above; but also, since $\Gamma_{22}<0$ ,

$y_{2}\{\Gamma_{2}+\Gamma_{21}e^{y_{1}}+\Gamma_{22}e^{y_{2}}\}\sim\Gamma_{22}y_{2}e^{y_{2\rightarrow-\infty}}$ .
Similarly $ LV(y)\rightarrow-\infty$ if $ y_{1}\rightarrow\infty$ and $y_{2}$ remains bounded. Lastly consider the
case $y_{1}\rightarrow\infty,$ $y_{2}\geqq y_{1}$ . If also $ y_{2}-y_{1}\rightarrow\infty$ , then

$\frac{1}{2}LV(y)\sim(\Gamma_{12}y_{1}+\Gamma_{22}y_{2})e^{y_{2}}\leqq(\Gamma_{12}+\Gamma_{22})y_{2}e^{y_{2\rightarrow-\infty}}$ .

If on the other hand $y_{2}-y_{1}$ remains bounded, then by (2.8) and (2.11)

4) $ab=\max\{a, b\}$ .
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$LV(y)=2\{\Gamma_{22}+\Gamma_{12}+o(1)\}y_{2}e^{y_{2}}+2\{\Gamma_{11}+\Gamma_{21}\}y_{1}e^{y_{1}}$

$+2(y_{2}-y_{1})(\Gamma_{21}e^{y_{1}}-\Gamma_{12}e^{y_{2}})$

$\leqq 2\{\Gamma_{22}+\Gamma_{12}+o(1)\}y_{2}e^{y_{2\rightarrow-\infty}}$ .
Since $y_{1}$ and $y_{2}$ play completely symmetric roles we again obtain L $ V(y)\rightarrow-\infty$

as $|y|\rightarrow\infty$ and hence (1.15) holds.
Lastly we observe that positive recurrence is proved easily whenever $B_{12}=$

$B_{21}=0$ by taking $V(y)=y_{1}^{2}+y_{2}^{2}$ . However, we cannot prove (1.12) in general by
this method and the full proof of (1.12) will be postponed till the next section.

All further proofs rely on the following
COMPARISON LEMMA. Let $(\Omega, \mathcal{F}, P)$ be a pr0bability space and $\{\mathcal{F}_{t}\}_{t\geqq 0}a$

right continuous increasing family of sub $\sigma- fields$ of $\mathcal{F}$ such that $\mathcal{F}_{0}$ contains
all subsets of P-null sets. Let $\sigma(\cdot, \cdot):[0, \infty)\times R\rightarrow[0, \infty)$ be a measurable func-
tion which satisfies the uniform Lipschitz condition

(2.12) $|\sigma(t, x^{\prime})-\sigma(t, x^{\prime\prime})|\leqq K|x^{\prime}-x^{\prime\prime}$ , $x^{\prime},$ $x^{\prime\prime}\in R,$ $t\geqq 0$ .
$Fu$ rthermore, let $\{W(t, \omega)\}_{t\geqq 0}$ be an $\mathcal{F}_{t}$ -Brownian motion such that $W(O)=0a$ . $s.$ ,

and let $\beta_{i}(\cdot, \cdot, ):[0, \infty)\times R\times\Omega\rightarrow R,$ $i=1,2$ , be two functions with the following
properties:

(2.13) $(t, x)\rightarrow\beta_{\ell}(t, \chi, \omega)$ is continuous for almost all $\omega$ ,

(2.14) For each $t\geqq 0(x, \omega)\rightarrow\beta_{i}(t, x, \omega)$ is $\mathcal{B}\times \mathcal{F}_{t}$ measurable,

where $\mathcal{B}$ is the Borel field of $R$ .
Finally, let $\{Z_{i}(t, \omega)\}_{t\geq 0},$ $i=1,2$ , be two $\mathcal{F}_{t}$ adapted real valued continuous pro-
cesses which satisfy

(2.15) $Z_{i}(t, \omega)-Z_{i}(0, \omega)=\int_{0}^{t}\sigma(s, Z_{i}(s, \omega))dW(s, \omega)$

$+\int_{0}^{t}\beta_{i}(s, Z_{i}(s, \omega), \omega)ds$ , $t\leqq T$ ,

for some stopping time T. If
(2.16) $Z_{1}(0)\leqq Z_{2}(0)$ $w$ . p. 1 ,

then with pr0bability 1

(2.17) $Z_{1}(t)\leqq Z_{2}(t)$ for all $0\leqq i\leqq S$ ,

where

(2.18) $ S=T\Lambda$
$inf\{t\geqq 0:\sup_{x}[\beta_{1}(t, x)-\beta_{2}(t, x)]\geqq 0\}$ .

If there exist constants $ K(M)<\infty$ such that at least one of the $\beta_{i},$ $i=1$ or 2,
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also satisfies
(2.19) $|\beta_{i}(t, x^{\prime}, \omega)-\beta_{i}(t, x^{\prime}, \omega)|\leqq K(M)|x^{\prime}-x^{\prime\prime}|$

for all $|x^{\prime}|,$ $|x^{f}|\leqq M,$ $t\leqq T$ ,

then $S$ may be replaced by

(2.20) $S^{\prime}=T\wedge\inf\{t\geqq 0:\sup_{z}[\beta_{1}(t, x)-\beta_{2}(f, x)]>0\}$ .

This lemma is a simple variant of Theorem 1.1 in [8]. No significant
change in the proof is necessary, except that (1.10) of [8] should be proved
conditionally on $S>0$, and similarIy one now proves that $P\{\theta<S\}=0$, rather
than $P\{\theta<\infty\}=0$ as on pp. 621, 622 of [8]. We also note that if (2.19) holds
we have “pathwise uniqueness“ even when $\beta_{i}$ is replaced by $\beta_{i}+\epsilon$ in the sense
that for each $\epsilon\in R,$ $z\in R$ there exists on $\Omega$ a non-anticipating continuous solu-
tion $Z_{i}^{\epsilon}$ to

$Z_{i}^{\iota}(t, \omega)=z+\int_{0}^{t}\sigma\langle s,$ $Z_{i}^{g}(s, \omega))dW\langle s,$ $\omega$)

$+\int_{0}^{t}\{\beta_{i}(s, Z_{i}^{\epsilon}(s, \omega), \omega)+\epsilon\}ds$

for
$ t\leqq T^{\epsilon}\equiv T\wedge$ (explosion time of $Z_{i}^{*}$).

Moreover, if $\tilde{Z}_{\mathfrak{i}}^{\epsilon}$ is another solution to this equation, then

$P$ { $Z_{i}^{\epsilon}(t)=\tilde{Z}_{i}^{\epsilon}(t)$ for all $t\leqq T^{S}$ } $=1$ .
The proof of existence and uniqueness of $Z_{i}^{\epsilon}$ under the Lipschitz conditions (2.12)

and (2.19) is the standard one (cf. [5], Ch. 5.1, 2, [13], $Ch$ . $3.2,3$). In all our
applications of the comparison lemma (2.19) will be satisfied and we use (2.17)

with $S$ replaced by $S^{\prime}$ .
We now turn to the
PROOF OF (1.11) AND (1.14). By symmetry we may restrict ourselves to the

case where
$B_{11}B_{2}-B_{21}B_{1}<0$ .

By (1.8) this forces

(2.21) $B_{21}>0$ .

Now take $0<\tilde{B}_{1}<B_{1}$ such that

(2.22) $B_{11}B_{2}-B_{21}\tilde{B}_{1}<0$

and $\Delta=\log((B_{1}-\tilde{B}_{1})|B_{12}|^{-1})$ , so that

(2.23) $B_{1}-B_{12}e^{r}\geqq\tilde{B}_{1}$ on $\{z\leqq\Delta\}$ .
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Next let $Y_{1}^{(1)}(t)=Y_{1}^{(1)}(t;y_{1})$ be the solution of

$dY_{1}^{(1)}(t)=\sigma_{1}dW_{S}(t)+$ { $\tilde{B}_{1}-B_{11}$ exp $Y_{1}^{(1)}(t)$} $dt$ ,

$Y_{1}^{(1)}(0)=y_{1}$ ,

and set

(2.24) $Y_{2}^{(1)}(t)=y_{2}+\sigma_{2}W_{4}(t)+\int_{0}^{t}$ { $B_{2}-B_{21}$ exp $Y_{1}^{(1)}(s)$ } $ds$ .

$Y_{1}^{(1)}$ is positive recurrent; in fact as $y_{1}$ tends to $+\infty$ , the drift vector $\tilde{B}_{1}-B_{11}$

exp $y_{1}$ tends to $-\infty$ , and as $ y_{1}\rightarrow-\infty$ , the drift vector tends to $\tilde{B}_{1}>0$ . (One

can also easily check $\tilde{L}\tilde{V}(y_{1})\leqq-1$ for sufficiently large { $y_{1}|$ , for $\tilde{V}(y_{1})=y_{1}^{2}$ and
$\tilde{L}$ the generator of $Y_{1}^{(1)}.$ ) Thus $(Y_{1}^{(1)}, Y_{2}^{(1)})$ does not explode and is defined for
all time. Now denote the solution of (2.1) which starts at $(Y_{1}(0)_{*}Y_{2}(0))=(y_{i}, y,)$

by $(Y_{1}(t;y_{1}, y_{2}),$ $Y_{2}(t;y_{1}, y_{2}))$ and take

$T=\inf\{t:Y_{2}\langle t;y_{1}, y_{2})\geqq\Delta\}$ A $\zeta$ .
Then by the comparison lemma and (2.23)

$Y_{1}(t;y_{1}, y_{2})\geqq Y_{1}^{(1)}(t)$ on $\{t<T\}$ .
Again by the comparison Iemma (use (2.21))

$(2.25\rangle Y_{2}(t;y_{1}, y_{2})\leqq Y_{2}^{(1)}\langle t$ ) on $\{t<T\}$ .
We now show that for $y_{2}$ sufficiently small

(2.26) $P$ {$\zeta<\infty$ or $(\sup_{t}Y_{2}^{(1)}(t)<\Delta$ and $\lim_{t\rightarrow\infty}Y_{2}^{(1)}(t)=-\infty)$ } $>0$ ,

which together with (2.25) will imply (1.11) and (1.14). In turn, (2.26) will be
immediate if we prove for fixed $y_{1}$

(2.27) $\lim_{t\rightarrow\infty}\frac{1}{t}\int_{0}^{t}$ { $B_{2}-B_{21}$ exp $Y_{1}^{(1)}(s)$} $ds<0$ ,

because the left hand side of (2.27) is independent of $y_{2}$ and, by (2.24), (2.25)

$\frac{1}{t}Y_{2}(t;y_{1}, y_{2})\leqq\frac{1}{t}Y_{2}^{(1)}(t)\leqq o(1)+\frac{1}{t}\int_{0}^{t}$ { $B_{2}-B_{21}$ exp $Y_{1}^{(1)}(s)$ } $ds$ ,

$ t\rightarrow\infty$ .
Finally, (2.27) follows from the ergodic theorem. Indeed $Y_{1}^{(1)}(t)$ has the stationary
probability measure ([2], problem 16.11.18, [11], Theorem 4.4)

(2.28) $m(dx)=\frac{1}{C}e^{B(x)}dx$ ,
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where

(2.29) $B(x)=\frac{2}{\sigma_{1}^{2}}\int_{0}^{x}\{\tilde{B}_{1}-B_{11}e^{u}\}du=\frac{2}{\sigma_{1}^{2}}\tilde{B}_{1}x-\frac{2}{\sigma_{1}^{2}}B_{11}(e^{x}-1)$ ,

and

$C=\int_{-\infty}^{\infty}e^{B(x)}dx$ .

Thus, by the ergodic theorem ([10], Theorem 4.5.1, [11], Theorem 4.8, [12]

Theorem 5.1) the left hand side of (2.27) equals

$\int_{-\infty}^{+\infty}\{B_{2}-B_{21}e^{x}\}m(dx)=\{B_{2}-B_{21}\tilde{B}_{1}(B_{11})^{-1}\}<0$ (by (2.22)).

This proves (2.27) and hence (1.11) and (1.14).

The proof of (1.16) is quite easy because under its hypotheses

$d\{-B_{21}Y_{1}(t)+B_{11}Y_{2}(t)\}=-\sigma_{1}B_{21}dW_{3}(t)+\sigma_{2}B_{11}dW_{4}(t)$

$+\{-B_{1}B_{21}+B_{2}B_{11}+(B_{21}B_{12}-B_{11}B_{22})e^{Y_{2}(t)}\}dt$

which has a drift coefficient

$\geqq-B_{1}B_{21}+B_{2}B_{11}>B_{2}B_{11}>0$ .
$r$

Thus $B_{11}Y_{2}(t)-B_{21}Y_{1}(t)$ grows at least linearly ( $e$ . $g.$ , by the comparison lemma).

Next we indicate how to prove(1.10) and (1.13). The basic idea is in [7].
For the time being assume only

$B_{11}B_{2}-B_{21}B_{1}=0$ ,
and consequently (2.21). Set

$U(t)=B_{1}Y_{1}(t)+B_{2}Y_{2}(t)$ ,

$V(t)=B_{2}Y_{1}(i)-B_{1}Y_{2}(t)$ .
Then

$dU(t)=\overline{\sigma}_{1}d\overline{W}_{3}(t)+\{\overline{B}_{1}-\overline{B}_{11}$ exp $(\frac{B_{1}U(t)+B_{2}V(t)}{B_{1}^{2}+B_{2}^{2}})$

$-\overline{B}_{12}$ exp $(\frac{B_{2}U(t)-B_{1}V(t)}{B_{1}^{2}+B_{2}^{2}})\}dt$ ,

and

$dV(t)=\overline{\sigma}_{2}d\overline{W}_{4}(t)+\overline{B}_{22}$ exp $(\frac{B_{2}U(t)-B_{1}V(t)}{B_{1}^{2}+B_{2}^{2}})dt$ ,

where $\overline{W}_{3},\overline{W}_{4}$ are suitable Brownian motions and

$\overline{B}_{1}=B_{1}^{2}+B_{2}^{2}>0$ ,
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$\overline{B}_{11}=B_{1}B_{11}+B_{2}B_{21}>0$ ,

$\overline{B}_{12}=B_{1}B_{12}+B_{2}B_{22}$ ,

$\overline{B}_{22}=B_{1}B_{22}-B_{2}B_{12}\geqq 0$ (by the hypothesis of (1.10),

respectively $B_{12}\leqq 0$ in (1.13)),

$\overline{\sigma}_{1}>0$ , $\overline{\sigma}_{2}>0$ .
The drift vector of the U-component at the point $(u, v)$ equals

$\overline{b}_{1}(u, v)=\overline{B}_{1}-\overline{B}_{11}$ exp $(\frac{B_{1}u+B_{2}v}{B_{1}^{2}+B_{2}^{2}})-\overline{B}_{12}$ exp $(\frac{B_{2}u-B_{1}v}{B_{1}^{2}+B_{2}^{2}})$ ,

so that for a suitable constant $\Delta>0$

(2.30) $\overline{b}_{1}(u, v)\geqq\frac{1}{2}\overline{B}_{1}>0$ on $\{(u, v):u\leqq-\frac{3}{2}\frac{B_{2}}{B_{1}}v,$ $v\geqq\Delta\}$ ,

and

(2.31) $\overline{b}_{1}(u, v)\leqq-\frac{1}{2}\overline{B}_{11}<0$ on $\{(u, v):0\leqq u\leqq\frac{B_{1}}{2B_{2}}v,$ $v\geqq\Delta\}$ .

On the other hand, the drift of the V-component,

(2.32) $\overline{b}_{2}(u, v)=\overline{B}_{22}\exp(\frac{B_{2}u-B_{1}v}{B_{1}^{2}+B_{2}^{2}})\leqq\overline{B}_{22}$ exp $(-\frac{1}{2}B_{1}(B_{1}^{2}+B_{2}^{2})^{-1}v)$

on $\{u\leqq\frac{B_{1}}{2B_{2}}v\}$ .
Now consider the line segments

$I_{k}=\{(u, v):v=2^{k},$ $-\frac{7}{4}\frac{B_{2}}{B_{1}}2^{k}\leqq u\leqq\frac{3}{8}\frac{B_{1}}{B_{2}}2^{k}\}$ ,

$J_{k}=\{(u, v)$ : $v=2^{k},$ $-\frac{3}{2}\frac{B_{2}}{B_{1}}2^{k}\leqq u\leqq\frac{1}{4}\frac{B_{1}}{B_{2}}2^{k}\}$ .

Then $J_{k}\subset I_{k}$ . Denote the endpoints of $I_{k}$ by $p_{k}$ and $q_{k}$ and those of $J_{k}$ by $p_{k}^{\prime}$

and $q_{k}^{\prime}$ and let $L_{k}^{\prime}(M_{k}^{\prime})$ be the line through the points $p_{k+1}$ and $p_{k}^{\prime}$ (respectively

$q_{k+1}$ and $q_{k}^{\prime}$). $L_{k}^{\prime}$ has the equation

(2.33) $u+2\frac{B_{2}}{B_{1}}v=2^{k-1}\frac{B_{2}}{B_{1}}$ .

Finally we consider the line $L_{k}(M_{k})$ through $p_{k}$ $(q_{k})$ parallel to $L_{k}^{\prime}$ (respec-

tively $M_{k}^{\prime}$) and the trapezoid $R_{k}$ , bounded by $I_{k+1},$ $J_{k},$ $L_{k}^{\prime}$ and $M_{k}^{\prime}$ , and define
the stopping time
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Fig. 1.

$\tau_{k}=\inf\{t\geqq 0:V(t)=2^{k}\}$ .
We then have the following estimate:

LEMMA 1. There exists a constant $k_{0}$ such that for $k\geqq k_{0}$ and $(u_{0}, v_{0})\in R_{k}$

(2.34) $P^{(u_{0}.v_{0})}$ {$\tau_{k}<\infty$ and $(U(\tau_{k}),$ $V(\tau_{k}))\in I_{k}$ } $\geqq 1-4(\overline{\sigma}_{2})^{-1}k^{-3/2}$ .
PROOF. Let

$\sigma_{k}=\inf\{t:U(t)\geqq\frac{B_{1}}{2B_{2}}V(t)\}$ .
Then for $(U(O), V(0))\in R_{k},$ $\sigma_{k}\geqq first$ crossing time of $M_{k}$ . Also, by (2.32)

$\overline{b}_{2}(U(s), V(s))\leqq\overline{B}_{22}$ exp $(-\frac{1}{2}B_{1}(B_{1}^{2}+B_{2}^{2})^{-1}2^{k})$ for $s\leqq\sigma_{k}\Lambda\tau_{k}$ .

Consequently, for $k$ large, uniformIy in $(u_{0}, v_{0})\in R_{k}$

(2.35) $P^{(u_{0}.v_{0})}\{\sigma_{k}\wedge\tau_{k}\geqq k^{3}2^{2k}\}$

$\leqq P^{(u}o^{v}o)\{v_{0}+\overline{\sigma}_{2}\overline{W}_{4}(t)+k^{3}2^{k}\overline{B}_{22}$ exp $(-\frac{1}{2}B_{1}(B_{1}^{2}+B_{2}^{2})^{-1}2^{k})\geqq 2^{k}$

for all $t\leqq k^{3}2^{2k}\}$

$\leqq P\{\inf_{t\leqq k^{3_{2}2k}}\overline{W}_{4}(t)\geqq\frac{1}{\overline{\sigma}_{2}}(2^{k}-v_{0})-1\geqq-\frac{2^{k}}{\overline{\sigma}_{2}}-1\}$

$\leqq 3(\overline{\sigma}_{2})^{-1}k^{-3/2}$ .
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(2.35) shows that $a_{k}$ A $\tau_{k}$ will not exceed $k^{3}2^{2k}$ with high probability. We next
indicate how to prove that $(U(t), V(t))$ only has a small probability to cross the
lines $L_{k}$ or $M_{k}$ before $\tau_{k}\Lambda k^{3}2^{2k}$ . More precisely, we claim:

(2.36) $P^{(u_{0},v_{0})}$ {$(U(t),$ $V(t))$ crosses $L_{k}$ before $\tau_{k}\wedge k^{3}2^{2k}$ }
$\leqq 2^{1-k},$ $(u_{0}, v_{0})\in R_{k}$ .

To prove (2.36) note that $L_{k}$ has the equation

$u+\frac{2B_{2}}{B_{1}}v=2^{k- 2}\frac{B_{2}}{B_{1}}$

(compare (2.33)) and that for $(u_{0}, v_{0})\in R_{k}$

$u_{0}+\frac{2B_{2}}{B_{1}}v_{0}\geqq 2^{k-1}\frac{B_{2}}{B_{1}}$ .

Thus in order to hit $L_{k}U(t)+(2B_{2}/B_{1})V(t)$ has to decrease at least $2^{k-2}B_{2}/B_{1}$ .
However, the drift coefficient of $U(t)+(2B_{2}/B_{1})V(t)$ at $(u, v)$ equals

$\overline{b}_{1}(u, v)+\frac{2B_{2}}{B_{1}}\overline{b}_{2}(u, v)\geqq\frac{1}{2}\overline{B}_{1}>0$

for $v\geqq 2^{k},$ $(u, v)$ between $L_{k}^{\prime}$ and $L_{k}$ (by (2.30) and (2.32)). Thus, in order to
move from $R_{k}$ to $L_{k}$ the diffusion $U(t)+(2B_{2}/B_{1})V(t)$ has to decrease by at
least $2^{k-2}B_{2}/B_{1}$ , while it passes through a region where its drift is at least
$\overline{B}_{1}/2$ . (2.36) therefore follows immediately from the following

SUBLEMMA. Let $Z(t)$ be a nonanticipating continuous solution of
$dZ(f)=\sigma dW(t)+\beta(t, Z(t))dt$ ,

where $\sigma>0$ is constant, $W(t)$ is a Brownian motion and $\beta(s, z)$ a continuous
function of $s,$ $ z\in[0, \infty$ ) $\times R$ satisfying

$\beta(s, z)\geqq\beta_{0}>0$ on $\{z\leqq 0\}$ .

Then for each $B>0$ there exists a constant $k_{1}$ such that for all $z\geqq 0$ and $k\geqq k_{1}$

$P^{z}$ { $Z(t)$ enters $(-\infty,$ $-B2^{k}]$ before time $k^{3}2^{2k}$ }

$\leqq 2^{-k}+2k^{6}2^{4k}e^{-\delta 2^{k}}$

where $\delta=2B\beta_{0}\sigma^{-2}$ .
We do not give the relatively simple details of the proof of this sublemma.

It can be proved by looking at the successive excursions of the Z-process from
$-c$ to $\{0, -B2^{k}\}$ and back to $-c$ , for some $c>0$, The probability that $Z$ hits
$-B2^{k}$ during the first $k^{6}2^{4k}$ excursions is at most $2k^{6}2^{4k}e^{-\delta 2^{k}}$ . On the other
hand, the probability that the first $k^{6}2^{4k}$ excursions take less time than $k^{3}2^{2k}$
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is at most $2^{-k}$ ( $e$ . $g.$ , by Chebyshev’s inequality). Compare [7], Lemma 2. Alter-
natively one can prove the sublemma by comparing $Z(t)$ with a diffusion on
$(-\infty, 0]$ with $0$ as reflecting boundary and generator $(1/2)\sigma^{2}(d^{2}/dx^{2})+\beta_{0}(d/dx)$

on $(-\infty, 0)$ . For this diffusion one can make sufficiently explicit estimates to
prove the sublemma.

The same proof works if one replaces $L_{k}$ in (2.36) by $M_{k}$ . This together
with (2.35) implies (2.34) because, if $(U(t), V(t))$ does not cross $L_{k}$ nor $M_{k}$ before
$\tau_{k}\wedge k^{3}2^{2k}$ , but $\sigma_{k}\wedge\tau_{k}\leqq k^{3}2^{2k}$ , then necessarily

$\tau_{k}\leqq k^{3}2^{2k}\wedge$ (Prst crossing time of $L_{k}\cup M_{k}$ ) and $(U(\tau_{k}), V(\tau_{k}))\in I_{k}$ . $\square $

Now notice that the sector

$C=\{(u, v)$ : $v>0,$ $-\frac{3B_{2}}{2B_{1}}v\leqq u\leqq\frac{B_{1}}{4B_{2}}v\}\subset k\geqq 0UR_{k}$ .

Exactly as in [9] (proof of Theorem 2 from (2.60) on) or [7], Theorem 1, one
can now derive from Lemma 1 that for any $(u_{0}, v_{0})\in C$

$P^{(u_{0},v_{0})}$ {$(U(t),$ $V(t))$ enters $\bigcup_{0\leqq kgk_{2}}R_{k}$ at some finite time}

$\geqq 1-\sum_{k\geqq k_{2}}4(\overline{\sigma}_{2})^{-1}k^{-3/2}\geqq\frac{1}{2}$

for a suitable $k_{2}\geqq k_{0}$ . In other words the probability of entering the compact
set

$R=UR_{k}k\leqq k_{2}$

is at least 1/2 from any point in $C$, and by the strong Markov property, this
probability will be at least 1/4 from any starting point if we can prove

(2.37) $P$ {$(U(t),$ $V(t))\in C$ for some finite time $|Y(0)=y$ } $\geqq\frac{1}{2}$

for all $y$ . Thus, recurrence of $Y$ (and $X$ ) has been reduced to (2.37), which we
shall now prove.

First we choose $\Delta_{1},$ $\Delta_{2}>0$ such that

(2.38) $B_{2}-B_{21}e^{\Delta_{1}}\leqq-1,$ $\Delta_{2}>B_{1}B_{2}^{-1}\Delta_{1}$

(recall that (2.21) holds). Then on the half line

$H_{0}=\{(y_{1}, y_{2}):y_{1}=\Delta_{1}, y_{2}\leqq-\Delta_{2}\}$ ,

$u\equiv B_{1}y_{1}+B_{2}y_{2}$ and $v\equiv B_{2}y_{1}-B_{1}y_{2}$

satisfy
$v>0,$ $-B_{2}B_{1}^{-1}v\leqq u<0$
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and hence $(u, v)\in C$. The same argument shows that for each $M$ there exists
a $K(M)$ such that

$H(M)\equiv\{(y_{1}, y_{2}):|y_{1}|\leqq M, y_{2}\leqq-K(M)\}\subset C$ .
Thus, it suffices to prove

(2.39) $P^{y}$ { $Y(t)$ hits $H_{0}\cup\bigcup_{M=1}^{\infty}H(M)$ at some finite $time$} $\geqq\frac{1}{2}$ .

From here on the proofs of (1.10) and (1.13) differ slightly. First consider
(1.13), $i.e.$ , assume $B_{12}\leqq 0$ . We now define $(Y_{1}^{(2)}(t;y_{1}), Y_{2}^{(2)}(t;y_{2}))$ as the solu-
tion of

(2.40) $dYi^{2)}(t;y_{i})=\sigma_{i}dW_{2+i}(t)+$ { $B_{i}-B_{ii}$ exp $Yi^{2)}(t;y_{i})$} $dt$ ,

$Y\}^{2)}(0;y_{i})=y_{i}$ , $i=1,2$ .
As with $Y^{(1)}$ this does not explode, and since $B_{12}\leqq 0<B_{21}$ the comparison lemma
shows

(2.41) $Y_{1}(t;y_{1}, y_{2})\geqq Y_{1}^{(2)}(t;y_{1})$ , $Y_{2}(t;y_{1}, y_{2})\leqq Y_{2}^{(2)}(t;y_{2})$ , $ t<\zeta$ ,

where as before $Y(t;y_{1}, y_{2})$ is the solution of (2.1) with $Y_{i}(0;y_{1}, y_{2})=y_{i}$ . We
already know that $Y^{(2)}$ is recurrent so that $Y^{(2)}$ enters the set

$G=\{(z_{1}, z_{2}):z_{1}\geqq\Delta_{1}, z_{2}\leqq-2\Delta_{2}\}$

with probability one at some finite time, say $T_{1}$ . By (2.41) the first entrance
time of $G$ by $Y$, call it $T_{2}$ , must satisfy $T_{2}\leqq T_{1}$ unless $\zeta\leqq T_{1}$ . We set

$T_{3}=\inf\{t:Y(t)\in H_{0}\cup\cup H(M)\}$

and begin by proving

(2.42) $P^{y}\{\zeta\leqq T_{1}\Lambda T_{2}\wedge T_{3}\}=0$ .
(2.42) can be seen as follows. By the recurrence of $Y^{(2)}$ and (2.41) (we suppress
$y_{1},$ $y_{2}$ in the notation in most of the remaining proof)

$\inf_{t<\zeta\Lambda T_{1}}Y_{1}(t)\geqq\inf_{t\leqq T_{1}}Y_{1}^{(2)}(t)>-\infty$

and similarly
$\sup_{t<\zeta\wedge T_{1}}Y_{2}(t)\leqq\sup_{t\leqq T_{1}}Y_{2}^{(2)}(t)<\infty$ .

Thus $\zeta\leqq T_{1}\wedge T_{2}\Lambda T_{3}$ is possible only if for some random $ M<\infty$

(2.43) $\lim_{t\uparrow}\inf_{\zeta}Y_{2}(t)=-\infty$ , $\inf_{t<}Y_{1}(t)\geqq-M$

or
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(2.44) $\lim_{t\uparrow\zeta}\sup Y_{1}(t)=+\infty$ , $\sup_{t<\zeta}Y_{2}(t)\leqq M$ .

(2.43) is inconsistent with $\zeta\leqq T_{2}\Lambda T_{3}$ because on $\{t<\zeta\wedge T_{2}, Y_{2}(t)\leqq-2\Delta_{2}\}$ one
must have $Y_{1}(t)<\Delta_{1}$ , so that $\zeta\leqq T_{2}\wedge T_{3}$ together with (2.43) implies

$-M\leqq Y_{1}(t)<\Delta_{1}$ and $Y_{2}(t)<-K(M\vee\Delta_{1})$ ,

or $Y(t)\in H(M\vee\Delta_{1})$

for some $t<T_{3}$ which is impossible. This only leaves (2.44). However, (2.44)

and $\zeta\leqq T_{1}\wedge T_{2}\wedge T_{3}$ can occur only if

(2.45) $Y_{1}(t)\leqq y_{1}+\sigma_{1}W_{3}(t)+\{B_{1}-B_{12}e^{M}\}t$ , $ t<\zeta$ .
Together with the law of iterated logarithm (2.45) would imply $\zeta=\infty$ . This
contradicts $\zeta\leqq T_{1}\wedge T_{2}\wedge T_{3}$ since we know $ T_{1}<\infty$ . Hence (2.42) follows.

From (2.42) and the lines preceding it, we conclude that $ T_{2}\wedge T_{3}\leqq T_{1}<\infty$

$a.s$ . (Otherwise $T_{3}>T_{1}$ and $T_{2}>T_{1}$ , and the latter implies $\zeta\leqq T_{1}$ hence $\zeta\leqq T_{1}\wedge$

$T_{2}\wedge T_{S}.)$ Thus $Y$ enters $G\cup H_{0}\cup\cup H(M)$ at some finite time. Once $Y$ enters
$H_{0}\cup\cup H(M)$ the event in (2.39) occurs. Thus, by the strong Markov property
it suffices to prove (2.39) for $y\in G$ only.

To complete the proof for $y\in G$ we once again apply the comparison lemma.
Set

$ T_{4}=\inf$ { $t\geqq 0:Y_{1}(t)\leqq\Delta_{1}$ or $Y_{2}(t)\geqq 0$}

and let $Y^{(3)}$ be the solution of

(2.46) $dY_{1}^{(3)}(t)=\sigma_{1}dW_{3}(t)+$ { $B_{1}-B_{12}-B_{11}$ exp $Y_{1}^{(3)}(t)$ } $dt$ ,

$Y_{1}^{(3)}(0)=y_{1}$ , $Y_{2}^{(3)}(t)=y_{2}+\sigma_{2}W_{4}(t)-t$ .
Again $Y_{1}^{(3)}$ is positive recurrent and does not explode, and by the comparison
lemma we have for $(y_{1}, y_{2})\in G$ and $0\leqq t\leqq T_{4},$ $ t<\zeta$ ,

(2.47) $Y_{1}(t;y_{1}, y_{2})\leqq Y_{1}^{(3)}(t)$ , $Y_{2}(t;y_{1}, y_{2})\leqq Y_{2}^{(3)}(t)$

(recall $B_{12}\leqq 0$ and (2.38)). Thus, if

$T_{5}=\inf\{t\geqq 0:Y_{1}^{(3)}=\Delta_{1}\}$ ,
then

$ T_{4}\leqq T_{6}<\infty$ or $\zeta\leqq T_{5}$ $w$ . p. 1.

Just as with (2.43) one shows that $\zeta<T_{3}\wedge T_{4}$ has probability zero. Consequently

$P^{y}\{T_{3}\wedge T_{4}\leqq T_{5}<\infty\}=1$ , $y\in G$ .
On $\{T_{3}<\infty\}$ the event in (2.39) occurs and on $\{T_{4}\leqq T_{5}<\infty=T_{3}\}$

$Y_{2}(T_{4})\leqq\sup_{t\geqq 0}Y_{2}^{(3)}\leqq y_{2}+\sup_{t\geqq 0}\{\sigma_{2}W_{4}(t)-t\}$ .
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Thus, if $\Delta_{2}$ is chosen so large that

$P\{\sup_{t\geqq 0}\{\sigma_{2}W_{4}(t)-i\}\leqq\Delta_{2}\}\geqq\frac{1}{2}$ ,

then for $y\in G$ (and hence $y_{2}\leqq-2\Delta_{2}$) we have

$P^{y}$ { $ T_{3}<\infty$ or $ T_{4}<\infty$ and $Y_{2}(T_{4})\leqq-\Delta_{2}$} $\geqq\frac{1}{2}$ .
This proves (2.39), since $ T_{4}<\infty$ and $Y_{2}(T_{4})\leqq-\Delta_{2}$ means $ Y(T_{4})\in\{\Delta_{1}\}\times(-\infty$ ,
$-\Delta_{s}]=H_{0}$ . This proves the recurrence in case (1.13).

In the case (1.10) we merely have to redefine $Y_{1}^{(2)}(t)$ as the solution of $Y_{1}^{(2)}(0)$

$=y_{1}$ ,
$dY_{1}^{(2)}(t)=\sigma_{1}dW_{3}(t)+$ { $B_{1}-B_{11}$ exp $Y_{1}^{(2)}(t)-B_{12}$ exp $Y_{2}^{(2)}(t)$ } $dt$ ,

while $Y_{2}^{(2)}(t)$ is as in (2.40). With $B_{12},$ $B_{21}>0(2.41)$ remains unchanged. This
new $Y^{(2)}$ is recurrent by (1.12), (1.13) with the indices 1 and 2 interchanged.
The only other change needed is that $B_{1}-B_{12}$ in (2.46) should be replaced by
$B_{1}$ if $B_{12}>0$ .

This proves that $Y$ is recurrent in the cases (1.10) and (1.13). The fact
that we must have null recurrence and not positive recurrence follows from the
fact that

$V(t)\geqq V(0)+\overline{\sigma}_{2}\overline{W}_{4}(t)$ (since $\overline{B}_{22}\geqq 0$).

3. Proof of (1.12).

Since the case $B_{12}=B_{21}=0$ was already treated (just before the comparison
lemma) we restrict ourselves to the case where

(3.1) $B_{12}\leqq 0<B_{21}$ , $B_{11}B_{2}-B_{21}B_{1}>0$ .
First we choose

(3.2) $\Delta_{1}=\log B_{21}^{-1}(B_{2}+4\sigma_{2}^{2})$ ,

and $\Delta_{2}\leqq-1$ so small that (3.34) below holds. $K_{1},$ $K_{2},$ $\cdots$ will be various constants
which depend on the $B_{i},$ $B_{ij}$ and $\Delta_{i}$ , but whose particular value is unimportant5).

We introduce the vertical line

$L_{1}=\{(y_{1}, y_{2}):y_{1}=\Delta_{1}\}$

and the horizontal line
$L_{z}=\{(y_{1}, y_{2}):y_{2}=\Delta_{2}\}$ ,

and their respective hitting times

5) Note that (3. 34) does not involve the $K_{i}$ , so that $\Delta_{2}$ is determined first as a
function of the $B_{i},$ $B_{ij}$ only, and then the $K_{i}$ as functions of the $B_{i},$ $B_{ij},$ $\Delta_{1}$ and $\Delta_{2}$ .
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$\tau_{i}=\inf\{t:Y(t)\in L_{i}\}$ .
( $\tau_{i}=\infty$ if $Y$ does not hit $L_{i}$ before $\zeta$). The proof of (1.12) rests on Lemmas
2-5 below; these lemmas become more intuitive by looking at the behavior of
the driftvector $b(y_{1}, y_{2})=(b_{1}(y_{1}, y_{2}),$ $b_{2}(y_{1}, y_{2}))$ where

$b_{i}(y_{1}, y_{2})=B_{i}-B_{i1}e^{y_{1}}-B_{i2}e^{y_{2}}$ .
Fig. 2 gives the vector $b$ at some typical points. $b$ is vertical (horizontal) on
the curve $C_{1}$, obtained by setting $b_{2}=0$ (respectively $C_{2}$, obtained by setting
$b_{1}=0)$ . These curves are indicated in the figure (recall $B_{12}\leqq 0<B_{21}$). Through-
out $|y|$ denotes $(y_{1}^{2}+y_{2}^{2})^{1/2}$ .

LEMMA 2. For some $0<K_{1},$ $K_{2},$ $ K_{3}<\infty$ and all $y_{2}\leqq\Delta_{2}$

(3.3) $E^{(\Delta_{1}.y_{2})}\tau_{2}\leqq K_{1}(1+|y_{2}|^{2})$

and
(3.4) $P^{(\Delta_{1}.y_{2})}\{|Y_{1}(\tau_{2})|\geqq x\}\leqq K_{2}e^{-K_{3}x}$ , $x\geqq 0$ .

This lemma pretty much tells us that $Y$ will hit some compact set in a
time which is not too large if the initial point is on the half line $H_{1}=$

$L_{1}\cap\{(y_{1}, y_{2}):y_{2}\leqq\Delta_{2}\}$ . The following lemmas will serve to show that $Y$ will
hit $H_{1}$ and to provide estimates of the place where $H_{1}$ is hit. First we consider
the case where the initial point is to the left of $L_{1}$ .

LEMMA 3. For some $0<K_{4},$ $ K_{5}<\infty$ and all $y_{1}\leqq\Delta_{1},$ $y_{2}\in R$
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(3.5) $E^{(y_{1},y_{2})}\tau_{1}^{3}\leqq K_{4}(1+|y_{1}|^{3})$

and

(3.6) $E^{(y_{1}.y_{2})}|Y_{2}(\tau_{1})|^{3}\leqq K_{5}(1+|y|^{3})$ .
The last two lemmas are very similar and deal with initial points to the

right of $L_{1}$ and above, respectively below $L_{2}$ . However, Lemma 4 deals with
$\tau_{2}$ and Lemma 5 with $\tau_{1}$ .

LEMMA 4. For some $0<K_{6},$ $ K_{7}<\infty$ and all $y_{1}\geqq\Delta_{1},$ $y_{2}\geqq\Delta_{2}$

(3.7) $E^{(y_{1}.y_{2})}\tau_{2}^{3}\leqq K_{6}(1+|y|^{3})$

and
(3.8) $E^{(y_{1},y_{2})}|Y_{1}(\tau_{2})|^{3}\leqq K_{7}(1+|y|^{3})$ .
Moreover, for any $\epsilon>0$ there exists a $\Gamma$ such that for all $y_{1}\geqq\Delta_{1},$ $y_{2}\geqq\Delta_{2}$

(3.9) $ P^{(y_{1}.y_{2})}\{Y_{1}(\tau_{2})\geqq-\Gamma\}\geqq 1-\epsilon$ .
LEMMA 5. For some $0<K_{8},$ $ K_{9}<\infty$ and all $y_{1}\geqq\Delta_{1},$ $y_{2}\leqq\Delta_{2}$

(3.10) $E^{(y_{1},y_{2})}\tau_{1}^{3}\leqq K_{8}(1+|y|^{3})$

and

(3.11) $E^{(y_{1},y_{2})}|Y_{2}(\tau_{1})|^{3}\leqq K_{9}(1+|y|^{3})$ .
Moreover, for any $\epsilon>0$ there exists a $\Gamma$ such that for all $y_{1}\geqq\Delta_{1},$ $y_{2}\leqq\Delta_{2}$

(3.12) $ P^{(y_{1},y_{2})}\{Y_{2}(\tau_{1})\leqq\Gamma\}\geqq 1-\epsilon$ .
Before proving these lemmas we show how they imply (1.12). Choose $\epsilon$

such that

(3.13) $\{1-(1-\epsilon)^{3}\}^{1/12}<K_{11}^{-1}$ ,

where

(3.14) $K_{11}=8$ max $\{2K_{2}K_{3}^{-3}, K_{5}, K_{7}, K_{9}\}+8\{1+|\Delta_{1}|^{3}+|\Delta_{2}|^{3}\}$ .
Next, fix $\Gamma$ such that (3.9) and (3.12) hold as well as

(3.15) $ K_{2}e^{-K_{8}\Gamma}\leqq\epsilon$ , $\Gamma\geqq|\Delta_{1}|+|\Delta_{2}|$ .
Define

$\rho_{0}=0$ ,

$\rho_{1}=\left\{\begin{array}{ll}inf\{t\geqq\tau_{2} ; Y(t)\in L_{1}\} & if Y_{1}(0)>\Delta_{1}, Y_{2}(0)>\Delta_{2},\\\tau_{1} otherwise, & \end{array}\right.$

$\rho_{2n+2}=\inf\{t\geqq\rho_{2n+1} : Y(t)\in L_{2}\}$ ,

$\rho_{2n+a}=\inf\{t\geqq\rho_{2n+2} : Y(t)\in L_{1}\}$ .



354 H. KESTEN and Y. OGURA

Also set
$ N=\inf$ { $n:Y_{i}(\rho_{n})\in[-\Gamma,$ $+\Gamma]$ for $i=1,2$}.

The $Y$ process is positive recurrent if (see [10], Ch. 4.3)

(3.16) $ E^{y}\{\rho_{N}\}<\infty$ for all $y\in R^{2}$ .
Here we set $\rho_{N}=\infty$ whenever $\rho_{k}=\infty$ for some $k<N$ or $ N=\infty$ . Note first that
$\tau_{1}<\infty w$ . p. 1 if $y_{1}\leqq\Delta_{1}$ or $y_{1}\geqq\Delta_{1},$ $y_{2}\leqq\Delta_{2}$ , by virtue of (3.5) and (3.10). But also
if $y_{1}>\Delta_{1},$ $y_{2}>\Delta_{2}$ , then $\rho_{1}=\tau_{2}+\tau_{1}\cdot\theta_{\tau_{2}}<\infty w$ . p. 1 by (3.7) and (3.5) or (3.10) again
(since $Y(\tau_{2})\in L_{2}$). Thus $\rho_{1}<\infty w$ . p. 1 for each initial point and a similar argu-
ment shows that $\rho_{n}<\infty a$ . $s$ . for all $n$ . Next we show that $N<\infty a.s$ . In fact
we claim that

(3.17) $P^{y}\{N\geqq n\}\leqq\{1-(1-\epsilon)^{3}\}^{[n/4]-1}$ , $y\in R^{2}$ .
(3.17) will be immediate from the strong Markov property once we prove

(3.18) $P^{y}\{N\leqq 4\}\geqq(1-\epsilon)^{3}$ , $y\in R^{2}$ ,

because (for $n>4$)

$P^{y}\{N\geqq n\}\leqq E^{y}\{P^{Y(\rho_{4})}\{N\geqq n-4\} ; N>4\}$ .
We prove (3.18) only for $y_{1}\leqq\Delta_{1}$ . For brevity denote the set $[-\Gamma, +\Gamma]\times$

$[-\Gamma, +\Gamma]$ by $A$ . Then, for $y_{1}\leqq\Delta_{1}$

(3.19) $P^{y}\{N\leqq 4\}\geqq P^{y}\{|Y_{2}(\tau_{1})|\leqq\Gamma\}$

$+E^{y}\{P^{Y(\tau_{1})}\{Y(\tau_{2})\in A\} ; Y_{2}(\tau_{1})<-\Gamma\}$

$+P^{y}$ { $ Y_{2}(\tau_{1})>\Gamma$ and $N\leqq 4$}.

The second term in the right hand side of $(3.l9)$ is at least

(3.20) $P^{y}\{Y_{2}(\tau_{1})<-\Gamma\}\inf_{y_{2}\leqq\Delta_{2}}P^{(\Delta_{1},y_{2})}\{|Y_{1}(\tau_{2})|\leqq\Gamma\}$

$\geqq P^{y}\{Y_{2}(\tau_{1})<-\Gamma\}(1-\epsilon)$ ,

by virtue of $Y_{1}(\tau_{1})=\Delta_{1},$ $(3.4)$ and (3.15). Similarly the third term is at least

(3.21) $P^{y}$ { $Y_{2}(\tau_{1})>\Gamma,$ $ Y_{1}(\rho_{2})>-\Gamma$, and $N\leqq 4$}

$\geqq P^{y}\{Y_{2}(\tau_{1})>\Gamma, |Y_{1}(\rho_{2})|\leqq\Gamma\}$

$+E^{y}\{P^{Y(\rho 2)}\{N\leqq 2\} ; Y_{2}(\tau_{1})>\Gamma, Y_{1}(\rho_{2})>\Gamma\}$

$\geqq P^{y}\{Y_{2}(\tau_{1})>\Gamma, |Y_{1}(\rho_{2})|\leqq\Gamma\}$

$+P^{y}\{Y_{2}(\tau_{1})>\Gamma, Y_{1}(\rho_{2})>\Gamma\}\inf_{y_{1}\geqq\Delta_{1}}P^{(y_{1},\Delta_{2})}\{N\leqq 2\}$
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$\geqq E^{y}\{P^{Y(\tau_{1})}\{Y_{1}(\tau_{2})>-\Gamma\} ; Y_{2}(\tau_{1})>\Gamma\}\inf_{1y_{1\geqq}}P^{(y_{1}\Delta_{2})}\{N\leqq 2\}$

$\geqq P^{y}\{Y_{2}(\tau_{1})>\Gamma\}(1-\epsilon)\inf_{y_{1}\geqq\Delta_{1}}P^{(y_{1}.\Delta_{2})}\{N\leqq 2\}$

(by (3.9)). In turn, for $y_{1}\geqq\Delta_{1}$

(3.22) $P^{(y_{1}.\Delta_{2})}\{N\leqq 2\}\geqq P^{(y_{1}.\Delta_{2})}\{|Y_{2}(\tau_{1})|\leqq\Gamma\}$

$+E^{(y_{1}.\Delta_{2)}}\{P^{Y(\tau_{1})}\{|Y_{1}(\tau_{2})|\leqq\Gamma\} ; Y_{2}(\tau_{1})<-\Gamma\}$

$\geqq(1-\epsilon)P^{(y_{1}.\Delta_{2})}\{Y_{2}(\tau_{1})<\Gamma\}$ (by (3.4) and (3.15))

$\geqq(1-\epsilon)^{2}$ (by (3.12)).

Substitution of $(3.20)-(3.22)$ into (3.19) gives (3.18).

One now quickly derives (3.16). Write

(3.23) $E^{y}\{\rho_{N}\}=\sum_{n=0}^{\infty}E^{y}\{\rho_{n+1}-\rho_{n} ; N>n\}$ .

Now observe, that for $n$ odd

(3.24) $E^{y}\{\rho_{n+1}-\rho_{n} ; N>n\}=E^{y}\{E^{Y(\rho_{n})}\{\tau_{2}\} ; N>n\}$

$\leqq E^{y}\{K_{1}(1+|Y(\rho_{n})|^{2})+K_{6}^{1/3}(1+|Y(\rho_{n})|^{3})^{1/3} ; N>n\}$

(by (3.3) and (3.7))
$\leqq K_{10}E^{y}\{(1+|Y(\rho_{n})|^{3})^{2/3} ; N>n\}$ ,

where

(3.25) $K_{10}=\max\{2K_{1}+K_{\epsilon^{\prime 3}}^{1}, K_{4}^{1\prime S}+K_{8}^{1\prime S}\}$ .
(3.5) and (3.10) show that (3.24) is also valid for any even $n\neq 0$ . Thus, by (3.23)

$E^{y}\{\rho_{N}\}\leqq E^{y}t\rho_{1}\}+K_{10}\sum_{n=1}^{\infty}E^{y}\{(1+|Y(\rho_{n})|^{3})^{2/3} ; N>n\}$

$\leqq E^{y}\{\rho_{1}\}+K_{10}\sum_{n=1}^{\infty}(E^{y}\{1+|Y(\rho_{n})|^{3}\})^{2/3}\cdot(P^{y}\{N>n\})^{1/3}$

$\leqq E^{y}\{\rho_{1}\}+K_{10}\sum_{n\approx 1}^{\infty}(E^{y}\{1+|Y(\rho_{n})|^{3}\})^{2/3}\cdot\{1-(1-\epsilon)^{3}\}^{n/12-2}$

Finally, by (3.6) and (3.11) for odd $n>1$

(3.26) $E^{y}\{1+|Y(\rho_{n})|^{3}\}=E^{y}\{E^{Y(\rho_{n}-1)}\{1+|Y(\tau_{1})|^{s}\}\}$

$\leqq K_{11}E^{y}\{1+|Y(\rho_{n-1})|^{3}\}$ .
Again (3.26) also holds for even $n\geqq 2$ (by (3.4) and (3.8)) so that

$E^{y}\{1+|Y(\rho_{n})|^{3}\}\leqq K_{11}^{n-1}(1+E^{y}|Y(\rho_{1})|^{s})$ .
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Similar arguments show

$E^{y}\{1+|Y(\rho_{1})|^{3}\}\leqq K_{11}^{2}(1+|y|^{3})$ and $ E^{y}\{\rho_{1}\}<\infty$ .
Consequently (see (3.13))

$ E^{y}\{\rho_{N}\}\leqq E^{y}\{\rho_{1}\}+K_{10}(1+|y|^{3})\sum_{n=1}^{\infty}K_{11}^{n+1}\{1-(1-\epsilon)^{3}\}^{n\prime 12-2}<\infty$ .
We have now reduced (3.16) and (1.12) to Lemmas 2-5. In preparation of

their proofs we give the following
LEMMA 6. Let $Z(t)$ be the nonanticipating continuous solution of

$dZ(t)=\sigma dW(t)+\beta(Z(t))dt,$ $Z(O)=z$ ,

where $\sigma>0$ is constant, $W$ a Brownian motion and $\beta(\cdot)$ a function on $R$ which
satisfies the following conditions:

(i) For each $M$ there exists a $ K(M)<\infty$ such that

$|\beta(z^{\prime})-\beta(z^{\prime\prime})|\leqq K(M)|z^{\prime}-z^{\prime\prime}|,$ $|z^{\prime}|,$ $|z^{\prime\prime}|\leqq M$ ,

(ii) For some $ M_{0}<\infty$ and $\beta_{0}>0$

$\beta(z)\geqq\beta_{0}>0$ for $z\leqq-M_{0}$ ,
and

$\beta(z)\leqq-\beta_{0}<0$ for $z\geqq M_{0}$ .
Let $\Delta$ be fixed and set

$\tau=\inf\{t\geqq 0:Z(t)=\Delta\}$ .
Then for some $\lambda>0,$ $K_{12},$ $ K_{13}<\infty$ and all $z$

(3.27) $ E^{z}\exp\{\lambda\sup_{t\leq\tau}Z(t)\}<\infty$ ,

(3.28) $E^{z}$ exp $\{-\lambda\inf_{t\leqq\tau}Z(t)\}<\infty$ ,

and

(3.29) $E^{z}e^{\lambda\tau}\leqq K_{12}e^{K_{13}\lambda|z|}$ .
PROOF. (3.28) will follow from (3.27) by replacing $Z$ by $-Z$. Also $\sup_{t\leqq}Z(t)$

$\leqq\Delta$ for $ Z(O)=z\leqq\Delta$ so that (3.27) only needs proof for $ z\geqq\Delta$ . The same is true
for (3.29), again because $Z$ and $-Z$ satisfy identical hypotheses. From now on
we take $ z\geqq\Delta$ . Without loss of generality we take $M_{0}\geqq|\Delta|$ . Finally we take
$\tilde{\beta}$ Lipschitz continuous on compact sets and such that $\tilde{\beta}(x)\geqq\beta(x)$ for $x<M_{0}$ ,
$\tilde{\beta}(x)=-\beta_{0}$ for $x\geqq M_{0}$ . We denote by $\tilde{Z}(t)$ the solution of

$d\tilde{Z}(t)=\sigma dW(t)+\beta(\tilde{Z}(t))dt$ , $\tilde{Z}(0)=z$

and set
$\tau\sim=inf\{t:\tilde{Z}(t)=\Delta\}$ .



Recurrence $propertie\backslash ^{\backslash }$ of Lotka.Volterra models 357

By the comparison lemma, $Z(t)\leqq\tilde{Z}(t)$ for all $t$ , and hence if $ Z(O)=z\geqq\Delta$

$\tau\leqq\tau\sim$ , $\sup_{t\leqq\tau}Z(t)\leqq\sup_{\sim,t\leqq\tau}\tilde{Z}(t)$ .

Thus, it suffices to prove (3.27) and (3.29) for $\tilde{Z}$ and $\tilde{\tau}$ instead of $Z$ and $\tau$ . For
$\tilde{Z}$ one can now compute various quantities explicitly. E. $g.$ , the scale function
$s$ of $\tilde{Z}$ is given by

$s(x)=\int_{0}^{x}\exp-\tilde{B}(y)dy,\tilde{B}(y)=\frac{2}{\sigma^{2}}\int_{0}^{y}\beta(s)ds$

(cf. [11], p. 13, [2], Proposition 16.78). Thus

$s(x)\sim constant\exp\frac{2}{\sigma^{2}}\beta_{0}x$ , $ x\rightarrow\infty$ .

Consequently (see [2], Theorem 16.27)

$P^{z}\{\sup_{\sim,t\leqq r}\tilde{Z}(t)\geqq r\}=P^{z}$ { $\tilde{Z}(\cdot)$ hits $r$ before $\Delta$ }

$=\frac{s(2)-s(\Delta)}{s(r)-s(\Delta)}=o(\exp-\frac{2}{\sigma^{2}}\beta_{0^{\gamma}})$ , $ r\rightarrow\infty$ .

This proves (3.27).

To prove (3.29), set

$\rho_{0}=\inf$ { $t:\tilde{Z}(t)=M_{0}+1$ or $\tilde{Z}(t)=\Delta$},

$\rho_{2n+1}=\inf\{t>\rho_{2n} : \tilde{Z}(t)=M_{0}\}$ ,

$\rho_{2n+2}=\inf$ { $t>\rho_{2n+1}$ : $\tilde{Z}(t)=M_{0}+1$ or $\tilde{Z}(t)=\Delta$}.
Also let

$L=\inf\{n:\tilde{Z}(\rho_{2n})=\Delta\}$ .
Then $\tilde{\tau}\leqq\rho_{2L}$ and

(3.30) $E^{z}e^{\lambda\tau}\leqq E^{z}e^{\lambda\rho 0}+\sum_{n\Rightarrow 0}^{\infty}E^{z}\sim\{e^{\lambda\rho_{2n+2}}-e^{\lambda\rho_{2n}} ; L>n\}$ .

First we estimate $E^{z}\exp\lambda\rho_{0}$ . For $\Delta\leqq z\leqq M_{0}+1$ and $\lambda>0$ sufficiently small this
term is finite because $\sigma^{2}>0$ ([2], Proof of Lemma 16.25, [10], p. 132).

For $z>M_{0}+1,$ $\rho_{0}$ is just the first hitting time of $M_{0}+1$ . Since $\tilde{\beta}(x)=-\beta_{0}$ is
constant on $[M_{0}+1, \infty$ ) the $\tilde{Z}$ process is a Brownian motion with constant
negative drift up till $\rho_{0}$ and for $\lambda<(2\sigma^{2})^{-1}\beta_{0}^{2}$

(3.31) $\varphi(z)\equiv E^{z}e^{\lambda\rho 0}=\exp\frac{1}{\sigma^{2}}(\beta_{0}-\sqrt{\beta_{0}^{2}-2\lambda\sigma^{2}})(z-M_{0}-1),$ $z>M_{0}+1$ .

( $(3.31)=\lim_{r\rightarrow\infty}\varphi(z;r)$ where $\varphi(z;r)$ is the solution of
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$(\frac{1}{2}\sigma^{2}\frac{d^{2}}{dz^{2}}-\beta_{0}\frac{d}{dz}+\lambda)\varphi(z;r)=0$ , $M_{0}+1<z<r$ ,

which equals 1 at $z=M_{0}+1$ and at $z=r;\varphi(z;r)=E^{z}$ exp $\lambda$ (first hitting time of
$M_{0}+1$ or $r$) $.$ )

This takes care of the first term in the right hand side of (3.30) and we
now estimate the inPnite series. We have

(3.32) $E^{z}\{e^{\lambda\rho 2n+2-e^{\lambda\rho_{2n}};}L>n\}\leqq(E^{z}\{e^{2\lambda\rho_{2n+2}} ; L>n\}P^{z}\{L>n\})^{1/2}$ .
Also

$P^{z}\{L>n+1|L>n\}\leqq P^{Z(\rho_{2n+1})}$ { $\tilde{Z}$ hits $M_{0}+1$ before $\Delta$ }

$=P^{M_{0}}(\tilde{Z}$ hits $M_{0}+1$ before $\Delta$ } $=\theta$ ,

for some $\theta<1$ (see [2], Theorems 16.27 and 16.28.) Thus

$P^{z}\{L>n\}\leqq\theta^{n- 1}$ .
Next,

$E^{z}\{e^{2\lambda\rho_{2n+2}} ; L>n\}=E^{z}\{e^{2\lambda\rho_{2n}}E^{Z(\rho_{2n})}\{e^{2\lambda\rho_{2}}\} ; L>n\}$ ,

and if we can show that on $\{L>n\}$ for some $\lambda>0$

(3.33) $E^{z(\rho_{2n})}\{e^{2\lambda\rho_{2}}\}\leqq\theta^{-1/4}$ ,

then by iteration
$E^{z}\{e^{2\lambda\rho_{2n+2}} ; L>n\}\leqq\theta^{-n/4-1}E^{Z}e^{2\lambda\rho_{0}}$ ,

and by $(3.30)-(3.32)$ we will obtain

$E^{z}e^{\lambda\tau}\leqq E^{z}e^{\lambda\rho 0}+\sim\{E^{Z}e^{2\lambda\rho_{0}}\}^{1/2}\sum_{n=1}^{\infty}\theta^{-n/8+n/2-1}\leqq K_{12}e^{K_{13}\lambda|z|}$

as desired. However (3.33) is easy now. Indeed $Z(\rho_{2n})=M_{0}+1$ on $\{L>n\}$ so
that the left hand side of (3.33) becomes

$E^{M_{0}+1}\{e^{2\lambda\rho 1}E^{M_{0}}\{e^{2\lambda\rho 0}\}\}=E^{M_{0}}\{e^{2\lambda\rho 0}\}E^{M_{0}+1}\{e^{2\lambda\rho_{1}}\}$

$=E^{M_{0}}\{e^{2\lambda\rho 0}\}\exp\frac{1}{\sigma^{2}}(\beta_{0}-\sqrt{\beta_{0}^{2}-2\lambda\sigma^{2}})$ .

The last equality is proved exactly as (3.31), because $\tilde{Z}$ is a Brownian motion
with constant drift on $(M_{0}, \infty)$ . We already saw that $E^{M_{0}}$ exp $ 2\lambda\rho_{0}<\infty$ for
some $\lambda>0$ . By the dominated convergence theorem it tends to 1 as $\lambda\downarrow 0$ . Thus
also the left hand side of (3.33) tends to 1 as $\lambda\downarrow 0$ and (3.33) and (3.29) have
been proved.

PROOF OF LEMMA 2. Take $V(y)$ as in (2.7) with $\square $

$C=\frac{B_{2}+1}{B_{1}}>\frac{B_{21}}{B_{11}}$ and $D=\frac{B_{11}}{B_{21}}>\frac{B_{1}}{B_{2}}$
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(cf. (3.1)). Then $CD>1$ and the constants $\Gamma$ in (2.8) satisfy

$\Gamma_{0}=\frac{B_{2}+1}{B_{1}}A_{11}-2A_{12}+\frac{B_{11}}{B_{21}}A_{22}$ ,

$\Gamma_{1}=1,$ $\Gamma_{2}>0,$ $\Gamma_{11}<0$ ,

$\Gamma_{22}=B_{12}-B_{22}B_{11}(B_{21})^{-1}<0$ (by (3.1)) ,

$\Gamma_{12}\geqq B_{22}>0,$ $\Gamma_{21}=0$ .
It follows that for $\Delta_{2}\leqq-1$

$y_{1}\in R\sup_{y_{2}\leqq\Delta_{2}}y_{1}\{\Gamma_{1}+\Gamma_{11}e^{y_{1}}+\Gamma_{12}e^{y_{2}}\}$

$\leqq\sup_{y_{1^{\Xi 0}}}y_{1}\{\Gamma_{1}+\Gamma_{12}+\Gamma_{11}e^{y_{1}}\}+\sup_{y_{1\leqq 0}}y_{1}\{\Gamma_{1}+\Gamma_{11}e^{y1}\}<\infty$ ,

and we can choose $\Delta_{2}$ so small that on $y_{2}\leqq\Delta_{2}$ (cf. (2.8))

(3.34) L $V(y)\leqq\Gamma_{0}+2\sup_{y_{1}}y_{1}\{\Gamma_{1}+\Gamma_{12}+\Gamma_{11}e^{y_{1}}\}+2\Delta_{2}\{\Gamma_{2}+\Gamma_{22}e^{\Delta_{2}}\}\leqq-1$ .

In particular $V(Y_{t\Lambda\tau_{2}\bigwedge_{\zeta}^{r}})$ is a positive supermartingale and

$P^{y}$ $\{ \sup_{t\leqq\tau_{2}\Lambda\zeta}V(Y_{t})\geqq M\}\leqq\frac{V(y)}{M}\rightarrow 0$ , $ M\rightarrow\infty$ .

In other words $\zeta>\tau_{2}w$ . p. 1 and exactly as in Theorem 3.7.1 of [10] we now
obtain for $y_{2}\leqq\Delta_{2}$

$E^{y}\{\tau_{2}\}\leqq V(y)\leqq K_{1}|y|^{2}$

for suitable $K_{1}$ . This proves (3.3).

To prove (3.4) we define

$\pi_{0}=0$ , and for $n\geqq 0$

$\pi_{2n+1}=\tau_{2}\Lambda$ $inf\{t>\pi_{2n} ; Y_{1}(t)=\Delta_{1}-1\}$ ,

$\pi_{2n+2}=\tau_{2}\Lambda$ $inf\{t>\pi_{2n+1} ; Y_{1}(t)=\Delta_{1}\}$

and write for $\lambda>0,$ $y_{2}<\Delta_{2}$ ,

(3.35) $E^{(\Delta_{1},y_{2})}e^{\lambda\rceil Y_{1}(\tau_{2})\rceil}=\sum_{n=0}^{\infty}E^{(\Delta_{1},y_{2)}}\{e^{\lambda\rceil Y_{1}(\tau_{2})|} ; \pi_{2n}<\tau_{2}\leqq\pi_{2n+2}\}$

$=\sum_{n=0}^{\infty}\sum_{k=0}^{\infty}E^{(\Delta_{1},y_{2})}\{E^{Y(\pi_{2n})}\{e^{\lambda|Y_{1}(\tau_{2})|} ; \tau_{2}\leqq\pi_{2}\}j$

$\pi_{2n}<\tau_{2},$ $\Delta_{2}-k-1\leqq Y_{2}(\pi_{2n})<\Delta_{2}-k$ }.

Now for $n\neq 0Y(\pi_{2n})=(\Delta_{1}, z)$ for some $z$ , and by Schwarz’ inequality we have
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(3.36) $(E^{(\Delta_{1}.z)}\{e^{\lambda Y_{1}(\tau_{2})|} ;| \tau_{2}\leqq\pi_{2}\})^{2}$

$\leqq E^{(\Delta_{1},z)}\{e^{2\lambda|Y_{1}(\tau_{2})|} ; \tau_{2}\leqq\pi_{2}\}P^{(\Delta_{1},z)}\{\tau_{2}\leqq\pi_{2}\}$

The first factor in the right hand side equals

(3.37) $E^{(\Delta_{1},z)}\{e^{2\lambda|Y_{1}(\tau_{2})|} ; \tau_{2}\leqq\pi_{1}\}$

$+E^{(\Delta_{1},z)}\{E^{Y(\pi_{1})}\{e^{2\lambda\rceil Y_{1}(\tau_{2})|} ; \tau_{2}\leqq\tau_{1}\} ; \pi_{1}<\tau_{2}\}$ .
Now, since $\zeta>\tau_{2}w$ . p. 1 and $B_{12}\leqq 0$ we have by the comparison theorem for
$Y(0)=(\Delta_{1}, z),$ $z\leqq\Delta_{2}$ ,

(3.38) $Y_{1}(t)\leqq Y_{1}^{(4)}(t)$ , $t\leqq\tau_{2}$ ,

where $Y_{1}^{(4)}$ is the solution of

(3.39) $dY_{1}^{(4)}(t)=\sigma_{1}dW_{3}(t)+$ { $B_{1}-B_{11}$ exp $Y_{1}^{(4)}(t)-B_{12}e^{\Delta_{2}}$ } $dt$ ,

$Y_{1}^{(4)}(0)=\Delta_{1}$ .
Consequently, if

(3.40) $T_{6}=\inf\{t\geqq 0:Y_{1}^{(4)}(t)=\Delta_{1}-1\}\Lambda\tau_{2}$

then $T_{6}\geqq\pi_{1}$ , and on $\{\tau_{2}\leqq\pi_{1}\}$

$|Y_{1}(\tau_{2})|\leqq 2|\Delta_{1}-1|+\sup_{t\leqq T_{6}}Y_{1}^{(4)}(t)$ .

Consequently, by virtue of (3.27), the first term in (3.37) is bounded by

$e^{4\lambda|\Delta_{1}- 1|}E^{\Delta_{1}}$ exp $ 2\lambda\sup_{t\leq T_{6}}Y_{1}^{(4)}(t)\leqq K_{14}<\infty$

for $0\leqq\lambda\leqq\lambda_{0}$ for some $\lambda_{0}>0$ and $ K_{14}<\infty$ independent of $\lambda\leqq\lambda_{0}$ and $z\leqq\Delta_{2}$ . The
second term in (3.37) can be handled in the same way by means of (3.28) if we
take into account that on $\{\pi_{1}<\tau_{2}\}$ $Y(\pi_{1})=(\Delta_{1}-1, z)$ for some $z<\Delta_{2}$ and use

$Y_{1}(t ; \Delta_{1}-1, z)\geqq Y_{1}^{(2)}(t ; \Delta_{1}-1)$ , $t\leqq\tau_{2}$ ,

where $Y_{1}^{(2)}$ is defined as in (2.40).
Thus, (3.37) is at most 2 $K_{14}$ for $\lambda\leqq\lambda_{0}$ .
Next we estimate the second factor in the right hand $side_{-}^{-}of(3.36)$ . For

$\Delta_{2}-k-1\leqq z<\Delta_{2}-k$ .
(3.41) $P^{(\Delta_{1},z)}\{\tau_{2}\leqq\pi_{2}\}\leqq P^{(\Delta_{1},z)}\{\pi_{2}>(2B_{2})^{-1}k\}$

$+P^{(\Delta_{1},z)}\{m_{1}a_{\frac{x}{2}1_{k}}Y_{2}(t)-Y_{2}(0)\geqq k\}t\leqq_{2}B$

By the comparison lemma (and $B_{21},$ $B_{22}\geqq 0$)

(3.42) $Y_{2}(t)-Y_{2}(0)\leqq\sigma_{2}W_{4}(t)+B_{2}t$
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so that the last term in (3.41) is at most

(3.43) $P\{\{\max_{t\leqq(2B_{2})^{-1}k}\sigma_{2}W_{4}(t)\geqq\frac{1}{2}k\}\leqq K_{15}e^{-K_{16}k}$ .

As for the first term in the right hand side of (3.41),

$\pi_{2}=\pi_{1}+(\tau_{1}\wedge\tau_{2})\cdot\theta_{\pi_{1}}\leqq T_{6}+T_{7}$

where $T_{6}$ is defined in (3.40) and

$T_{7}=\inf\{t\geqq 0:Y_{1}^{(2)}(t;\Delta_{1}-1)=\Delta_{1}\}$ .
Since, by (3.29), both $P\{T_{6}\geqq x\}$ and $P\{T_{7}\geqq x\}$ decrease exponentially fast

as $ x\rightarrow\infty$ , we obtain from (3.42) and (3.43)

$P^{(\Delta_{1}.z)}\{\tau_{2}\leqq\pi_{2}\}\leqq K_{17}e^{-K_{18}k}$ .

We now substitute these estimates into (3.36) and (3.35) to obtain6)

(3.44) . $E^{(\Delta_{1},y_{2})}e^{\lambda|Y_{1}(\tau_{2})|}\leqq\sum_{n=0}^{\infty}\sum_{k\approx 0}^{\infty}(2K_{14}K_{17}e^{-K_{18}k})^{1/2}$

. $P^{(\Delta_{1}.y_{2})}\{\pi_{2n}<\tau_{2}, \Delta_{2}-k-1\leqq Y_{2}(\pi_{2n})<\Delta_{2}-k\}$

$\leqq K_{19}\sum_{\iota=0}^{\infty}e^{-1/2K_{18}k}$

. $E^{(\Delta_{1}.y_{2})}\#\{n:\pi_{2n}<\tau_{2}, \Delta_{2}-k-1\leqq Y_{2}(\pi_{2n})<\Delta_{2}-k\}$ .
To complete the proof of (3.4) we show that the last series in (3.44) is

bounded uniformly in $y_{2}\leqq\Delta_{2}$ . A first entry decomposition shows

(3.45) $E^{(\Delta_{1}.y_{2})}\#\{n:\pi_{2n}<\tau_{2}, \Delta_{2}-k-1\leqq Y_{2}(\pi_{2n})<\Delta_{2}-k\}$

$\leqq 1+_{\Delta_{2}}\sup_{-k-1\leqq z<\Delta_{2}- k}E^{(\Delta_{1},z)}\#\{n:\pi_{2n}<\tau_{2}, \Delta_{2}-k-1\leqq Y_{2}(\pi_{2n})<\Delta_{2}-k\}$ .

Moreover, for some $K_{20}>0$

(3.46) $E^{Y(\pi_{2n})}\{\pi_{2}\}\geqq K_{20}$

whenever $Y_{2}(\pi_{2n})<\Delta_{2}-1,$ $\pi_{2n}<\tau_{2}$ . Thus for $k\geqq 1$ and $\Delta_{2}-k-1\leqq z<\Delta_{2}-k$

(3.47) $K_{21}(1+k^{2})\geqq E^{(\Delta_{1},z)}\{\tau_{2}\}$ (by (3.3))

$\geqq\sum_{n}E^{(\Delta_{1},z)}\{E^{Y(\pi_{2n})}\{\pi_{2}\} ; \pi_{2n}<\tau_{2}, \Delta_{2}-k-1\leqq Y_{2}(\pi_{2n})<\Delta_{1}-k\}$

$\geqq K_{20}E^{(\Delta_{1},z)}\#\{n:\pi_{2n}<\tau_{2}, \Delta_{2}-k-1\leqq Y_{2}(\pi_{2n})\leqq\Delta_{2}-k\}$ .
$(3.45)-(3.47)$ take care of all terms in the series in (3.44) with $k\geqq 1$ . For $k=0$

we use the simple estimate

6) $\# A$ denotes the number of elements in the set $A$ .
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$P^{(\Delta_{1}.z)}\{\#\{n:\pi_{2n}<\tau_{2}, \Delta_{2}-1\leqq Y_{2}(\pi_{2n})<\Delta_{2}\}\geqq r\}\leqq(1-p)^{r-1}$

where
$p=\inf_{\Delta_{2}-1\leqq u<\Delta_{2}}P^{(\Delta_{1}.u)}\{\tau_{2}<\pi_{2}\}>0$ .

(Use the maximum principle ([1], Lemma 2.3) and [4], Theorem 13.16.) $\square $

The proof of Lemma 3 is omitted because it can be obtained from that of
Lemma 4 by interchanging the roles of $-Y_{1}(t)$ and $Y_{2}(t)$ .

PROOF OF LEMMA 4. Let $Y_{2}^{(2)}(t;y_{2})$ be given by (2.40) for $i=2$ and set

$T_{8}=\inf\{t\geqq 0:Y_{2}^{(2)}(t;y_{2})=\Delta_{2}\}$ .
As in (2.41),

$Y_{2}(t;y_{1}, y_{2})\leqq Y_{2}^{(2)}(t;y_{2})$ , $ t<\zeta$ ,

and if $y_{2}\geqq\Delta_{2}$ ,
$\tau_{2}\leqq T_{8}$ , unless $\zeta\leqq\tau_{2}\wedge T_{8}$ .

Exactly as in the proof of (2.42) we now have

$P^{y}\{\zeta\leqq T_{8}\}=0$ , $y_{2}\geqq\Delta_{2}$ .
(We can ignore (2.43) since $Y_{2}(t)\geqq\Delta_{2}$ for $t<\zeta\wedge\tau_{2}$). Therefore, if $y_{2}\geqq\Delta_{2}$

(3.48) $E^{y}\{\tau_{2}^{3}\}\leqq E^{y_{2}}\{T_{8}^{3}\}=3\int_{0}^{\infty}x^{2}P^{y_{2}}\{T_{8}\geqq x\}dx$

$\leqq K_{13}^{3}|y_{2}|^{3}+3\int_{K_{13}|y_{2}|}^{\infty}x^{2}e^{-\lambda x}E^{y_{2}}e^{\lambda T_{8}}dx$

$\leqq K_{13}^{3}|y_{2}|^{3}+K_{22}(1+|y_{2}|^{2})e^{-\lambda K_{13}\rceil y_{2}|}E^{y_{2}}e^{\lambda T_{8}}$ .
This implies (3.7) since

$E^{y_{2}}e^{\lambda T_{8}}\leqq K_{12}e^{K_{13}\lambda|y_{2}|}$ ,

by virtue of (3.29).

As for (3.8), by integrating (2.1) we have

(3.49) $Y_{1}(t)-Y_{1}(0)=\sigma_{1}W_{3}(t)-\frac{B_{11}}{B_{21}}\sigma_{2}W_{4}(t)$

$+(B_{1}-\frac{B_{11}}{B_{21}}B_{2})t-(B_{12}-\frac{B_{11}}{B_{21}}B_{22})\int_{0}^{t}e^{Y_{2}(s)}ds$

$+\frac{B_{11}}{B_{21}}(Y_{2}(t)-Y_{2}(0))$ .

Consequently,

$E^{y}|Y_{1}(\tau_{2})-Y_{1}(0)|^{3}\leqq K_{23}\{E^{y}|W_{3}(\tau_{2})|^{3}+E^{y}|W_{4}(\tau_{2})|^{3}$

$+E^{y}\tau_{2}^{3}+E^{y}|Y_{2}(\tau_{2})|^{3}+|y_{2}|^{3}+E^{y}|\int_{0}^{\tau_{2}}e^{Y_{2}(s)}ds|^{3}\}$ .
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Now use the following facts:

$E^{y}|W_{i}(\tau_{2})|^{3}\leqq K_{24}E^{y}\tau_{2}^{3/2}\leqq K_{25}\{E^{y_{2}}T_{8}^{3}\}^{1/2}$ ,

(see Theorem 2.1 of [3])
$Y_{2}(\tau_{2})=\Delta_{2}$

$E^{y}|\int_{0}^{\tau_{2}}e^{Y_{2}(s)}ds|^{3}\leqq E^{y}(\int_{0}^{\tau_{8}}\exp]_{2}^{\prime(2)}(s;y_{2})ds)^{s}$

$\leqq K_{26}E^{y}\{|W_{4}(T_{8})|^{3}+|Y_{2}^{(2)}(T_{8})|^{8}+|y_{2}|^{3}+T_{8}^{3}\}$ ,

together with (3.48) to obtain (3.8).

To prove (3.9) we Prst show that

(3.50) $ E^{y_{2}}T_{8}\leqq K_{27}<\infty$ for all $y_{2}\geqq\Delta_{2}$ .
(3.50) is merely a matter of calculation. The scale function $s_{0}(\cdot)$ and speed
measure $m_{0}(x)dx$ for $Y_{2}^{(2)}$ are given by (see [11], p. 13, [2] Ch. 16)

$s_{0}(x)=\int_{0}^{x}e^{-B_{0}(y)}dy$ , $m_{0}(x)=\frac{2}{\sigma^{2}}e^{B_{0}(x)}$ ,

where $B_{0}(x)=\frac{2}{\sigma^{2}}\int^{x})\{B\underline{.}-B.\underline{\nu}e^{y}\}d\backslash 1$

$=\frac{2}{\sigma^{\underline{\psi}}}\{B_{g\lambda}-B_{22}(e^{x}-1)\}$ .

By l’Hopital’s rule
$\sigma^{2}$

$s_{0}(x)\sim--$ $e^{-B_{0}(x)-x}$ $ x\rightarrow\infty$ ,
$2B_{22}$

so that

$\int^{\infty}s_{0}(x)m_{0}(x)dx<\infty$ .

This implies (3.50) (see [2], Theorem 16.36 and Problem 16.6.7).

Now let also $Y_{1}^{(2)}(t;y_{1})$ be given by (2.40) with $i=1$ . Then for $y_{1}\geqq\Delta_{1}$ ,
$y_{2}\geqq\Delta_{2}$

$Y_{1}(\tau_{2} ; y_{1}, y_{2})\geqq Y_{1}^{\langle 2)}(\tau_{2} ; y_{1})\geqq\inf_{t\leqq T_{8}}Y_{1}^{(2)}(t;y_{1})$ .

Consequently,

(3.51) $P^{(y_{1},y_{2})}\{Y_{1}(\tau_{2})<-\Gamma\}\leqq P^{(y_{1},y_{2}})\{T_{8}\geqq\frac{2}{\epsilon}K_{27}\}$

$+P\{\inf_{t\leqq 2K_{27}\epsilon^{-1}}Y_{1}^{(2)}(t;y_{1})<-\Gamma\}$
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$\leqq\frac{\epsilon}{2}+P\{\inf_{t\leqq 2K_{27}\epsilon^{-1}}Y_{1}^{(2)}(t;y_{1})<-\Gamma\}$ (by (3.50))

$\leqq\frac{\epsilon}{2}+P\{\inf_{t\leqq 2K_{27}\epsilon^{-1}}Y_{1}^{(2)}(t;J_{1})<-\Gamma\}$

(by the comparison lemma). The last member of (3.51) can be made smaller
than $\epsilon$ by taking $\Gamma$ large, and (3.9) is proven.

PROOF OF LEMMA 5. First we observe that on $y_{1}\geqq\Delta_{1}$ ,

$b_{2}(y_{1}, y_{2})=B_{2}-B_{21}e^{y_{1}}-B_{22}e^{y_{2}}$

$\leqq B\underline{)}^{-B_{21}e^{\Delta_{1}}=-4\sigma_{2}^{2}}$ .
Consequently for $y_{1}\geqq\Delta_{1},$ $y_{2}\leqq\Delta_{2}$

(3.52) $Y_{2}(t;y_{1}, y_{2})\leqq y_{2}+\sigma_{2}W_{4}(t)-4\sigma_{2}^{2}t$

$\leqq\Delta_{2}+\sigma_{2}W_{4}(t)-4\sigma_{2}^{2}t$ , $ t\in[0, \tau_{1}]\cap[0, \zeta$).

Substitution of (3.52) into (3.49) yields

(3.53) $Y_{1}(t;y_{1}, y_{2})\leqq y_{1}+\sigma_{1}W_{3}(t)+(B_{1}-B_{21}B_{11}-B_{2}-4\frac{B_{11}}{B_{21}}\sigma_{2}^{2})t$

$+(\frac{B_{11}B_{22}}{B_{21}}-B_{12})e^{\Delta_{2}}\int_{0}^{t}$ exp $\{\sigma_{2}W_{4}(s)-4\sigma_{2}^{2}s\}ds$

$\leqq y_{1}+\sigma_{1}W_{3}(t)-B_{3}t$

$+B_{4}\int_{0}^{t}$ exp $\{\sigma_{2}TV_{4}(s)-4\sigma_{2}^{2}s\}ds$ , $ t\in[0, \tau_{1}]\cap[0, \zeta$),

where

$B_{3}=4\frac{B_{11}}{B_{21}}\sigma_{2}^{2}+\frac{B_{11}B_{2}}{B_{21}}-B_{1}>0$ (see (3.1)), and

$B_{4}=(\underline{B}_{11}\underline{B}_{22}B_{21}-B_{12})e^{\Delta_{2}}\geqq 0$ .

As with (2.44), one can easily get

(3.54) $P^{y}\{\zeta<\tau_{1}\}=0$ , $y_{1}\geqq\Delta_{1},$ $y_{2}\leqq\Delta_{2}$ .

Hence from (3.53) it follows that for $y_{1}\geqq\Delta_{1},$ $y_{2}\leqq\Delta_{2}$

(3.55) $P^{y}\{\tau_{1}>t\}=P^{y}$ { $Y_{1}(t;y_{1},$ $y_{2})\geqq\Delta_{1}$ and $\tau_{1}>t$ }

$\leqq P$ { $y_{1}+\sigma_{1}W_{3}(t)-B_{3}t+B_{4}\int_{0}^{t}$ exp $\{\sigma_{2}W_{4}(s)-4\sigma_{2}^{2}s\}ds\geqq\Delta_{1}$ }
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$\leqq P\{\sigma_{1}W_{3}(t)\geqq\frac{1}{2}B_{3}t+\Delta_{1}-y_{1}\}$

$+P\{\int_{0}^{\infty}$ exp $\{\sigma_{2}W_{4}(s)-4\sigma_{2}^{2}s\}ds\geqq\frac{1}{2B_{4}}B_{3}t\}$ .

For $t\leqq 4B_{3}^{-1}(y_{1}-\Delta_{1})$ we use the trivial estimate $P^{y}\{\tau_{1}>t\}\leqq 1$ , whereas for $t>$

$4B_{3}^{-1}(y_{1}-\Delta_{1})(3.55)$ yields

$P^{y}\{\tau_{1}>t\}\leqq P\{\sigma_{1}W_{3}(t)\geqq\frac{1}{4}B_{3}t\}$

$+(\frac{2B_{4}}{B_{3}t})^{4}E\{\int_{0}^{\infty}$ exp $\{4\sigma_{2}W_{4}(s)-12\sigma_{2}^{2}s\}ds\}\{!_{0}^{\infty}e^{-4/3\sigma_{2^{S}}^{2}}ds\}^{3}$

$\leqq K_{28}\{\exp(-\frac{B_{3}^{2}t}{32\sigma_{1}^{2}})+\frac{1}{t^{4}}\}$ ,

because
$E$ exp $\{4\sigma_{2}W_{4}(s)-12\sigma_{2}^{2}s\}=\exp(8\sigma_{2}^{2}s-12\sigma_{2}^{2}s)$ .

(3.10) is an immediate consequence of these estimates.
(3.11) follows now from

(3.56) $Y_{2}(\tau_{1} ; y_{1}, y_{2})\leqq\Delta_{2}+\sup_{t\geqq 0}\{\sigma_{2}W_{4}(t)-4\sigma_{2}^{2}t\}$

and

(3.57) $Y_{2}(\tau_{1} ; y_{1}, y_{2})-y_{2}\geqq\sigma_{2}W_{4}(\tau_{1})-B_{21}\int_{0}^{\tau_{1}}\exp\{Y_{1}(s)\}ds$

$-B_{22}e^{\Delta_{2}}\int_{0}^{\infty}\exp$ $\{\sigma_{2}W_{4}(s)-4\sigma_{2}^{2}s)\}ds$ ,

and

$\int_{0}^{\tau_{1}}\exp\{Y_{1}(s)\}ds=B_{11}^{-1}\{y_{1}-Y_{1}(\tau_{1})+\sigma_{1}W_{3}(\tau_{1})+B_{1}\tau_{1}-B_{12}\int_{0}^{\tau_{1}}\exp Y_{2}(s)ds\}$

$\leqq B_{11}^{-1}\{y_{1}-\Delta_{1}+\sigma_{1}|W_{3}(\tau_{1})|+B_{1}\tau_{1}$

$+|B_{12}|e^{\Delta_{2}}\int_{0}^{\infty}$ exp $\{\sigma_{2}W_{4}(s)-4\sigma_{2}^{2}s\}ds$ .

(Compare the proof of (3.8) and use ([13], Ch. 1.5) $P\{\sup_{t\geqq 0}\{\sigma_{2}W_{4}(t)-4\sigma_{2}^{2}t\}\geqq x\}$

$\leqq e^{-8x}.)$

Finally (3.12) is immediate from (3.56).
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