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1. Introduction.

In [2], Atiyah proved that the stable fiber homotopy type of the tangent
sphere bundle of a differentiable manifold $M$ depends only on the homotopy
type of $M$. This theorem not only is interesting in itself, but also plays an
important role in constructing and classifying homotopy equivalent manifolds by
making use of the Browder-Novikov theory [4], [18], [22], [9], [12].

The purpose of the present paper is to exploit fundamental tools in equi-
variant topology, and to prove an equivariant analogue of Atiyah’s theorem as
an immediate consequence.

Throughout the paper, $G$ will denote a compact Lie group.
We shall first develop general theory on equivariant deformation retracts.

For this, we give a filtration on a compact G-manifold and introduce a concept
of G-deformation retracts Preserving the filtration. Here we do not assume
Yang’s results [25], because a gap in the proof was found. Hence we proceed

without using [10], [16].

Although Dold’s theorem mod $k$ for $k>1$ in the sense of Adams [1] has no
counterpart in equivariant theory in general, we shall establish fortunately
equivariant Dold’s theorem which corresponds to $k=1$ . Here we have introduced
the notion of a nice G-deformation retract, which enables us to carry out the
program of the inductive proof of equivariant Dold’s theorem one step further.

By combining these results and those of Rubinsztein [20], we shall verify
our main theorem.

Needless to say, the theorem can be applied to constructing and classifying
G-homotopy equivalent manifolds just as in the ordinary non-equivariant case.

As an application peculiar to the realm of equivariant topology, we shall
have, for instance, that the normal representations of the corresponding com-
ponents of the fixed point sets of G-homotopy equivalent manifolds are stably
homotopy equivalent in the sense of tom Dieck [6]. On the other hand, exam-
ples will be provided to show that the normal representations of the corre-
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sponding components of the fixed point sets of G-homotopy equivalent manifolds
are not necessarily isomorphic in general.

Some other applications will also be obtained.
REMARK. Since there is no notion of equivariant S-reducible and equivariant

S-coreducible, Atiyah’s proof is of no use for our purpose.

2. Statement of results.

The statement of the results concerning G-deformation retracts will be
postponed until \S 3, because we need to make preparations for the statement.

Let $G$ be a compact Lie group and $X$ be a compact G-space. We now define
G-fiber homotopy equivalence. Let $\xi$ and $\eta$ be orthogonal G-vector bundles over
X. Denote by $S(\xi)$ (resp. $S(\eta)$ ) the sphere bundle associated with $\xi$ (resp. $\eta$ ).

Then $S(\xi)$ and $S(\eta)$ are said to be of the same G-fiber homotopy type $(\xi\sim\eta)$ if
there exist fiber-preserving G-maps:

$f$ : $S(\xi)\rightarrow S(\eta)$ , $f^{\prime}$ : $S(\eta)\rightarrow S(\xi)$

and fiber-preserving G-homotopies:

$h$ : $S(\xi)\times I\rightarrow S(\xi)$ , $h^{\prime}$ : $S(\eta)\times I\rightarrow S(\eta)$

with $h|S(\xi)\times 0=f^{\prime}\cdot f$ , $h|S(\xi)\times 1=identity$

$h^{\prime}|S(\eta)\times 0=f\cdot f^{\prime}$ , $h^{\prime}|S(\eta)\times 1=identity$ .

Let $W$ be a compact smooth G-manifold. We shall denote the isotropy
group at $x\in W$ by $G_{x}$ , namely, $G_{x}=\{g\in G|g\cdot x=x\}$ . Then we have the fol-
lowing equivariant Dold theorem which corresponds to Satz 1 in [7].

THEOREM 2.1. Let $\xi$ and $\eta$ be orthogonal G-vector bundles over W. Let
$f:S(\xi)\rightarrow S(\eta)$ be a fiber-preserving G-map such that the restriction

$f_{x}$ : $S(\xi_{x})\rightarrow S(\eta_{x})$

is a $G_{x}$-homotopy equivalence for every $x\in W$. Then $f$ gives a G-fiber homotopy
equivalence.

REMARK 2.2. Theorem 2.1. will be valid for G-vector bundles over G-CW-
complexes in the sense of Illman [10] and Matumoto [16].

Let $KO_{G}(X)$ be the Grothendieck-Atiyah-Segal group [3] defined in terms
of real G-vector bundles over $X$. Let $T_{G}(X)$ be the additive subgroup of $KO_{G}(X)$

generated by elements of the form $[\xi]-[\eta]$ , where $\xi$ and $\eta$ are othogonal G-
vector bundles whose associated sphere bundles are G-fiber homotopy equivalent.
We define

$J_{G}(X)=KO_{G}(X)/T_{G}(X)$ .



Compact Lie group actions 297

The natural epimorphism $KO_{G}(X)\rightarrow J_{G}(X)$ will also be denoted by $J_{G}$ . Then our
main theorem will be:

THEOREM 2.3. Let $M_{1},$ $M_{2}$ be closed G-manifolds with tangent bundles $TM_{1}$,
$TM_{2}$ resPectively. Let $f:M_{1}\rightarrow M_{2}$ be a G-homotopy equivalence. Then we have

$J_{G}(TM_{1})=J_{G}(f^{*}TM_{2})$ .
Let $f:M_{1}\rightarrow M_{2}$ be a G-homotopy equivalence. Denote by $F_{i}^{\mu}$ each component

of the fixed point set of $M_{i}(i=1,2)$ . Then the set $\{F_{1}^{\mu}\}$ is in one to one cor-
respondence with the set $\{F_{2}^{\mu}\}$ such that $f(F_{1}^{\mu})=F_{2}^{\mu}$ . Let $\tau_{1}^{\mu}$ (resp. $\tau_{2}^{\mu}$ ) be the
tangent representation at $x\in F_{1}^{\mu}$ (resp. $f(x)\in F_{2}^{\mu}$ ). Regarding $\tau^{\mu_{i}}$ as G-vector
bundles over one point, we have

COROLLARY 2.4. $J_{G}(\tau_{1}^{\mu})=J_{G}(\tau 6)$ .
Let $N_{1}^{\mu}$ (resp. $N_{2}^{\mu}$ ) be the normal bundle of $F_{1}^{\mu}$ (resp. $F_{2}^{\mu}$ ) in $M_{1}$ (resp. $M_{2}$).

Then we have
COROLLARY 2.5. $J_{G}(N_{1}^{\mu})=J_{G}((f|F_{1}^{\mu})^{*}N_{2}^{\mu})$ .
Let $V_{1}^{\mu}$ (resp. $V_{2}^{\mu}$ ) be the normal representation of $F_{1}^{\mu}$ (resp. $F_{2}^{\mu}$ ) in $M_{1}$

(resp. $M_{2}$). Regarding $V_{\ell}^{\mu}$ as G-vector bundles over one point, we have in
particular

COROLLARY 2.6 $J_{G}(V_{1}^{\mu})=J_{G}(V_{2}^{\mu})$ .
On the other hand, we have
EXAMPLE 2.7. There are G-homotopy equivalent manifolds $M_{1},$ $M_{2}$ , such

that $\tau_{1}^{\mu}$ (resp. $V_{1}^{\mu}$ ) is not isomorphic to $\tau_{2}^{\mu}$ (resp. $V_{2}^{\mu}$ ) as G-representation spaces.
Let $G\rightarrow EG\rightarrow BG$ be the universal principal G-bundle. Our equivariant

Stiefel-Whitney class $W_{G}(\xi)$ of a G-vector bundle $\xi\rightarrow X$ is defined by

$W_{G}(\xi)=W(EG\times\xi)G$

where $W()$ denotes the ordinary total Stiefel-Whitney class. Then we have
COROLLARY 2.8. Let $M_{1},$ $M_{2}$ be closed G-manifolds with tangent bundles

$TM_{1},$ $TM_{2}$ respectively. Let $f:M_{1}\rightarrow M_{2}$ be a $G$ -homotopy equivalence. Then we
have

$W_{G}(TM_{1})=W_{G}(f^{*}TM_{2})$ .

REMARK 2.9. Corollary 2.8 follows also from equivariant Wu type formulae
[13].

Since $(Z_{2})^{k}$-bordism classes are characterized by equivariant Stiefel-Whitney
numbers [5], we have

COROLLARY 2.10. $(Z_{2})^{k}$-homotoPy equivalent manifolds are $(Z_{2})^{k}$-bordant.
The present paper is arranged as follows. In \S 3, we develop general theory

of G-deformation retracts. \S 4 is devoted to the study of equivariant Dold’s
theorem. Theorem 2.3 is proved in \S 5 and Example 2.7 is given in \S 6. Since
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Corollaries 2.4, 2.5, 2.6, 2.8 and 2.10 follow immediately from Theorem 2.3, we
omit the proofs.

3. $G$-deformation retracts.

We first give some basic notations. Let $G$ be a compact Lie group. When-
ever $H$ is a subgroup of $G,$ $(H)$ denotes the conjugacy class of $H$ in $G$ and
$N(H)$ denotes the normalizer of $H$ in $G$ . There is a partial ordering relation
among the set of conjugacy classes of subgroups of $G,$ $i$ . $e.,$ $(H_{1})\leqq(H_{2})$ if and
only if there exists $g\in G$ such that $gH_{1}g^{-1}\subset H_{2}$ .

Let $X$ be a compact G-space. We shall denote the isotropy group at $x\in X$

by $G_{x}$ , namely, $G_{x}=\{g\in G|g\cdot x=x\}$ . For a subgroup $H$ of $G$ , we shall put

$X^{H}=\{x\in X|G_{x}\supset H\}$ , $X(H)=\{x\in X|G_{x}\in(H)\}$ .

If a G-vector bundle $\xi\rightarrow X$ has a Riemannian metric $\langle, \rangle$ , and the G-action
is isometric, then $\xi$ is called a Riemannian G-vector bundle. Whenever $\xi$ is a
Riemannian G-vector bundle, we put $\Vert x\Vert=\langle x, x\rangle^{1/2},$ $\xi(r)=\{x\in\xi|\Vert x\Vert\leqq r\},$ $S(\xi(r))$

$=\{x\in\xi|\Vert x\Vert=r\}$ and $\xi(r)=\circ\{x\in\xi|\Vert x\Vert<r\}$ where $r>0$ .
We now recall the definition of an $\langle n\rangle$ -manifold due to J\"anich [11]. We

define a differentiable manifold with corners as being locally modelled on the
open sets of $\{x=(x_{1}, \cdots, x_{n})\in R^{n}|x_{1}\geqq 0, \cdots, x_{n}\geqq 0\}$ . A closed subset $Y$ of an
n-dimensional manifold with corners $X$ is called a k-dimensional submanifold of
$X$, if for each $y\in Y$ one can introduce local coordinates in a neighborhood $U$ of
$y$ in $X$, with respect to which $Y\cap U$ becomes an open subset of $\{x\in R^{n}|x_{1}\geqq 0$ ,
... , $x_{k}\geqq 0,$ $x_{k+1}=\ldots=x_{n}=1$ }. Then $Y$ has a canonical structure as a manifold
with corners.

If $x\in X$ is represented by $(x_{1}, \cdots, x_{n})$ in a local coordinate system, we
denote by $c(x)$ the number of zeros in this n-tuple. $c(x)$ does not depend on
the choice of the coordinate system.

Note that $x$ belongs to the closure of at most $c(x)$ different connected com-
ponents of $\{p\in X|c(P)=1\}$ . Now we call $X$ a manifold with faces, if each
$x\in X$ does belong to the closure of $c(x)$ different components of $\{p\in X|c(p)=1\}$ .
For a manifold with faces, the closure of a connected component of $\{p\in X|c(P)$

$=1\}$ has in a canonical way the structure of an $(n-1)$-dimensional manifold
with corners and is called a connected face of $X$. Any union of pairwise dis-
joint connected faces is called a face of $X$. Such a face is in fact a manifold
with faces itself. Notice that a face may be empty.

Now we are ready to introduce the notion of an $\langle n\rangle$ -manifold.
DEFINITION. A manifold with faces $X$ together with an n-tuple $(\partial_{0}X,$ $\cdots$ ,

$\partial_{n- 1}X)$ of faces of $X$ is called an $\langle n\rangle$ -manifold, if
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(i) $\partial_{0}X\cup\cdots\cup\partial_{n- 1}X=\partial X$,

(ii) $\partial_{i}X\cap\partial_{j}X$ is a face of $\partial_{i}X$ and $\partial_{j}X$ for $i\neq j$ .
Let $X$ be a closed manifold and $Y$ a closed submanifold. If one removes

the interior of a small tubular neighborhood of $Y$ from $X$, one obtains a mani-
fold with boundary. More generally, if $X$ is an $\langle n\rangle$ -manifold and $Y$ a submani-
fold of the underlying manifold with corners, then the removal of an open
tubular neighborhood of $Y$ from $X$ creates an $\langle n+1\rangle$ -manifold $X^{\prime}$ .

We consider this process equivariantly. Let $G$ be a compact Lie group,
acting differentiably on an $\langle n\rangle$ -manifold $X$. We call $X$ together with such an
action a $ G-\langle n\rangle$ -manifold, if each $\partial_{i}X$ is invariant under $G$ . Let $Y$ be a G-
invariant submanifold of the $ G-\langle n\rangle$ -manifold $X$, and $U$ a small G-invariant
open tubular neighborhood of $Y$ in $X$. Then we have a $ G-\langle n+1\rangle$ -manifold
$X-U$, which we denote by X\copyright Y. For the precise definition of X\copyright Y, see [11].

Let $W$ be a compact $ G-\langle n\rangle$ -manifold and $N$ be a compact G-invariant sub-
manifold of $W$ in the sense of J\"anich [11]. Then the normal bundle $\nu$ of $N$ in
$W$ is a smooth G-vector bundle and there is an equivariant diffeomorphism
$\nu\rightarrow U$ where $U$ is an open tubular neighborhood of $N$ in $W[15]$ . We often
identify $\nu$ with $U$ by this G-diffeomorphism.

Since $W$ is compact, there are only finite G-isotropy types, say

$\{(G_{x})|x\in W\}=(H_{1})\cup$ $\cup(H_{k})$ .
It is possible to arrange $(H_{\ell})$ in such order that $(H_{i})\geqq(H_{j})$ implies $i\leqq j$ . We
shall get a Pltration $W=W_{1}\supset\cdots\supset W_{k}$ consisting of compact $G-\langle n+i-1\rangle-$

manifolds $W_{i}$ such that

$\{(G_{x})|x\in W_{i}\}=(H_{i})\cup(H_{i+1})\cup$ $\cup(H_{k})$

as follows.
Since $(H_{1})$ is a maximal conjugacy class, $W(H_{1})$ is a compact G-invariant

submanifold. We identify the normal bundle $v_{1}$ of $W(H_{1})$ in $W$ with an open
tubular neighborhood of $W(H_{1})$ in $W$ and impose a Riemannian G-vector bundle
structure on $\nu_{1}$ . Set $W_{2}=W-\nu_{1}^{o}(2)$ . Then $W_{2}$ is a compact $ G-\langle n+1\rangle$ -manifold
and is nothing but $WW(H_{1})$ , if we employ the notation in [11]. Clearly we
have that

$\{(G_{x})|x\in W_{2}\}=(H_{2})\cup\cdots\cup(H_{k})$ .
Suppose that we get a filtration $W=W_{1}\supset W_{2}\supset\ldots\supset W_{i}$ such that

$\{(G_{x})|x\in W_{j}\}=(H_{j})\cup(H_{j+1})\cup\ldots\cup(H_{k})$

and $W_{j}$ is a compact $ G-\langle n+j-1\rangle$ -manifold for every $j\leqq i$ . Since $(H_{i})$ is a
maximal conjugacy class among the set $\{(G_{x})|x\in W_{i}\},$ $W_{i}(H_{i})$ is a compact G-
invariant submanifold of $W_{i}$ . We identify the normal bundle $\nu_{i}$ of $W_{i}(H_{i})$ in
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$W_{i}$ with an open tubular neighborhood of $W_{\ell}(H_{i})$ in $W_{\ell}$ and impose a Riemannian
G-vector bundle structure on $\nu_{i}$ . Set $W_{i+1}=W_{i}-\mathring{\nu}_{i}(2)$ . Then $W_{i+1}$ is a compact
$ G-\langle n+i\rangle$ -manifold and is nothing but $W_{i}\copyright W_{i}(H_{i})$ , if we employ the notation
in [11]. Clearly we have that

$\{(G_{x})|x\in W_{i+1}\}=(H_{i+1})\cup$ $\cup(H_{k})$ .
This completes the inductive constructions.

Denote by $\partial_{1}W,$ $\cdots$ $\partial_{n}W$ the faces of $W$. Let $\Delta W$ be the union $\partial_{i_{1}}W\cup\cdots$

$\cup\partial_{i_{d}}W$ of some faces of $W$. Denote by $(W^{H_{i}})_{\mu}$ (resp. $(W^{H_{j}})_{\lambda}$ ) each component
of $W^{H_{i}}$ (resp. $W^{H}!$). Then we have

LEMMA 3.1. SuPpose that the inclusion map $(\Delta W)^{H_{i}}\rightarrow W^{H_{i}}$ is a homotopy
equivalence for every $H_{i}$ and that $(H_{i})<(H_{j})$ implies

$\min_{\mu}\{\dim(W^{H_{i}})_{\mu}\}-\max_{\lambda}\{\dim(W^{H}!)_{\lambda}\}\geqq\dim G+3$ .

Then there is a G-deformation retraction $D:W\times I\rightarrow W$ such that

$D(x, O)=x$ , $D(x, 1)\in\Delta W$ for $x\in W$ ,

$D(x, s)=x$ for $x\in\Delta W,$ $s\in I$ ,

$D(S(\nu_{j}(2))\times I)\subset S(\nu_{j}(2))$ for every $j$ .

PROOF. Such a G-deformation retraction as in Lemma 3.1 is called briefly

a G-deformation retraction preserving $S(\nu_{j}(2))$ . We prove Lemma 3.1 by induc-
tion concerning the number of orbit types.

Suppose that $W$ has only one G-isotropy type, say $(H)$ . Since $N(H)/H$ acts
freely on $W^{H}$ , we have the following commutative diagram

$N(H)/H\rightarrow(\Delta W)^{H}\rightarrow(\Delta W)^{H}/(N(H)/H)$

$ N(H)/H||\rightarrow W^{H}\downarrow\rightarrow W^{H}/(N(H)/H)\downarrow$

where the horizontal sequences denote fibrations and the vertical arrows are
inclusion maps. Hence we have the following commutative diagram

$\rightarrow\pi_{i}(N(H)/H)\rightarrow\pi_{i}((\Delta W)^{H})\rightarrow\pi_{i}((\Delta W)^{H}/(N(H)/H))\rightarrow$

$\Vert$ $ i_{*}\downarrow$ $\downarrow(i/\sim)_{*}$

$\rightarrow\pi_{i}(N(H)/H)\rightarrow\pi_{i}(W^{H})\rightarrow\pi_{i}(W^{H}/(N(H)/H))-$

where $i_{*}$ is an isomorphism by hypothesis. It follows from the five lemma that
$(i/\sim)_{*}$ is also an isomorphism. Using Whitehead [24], it follows that
$(\Delta W)^{H}/(N(H)/H)$ is a deformation retract of $W^{H}/(N(H)/H)$ . Therefore by the
covering homotopy property of principal bundles, $(\Delta W)^{H}$ is a $N(H)/H$-deforma-
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tion retract of $W^{H}$ . In order to construct the required G-deformation retraction,
we have only to remark the natural G-diffeomorphisms

$\Delta W=(G/H)_{N(H)/H}\times(\Delta W)^{H}$

and
$W=(G/H)_{N(H)/H}\times W^{H}$ .

Let $k$ be an integer greater than one. We now assume that Lemma 3.1 is
true for the case where the number of orbit types is smaller than $k$ . Let $W$

be a compact $ G-\langle n\rangle$ -manifold such that the number of orbit types in $W$ is $k$

and that the assumptions in Lemma 3.1 is satisfied. Following the filtration

$ W=W_{1}\supset W_{2}\supset$ $\supset W_{k}$ ,

we shall construct inductively G-homotopies $D_{i}$ : $W\times I\rightarrow W$ such that

$D_{i}(x, O)=x$ , $D_{i}(x, 1)\in W_{i+1}\cup\Delta W$ for $x\in W$ ,

$D_{i}(x, s)=x$ for $x\in\Delta W,$ $s\in I$ ,

$D_{i}(S(\nu_{j}(2))\times I)\subset S(\nu_{j}(2))$ for every $j$ .
As above we can prove that $(\Delta W)(H_{1})$ is a G-deformation retract of $W(H_{1})$ .

In virtue of the equivariant covering homotopy property of G-vector bundles
[3], the above G-deformation retraction extends to the normal bundle $\nu_{1}$ of
$W(H_{1})$ in $W$. Denote by

$d_{1}$ : $\nu_{1}\times I\rightarrow\nu_{1}$

its extension. Then we have that

$\{(G_{x})|x\in S(\nu_{1}(2))\}\subset(H_{2})\cup\cdots\cup(H_{k})$ .
It is easy to see that $S(\nu_{1}(2))$ is a compact $ G-\langle n\rangle$ -manifold and $S(\nu_{1}(2)|(\Delta W)(H_{1}))$

is the union of some faces of $S(\nu_{1}(2))$ . Moreover the pair

$(S(\nu_{1}(2)), S(\nu_{1}(2)|(\Delta W)(H_{1})))$

satisfies the assumptions in Lemma 3.1. The inductive hypothesis guarantees
that $S(\nu_{1}(2)|(\Delta W)(H_{1}))$ is a G-deformation retract of $S(\nu_{1}(2))$ preserving
$S(\nu_{1}(2))\cap S(\nu_{j}(2))$ . Here we have employed the filtration.

$S(\nu_{1}(2))\supset S(\nu_{1}(2))\cap W_{3}\supset\cdots\supset S(\nu_{1}(2))\cap W_{k}$ .
Remark that some of them may be equal. We denote its G-deformation retrac-
tion by

$\prime d_{1}$ : $S(\nu_{1}(2))\times I\rightarrow S(\nu_{1}(2))$ .
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Then we define the first G-homotopy

$d_{1}^{1}$ : $\nu_{1}(1)\times I\rightarrow\nu_{1}(1)$

by putting

$d_{1}^{1}(x, s)=\left\{\begin{array}{ll}d_{1}(x, 2s) & for 0\leqq s\leqq\frac{1}{2} ,\\d_{1}(x, 1) & for \frac{1}{2}\leqq s\leqq 1.\end{array}\right.$

We define the second G-homotopy

$d_{1}^{2}$ : $(\nu_{1}(2)-\nu_{1}\circ(1))\times I\rightarrow\nu_{1}(2)-\nu_{1}l(1)$

by putting

$d_{1}^{2}(x, s)=\left\{\begin{array}{ll}d_{1}(x, 2(2-\Vert x\Vert)s) & for 0\leqq s\leqq\frac{1}{2}\\\frac{\Vert x\Vert}{2}\prime d_{1}(\frac{2}{\Vert x\Vert}d_{1}(x, 2-\Vert x\Vert), 2s-1) & for \frac{1}{2}\leqq s\leqq 1.\end{array}\right.$

The third G-homotopy

$d_{1}^{3}$ : $(\nu_{1}(3)-\nu_{1}\circ(2))\times I\rightarrow\nu_{1}(3)-\dot{\nu}_{1}(2)$

is defined by

$d_{1}^{3}(x, s)=\left\{\begin{array}{ll}x & for 0\leqq s\leqq\frac{1}{2} ,\\\frac{\Vert x\Vert}{2}\prime d_{1}(\frac{2}{\Vert x\Vert}x, (3-\Vert x\Vert)(2s-1)) & for \frac{1}{2}\leqq s\leqq 1.\end{array}\right.$

The last trivial G-homotopy

$d_{1}^{4}$ : $(W-\nu_{1}^{o}(3))\times I\rightarrow W-0\nu_{1}(3)$

is defined by
$d_{1}^{4}(x, s)=x$ .

In this way, we obtain a G-homotopy

$D_{1}$ : $W\times I\rightarrow W$

by putting $D_{1}=d_{1}^{1}\cup d_{1}^{2}\cup d_{1}^{3}\cup d_{1}^{4}$ which satisfies our requirements.
Suppose that we are given G-homotopies

$D_{b}$ : $W\times I\rightarrow W$ for all $b<i$

satisfying the assumptions above. For $b<i$ , we set

$bW=W-\bigcup_{c<b}W(H_{c})$ .
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Then $bW$ is an open G-submanifold of $W$ and

$(^{b+1}W)^{H_{i}}=(bW)^{H_{i}}-W(H_{b})$ .
Denote by $(W^{H_{i}})_{\mu}$ each component of $W^{H_{i}}$ . Define $((bW)^{H_{i}})_{\mu}$ to be the intersec-
tion $bW\cap(W^{H_{i}})_{\mu}$ . Then we have that

$((b+1W)^{H_{i}})_{\mu}=((bW)^{H_{i}})_{\mu}-W(H_{b})\cap(W^{H_{i}})_{\mu}$ .
ASSERTION. $W(H_{b})\cap(W^{H_{i}})_{\mu}$ is emPty or is the disjoint union of some sub-

manifolds of $((bW)^{H_{i}})_{\mu}$ of codimension greater than two.
We have the following commutative diagram:

$W(H_{b})^{H_{i}}W(H_{b})I^{\phi_{2}}\rightarrow W\rightarrow W^{H_{i}}\phi_{1}\phi_{4}I^{\phi_{3}}$

where $\phi_{i}$ are inclusion maps. Since $\phi_{2\rangle}\phi_{3},$ $\phi_{4}$ are inclusion maps of sub-
manifolds, $W(H_{b})^{H_{i}}$ is also a submanifolds of $W^{H_{i}}$ . Since $(W^{H_{i}})_{\mu}$ is an open
submanifold of $W^{H_{i}}$ , it follows that $W(H_{b})\cap(W^{H_{i}})_{\mu}$ is a submanifold of $(W^{H_{i}})_{\mu}$ .
Similarly we are able to prove that $((bW)^{H_{i}})_{\mu}$ is a submanifold of $(W^{H_{i}})_{\mu}$ . It
follows that $W(H_{b})\cap(W^{H_{i}})_{\mu}$ is a submanifold of $((bW)^{H_{i}})_{\mu}$ . Quite a similar argu-
ment shows that $W(H_{b})\cap(W^{H_{i}})_{\mu}$ is a submanifold of $W(H_{b})$ . Therefore we have
that if $W(H_{b})\cap(W^{H_{i}})_{\mu}$ is non-empty, then

dim {a component $C$ of $W(H_{b})\cap(W^{H_{i}})_{\mu}$ }

$\leqq\dim$ {the component of $W(H_{b})$ including $C$ }

$\leqq\dim G+\max_{\lambda}\{\dim(W^{H_{b}})_{\lambda}\}$

$\leqq\dim(W^{H_{i}})_{\mu}-3$ .
Hence we see by induction that $((bW)^{H_{i}})_{\mu}$ is a connected open submanifold of
$(W^{H_{i}})_{\mu}$ , and hence dim $(W^{H_{i}})_{\mu}=\dim((bW)^{H_{i}})_{\mu}$ . This completes the proof of the
assertion.

It follows from the assertion that the homomorphism

$\pi_{1}(((b+1W)^{H_{i}})_{\mu})\rightarrow\pi_{1}(((bW)^{H_{i}})_{\mu})$

induced by the inclusion map is an isomorphism. Consequently we obtain that
the homomorphism

$\pi_{1}(((\iota W)^{H\ell})_{\mu})\rightarrow\pi_{1}((W^{H_{i}})_{\mu})$

is an isomorphism.
Since the inclusion $W_{i}\rightarrow^{i}W$ is a G-homotopy equivalence, the homomorphism
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$\pi_{1}(((W_{i})^{H_{i}})_{\mu})\rightarrow\pi_{1}((W^{H_{i}})_{\mu})$

is an isomorphism where $((W_{i})^{H_{i}})_{\mu}$ denotes $W_{i}\cap(W^{H_{i}})_{\mu}$ .
Similarly we have that the homomorphism

$\pi_{1}(((\Delta W_{i})^{H_{i}})_{\mu})\rightarrow\pi_{1}(((\Delta W)^{H_{i}})_{\mu})$

is an isomorphism where $((\Delta W_{\ell})^{H_{i}})_{\mu}$ indicates $\Delta W\cap W_{i}\cap(W^{H_{i}})_{\mu}$ and $((\Delta W)^{H_{i}})_{\mu}$

indicates $\Delta W\cap(W^{H_{i}})_{\mu}$ .
On the other hand, we have the following isomorphism by hypothesis

$\pi_{1}(((\Delta W)^{H_{i}})_{\mu})\rightarrow\pi_{1}((W^{H_{i}})_{\mu})$ .
Combining these, we have that

$\pi_{1}(((\Delta W_{i})^{H_{i}})_{\mu})\rightarrow\pi_{1}(((W_{i})^{H_{i}})_{\mu})$

is an isomorphism.
Given any system $S$ of local coefficients on $W^{H_{i}}$ , we have the following com-

mutative diagram:

$\rightarrow H_{*}((\Delta W_{i})^{H_{i}} : S)\rightarrow H_{*}((\Delta W)^{H_{i}} : S)\rightarrow H_{*}((\Delta W)^{H_{i}}, (\Delta W_{i})^{H_{i}}$ : $S$) $\rightarrow$

$\downarrow\psi_{1}$ $\downarrow\psi_{2}$ $|\psi_{3}$

$\rightarrow H_{*}((W_{i})^{H_{i}} : S)$ $\rightarrow H_{*}(W^{H_{i}} : S)$ $\rightarrow$ $H_{*}(W^{H_{i}}, (W_{i})^{H_{i}}$ : $S$) $\rightarrow$

where $\Delta W_{i}$ indicates $\Delta W\cap W_{i}$ and we abbreviated the restriction $S|$ to $S$ . The
horizontal sequences are exact and $\psi_{2}$ is an isomorphism by hypothesis. Consider
the following commutative diagram:

$H_{*}(\bigcup_{b<i}\nu_{b}(2)\cap(\Delta W)^{H_{i}}, (\bigcup_{b<i}S(\nu_{b}(2))-\bigcup_{ib<c<}S(\nu_{b}(2))\cap\mathring{\nu}_{c}(2))\cap(\Delta W)^{H_{i}}$ ; $S$)

where $f_{2}$ and $f_{3}$ are excision isomorphisms. It follows from the inductive hypo-
thesis that $f_{1}$ is also an isomorphism. It turns out that $\psi_{3}$ is an isomorphism.
Thus we can conclude that $\psi_{1}$ is also an isomorphism by the five lemma. Using
Whitehead [24], it follows that the inclusion $(\Delta W_{i})^{H_{i}}\rightarrow W_{i}^{H_{i}}$ is a homotopy equi-
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valence. Since $N(H_{i})/H_{i}$ acts freely on $W_{i}^{H_{i}}$ , we see as in the case of one orbit
type that $(\Delta W_{i})(H_{i})$ is a G-deformation retract of $(W_{i})(H_{i})$ . Extending it to the
normal bundle $\nu_{t}$ of $W_{i}(H_{i})$ in $W_{i}$ , we have a G-deformation retraction

$d_{i}$ : $\nu_{i}\times I\rightarrow\nu_{i}$ .
Then we have that

$\{(G_{x})|x\in S(\nu_{i}(2))\}\subset(H_{i+1})\cup\cdots\cup(H_{k})$ .

It is easy to see that $S(\nu_{i}(2))$ is a compact $ G-\langle n+i-1\rangle$ -manifold and
$S(\nu_{i}(2)|(\Delta W_{i})(H_{i}))$ is the union of some faces of $S(\nu_{i}(2))$ . Moreover the pair

$(S(\nu_{i}(2)), S(\nu_{i}(2)|(\Delta W_{i})(H_{i})))$

satisfies the assumptions in Lemma 3.1. It follows from the inductive hypothesis
that $S(\nu_{i}(2)|(\Delta W_{i})(H_{i}))$ is a G-deformation retract of $S(\nu_{i}(2))$ preserving
$S(\nu_{i}(2))\cap S(\nu_{j}(2))$ for $j>i$ . Here we employed the filtration

$ S(\nu_{i}(2))\supset S(\nu_{i}(2))\cap W_{i+2}\supset$ $\supset S(\nu_{i}(2))\cap W_{k}$ .

Remark that some of them may be equal. We denote its G-deformation retrac-
tion by

’
$d_{i}$ : $S(\nu_{i}(2))\times I\rightarrow S(\nu_{i}(2))$ .

As in the case of $(H_{1})$ , we obtain G-homotopies $d_{i}^{1},$ $d_{i}^{2},$ $d_{i}^{3},$ $d_{i}^{4}$ and we set

$\prime D_{i}=d_{i}^{1}\cup d_{i}^{2}\cup d_{i}^{3}\cup d_{i}^{4}$ : $W_{i}\times I\rightarrow W_{i}$ .
Extend $\prime D_{i}$ to $\prime\prime D_{i}$ : $(W_{i}\cup\Delta W)\times I\rightarrow W_{i}\cup\Delta W$ by putting $\prime D_{i}(x, s)=x$ for $x\in\Delta W$,
$s\in I$ . Then the i-th G-homotopy

$D_{i}$ : $W\times I\rightarrow W$

is defined by

$D_{i}(x, s)=\left\{\begin{array}{ll}D_{i- 1}(X, 2s) & for 0\leqq s\leqq\frac{1}{2} ,\\\prime\prime D_{i}(D_{i- 1}(x, 1), 2s-1) & for \frac{1}{2}\leqq s\leqq 1.\end{array}\right.$

It follows from the construction that $D_{i}$ is a G-homotopy preserving $S(\nu_{j}(2))$

for every $j$ such that

$D_{i}(x, O)=x$ , $D_{i}(x, 1)\in W_{i+1}\cup\Delta W$ for $x\in W$ ,

$D_{i}(x, s)=x$ for $x\in\Delta W,$ $s\in I$ .
In this way, we obtain G-homotopies $D_{1},$ $\cdots$ , $D_{k}$ . The last G-homotopy $D_{k}$

gives our required G-deformation retraction. Hence Lemma 3.1 is true for the
case where the number of orbit types is $k$ . Consequently Lemma 3.1 is valid
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by induction.
This makes the proof of Lemma 3.1 complete.
Let $M_{1},$ $M_{2}$ be closed G-manifolds and $f:M_{1}\rightarrow M_{2}$ be a G-homotopy equiv-

alence. It is well-known that there exist orthogonal G-representation spaces
$V_{a}$ and G-embeddings $e_{a}$ : $M_{a}\rightarrow V_{a}(a=1,2)[19],$ $[23]$ . We may assume that
$e_{a}(M_{a})\subset V_{a}-\{0\}$ . Set $V=V_{1}\oplus V_{2}$ . For a positive integer $m$ , we denote by $V^{m}$

the direct sum of m-copies of $V$. Denote by $N_{g}$ the normal disk bundle of the
embedding defined by the composition:

$M_{2}\rightarrow^{e_{2}}V_{2}\rightarrow^{j}V=V_{1}\oplus V_{2}\rightarrow^{k}V^{m}$

where $j$ is the natural inclusion and $k$ is the inclusion to the Prst factor. We
identify $N_{2}$ with an invariant tubular neighborhood. Then we may assume
without loss of generalities that $N_{2}\subset V^{m}-\{0\}$ . For any positive number $\epsilon$ , the
composition

$M_{1}\rightarrow^{\epsilon e_{1}\oplus e_{2}f}V=V_{1}\oplus V_{2}\rightarrow^{k}V^{m}$

is a G-embedding and we can choose $\epsilon>0$ such that

$k\cdot(\epsilon e_{1}\oplus e_{2}f)(M_{1})\subset IntN_{2}$ .
Let $N_{1}$ be the normal disk bundle of $M_{1}$ in $V^{m}$ by the above G-embedding. We
identify $N_{1}$ with an invariant tubular neighborhood in such a way that

$N_{1}\subset IntN_{2}$ .
Set $W=N_{2}$–Int $N_{1}$ . Then we have

LEMMA 3.2. If $m\geqq\dim G+3$ , then the total spaces $S(N_{a})$ of the associated
sphere bundles are G-deformation retracts of $W(a=1,2)$ .

PROOF. Let $\{(H_{i})|i=1, \cdots , k\}$ be the set of the conjugacy classes of the
isotropy groups which appear in $W$. As before we arrange $(H_{i})$ in such order
that $(H_{i})\geqq(H_{j})$ implies $i\leqq j$ . Remark that the set $\{(H_{i})\}$ does not necessarily
coincide with the set of the conjugacy classes of the isotropy groups which
appear in $M_{a}$ . But it is easily seen that $ M_{a}^{H_{i}}\neq\emptyset$ for any $i\in\{1, \cdots , k\}$ and any
$a\in\{1,2\}$ . The normal disk bundle of $M_{a}^{H_{i}}$ in $(V^{m})^{H_{i}}$ is nothing but $N_{a}^{H_{i}}$ and
$W^{H_{i}}=N_{2}^{H_{i}}-(IntN_{1})^{H_{i}}$ . Since there is a one to one correspondence by $f$ between
the set of components of $M_{1}^{H_{i}}$ and that of $M_{2}^{H_{i}}$ , we denote by $M_{a\mu}^{H_{i}}$ each com-
ponent of $M_{a}^{H}$ : such that $f(M_{1\mu}^{H_{i}})=M_{2\mu}^{H_{i}}$ . Denote by $N_{a\mu}^{H_{i}}$ , the restriction $N_{a}^{H_{i}}|M_{a\mu}^{H_{i}}$

and by $(W^{H_{i}})_{\mu},$ $N_{2\mu}^{H_{i}}-IntN_{1\mu}^{H_{i}}$ . It is easy to see that $\dim M_{1\mu}^{H_{i}}=\dim M_{2\mu}^{H_{i}}$ and
dim $N_{a\mu}^{H_{i}}=\dim(W^{H_{i}})_{\mu}=\dim(V^{m})^{H_{i}}$ . Then one verifies that

dim $(V^{m})^{H_{i}}-\dim M_{a\mu}^{H_{i}}\geqq m\geqq 3$ for every $\mu$ .
It follows by the argument of the proof of Lemma $2^{\tau}in[17]$ that $S(N_{a}^{H_{i}})Qre$
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deformation retracts of $W^{H_{i}}$ for every $H_{i}$ .
For reader’s convenience, we repeat the proof. First notice that the inclu-

sion $N_{1}\subset N_{2}$ is a G-homotopy equivalence, hence the inclusion $N_{1}^{H_{i}}\subset N_{2}^{H_{i}}$ is a
homotopy equivalence for any $H_{i}$ . By a dimensional argument, any map of a
2-dimensional complex into $N_{2}^{H_{i}}$ can be deformed off $k\cdot(\epsilon e_{1}\oplus e_{2}f)(M_{1}^{H_{i}})$ , and
hence can be pushed into $W^{H_{i}}$ .

This implies that
$\pi_{1}(W^{H_{i}})\rightarrow^{\cong}\pi_{1}(N_{2}^{H_{i}})$

and hence that
$\pi_{1}(S(N_{a}^{H_{i}}))\rightarrow^{\cong}\pi_{1}(W^{H_{i}})$ for $a=1,2$ ,

for any common base point.
Given any system $S$ of local coefficients on $N_{2}^{H_{i}}$ we have

$H_{*}(W^{H_{i}}, S(N_{1}^{H_{i}})$ ; $S$ )
$\rightarrow^{\cong}H_{*}$

( $N_{1}^{H_{i}},$ $N_{1}^{H_{i}}$ ; s)

by excision. But the inclusion $N_{1}^{H_{i}}\subset N_{2}^{H_{i}}$ is a homotopy equivalence, hence these
groups are zero. Using Whitehead [24, Theorem 3] it follows that $S(N_{1}^{H_{i}})$ is a
deformation retract of $W^{H_{i}}$ .

The group $H_{p}(W^{H_{i}}, S(N_{2}^{H_{i}});S)$ is isomorphic by Poincar\’e duality to
$H^{n-p}(W^{H_{i}}, S(N_{1}^{H_{i}});S)$ where $n=\dim W^{H_{i}}$ , and therefore is zero. This implies
that $S(N_{2}^{H_{i}})$ is a deformation retract of $W^{H_{i}}$ .

Let $(H_{i}),$ $(H_{j})$ be conjugacy classes such that $(H_{i})<(H_{j})$ . Then we have
that

dim $(V^{m})^{H_{i}}-\dim(V^{m})^{H_{f}}=m(\dim V^{H_{i}}-\dim V^{H_{j}})\geqq m$ .
It follows that

$\min_{\mu}\{\dim(W^{H_{i}})_{\mu}\}-\max_{\lambda}\{\dim(W^{H}!)_{\lambda}\}\geqq m\geqq\dim G+3$ .

We are now in a position to apply Lemma 3.1.
This makes the proof of Lemma 3.2 complete.

4. Equivariant Dold’s theorem.

The purpose of this section is to establisb an equivariant version of Dold’s
theorem. The following lemma corresponds to Hilfssatz 2 of Dold [7].

LEMMA 4.1. Let $D$ be a disk of dimension greater than or equal to one with
the trivial G-action. Let $\pi_{1}$ ; $\xi\rightarrow G/H$ and $\pi_{2}$ : $\eta\rightarrow G/H$ be G-vector bundles over
$G/H$ where $H$ is a closed subgroup of G. We shall suppOse that we are given:

$\alpha)$ a fiberwise $G$ -map
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such that the restriction

$F|$ : $d\times S(\xi_{H})\rightarrow d\times S(\eta_{H})$

is an H-homotopy equivalence for every $d\in D$ where $S(\xi_{H}),$ $S(\eta_{H})$ denote the
fibers over the coset $H$,

$\beta)$ a fiberwise G-map

$f^{\prime}$ : $S\times S(\eta)\rightarrow S\times S(\xi)$ ,

where $S$ denotes the boundary of $D$ ,
$\gamma)$ a fiberwise G-homotopy

$\phi:S\times S(\xi)\times I\rightarrow S\times S(\xi)$

such that $\phi(x, y, 0)=f^{\prime}\cdot F(x, y),$ $\phi(x, y, 1)=(x, y)$ , for $x\in S,$ $y\in S(\xi)$ .
Then there exist a fiberwise G-map

$F^{\prime}$ : $D\times S(\eta)\rightarrow D\times S(\xi)$

and a fiberwise G-homotopy

$\Phi:D\times S(\xi)\times I\rightarrow D\times S(\xi)$

such that
$F^{\prime}(x, y^{\prime})=f^{\prime}(x, y^{\prime})$ , $\Phi(x, y, t)=\phi(x, y, t)$

$\Phi(d, y, 0)=F^{\prime}\circ F(d, y)$ , $\Phi(d, y, 1)=(d, y)$

for $x\in S,$ $d\in D,$ $y\in S(\xi),$ $y^{\prime}\in S(\eta),$ $t\in I$ .

PROOF. Since the proof is almost parallel to that of Hilfssatz 2 in [7], we
only point out the differences. We denote by $F(S(\xi_{H}), S(\eta_{H}))$ the space of all
continuous mappings from $S(\xi_{H})$ to $S(\eta_{H})$ with the compact-open topology. An
H-action

$\rho:H\times F(S(\xi_{H}), S(\eta_{H}))\rightarrow F(S(\xi_{H}), S(\eta_{H}))$

is given by $\rho(h, f)=hfh^{-1}$ for $h\in H,$ $f\in F(S(\xi_{H}), S(\eta_{H}))$ . Similarly we have a
space $F(S(\eta_{H}), S(\xi_{H}))$ with an H-action. The maps $F,$ $f^{\prime},$

$\phi$ yield the following
continuous H-maps,

$\tilde{F}:D\rightarrow F(S(\xi_{H}), S(\eta_{H}))$

$\tilde{f}^{\prime}$ : $S\rightarrow F(S(\eta_{H}), S(\xi_{H}))$
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$\tilde{\phi}:S\times I\rightarrow F(S(\xi_{H}), S(\xi_{H}))$

by putting $F(d)(y)=F(d, y),\tilde{f}^{\prime}(x)(y^{\prime})=f^{\prime}(x, y^{\prime})$ and $\emptyset(X, t)(y)=\phi(x, y, t)$ for
$x\in S,$ $d\in D,$ $y\in S(\xi_{H}),$ $y^{\prime}\in S(\eta_{H}),$ $t\in I$ .

As in the manner of the proof of Hilfssatz 2 in [7], we obtain the following
H-maps by using H-spaces $F(S(\xi_{H}), S(\eta_{H})),$ $F(S(\eta_{H}), S(\xi_{H}))$ and $F(S(\xi_{H}), S(\xi_{H}))$ ,

$\tilde{F}^{\prime}$ : $D\rightarrow F(S(\eta_{H}), S(\xi_{H}))$

di : $D\times I\rightarrow F(S(\xi_{H}), S(\xi_{H}))$

such that
$F^{\prime}s=f^{\prime}$ , $\phi(d, o)=P^{\prime}(d)\circ fi^{i}(d)$ ,

$\phi(d, 1)=identity$ , di $|S\times I=\emptyset$ for $d\in D$ .
Then we define

$F^{\prime}$ : $D\times S(\eta)\rightarrow D\times S(\xi)$

$\Phi:D\times S(\xi)\times I\rightarrow D\times S(\xi)$

by putting
$F^{\prime}(d, y^{\prime})=(d, g^{\prime}\tilde{F}^{\prime}(d)(g^{\prime- 1}y^{\prime}))$

$\Phi(d, y, t)=(d, g\Phi(d, t)(g^{-1}y))$

where $g^{\prime},$ $g\in G$ are chosen as $\pi_{z}(y^{\prime})=g^{\prime}H,$ $\pi_{1}(y)=gH$. It is easily seen that
these maps are a well-defined fiberwise G-map and a well-defined fiberwise G-
homotopy, and satisfy the required properties.

This completes the proof of Lemma 4.1.
Let $X$ be a compact G-space and $Y$ be a closed G-invariant subspace of $X$.

A G-homotopy $d:X\times I\rightarrow X$ satisfying $d(x, O)=x$ , $d(x, 1)\in Y$, $d(y, t)=y$ ,
$d(d(x, t),$ $1$ ) $=d(x, 1)$ for $x\in X,$ $y\in Y,$ $t\in I$ is called a nice G-deformation retrac-
tion of $X$ to $Y$. When such a map $d$ exists, we say also that $Y$ is a nice G-
deformation retract of $X$. Then we have

LEMMA 4.2. Let (X, $Y$ ) be a compact $G$-space pair such that $Y$ is a nice G-
deformation retract of X. Let $\pi_{1}$ ; $\xi\rightarrow X,$

$\pi_{2}$ ; $\eta\rightarrow X$ be G-vector bundles over $X$

and $f:S(\xi)\rightarrow S(\eta)$ be a fiberwise $G$-map such that the restriction $f|$ : $ S(\xi|Y)\rightarrow$

$S(\eta|Y)$ gives a G-fiber homotopy equivalence. Then $f$ itself gives a G-fiber
homotopy equivalence.

PROOF. By assumption, there exist a fiberwise G-map $f^{\prime}$ : $S(\eta|Y)\rightarrow S(\xi|Y)$

and fiberwise G-homotopies $\phi:S(\xi|Y)\times I\rightarrow S(\xi|Y)$ and $\psi:S(\eta|Y)\times I\rightarrow S(\eta|Y\rangle$

with
$\phi|S(\xi|Y)x0=f^{\prime}\cdot f|$ , $\phi|S(\xi|Y)\times 1=identity$

$\psi|S(\eta|Y)\times 0=f|\cdot f^{\prime}$ , $\psi|S(\eta|Y)\times 1=identity$ .
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Let $d:X\times I\rightarrow X$ be the nice G-deformation retraction and $r:X\rightarrow X$ be the G-
retraction given by $r(x)=d(x, 1)$ . It follows from the G-homotopy property of
G-vector bundles that there exist isomorphisms

$\alpha:\xi\rightarrow r^{*}(\xi|Y)=X\times Y(\xi|Y)\subset X\times(\xi|Y)$

$\beta:\eta\rightarrow r^{*}(\eta|Y)=X\times Y(\eta|Y)\subset X\times(\eta|Y)$

of G-vector bundles such that

$\alpha|(\xi|Y)=identity$ , $\beta|(\eta|Y)=identity$ ,

where $x_{Y}\times(\xi|Y)$ denotes the subset of $x\times(\xi|Y)$ consisting of $(x, z)$ with $r(x)$

$=\pi_{1}(z)$ and similar for $x_{Y}\times(\eta|Y)$ .
Define $\overline{f}:X\times S(\xi Y|Y)\rightarrow X\times S(\eta Y|Y)$ to be $\beta f\alpha^{-1}$ where we abbreviated the

restrictions $\alpha|,$ $\beta|$ to the associated sphere bundles to $\alpha,$ $\beta$ respectively. Then
we have that

$\overline{f}|S(\xi|Y)=f|S(\xi|Y)$ .

Let $f_{2}$ : $x\times S(\xi Y|Y)\rightarrow S(\eta|Y)$ be the G-map defined by

$\overline{f}(x, z)=(x, f_{2}(x, z))$

for $x\in X,$ $z\in S(\xi|Y)$ with $r(x)=\pi_{1}(z)$ . We now construct a fiberwise G-homotopy

$E$ : $x\times S(\xi Y|Y)\times I\rightarrow x\times S(\eta Y|Y)$

by setting
$E(x, z, t)=(x, f_{2}(d(x, t), z))$

for $x\in X,$ $z\in S(\xi|Y),$ $t\in I$ with $r(x)=\pi_{1}(z)$ . Since $d$ is a nice G-deformation
retraction, $E$ is a well-dePned fiberwise G-homotopy with

$E|X\times S(\xi|Y)\times 0=\overline{f}Y$

$E|X\times S(\xi Y|Y)\times 1=1\times(f|S(\xi|Y))$ .

We are now ready to construct the desired fiberwise G-map $f^{\prime}$ : $S(\eta)\rightarrow S(\xi)$ and
fiberwise G-homotopies $\Phi:S(\xi)\times I\rightarrow S(\xi)$ and $\Psi:S(\eta)\times I\rightarrow S(\eta)$ as follows. Put

$ f^{\prime}=\alpha^{-1}(1\times f^{\prime})\beta$ ,

$\Phi(z, t)=\left\{\begin{array}{ll}\alpha^{-1}(1\times f^{\prime})E(\alpha(z), 2t) & for 0\leqq t\leqq\frac{1}{2}\\\alpha^{-1}(1\times\phi)(\alpha(z), 2t-1) & for \frac{1}{2}\leqq t\leqq 1\end{array}\right.$
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and

$\Psi(z^{\prime}, t)=\left\{\begin{array}{ll}\beta^{-1}E((1\times f^{\prime})\beta(z^{\prime}), 2t) & for 0\leqq t\leqq\frac{1}{2}\\\beta^{-1}(1\times\psi)(\beta(z^{\prime}), 2t-1) & for \frac{1}{2}\leqq t\leqq 1\end{array}\right.$

where $z\in S(\xi),$ $z^{\prime}\in S(\eta)$ . Then it is easy to see that $\Phi$ and $\Psi$ are well-defined
fiberwise G-homotopies with

$\Phi|S(\xi)\times 0=f^{\prime}\cdot f$ , $\Phi|S(\xi)\times 1=identity$

$\Psi|S(\eta)\times 0=f\cdot f^{\prime}$ , $\Psi|S(\eta)\times 1=identity$ .
This completes the proof of Lemma 4.2.
PROOF OF THEOREM 2.1. We shall use freely the notions and notations in

\S 3. For examples, $\{(H_{i})\},$ $\nu_{i},$
$W_{i}$ will be used as in \S 3. We shall construct a

G-fiber homotopy inverse by induction concerning the $i$ of $\{(H_{i})\}$ . We denote
by $f_{i}$ the restriction $f|S(\xi|\bigcup_{j<i}\nu_{j}(2)\cup W(H_{i}))$ and by $\overline{f}_{i}$ the restriction $f|S(\xi|U\nu_{j}(2))j\leqq i$

We shall first show that there exist a fiberwise G-map

$f_{1}^{\prime}$ : $S(\eta|W(H_{1}))\rightarrow S(\xi|W(H_{1}))$

and a fiberwise G-homotopy

$h_{1}$ : $S(\xi|W(H_{1}))\times I\rightarrow S(\xi|W(H_{1}))$

with
$h_{1}|S(\xi|W(H_{1}))\times 0=f_{1}^{\prime}\cdot f_{1}$ , $h_{1}|S(\xi|W(H_{1}))\times 1=identity$ .

Consider the fiber bundle
$p$

$G/H\rightarrow W(H_{1})\rightarrow W(H_{1})/G$ .
Since $W(H_{1})/G$ is a smooth manifold, we can triangulate it and we shall suppose
this done. Denote by $(W(H_{1})/G)^{n}$ , the n-skeleton and by $W(H_{1})^{n},$ $p^{-1}(W(H_{1})/G)^{n}$ .
Set $f_{1,n}=f|S(\xi|W(H_{1})^{n})$ . Then $W(H_{1})^{0}$ is the disjoint union $U(G/H_{1})_{\mu}\mu$ of some
copies of $G/H_{1}$ . The restriction of $f_{1,0}$ to $S(\xi|(G/H_{1})_{\mu})$ is denoted by $f_{10}^{\mu}$ . Let
$H_{1}^{\mu}$ be the coset $H_{1}$ in $(G/H_{1})_{\mu}$ . It follows from the assumption that there exist
an $H_{1}$-map

$f_{10}^{\prime\mu}$ ; $S(\eta_{H_{1}}\mu)\rightarrow S(\xi_{H_{1}}\mu)$

and an $H_{1}$-homotopy
$\tilde{h}_{1,0}^{\mu}$ : $S(\xi_{H_{1}}\mu)\times I\rightarrow S(\xi_{H_{1}}\mu)$

with
$\tilde{h}f_{0}|S(\xi_{H_{1}}\mu)\times 0=f_{1.0}^{\prime\mu}\cdot ff_{0}|$ , $\tilde{h}_{1,0}^{\mu}|S(\xi_{H_{1}}\mu)\times 1=identity$ .



312 K. KAWAKUBO

Then we define
$f_{1,0}^{\prime\mu}$ : $S(\eta|(G/H_{1})_{\mu})\rightarrow S(\xi|(G/H_{1})_{\mu})$

and
$h_{1\cdot 0}^{\mu}$ : $S(\xi|(G/H_{1})_{\mu})\times I\rightarrow S(\xi|(G/H_{1})_{\mu})$

by putting
$f_{1,0}^{\prime\mu}(z^{\prime})=g^{\prime}f_{1,0}^{\prime\mu}(g^{\prime-1}z^{\prime})$ , $h_{1\cdot 0}^{\mu}(z, t)=g\tilde{h}_{10}^{\mu}(g^{-1}z, t)$

where $g^{\prime},$ $g\in G$ are chosen as $\pi_{2}(z^{\prime})=g^{\prime}H_{1}^{\mu},$ $\pi_{1}(z)=gH_{1}^{\mu}$ . We now set

$f_{1,0}^{\prime}=\bigcup_{\mu}f_{1,0}^{\prime\mu}$ , $ h_{1.0}=Uhf_{0}\mu$

SuPpose that we are given for $n\geqq 1$ a fiberwise G-map

$f_{1.n-1}^{\prime}$ : $S(\eta|W(H_{1})^{n-1})\rightarrow S(\xi|W(H_{1})^{n-1})$

and a fiberwise G-homotopy

$h_{1,n-1}$ : $S(\xi|W(H_{1})^{n-1})\times I\rightarrow S(\xi|W(H_{1})^{n-1})$

with $h_{1,n-1}|S(\xi|W(H_{1})^{n-1})\times 0=f_{1,n-1}^{\prime}\cdot f_{1,n- 1}$ ,

$h_{1.n-1}|S(\xi|W(H_{1})^{n-1})\times 1=identity$ .

Let $D$ be an n-simplex in $(W(H_{1})/G)^{n}$ . Then $p^{-1}(D)$ is G-homeomorphic to $ D\times$

$(G/H_{1})$ where $G$ acts trivially on $D$ . We are now in a position to apply our
Lemma 4.1 and obtain $f_{1}^{\prime}$ and $h_{1}$ by induction.

Since $W(H_{1})$ is a nice G-deformation retract of $\nu_{1}(2)$ , we can aPply Lemma
4.2 and extend $f_{1}^{\prime}$ to a fiberwise G-map

$\overline{f}_{1}^{\prime}$ : $S(\eta|\nu_{1}(2))\rightarrow S(\xi|\nu_{1}(2))$

and extend $h_{1}$ to a fiberwise $G$-homotopy

$\overline{h}_{1}$ : $S(\xi|\nu_{1}(2))\times I\rightarrow S(\xi|\nu_{1}(2))$

with $\overline{h}_{1}|S(\xi|\nu_{1}(2))\times 0=\overline{f}_{1}^{\prime}\cdot\overline{f}_{1}$ ,

$\overline{h}_{1}|S(\xi|\nu_{1}(2))\times 1=identity$ .

Suppose that we are given a fiberwise G-map

$\overline{f}_{i- 1}^{\prime}$ : $S(\eta|\bigcup_{j<i}\nu_{j}(2))\rightarrow S(\xi|_{j<i}U\nu_{j}(2))$

and a fiberwise G-homotopy

$\overline{h}_{i-1}$ : $S(\xi|U\nu_{j}(2))\times Ij<i\rightarrow S(\xi|\bigcup_{j<i}\nu_{j}(2))$

with $\overline{h}_{i-1}|S(\xi|U\nu_{j}(2))J<i\times 0=\overline{f}_{i- 1}^{\prime}\cdot\overline{f}_{i- 1}$ ,



Compact Lie group actions 313

$\overline{h}_{i- 1}|S(\xi|U\nu_{j}(2))J<iXl=identity$ .

Consider the fiber bundle

$G/H_{i}\rightarrow W_{i}(H_{i})\rightarrow W_{i}(H_{i})/G$ .
Since $\bigcup_{J<i}\nu_{j}(2)\cap W_{i}(H_{i})$ is the union of some faces of $W_{i}(H_{i})$ in the sense of

J\"anich [11], we can triangulate $W_{i}(H_{i})/G$ so that $\{U\nu_{j}(2)\cap W_{i}(H_{i})\}j<t/G$ is a sub-

complex. Then, applying Lemma 4.1 inductively as before to each simplex
which is not included in $\{ \bigcup_{J<t}\nu_{j}(2)\cap W_{i}(H_{i})\}/G$ , we get a Pberwise G-map

$f_{i}^{\prime}$ :
$S(\eta|\bigcup_{J<i}\nu_{j}(2)\cup W_{i}(H_{i}))\rightarrow S(\xi|\bigcup_{j<i,\vee}\nu_{j}(2)\cup W_{i}(H_{i}))$

and a fiberwise G-homotopy

$h_{i}$ : $S(\xi|U\nu_{j}(2)\cup W_{i}(H_{i}))j<i\times I\rightarrow S(\xi|\bigcup_{J<i}\nu_{j}(2)\cup W_{i}(H_{i}))$

with $h_{i}|S(\xi|\bigcup_{J<i}\nu_{j}(2)\cup W_{i}(H_{i}))\times 0=f_{i}^{\prime}\cdot f_{i}$

$h_{i}|S(\xi|\bigcup_{J<t}\nu_{j}(2)OW_{i}(H_{i}))\times 1=identity$ .

Let
$c$ : $\{U\nu_{j}(2)\cap W_{i}(H_{i})\}j<i\times I\rightarrow W_{i}(H_{i})$

be an invariant collar such that

$c|$
$\{\bigcup_{J<i}\nu_{j}(2)\cap W_{i}(H_{i})\}\times 0=identity$ .

It follows from the equivariant covering homotopy theorem that there exists an
isomorphism

$\gamma:[\nu_{i}(2)| \{\bigcup_{J<i}\nu_{j}(2)\cap W_{i}(H_{i})\}]\times I\rightarrow\nu_{i}(2)|$ Image $c$

of G-disk bundles covering $c$ with

$\gamma|[\nu_{i}(2)|\{\bigcup_{J<i}\nu_{j}(2)\cap W_{i}(H_{i})\}]\times 0=identity$ .

Then we define a G-homotopy

$d:\nu_{i}(2)\times I\rightarrow\nu_{i}(2)$ by

$d(\gamma(uy, s),$ $t$ ) $=\left\{\begin{array}{ll}\gamma((u-2st)y, (1-t)s) & for u\geqq 2s\\\gamma((1-t)uy, s+\frac{ut(s-1)\xi}{2-u}) & for u\leqq 2s\end{array}\right.$

where $y\in S(\nu_{i}(2)|\{\bigcup_{\dot{J}<i}\nu_{j}(2)\cap W_{i}(H_{i})\}),$
$0\leqq s\leqq 1,0\leqq t\leqq 1^{-}and$ $0\leqq u\leqq 1$ , and by
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$d(x, t)=(1-t)x$

where $0\leqq t\leqq 1$ and $x\in\nu_{i}(2)|$ { $W_{i}(H_{i})$ –Image $c$ }. It is easy to see that $d$ is a
well-defined nice G-deformation retraction of $\nu_{i}(2)$ to

$[\nu_{i}(2)| \{ \bigcup_{J<i}\nu_{j}(2)\cap W_{i}(H_{i})\}]\cup W_{i}(H_{i})$ .

We can now apply Lemma 4.2 and extend $f_{i}^{\prime}$ to a fiberwise G-map

$\overline{f}_{i}^{\prime}$ : $S(\eta|\bigcup_{j\leqq i}\nu_{j}(2))\rightarrow S(\xi|\bigcup_{j\leqq i}\nu_{j}(2))$

and extend $h_{i}$ to a fiberwise $G$ -homotopy

$\overline{h}_{i}$ : $S(\xi|\bigcup_{jl}\nu_{j}(2))\times I\rightarrow S(\xi|\bigcup_{j\leq l}\nu_{j}(2))$

with $\overline{h}_{i}|S(\xi|U\nu_{j}(2))j\leq i\times 0=\overline{f}_{i}^{\prime}\cdot\overline{f}_{i}$ ,

$\overline{h}_{i}|S(\xi|\bigcup_{j\leqq i}\nu_{j}(2))\times 1=identity$ .

Thus we have by induction the required fiberwise G-map

$f^{\prime}=f_{k}^{\prime}$ : $S(\eta)\rightarrow S(\xi)$

and the required fiberwise G-homotopy

$h=h_{k}$ : $S(\xi)\times I\rightarrow S(\xi)$

with $h|S(\xi)\times 0=f^{\prime}\cdot f,$ $h|S(\xi)\times 1=identity$ .
Next consider the restrictions $f_{x}=f|S(\xi_{x}):S(\xi_{x})\rightarrow S(\eta_{x})$ and $f_{x}^{\prime}=f^{\prime}|S(\eta_{x})$ :

$S(\eta_{x})\rightarrow S(\xi_{x})$ for $x\in W$ . Since $f_{x}^{\prime}\cdot f_{x}$ is $G_{x}$-homotopic to the identity and since
$f_{x}$ is a $G_{x}$-homotopy equivalence, it follows by routine arguments that $f_{x}^{\prime}$ gives
also a $G_{x}$-homotopy equivalence for every $x\in W$. Hence quite similar arguments
prove that there exist a fiberwise G-map $f^{\prime\prime}$ : $S(\xi)\rightarrow S(\eta)$ and a fiberwise G-
homotoPy $h^{\prime}$ : $S(\eta)\times I\rightarrow S(\eta)$ with $h^{\prime}|S(\eta)\times 0=f^{\prime\prime}\cdot f^{\prime},$ $h^{\prime}|S(\eta)\times 1=identity$ . There-
fore we have that

$f^{\prime}\sim f^{\prime}\cdot(f^{\prime}\cdot f)=(f^{\prime}\cdot f^{\prime})\cdot f\sim f$

and hence $f\cdot f^{\prime}\sim identity$ where $g\sim g^{\prime}$ means that $g$ is fiberwise G-homotopic
to $g^{\prime}$ .

This makes the proof of Theorem 2.1 complete.

5. $G$ -homotopy type invariance of $G$ -fiber homotopy type of
stable tangent sphere bundles.

In this section, we shall prove Theorem 2.3. Let us first recall Lemma 3.2,
that is, $S(N_{a})$ are G-deformation retracts of $W(a=1,2)$ . Let $d(a):W\times I\rightarrow W$
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be such G-deformation retractions. We set

$r=d(2)|S(N_{1})\times 1$ : $S(N_{1})\rightarrow S(N_{2})$ .
Then $r$ is a G-homotopy equivalence. Since the following diagram:

$S(N_{1})p_{1}\downarrow M_{1}\rightarrow M_{2}\rightarrow S(N_{2})fr\downarrow^{p_{2}}$

is G-homotopy commutative, the equivariant covering homotopy theorem implies
that $r$ is G-homotopic to a fiberwise G-map $\overline{f}:S(N_{1})\rightarrow S(N_{2})$ covering $f$.

Let $f^{\prime}$ : $M_{2}\rightarrow M_{1}$ be a G-homotopy inverse of $f$. Then in a similar way we
get a fiberwise G-map $\overline{f}^{\prime}$ : $S(N_{2}^{\prime})\rightarrow S(N_{1}^{\prime})$ covering $f^{\prime}$ . If we use the same G-
embeddings $e_{a}$ : $M_{a}\rightarrow V_{a}$ that we used in \S 3, then we see by the G-homotopy
property of G-vector bundles that $N_{1}^{\prime},$ $N_{2}^{\prime}$ are G-isomorphic to $N_{1},$ $N_{2}$ respec-
tively. Thus we have a fiberwise G-map $\overline{f}^{\prime}$ : $S(N_{2})\rightarrow S(N_{1})$ covering $f^{\prime}$ .

Let $x$ be a point of $M$ and $H$ be a closed subgroup of $G_{x}$ . Denote by $M_{1\mu}^{H}$

(resp. $M_{2\mu}^{H}$ ) the connected component of $M_{1}^{H}$ (resp. $M_{2}^{H}$ ) including $x$ (resp. $f(x)$).

Then we have the following commutative diagram

$S(N_{1x})^{H}\rightarrow S(N_{1}|M_{1\mu}^{H})^{H}\rightarrow M_{1\mu}^{H}$

$\downarrow\overline{f}|$ $\downarrow\overline{f}|$ $\downarrow f|$

$S(N_{2f(x)})^{H}\rightarrow S(N_{2}|M_{2\mu}^{H})^{H}\rightarrow M_{2\mu}^{H}$

consisting of sphere bundles and a bundle map. Since $f|$ : $M_{1\mu}^{H}\rightarrow M_{2\mu}^{H}$ and
$\overline{f}|$ : $S(N_{1}|M_{1\mu}^{H})^{H}\rightarrow S(N_{2}|M_{2\mu}^{H})^{H}$ are homotopy equivalences, it follows by the five
lemma that the degree of the map $\overline{f}|$ : $S(N_{1x})^{H}\rightarrow S(N_{2f(x)})^{H}$ is $\pm 1$ . Similarly we
have that the degree of the map $\overline{f}^{\prime}|$ : $S(N_{2f(x)})^{H}\rightarrow S(N_{1f^{\prime}\cdot f(x)})^{H}$ is $\pm 1$ .

Since $f^{\prime}\cdot f$ is G-homotopic to the identity, there exists an isomorphism
$\theta$ : $N_{1f^{\prime}\cdot f(x)}\rightarrow N_{1x}$ of $G_{x}$-representation spaces. Then the degree of the map

$(\theta\cdot\overline{f}^{\prime}\cdot\overline{f}\cdot\theta\cdot\overline{f}^{\prime})\overline{f}|S(N_{1x})^{H}$ : $S(N_{1x})^{H}\rightarrow S(N_{1x})^{H}$

is +1. Similarly the degree of the map

$\overline{f}\cdot(\theta\cdot\overline{f}^{\prime}\cdot\overline{f}\cdot\theta\cdot\overline{f}^{\prime})|S(N_{2f(x)})^{H}$ : $S(N_{2f(x)})^{H}\rightarrow S(N_{2f(x)})^{H}$

is +1.
For a subgroup $H$ of $G_{x}$ , we have $S(N_{ax})(H)(a=1,2)$ (see \S 3). We now

show
LEMMA 5.1. If $S(N_{ax})(H)$ is non-empty, then $S(N_{ax})(H)/G_{x}$ is connectpd

$(a=1,2)$ .
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PROOF. We prove Lemma 5.1 for $a=1$ . We begin with some general
remarks.

For a G-space $X$ and for a subgroup $H$ of $G$ , we set

$X^{[H]}=\{x\in X|G_{x}=H\}$ .
If $X$ is a smooth G-manifold, then $X^{[H]}$ is a smooth submanifold of $X$ and we
have an equivariant diffeomorphism:

$X(H)=G/H\times X^{[H]}N(H)/H$

Consequently we have a diffeomorphism:

$X(H)/G=X^{[H]}/(N(H)/H)$ .

We may assume without loss of generality that $V$ includes a direct sum-
mand with trivial G-action. Then in view of the inclusions $M_{1}\subset V\subset V^{m}$ , we
see that

dim $S(N_{1x})^{G_{x}}\geqq m-1\geqq 2$ .
Hence dim $S(N_{1x})^{H}\geqq 2$ for any subgroup $H$ of $G_{x}$ . If $S(N_{1x})^{[H]}=S(N_{1x})^{H}$ , then
we have

$S(N_{1x})(H)/G_{x}=S(N_{1x})^{H}/(N_{c_{x}}(H)/H)$ ,

where $N_{G_{x}}(H)$ is the normalizer of $H$ in $G_{x}$ , and hence $S(N_{1x})(H)/G_{x}$ is con-
nected. Namely Lemma 5.1 holds in this case.

Next we consider the case where

$S(N_{1x})^{[H]}\neq S(\Lambda_{1x}^{\tau})^{H}$ .
Denote by $T_{x}(M_{1})$ the tangent space at $x$ , which is a $G_{x}$-representation space.
Notice that $M_{1}$ is equivariantly embedded in $V$. Denote by $\nu$ the equivariant
normal bundle of $M_{1}$ in $V$. Then the fiber $\nu_{x}$ over $x$ is a $G_{x}$-representation
space and we have isomorphisms of $G_{x}$-representation spaces:

$V\cong T_{x}(M_{1})\oplus\nu_{x}$

and
$N_{1x}\cong V^{m-1}\oplus\nu_{x}$

where $V$ is regarded as a $G_{x}$-representation space.
Let $H_{i}$ and $H_{j}$ be closed subgroups of $G_{x}$ such that $H_{i}\subsetneqq H_{j}$ . Then we shall

show that $N_{1x^{i}\neq}^{H\supset}N_{1x^{j}}^{H}$ implies $V^{H_{i}\supset}\neq V^{H_{j}}$ . If $V^{H_{i}}=V^{H}!$, then

$T_{x}(M_{1})^{H_{i}}\oplus\nu_{x}^{H_{i}}\cong V^{H_{l}}=V^{H_{j}}\cong T_{x}(M_{1})^{H}!\oplus\nu_{x}^{H_{f}}$ .
Generally we have

$T_{x}(M_{1})^{H_{i}}\supseteqq T_{x}(M_{1})^{H_{f}}$ and $\nu_{x}^{H_{i}}\supseteqq\nu_{x}^{H_{j}}$ .
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It follows that
$T_{x}(M_{1})^{H_{i}}=T_{x}(M_{1})^{H_{j}}$ and $\nu_{x}^{H_{i}}=\nu_{x}^{H}!$ .

Hence we have
$N_{1x^{i}}^{H}\cong(V^{H_{i}})^{m- 1}\oplus\nu_{x}^{H_{i}}=(V^{H_{j}})^{m- 1}\oplus\nu_{x}^{H_{j}}\cong N_{1x}^{H_{j}}$

which is a contradiction. Accordingly if $N_{1x^{i}}^{H\supset}-N_{1x}^{H_{j}}$, then we have

dim $N_{1x^{i}}^{H}-\dim N_{1x^{j}}^{H}=$ ($m-$ l)(dim $V^{H_{i}}-\dim V^{H_{j}}$) $+\dim\nu_{x}^{H_{i}}-\dim\nu_{x}^{H_{j}}$

$\geqq m-1\geqq\dim G+2\geqq\dim G_{x}+2$ .
Thus we have

dim $S(N_{1x})^{H_{i}}-\dim S(N_{1x})^{H_{j}}\geqq\dim G_{x}+2$ .
Let $\{(H_{i})|i=1, \cdots , k\}$ be the set of the conjugacy classes of the isotropy

groups which appear in the $G_{x}$-manifold $S(N_{1x})$ . As before we arrange $(H_{i})$ in
such order that $(H_{i})\leqq(H_{j})$ implies $i\geqq j$ .

Fix a conjugacy classes $(H_{i})$ and its representative $H_{i}$ . Then for any $(H_{j})$

$with.(H_{i})\leqq(H_{j})$ , we choose representatives $H_{j}$ of $(H_{j})$ such that $H_{i}\subset H_{j}$ .
For $b<i$ , we set

$bS(N_{1x})=S(N_{1x})-\bigcup_{c<b}S(N_{1x})(H_{C})$ .

Then $bS(N_{1x})$ is an open $G_{x}$-submanifold of $S(N_{1x})$ and

$(^{b+1}S(N_{1x}))^{H_{i}}=(bS(N_{1x}))^{H_{i}}-(S(N_{1x})(H_{b}))^{H_{i}}$ .
ASSERTION. $(S(N_{1x})(H_{b}))^{H_{i}}$ is empty or is the disjoint union of some sub-

manifolds of $(^{b}S(N_{1x}))^{H_{i}}$ of codimension greater than one.
PROOF OF ASSERTION. We have the following commutative diagram:

$(S(N_{1x})(H_{b}))^{H_{i}}I^{\phi_{2}}\rightarrow S(N_{1x})^{H_{i}}\phi_{1}\phi_{4}I^{\phi_{3}}$

$S(N_{1x})(H_{b})\rightarrow S(N_{1x})$

where $\phi_{i}$ are inclusion maps. Since $\phi_{2},$ $\phi_{3},$ $\phi_{4}$ are inclusion maps of submani-
folds, $(S(N_{1x})(H_{b}))^{H_{i}}$ is also a submanifold of $S(N_{1x})^{H_{i}}$ . Since $bS(N_{1x})$ is an open
$G_{x}$-submanifold of $S(N_{1x}),$ $(^{b}S(N_{1x}))^{H_{i}}$ is a submanifold of $S(N_{1x})^{H_{i}}$ . Consider
the following commutative diagram:
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where $\phi_{i}$ are inclusion maps. Since $\phi_{1}$ and $\phi_{5}$ are inclusion maps of submani-
folds, $(S(N_{1x})(H_{b}))^{H_{i}}$ is also a submanifold of $(^{b}S(N_{1x}))^{H_{i}}$ . Since $S(N_{1x})(H_{b})$ is
closed in $bS(N_{1x}),$ $(S(N_{1x})(H_{b}))^{H_{i}}$ is closed in $(^{b}S(N_{1x}))^{H_{i}}$ . If $(S(N_{1x})(H_{b}))^{H_{i}}$ is
non-empty, then by the choice of representatives we have $H_{b_{\overline{R}}}^{\supset}H_{i}$ . It follows
that $N_{1x}^{H_{i}}\supseteqq N_{1x}^{H_{b}}$ . Hence we have

dim {a component $C$ of $S(N_{1x})(H_{b})^{H_{t}}$ }

$\leqq\dim$ {the component of $S(N_{1x})(H_{b})$ including $C$}

$\leqq\dim G_{x}+\dim S(N_{1x})^{H_{b}}$

$\leqq\dim S(N_{1x})^{H\ell}-2$ .
It follows by induction that $(^{b}S(N_{1x}))^{H_{i}}$ is a connected open submanifold of
$S(N_{1x})^{H_{i}}$ , and hence dim $S(N_{1x})^{H_{i}}=\dim(^{b}S(N_{1x}))^{H_{i}}$ .

This completes the proof of the assertion.
It follows from the assertion that $({}^{t}S(N_{1x}))^{H_{i}}$ is connected. Notice that

$S(N_{1x})^{[H_{i}]}=(iS(N_{1x}))^{H_{i}}$

and that
$S(N_{1x})(H_{i})/G_{x}=S(N_{1x})^{[H_{i}]}/(N_{G_{x}}(H_{i})/H_{i})$ .

Consequently we can conclude that $S(N_{1x})(H_{i})/G_{x}$ is connected. Note that if
$S(N_{1x})(H)$ is non-empty, then $(H)=(H_{i})$ for some $H_{i}$ .

Quite a similar argument works for $a=2$ .
This makes the proof of Lemma 5.1 complete.
Now we are ready to apply [20] to the $G_{x}$-maps $(\theta\cdot\overline{f}^{\prime}\cdot\overline{f}\cdot\theta\cdot\overline{f}^{\prime})\cdot\overline{f}|S(N_{1x})$

and $\overline{f}\cdot(\theta\cdot\overline{f}^{\prime}\cdot\overline{f}\cdot\theta\cdot\overline{f}^{\prime})|S(N_{2f(x)})$ . As a consequence, both maps are $G_{x}$-homotopic
to the identity. Namely $\overline{f}|$ : $S(N_{1x})\rightarrow S(N_{2f(x)})$ gives a $G_{x}$-homotopy equivalence.
Let $f^{=}:$ $S(N_{1})\rightarrow S(f^{*}N_{2})$ be the G-map induced naturally from $\overline{f}$. Then $f_{x}$ :

$=$

$S(N_{1x})$

$\rightarrow S((f^{*}N_{2})_{x})$ gives a $G_{x}$-homotopy equivalence. We are now in a position to
$K\urcorner$

apPly Theorem 2.1 and have that $f^{=}:S(N_{1})\rightarrow S(f^{*}N_{2})$ is a G-fiber homotopy equiv-
alence.

This makes the proof of Theorem 2.3 complete.

6. Normal representations.

In this section, we shall prove Example 2.7. Let $V,$ $V^{\prime}$ be two orthogonal
G-representation spaces whose restrictions $S(V),$ $S(V^{\prime})$ to the unit spheres have
the same G-homotopy type. Then we first remark that $V$ and $V^{\prime}$ aPpear as
the tangent representations at the corresponding fixed points of G-homotopy
equivalent manifolds. For this purpose, we consider G-manifolds $S(V\oplus R)$ ,
$S(V^{\prime}\oplus R)$ where $R$ denotes the set of real numbers with the trivial G-action.
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Naturally $S(V\oplus R)$ is G-homotopy equivalent to $S(V^{\prime}\oplus R)$ so that the fixed point
$a=(O, 1)\in S(V\oplus R)$ corresponds to the fixed point $b=(O, 1)\in S(V^{\prime}\oplus R)$ . The
tangent representation at $a$ (resp. b) is isomorphic to $V$ (resp. $V^{\prime}$ ).

Next we show that there are many examples of representations, $V,$ $V^{\prime}$ such
that $V$ is not isomorphic to $V^{\prime}$ as G-representation spaces, but $S(V)$ is G-homo-
topy equivalent to $S(V^{\prime})$ . Let $k$ be an integer greater than one and $q_{1},$

$\cdots$ , $q_{n}$

be integers relatively prime to $k$ . Set $\zeta=\exp 2\pi V-1/k$ . Regarding $Z_{k}$ as
$\{\zeta^{i}|i=0, \cdots , k-1\}$ , we define a $Z_{k}$ -action on the n-dimensional complex vector
space $C^{n}$ by

$\zeta\cdot(z_{1}, \cdots z_{n})=(\zeta^{q_{1}}z_{1}, \cdots \zeta^{q_{n}}z_{n})$ .

This $Z_{k}$ -representation space is denoted by $V(k;q_{1}, \cdots , q_{n})$ and its restriction
to the unit sphere is denoted by $S(V(k;q_{1}, \cdots , q_{n}))$ . The orbit space
$S(V(k;q_{1}, \cdots , q_{n}))/Z_{k}$ is the so called lens space $L(k;q_{1}, \cdots , q_{n})$ .

According to [14], $L(k;q_{1}, \cdots , q_{n})$ and $L(k;q_{1}^{\prime}, \cdots , q_{n}^{\prime})$ have the same
homotopy type if and only if there exists an integer $a$ with

$q_{1}\cdots q_{n}=\pm a^{n}q_{1}^{\prime}\cdots q_{n}^{\prime}$ $(mod k)$ .
On the other hand, it follows by the uniqueness of the universal regular

covering space that $L(k;q_{1}, \cdots , q_{n})$ and $L(k;q_{1}^{\prime}, \cdots , q_{n}^{\prime})$ have the same homo-
topy tyPe if and only if $S(V(k;q_{1}, \cdots , q_{n}))$ is $Z_{k}$ -homotopy equivalent to
$S(V(k;bq_{1}^{\prime}, \cdots , bq_{n}^{\prime}))$ for some $b$ with $(b, k)=1$ .

Let $\phi()$ be the Euler function, that is, $\phi(k)$ is the cardinal number of the
set $\{j|1\leqq j\leqq k, (j, k)=1\}$ . As is well-known,

$q=q^{\phi(k)+1}$ $(mod k)$

for any $q$ with $(q, k)=1$ . Hence taking $a=q$ and $n=\phi(k)+1$ , we have that

$L(k ; q, 1, \cdots 1)\simeq L(k$ ; 1, $\cdots$ , 1 $)$ ,

that is, $S(V(k;q, 1, \cdots , 1))$ is $Z_{k}$ -homotopy equivalent to $S(V(k;b, \cdots , b))$ for
some $b$ with $(b, k)=1$ . However $V(k;q, 1, \cdots , 1)$ is not isomorphic to $V(k;b$ ,
... , b) as $Z_{k}$ -representation spaces if $q\neq\pm 1(mod k)$ .

Added in July, 1979.

(1) According to M. Cohen “A course in Simple-Homotopy Theory, Springer”,
Two $Z_{k}$ -spheres $S(V(k;q_{1}, \cdots , q_{n}))$ and $S(V(k;q_{1}^{\prime}, \cdots , q_{n}^{\prime}))$ in \S 6 are $Z_{k^{-}}homo-$

topy equivalent if and only if

$\Pi q_{t}\equiv\pm\Pi q_{i}^{\prime}$ mod $k$ .
(2) Although we did not mention it explicitly, we proved actually that a
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smooth G-manifold has a G-CW-complex structure without assuming Yang’s
result [25]. In the case of finite group actions, S. Illman proved that a smooth
G-manifold has a triangulation such that the action is simplicial in “Smooth
equivariant triangulations of G-manifolds for $G$ a finite group, Math. Ann., 233
(1978), 199-220’.
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