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Let $k$ be an algebraically closed field whose characteristic is not equal to
two. Let $K$ be the Kummer variety of an abelian variety $X$ over $k$ , i.e., the
quotient of $X$ by the inverse morphism $c:X\rightarrow X$, and let $M$ be an ample
invertible sheaf on $K$. For any positive integer $a$ , we denote by $\Phi_{M^{a}}$ : $ K\rightarrow$

$P(\Gamma(K, M^{a}))$ the mapping defined by the linear system $\Gamma(K, M^{a})$ . In Section 1,
we shall prove the projective normality of Kummer varieties (Corollary 1.5):

The image $\Phi_{Ma}(K)$ is prOjectively normal for any $a\geqq 2$ ; moreover if the
canonical mapping

$\Gamma(K, M)\otimes\Gamma(K, M)\rightarrow\Gamma(K, M^{2})$

is surjective, then the image $\Phi_{M}(K)$ is also projectively normal.
In the last section 2, we shall prove the main result (Theorem 2.1) in the

present paper, which asserts:
The image $\Phi_{M^{a}}(K)$ is (set-theoretically) an intersection of cubics when $a=2$

and quadrics when $a\geqq 3$ .
This gives a partial answer to a problem proposed by D. Mumford.
I want to thank Professor S. Koizumi and Dr. T. Sekiguchi for their

encouragement and suggestion during the preparation of this paper, especially
the latter’s suggestion was very useful for proving the main result.
NOTATION AND TERMINOLOGY

Throughout this paper $k$ is an algebraically closed field of characteristic
$p\neq 2$ . $X$ will denote an abelian variety over $k$ of dimension $g$ . For an integer
$n$ , $X_{n}$ is the kernel of the homomorphism $n_{X}$ : $X\rightarrow X$ defined by $x\leftrightarrow nx$ . Let
$L$ be an invertible sheaf on $X$. Then we denote by $K(L)$ the kernel of the
homomorphism $\phi_{L}$ : $X\rightarrow\hat{X}$ of $X$ to the dual of $X$ defined by $x-T_{x}^{*}L\otimes L^{-1}$ , and
denote by $\mathcal{G}(L)$ the theta group of $L$ . As usual the action of $\mathcal{G}(L)$ is denoted
by U. $P=P_{X}$ will denote the Poincar\’e invertible sheaf on $X\times\hat{X}$, and $P_{\alpha}$ is
the restriction of $P$ to $X\times\{\alpha\}$ for any point $\alpha$ of $\hat{X}$. For a linear form $f$ on
a finite dimensional vector space $V$ over $k$ , we denote by $[f]$ tine Point in the
projective space $P(V)$ determined by $f$.
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\S 1. Projective normality of Kummer varieties.

We start with the following Proposition, which is a slight modification of
Proposition 1.5 in [6].

PROPOSITION 1.1. Let $f:X\rightarrow Y$ be an isogeny of abelian varieties, and let
$L$ and $M$ be amPle invertible sheaves on $X$ and $Y$ such that $f^{*}M\cong L$ . Let
$\Gamma(X, L^{2})^{Ker(f)}$ be the image of the induced maPping $f^{*}:$ $\Gamma(Y, M^{2})\rightarrow\Gamma(X, L^{2})$ .
Then the canonical mapping

$\tau;\Gamma(X, L^{2})^{Ker(f)}\otimes\Gamma(X, L^{n})\rightarrow\Gamma(X, L^{n+2})$

is surjective for all $n\geqq 3$ .
PROOF. By virtue of results of Sekiguchi (Main Theorem in [7] and

Corollary 1.3 in [6]), we see that for any closed points $\alpha$ and $\beta$ of $\hat{Y}$,

$\Gamma(Y, M^{2}\otimes P_{Y.\alpha})\otimes\Gamma(Y, M^{n}\otimes P_{Y.\beta})\rightarrow\Gamma(Y, M^{n+2}\otimes P_{Y,\alpha+\beta})$

is surjective. We denote by $W$ the image of the canonical map $\tau$ . To prove
our assertion, it suffices to show that

$(^{*})$ $\left\{\begin{array}{l}for any local k- algebra (R, \mathfrak{m}) with residue Peld k\\and any R- valued point \lambda of \mathcal{G}(L^{n+1}),\\U_{\lambda}(f^{*}(\Gamma(Y, M^{n+2})\otimes R))\subset W\otimes R\end{array}\right.$

(cf. [7] Corollary).

Let $j:\mathcal{G}(L^{n+2})\rightarrow K(L^{n+2})$ be the canonical surjection. We put $j(\lambda)=$

$u\in K(L^{n+2})(R)$ . Then we have the following commutative diagram:

$\Gamma(X_{S},(L_{s})^{n+2})\simeq\Gamma(X, L^{n+2})\otimes R\rightarrow\Gamma(X_{S},T_{u}(L_{s})^{n+2})\simeq\Gamma(X_{S},(L_{S})^{n+2})T_{u}^{*}$

(A) $ f^{*}\uparrow$ $\uparrow f^{*}$

$\Gamma(Y_{S},(M_{S})^{n+2})\simeq\Gamma(Y, M^{n+2})\otimes R\rightarrow\Gamma(Y_{S},T_{J^{(u)}}(M_{s})^{n+2})\simeq\Gamma(Y_{S},(M_{s})^{n+2}\otimes P_{Y,\gamma})T_{f(u)}^{*}$

where $\gamma=\phi_{M^{n+2}}(f(u)),$ $S=SpecR,$ $X_{s}=X\times S$ and so on. On the other hand, we
have the following diagram:

$\Gamma(Y_{s},(M_{s})^{2})\otimes\Gamma(Y_{s},(M_{S})^{n}\otimes P_{Y.\gamma})\rightarrow\Gamma(Y_{S},(M_{s})^{n+2}\otimes P_{Y,\gamma})$

$\Gamma(Y, M^{2})\otimes\Gamma(Y\downarrow, M^{n}\otimes P_{Y,\overline{\gamma}})\rightarrow\Gamma(Y_{f}M^{n+2}\otimes P_{Y,\overline{\gamma}})|$

,

where the vertical arrows are reductions modulo $\mathfrak{m}$ and $\overline{\gamma}$ is the composition
$Spec(R/\mathfrak{m})cSpec(R)\rightarrow Y\gamma$. As mentioned above, the bottom arrow is surjective;
hence by Nakayama’s lemma, we see that the top arrow is also surjective.
Since $f^{*}((M_{S})^{n}\otimes P_{Y.\gamma})\simeq(L_{S})^{n}$ , we obtain the following commutative diagram:



Bounds on the degree of the equations 325

$(\Gamma(X, L^{2})^{Ker(f)}\otimes R)\otimes(\Gamma(X, L^{n})\otimes R)\rightarrow\Gamma(X, L^{n+2})\otimes R$

(B) $ f^{*}\otimes f^{*}l\uparrow$

$\Gamma(Y_{S},(M_{S})^{2})\otimes\Gamma(Y_{S},(M_{s})^{n}\otimes P_{Y,\gamma})\rightarrow\Gamma(Y_{S},(M_{s})^{n+2}\otimes P_{Y,\gamma})\uparrow$

.
The surjectivity of the bottom arrow in (B) and the commutativity of the
diagrams (A) and (B) show the statement $(^{*})$ . Q. E. D.

From now on, we assume char$(k)\neq 2$ . Following Mumford [2], we give
two definitions.

DEFINITON 1.1. If $X$ is an abelian variety, then the quotient of $X$ by the
inverse morphism $\iota$ : $X\rightarrow X$ will be denoted by $K_{X}$ , the Kummer variety of $X$.

DEFINITION 1.2. An invertible sheaf $L$ on an abelian variety $X$ is said to be
totally symmetric if $L$ is of the form $\pi*M$ for some invertible sheaf $M$ on $K_{X}$ ,

where $\pi$ : $X\rightarrow K_{X}$ is the canonical projection.
Let $M$ be an ample invertible sheaf on the Kummer variety $K_{X}$ of an

abelian variety $X$. We denote by [–1] the canonical automorphism of $\Gamma(X, L)$ ,

where $L=\pi^{*}M$, induced by the inverse morphism $\iota$ and by $\Gamma(X, L)_{+}$ the sub-
space of $\Gamma(X, L)$ consisting of elements invariant under the action [–1]. Then
the image of the canonical map $\pi^{*};$ $\Gamma(K_{X}, M)\rightarrow\Gamma(X, L)$ is $\Gamma(X, L)_{+}$ . Moreover
if $K(L)=X_{2}$ , then $\Gamma(X, L)_{+}=\Gamma(X, L)$ (cf. [2] \S 3 Inverse Formula). Before
proving the Projective normality of Kummer varieties, we shall give two lemmas.

LEMMA 1.2. Let $L$ be an ample totally symmetric invertible sheaf on an
abelian variety X. Then there exist a finite subgroup scheme $H$ of $X$ and an
ample totally symmetric invertible sheaf $L^{\prime}$ on the quotient $Y=X/H$ such that
$K(L^{\prime})=Y_{2}$ and $p^{*}L^{\prime}\simeq L$ , where $p:X\rightarrow Y$ is the canonical surjection.

PROOF. Since $L$ is ample and totally symmetric, $K(L)$ contains the group
$X_{2}$ ; hence $L\simeq(L_{1})^{2}$ for some invertible sheaf $L_{1}$ (cf. [2] \S 2 Corollary 4 to
Proposition 6 and [4] \S 23 Theorem 4). Let $H$ be a maximal subgroup of $K(L_{1})$

satisfying $e^{L_{1}}|_{H\times H}\equiv 1$ , and let $p:X\rightarrow Y=X/H$ be the canonical surjection. Then
there exists a principal invertible sheaf $M_{1}$ on $Y$ such that $p^{*}M_{1}\simeq L_{1}$ . Let $M_{2}$

be a symmetric invertible sheaf on $Y$, which is algebraically equivalent to $M_{1}$ .
Put $L^{\prime}=(M_{2})^{2}$ . Then $L^{\prime}$ is totally symmetric and $p^{*}L^{\prime}$ is algebraically equivalent
to $L$ . Both $p^{*}L^{\prime}$ and $L$ are totally symmetric. Therefore $p^{*}L$ is isomorphic
to $L$ (cf. [2] p. 307). Q. E. D.

LEMMA 1.3. Let $\pi;X\rightarrow K_{X}$ be the canonical surjection of an abelian variety
$X$ to its Kummer variety. Then the group homomorphism $\pi^{*};$ $Pic(K_{X})\rightarrow Pic(X)$

is injective.
PROOF. Let $M$ be an element of tbe kernel of $\pi^{*}$ . Then $O_{X}$ has a struc-

ture of G-sheaf induced by an isomorphism $\pi^{*}M-\sim \mathcal{O}_{X}$ , where $G=\{1_{X}, c\}$ , and
there is a natural injection $M\rightarrow\pi_{*}(O_{X})^{G}$ . Suppose $M$ is non-trivial. Then for
any open subset $U$ of $K_{X}$ ,
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$\Gamma(U, M)\subset\Gamma(U, \pi_{*}(\mathcal{O}_{X})^{G})=\{f\in\Gamma(\pi^{-1}(U), O_{X})|\iota^{*}f=-f\}$ .

Let $U$ be a small open subset of $K_{X}$ containing $\pi(x_{0})$ with $x_{0}\in X_{2}$ and let $f$ be
an element of $\Gamma(U, M)$ such that the image of $f$ in the fibre $M(\pi(x_{0}))$ at $\pi(x_{0})$

is not zero. Put $\pi^{*}f=g\in\Gamma(X, O_{X})$ . Let $\pi^{*}(x_{0}):M(\pi(x_{0}))\rightarrow O_{X}(x_{0})$ be the homo-
morphism induced by $\pi$ . Then $\pi^{*}(x_{0})(f(\pi(x_{0})))=g(x_{0})=-g(x_{0})$ , so $g(x_{0})=0$ .
This contradicts to $f(\pi(x_{0}))\neq 0$ ; hence we have $M_{-}^{\sim}O_{K_{X}}$ . Q. E. D.

Now we shall prove the normal generation of ample invertible sheaves on
Kummer varieties in the following style.

THEOREM 1.4. Let $K_{X}$ be the Kummer variety of an abelian variety $X$, and
let $M$ be an ample invertible sheaf on $K_{X}$ . Then the canonical maP

$\Gamma(K_{X}, M)\otimes\Gamma(K_{X}, M^{a})\rightarrow\Gamma(K_{X}, M^{a+1})$

is surjective for all $a\geqq 2$ .
PROOF. Put $L=\pi^{*}M$. Then $L,$ $L^{a}$ and $L^{a+1}$ are totally symmetric and we

have a commutative diagram:

$\Gamma(X, L)\otimes\Gamma(X, L^{a})\rightarrow\Gamma(X, L^{a+1})$

$U$ $\cup$

$\Gamma(X, L)_{+}\otimes\Gamma(X, L^{a})_{+}\rightarrow\Gamma(X, L^{a+1})_{+}$

$\pi^{*}\otimes\pi^{*}l\uparrow$ $\uparrow l\pi^{*}$

$\Gamma(K_{X}, M)\otimes\Gamma(K_{X}, M^{a})\rightarrow\Gamma(K_{X}, M^{a+1})$ .

To prove the surjectivity of the map in the statement, it suffices to show that
the canonical map

$\varphi:\Gamma(X, L)_{+}\otimes\Gamma(X, L^{a})\rightarrow\Gamma(X, L^{a+1})$

is surjective. For if $t$ is an element of $\Gamma(X, L^{a+1})_{+}$ then $t$ is of the form
$\sum_{i}\varphi(r_{i}\otimes s_{i})$ with $r_{i}\in\Gamma(X, L)_{+}$ and $s_{i}\in\Gamma(X, L^{a})$ . Since $t$ and $r_{i}$ are even, it

follows that
$t=\sum\varphi(r_{i}\otimes[-1]s_{i})$ .

Therefore
$t=\sum\varphi(r_{i}\otimes([-1]s_{i}+s_{i})/2)$ ,

where $([-1]s_{i}+s_{i})/2$ is contained in $\Gamma(X, L^{a})_{+}$ . Now we shall show the sur-
jectivity of $\varphi$ By Lemma 1.2, we see that there exist an isogeny $f:X\rightarrow Y$ of
abelian varieties and an ample totally symmetric invertible sheaf $L^{\prime}$ on $Y$ such
that $K(L^{\prime})=Y_{2}$ and $f^{*}L^{\prime}\simeq L$ . On the other hand we have a commutative
diagram:
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$X\rightarrow^{f}Y$

$\pi\downarrow$ $\downarrow\pi^{\prime}$

$K_{X}\rightarrow K_{Y}f^{\prime}$

where $\pi^{\prime}$ is the canonical surjection and $f^{\prime}$ is the morphism induced by $f$.
Since $L^{\prime}$ is totally symmetric, there exists an ample invertible sheaf $M^{\prime}$ on $K_{Y}$

such that $(\pi^{\prime})^{*}M^{\prime}\simeq L^{\prime}$ . By virtue of Lemma 1.3, we get $(f^{\prime})^{*}M^{\prime}\simeq M$. Therefore
we have the following commutative diagram:

$\Gamma(X, L)\Gamma(Y\underline{f^{*}}L^{\prime})$

$\cup$ I
$\Gamma(X, L)_{+}$ $\Gamma(Y, L^{\prime})_{+}$

$\pi^{*}l\uparrow$ $l\uparrow(\pi^{\prime})^{*}$

$\Gamma(K_{X}, M)-\Gamma(K_{Y}, M^{\prime})$ .

Thus we have $\Gamma(X, L)_{+}\supset f^{*}(\Gamma(Y, L^{\prime}))$ . By Proposition 1.1, we see that the
map $\varphi$ is surjective. Q. E. D.

For an ample invertible sheaf $M$ on the Kummer variety $K_{X}$ of an abelian
variety $X$ and a positive integer $a$ , let $\Phi_{M^{a}}$ : $K_{X}\rightarrow P(\Gamma(K_{X}, M^{a}))$ be the canonical
map defined by the linear system $\Gamma(K_{X}, M^{a})$ . Then, as a direct consequence
of Theorem 1.4, we have the following:

COROLLARY 1.5. The image of $\Phi_{Ma}$ is prOjectively normal for $a\geqq 2$ . More-
over if the canonical map $\Gamma(K_{X}, M)\otimes\Gamma(K_{X}, M)\rightarrow\Gamma(K_{X}, M^{2})$ is surjective, then
the image of $\Phi_{M}$ is also projectively normal.

\S 2. Estimation of the bound on degree of equations defining Kummer
varieties.

This section is devoted to proving our main theorem, which is obtained by

the theory of equations defining abelian varieties.
THEOREM 2.1. Let $K_{X}$ be the Kummer variety of an abelian variety $X$, and

$M$ an ample invertible sheaf on $K_{X}$ . Then the image $\Phi_{M^{a}}(K_{X})$ via the canonical
mapping $\Phi_{Ma}$ : $K_{X}\rightarrow P(\Gamma(K_{X}, M^{a}))$ is an intersection of cubics when $a=2$ and
quadrics when $a\geqq 3$ .

PROOF. First of all, we shall prove the theorem in the case of $a=2$ . Let
$\pi;X\rightarrow K_{X}$ be the canonical surjection. By the proof of Lemma 1.2, we see that
$\pi^{*}M$ is of the form $L^{2}$ for some symmetric ample invertible sheaf on $X$.
Moreover there exists an isomorphism $\varphi:L\rightarrow\iota^{*}L$ such that $\varphi^{\otimes 2}$ is the canonical
isomorphism of $L^{2}$ to $\iota^{*}L^{2}$ . As in \S 1, we denote by $\Gamma(X, L^{b})_{+}$ the subspace of
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$\Gamma(X, L^{b})$ consisting of elements invariant under the automorphism [–1] of
$\Gamma(X, L^{b})$ induced by

$L^{b}\rightarrow^{\varphi^{\otimes b}}\iota^{*}L^{b}\simeq L^{b}$ .

Through the canonical injection $\pi^{*};$ $\Gamma(K_{X}, M^{b})\rightarrow\Gamma(X, L^{2b})$ , we identify $\Gamma(K_{X}, M^{b})$

with $\Gamma(X, L^{2b})_{+}$ . Now let

$l:\Gamma(X, L^{4})_{+}\rightarrow k$

be a non-trivial linear form such that there exists a linear form $l^{(3)}$ : $\Gamma(X, L^{12})_{+}$

$\rightarrow k$ which fits into the commutative diagram:

where the horizontal arrow is the canonical mapping. Then we have the fol-
lowing:

LEMMA. There exists a linear form $n:\Gamma(X, L^{6})_{+}\rightarrow k$ which satisfies the
following commutative diagram:

PROOF OF LEMMA. By the assumption on 1, we have a linear form
$l^{(2)}$ : $\Gamma(X, L^{8})_{+}\rightarrow k$ such that the diagram

is commutative. Therefore, for any $a,$ $b,$ $c$ and $d\in\Gamma(X, L^{2})_{+}$ , we have $ l(a\cdot b\rangle$

$1(c\cdot d)=l(a\cdot d)\cdot l(b\cdot c)$ , where $a\cdot b$ is the image of $a\otimes b$ in $\Gamma(X, L^{4})_{+}$ and so on.
Hence by an elementary linear algebra we have a linear form $m:\Gamma(X, L^{2})_{+}\rightarrow k$

which fits into the commutative diagram:
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To prove the Lemma, it suffices to show that

$(^{*})$ $\left\{\begin{array}{l}l^{(3)}(a\cdot b)\cdot l^{(3)}(c\cdot d)=l^{(\theta)}(a\cdot d)\cdot l^{(3)}(b\cdot c)\\for all a, b, c, d\in\Gamma(X, L^{6})_{+}.\end{array}\right.$

Since the canonical map

$\Gamma(X, L^{2})_{+}\otimes\Gamma(X, L^{4})_{+}\rightarrow\Gamma(X, L^{6})_{+}$

is surjective, the above assertion $(^{*})$ comes from the following:

$(^{**})$ $\left\{\begin{array}{l}l^{(3)}((a_{1}\cdot a_{2})\cdot(b_{1}\cdot b_{2}))\cdot l^{(3)}((c_{1}\cdot c_{2})\cdot(d_{1}\cdot d_{2}))\\=l^{(3)}((a_{1}\cdot a_{2})\cdot(d_{1}\cdot d_{2}))\cdot l^{(3)}((b_{1}\cdot b_{2})\cdot(c_{1}\cdot c_{2}))\\for all a_{1}, b_{1}, c_{1}, d_{1}\in\Gamma(X, L^{2})_{+} and all a_{2}, b_{2}, c_{2}, d_{2}\in\Gamma(X, L^{4})_{+}.\end{array}\right.$

Since we have
$l^{(3)}((a_{1}\cdot a_{2})\cdot(b_{1}\cdot b_{2}))=l^{(3)}((a_{1}\cdot b_{1})\cdot a_{2}\cdot b_{2})$

$=l(a_{1}\cdot b_{1})\cdot l(a_{2})\cdot l(b_{2})$

$=m(a_{1})\cdot m(b_{1})\cdot l(a_{2})\cdot l(b_{2})$ ,

it follows that the left side of the equation in $(^{**})$ becomes

$m(a_{1})\cdot m(b_{1})\cdot l(a_{2})\cdot l(b_{2})\cdot m(c_{1})\cdot m(d_{1})\cdot l(c_{2})\cdot l(d_{2})$

and this is equal to the right hand side of the equation. Thus the lemma is
proved.

Now we continue the proof of the theorem. We put

$\Gamma(X, L^{3})_{-=}\{f\in\Gamma(X, L^{3})|[-1]f=-f\}$ .

Then we easily see that $\Gamma(X, L^{3})=\Gamma(X, L^{3})_{+}\oplus\Gamma(X, L^{3})_{-}$ . By the same way as
the proof of the preceding lemma, we have linear forms

$p$ : $\Gamma(X, L^{3})_{+}\rightarrow k$

and
$q$ : $\Gamma(X, L^{3})_{-}\rightarrow k$

such that the diagram



$3\mathfrak{N}$ R. SASAKI

is commutative. Since $(\Gamma(X, L^{3})_{+})^{\otimes 2}+(\Gamma(X, L^{3})_{-})^{\theta 2}\rightarrow\Gamma(X, L^{\epsilon})_{+}$ is surjective, it
follows that $P\oplus q:\Gamma(X, L^{3})\rightarrow k$ is non-trivial. Then $R$ satisfies the following:

(C) For any $F\in Ker[\Gamma(X, L^{3})^{\otimes 3}\rightarrow\Gamma(X, L^{9})]$ ,

$(p\oplus q)^{\otimes s}(F)=0$ .
In fact, suppose $F$ is of the form

$\sum f_{i}\otimes g_{i}\otimes h_{i}$ .

We denote by $f^{+}$ (resp. $f^{-}$ ) the even (resp. odd) part of $f\in\Gamma\langle X,$ $L^{8}$). Then the
even and odd part of $F$ are the following:

$F^{+}=\sum\beta_{i}^{+}\otimes g_{i}^{-}\otimes h_{i}^{-}+\sum f_{i}^{-}\otimes g_{i}^{+}\otimes h_{i}^{-}+\sum f_{i}^{-}\otimes g^{-}\otimes h_{i}^{+}+\sum f_{i}^{+}\otimes g_{t}^{+}\otimes h_{\iota,}^{+}$

$F^{-}=\sum f_{i}^{-}\otimes g_{t}^{+}\otimes h_{i}^{+}+\sum fl\otimes g_{i}^{-}\otimes hr+\sum f_{i}^{+}\otimes g_{i}^{+}\otimes h_{i}^{-}+\sum f_{i}^{-}\otimes g_{i}^{-}\otimes h_{i}^{-}$ .

Since the image of $F^{+}$ (resp. $F^{-}$ ) in $\Gamma(X, L^{9})$ is even (resp. odd), these are zero.
If $P$ is trivial, then $(p\oplus q)^{\otimes 3}(F^{+})=0$ . So we may assume that $p(f)\neq 0$ for some
$f\in\Gamma(X, L^{3})_{+}$ . Then we have

$(p\oplus q)^{\otimes 4}(F^{+}\otimes f)=\sum p(f_{i}^{+})\cdot q(g_{i}^{-})\cdot q(h_{i}^{-})\cdot p(f)+\sum q(f_{i}^{-})\cdot p(g_{i}^{+})\cdot q(h_{i}^{-})\cdot p(f)$

$+\sum q(f_{t}^{-})\cdot q(g_{i}^{-})\cdot p(h_{i}^{+})\cdot p(f)+\Sigma p(f_{i}^{+})\cdot p(g_{i}^{+})\cdot p(h_{i}^{+})\cdot p(f)$

$=\sum n(f_{t}^{+}\cdot f)\cdot n(g_{t}^{+}\cdot h_{i}^{+})+\sum n(f_{i}^{-}\cdot h_{i}^{-})\cdot n(g_{i}^{+}\cdot f)$

$+\sum n(f_{t}^{-}\cdot g_{i}^{-})\cdot n(h_{i}^{+}\cdot f)+\sum n(fl\cdot g_{i}^{+})\cdot n(h_{t}^{+}\cdot f)$

$=l^{(3)}(\sum fr\cdot f\cdot g_{i}^{-}\cdot h_{i}^{-}+\sum f_{i}^{-}\cdot h_{i}^{-}\cdot g_{i}^{+}\cdot f$

$+\sum f_{t}^{-}\cdot g_{i}^{-}\cdot h_{t}^{+}\cdot f+\sum f_{t}^{+}\cdot g_{t}^{+}\cdot h_{i}^{+}\cdot f)$

$=0$ .
Therefore we have $(p\oplus q)^{\otimes s}(F^{+})=0$ . Similarly we have $(p\oplus q)^{\otimes 3}(F^{-})=0$ ; hence
$(p\oplus q)^{\otimes 3}(F)=0$ . By virtue of a theorem of Sekiguchi ([6], Theorem 3.1), we see
that there exists a closed point $x$ of $X$ such that $\Phi_{L^{3}}(x)\in P(\Gamma(X, L^{3}))$ gives the
linear form $P\oplus q$ , where $\Phi_{L^{3}}$ : $X\rightarrow P(\Gamma(X, L^{3}))$ is the canonical mapping. Now
we shall show that $\Phi_{M^{2}}(\pi(x))\in P(\Gamma(K_{X}, M^{2}))$ gives the linear form $l$ on
$\Gamma(K_{X}, M^{2})\simeq\Gamma(X, L^{4})_{+}$ . Let $l^{\prime}$ : $\Gamma(X, L^{4})_{+}\rightarrow k$ be a linear form corresponding
with the point $\Phi_{\Gamma(X,L^{4})}+(x)$ , where $\Phi_{\Gamma(X.L^{4)}}:+X\rightarrow P(\Gamma(X, L^{4})_{+})$ is the morphism
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defined by the linear system $\Gamma(X, L^{4})_{+}$ . We have the following diagram:

$X$

$t^{\tau}\{$

$K_{X}$

where $v_{3}$ and $v_{3}^{+}$ are the Veronese mapPings and $s$ is the projection with respect
to the inclusion $\Gamma(X, L^{12})_{+}\subset,\Gamma(X, L^{12})$ . Then $v_{3}([l^{\prime}])$ corresponds with the linear
form

$1^{\prime(j}$ : $\Gamma(X, L^{12})_{+}\rightarrow k$

which satisfies the following commutative diagram:

On the other hand $\Phi_{L^{3}}(x)=[p\oplus q]$ and $\Phi_{L^{12}}(x)=[(p\oplus q)^{(4)}]$ , where $(p\oplus q)^{(4)}$ is
the linear form satisfying the commutative diagram:

By the definitions, we have $s([(P\oplus q\rangle^{(4)}])=[l^{(3)}]$ : hence $[l^{(3)}]=[l^{\prime(\theta)}]$. Since $v_{3}^{+}$

is a closed immersion, it follows that we have $[1]=[l^{\prime}]$ . So we complete the
proof of the theorem for $a=2$ . Next we shall prove the case $a=3$. Let

$t:\Gamma(X, L)_{+}\rightarrow k$

be a linear form such that there exists a linear form

$l^{(2)}$ : $\Gamma(X, L^{12})_{+}\rightarrow k$

satisfying the commutative diagram:
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Then we have linear forms
$p$ : $\Gamma(X, L^{3})_{+}\rightarrow k$

and
$q$ : $\Gamma(X, L^{3})_{-}\rightarrow k$

such that the diagram

is commutative. By the same way as the case $a=2$ , we see that $P\oplus q$ satisfies
the above condition (C). The rest of the proof is similar to the first one. As for
the case $a\geqq 4$ , by a theorem of Mumford ([3], Theorem 10), we have a similar
proof. Q. E. D.

As a direct consequence of the preceding theorem, we have the following:
COROLLARY 2.2. Let $L$ be a symmetric ampfe invertible sheaf on an abelian

variety X. Assume the canonical map
$\Gamma(X, L^{2})_{+}\otimes\Gamma(X, L^{2})_{+}\rightarrow\Gamma(X, L^{4})_{+}$

is surjective. Then the image of the morphism $\Phi_{\Gamma(X.L^{2})}:+X\rightarrow P(\Gamma(X, L^{2})_{+})$ defined
by the linear system $\Gamma(X, L^{2})_{+}$ is an intersection of hypersurfaces of degree six.
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