On infinite dimensional unitary representations of certain discrete groups

By Yoshiyuki SATO

(Received May 10, 1979)

§0. Introduction.

0.0. For the modular group $SL_2(\mathbf{Z})$, M. Saito [7] has constructed certain series of infinite dimensional unitary representations by classifying and decomposing the representations induced from unitary characters of Cartan subgroups of $SL_2(\mathbf{Z})$. The purpose of this note is to make a few remarks which either clarify the interconnection or generalize the results of Saito's construction.

0.1. Let G be a group, and \mathcal{A} a family of subgroups of G. The pair (G, \mathcal{A}) is said to have Property (\mathcal{F}) , if the following two requirements are fulfilled.

(371) For H_1 , $H_2 \in \mathcal{A}$, and $g \in G$, $[H_1: H_1 \cap g^{-1}H_2g] < \infty \Rightarrow H_1 \subset g^{-1}H_2g$. (372) For $H \in \mathcal{A}$, and $g \in G$,

 $g^{-1}Hg \subset H \Rightarrow g^{-1}Hg = H.$

Now, suppose moreover that G is a locally compact topological group and any member H_i of \mathcal{A} is an open subgroup of G. Let χ_i be an irreducible unitary representation of H_i and let $U_i = \operatorname{Ind}(\chi_i : H_i \uparrow G)$ denote the representation of G induced by χ_i . The points of [7] can be summarized in the following (I)~(IV).

(I) Assume that χ_i is one dimensional, then the following three conditions are mutually equivalent (Théorème 2 [7]).

- (i) U_1 is equivalent to U_2 .
- (ii) U_1 is not disjoint from U_2 .

(iii) There exists $g \in G$ such that $H_2 = g^{-1}H_1g$ and $\chi_2 = {}^{g}\chi_1$, where ${}^{g}\chi_1(x) = \chi_1(g x g^{-1})$ for $x \in H_2$.

(II) If U_1 is not disjoint from U_2 (hence we may assume $H_1 = H_2 = H$ and $\chi_1 = \chi_2 = \chi$, and put $N_{\chi} = \{g \in N_G(H) | {}^{g}\chi = \chi\}$), then the dimension of the space of all intertwining operators of $U(\chi) = Ind(\chi : H \uparrow G)$ is given by the group index $[N_{\chi} : H]$ (Théorème 1 [7]).

(III) If $G=SL_2(\mathbb{Z})$ and \mathcal{A} is the set of all Cartan subgroups of G, then the pair (G, \mathcal{A}) has Property (\mathcal{F}) .

(IV) If G is a connected algebraic group defined over an arbitrary field k, and \mathcal{A} is the set of all connected algebraic subgroups of G defined over k, then the pair (G, \mathcal{A}) has Property (\mathcal{F}) .

0.2. The representations of $SL_2(\mathbb{Z})$ constructed in [7] are precisely those obtained as the irreducible constituents of U_i 's by taking the pair (G, \mathcal{A}) of (III), with discrete topology. Since, in this case, each H_i happens to be commutative, any irreducible representation χ_i is one dimensional. Hence, by (I), the classification up to the equivalence of U_i 's reduces to the classification up to the conjugacy of Cartan subgroups H_i 's and their characters χ_i 's.

Furthermore, each Cartan subgroup H has index 2 or 1 in its normalizer, hence the decomposition of U_i is carried out without much difficulty.

0.3. The purpose of this note is to make the following remarks $(1)\sim(3)$.

(1) Starting with the pair (G, \mathcal{A}) which has Property (\mathcal{F}) , taking a subgroup G' of G and a subfamily \mathcal{B} of \mathcal{A} , and setting $B' = \{H \cap G' | H \in \mathcal{B}\}$, we can give a simple criterion for the new pair (G', \mathcal{B}') to have Property (\mathcal{F}) (Proposition 1.7).

As an application we can associate to the group $G(\mathbb{Z})$ of \mathbb{Z} -valued points of any connected algebraic group G over \mathbb{Q} , a family \mathcal{A} such that the pair $(G(\mathbb{Z}), \mathcal{A})$ has Property (\mathcal{F}) (Corollary 1.9). If $G=SL_2$, we show that \mathcal{A} is, up to commensurability, the set of all Cartan subgroups of $SL_2(\mathbb{Z})$ (Corollary 2.2). Thus the case (III) and the case (IV), which appear at a glance of a quite different type, can be connected by our criterion.

(2) We prove the statement (I) without assuming χ_i to be one dimensional (but still finite dimensional) (Theorem 3.3). This generalization is indispensable, since in the case of the pair $(G(\mathbf{Z}), \mathcal{A})$ for any arbitrary connected algebraic group G, the family \mathcal{A} contains non-commutative subgroups in general.

(3) We can discuss to some extent the decomposition of the induced representation U_i , without any knowledge of the structure of H_i , but only on the basis of Property (\mathcal{F}) (Corollary 3.8).

Finally the author wishes to express his gratitude to Professor H. Hijikata for suggestions and encouragement.

§1. General remarks on Property (\mathcal{F}) .

1.0. Let G be a group. Let \sim denote the commensurability relation in G, and for a subgroup H of G, let Cl(H) denote the commensurability class of H, i.e.

(1) $H_1 \sim H_2 \Leftrightarrow [H_i: H_1 \cap H_2] < \infty$ for i=1, 2.

(2) $Cl(H) = \{K | K \text{ is a subgroup of } G \text{ such that } K \sim H\}.$

For a family \mathcal{A} of subgroups of G, let \mathcal{A}^* (resp. $\overline{\mathcal{A}}$) denote the commensurability (resp. conjugacy) closure of \mathcal{A} , i.e.

(3) $\mathcal{A}^* = \{K | K \text{ is a subgroup of } G \text{ such that } K \sim H \text{ for some } H \in \mathcal{A}\}.$

(4) $\mathcal{A} = \{g^{-1}Hg | g \in G, H \in \mathcal{A}\}.$

1.1. The following lemma can be easily checked.

LEMMA. (i) If the pair (G, \mathcal{A}) has Property (\mathfrak{F}) , then for any subfamily \mathfrak{B} of \mathcal{A} , (G, \mathfrak{B}) has Property (\mathfrak{F}) .

(ii) If (G, \mathcal{A}) has Property (\mathcal{F}) , then $(G, \overline{\mathcal{A}})$ has Property (\mathcal{F}) .

(iii) If \mathcal{A} is conjugacy closed, i. e. $\mathcal{A} = \overline{\mathcal{A}}$, then the property ($\mathfrak{F}1$) of §0 for (G, \mathcal{A}) is equivalent to the following ($\overline{\mathfrak{F}}1$).

 $(\overline{\mathcal{F}}1) \quad For \ H_1, \ H_2 \in \mathcal{A}, \ [H_1: H_1 \cap H_2] < \infty \Rightarrow H_1 \subset H_2.$

1.2. As is well known, the commensurability relation \sim is an equivalence relation, and we can consider the quotient set $\mathcal{A}/\sim = \{\mathcal{Cl}(H) | H \in \mathcal{A}\}$ with the canonical projection p.

(1) $p: \mathcal{A} \to \mathcal{A}/\sim p(H) = \mathcal{C}l(H).$

Furthermore, for the quotient set \mathcal{A}/\sim , we can define a structure of an ordered set by the following inclusion relation.

(2) $\mathcal{C}l(H_1) \subset \mathcal{C}l(H_2) \Leftrightarrow {}^{\exists}H'_i \in \mathcal{C}l(H_i)$, where i=1, 2, such that $H'_1 \subset H'_2$.

Indeed the following two facts can be easily checked.

(3) $Cl(H_1) \subset Cl(H_2), Cl(H_2) \subset Cl(H_1) \Rightarrow Cl(H_1) = Cl(H_2).$

(4) $\mathcal{C}l(H_1) \subset \mathcal{C}l(H_2), \ \mathcal{C}l(H_2) \subset \mathcal{C}l(H_3) \Rightarrow \mathcal{C}l(H_1) \subset \mathcal{C}l(H_3).$

1.3. PROPOSITION. (i) The following three conditions for (G, \mathcal{A}) are mutually equivalent.

(1) (G, \mathcal{A}) has the property ($\mathfrak{F1}$) of §0.

(2) (G, \overline{A}) has the property ($\overline{\Im}1$) of 1.1.

(3) \overline{A} is an inclusion preserving section of the canonical projection $p:(\overline{A})^* \rightarrow (\overline{A})^*/\sim$, i.e. the restriction of p to \overline{A} gives an isomorphism of \overline{A} and $(\overline{A})^*/\sim$ as ordered sets with respect to the inclusion.

(ii) Suppose (G, \mathcal{A}) has the property $(\mathfrak{F}1)$, then the following two conditions are mutually equivalent.

(4) (G, A) has the property ($\mathfrak{F}2$) of § 0.

(5) $(G, (\bar{\mathcal{A}})^*)$ has the following property (\mathcal{F}^*2).

 (\mathcal{F}^*2) For $K \in (\overline{\mathcal{A}})^*$ and $g \in G$, $g^{-1}Kg \subset K \Rightarrow \mathcal{C}l(g^{-1}Kg) = \mathcal{C}l(K)$.

POOOF. (i) $(1) \Leftrightarrow (2)$ is clear from 1.1. We show $(3) \Rightarrow (2)$. Suppose (3) holds. Take $H_1, H_2 \in \overline{\mathcal{A}}$ such that $[H_1: H_1 \cap H_2] < \infty$. Then H_1 and $H_1 \cap H_2$ are commensurable. Since $H_1 \cap H_2 \subset H_2$, $\mathcal{Cl}(H_1) \subset \mathcal{Cl}(H_2)$ by the definition (2) of 1.2. As H_1 (resp. H_2) is the image of $\mathcal{Cl}(H_1)$ (resp. $\mathcal{Cl}(H_2)$) by the inclusion preserving section of (3), we have $H_1 \subset H_2$. Conversely, suppose (2) holds. Take $H_1, H_2 \in \overline{\mathcal{A}}$. If $H_1 \neq H_2$, then H_1 and H_2 are not commensurable. Hence $\mathcal{Cl}(H) \mapsto H$ (for $H \in \overline{\mathcal{A}}$) defines the section of the canonical projection $(\overline{\mathcal{A}})^* \to (\overline{\mathcal{A}})^*/\sim$. We must show that this section preserves the inclusion. Suppose $\mathcal{Cl}(H_1) \subset \mathcal{Cl}(H_2)$. By the definition (2) of 1.2, there exist $H'_i \in \mathcal{Cl}(H_i)$ (for i=1, 2) such that $H'_1 \subset H'_2$. By easy index calculation, we see that $[H_1: H_1 \cap H_2] < \infty$. Hence $H_1 \subset H_2$, because of (2).

(ii) To see (4) \Rightarrow (5), take $K \in (\bar{\mathcal{A}})^*$ and $g \in G$ such that $g^{-1}Kg \subset K$. There exists $H \in \bar{\mathcal{A}}$ such that $H \sim K$ by the definition of $(\bar{\mathcal{A}})^*$, and then clearly $g^{-1}Kg \sim g^{-1}Hg$. The image of Cl(H) = Cl(K) (resp. $Cl(g^{-1}Hg) = Cl(g^{-1}Kg)$) by the inclusion preserving section is H (resp. $g^{-1}Hg$). Hence we have $g^{-1}Hg \subset H$ from $Cl(g^{-1}Hg) \subset Cl(H)$. Therefore $g^{-1}Hg = H$ by (F2). Thus we get $Cl(g^{-1}Kg) = Cl(K)$. Conversely, suppose (5) holds. Take $H \in \mathcal{A}$ and $g \in G$ such that $g^{-1}Hg \subset H$. Since $H \in (\bar{\mathcal{A}})^*$, $g^{-1}Hg \in (\bar{\mathcal{A}})^*$ and $g^{-1}Hg \subset H$, we have $Cl(H) = Cl(g^{-1}Hg)$. Thus we have $g^{-1}Hg = H$ as the images by the inclusion preserving section.

1.4. COROLLARY. Suppose $\mathcal{A}=\bar{\mathcal{A}}$.

(i) If (G, \mathcal{A}) has the property $(\mathfrak{F}1)$, then \mathcal{A} is the inclusion preserving section of the canonical projection $p: \mathcal{A}^* \to \mathcal{A}^*/\sim$.

(ii) Conversely, if \mathcal{B} is any conjugacy closed inclusion preserving section of the canonical projection $p: \mathcal{A}^* \to \mathcal{A}^* / \sim$, then the pair (G, \mathcal{B}) has the property $(\mathcal{F}1)$.

1.5. EXAMPLE. Let k be a field, G an algebraic group defined over k and \mathcal{A} the set of all algebraic subgroups of G defined over k. Let \mathcal{A}_0 denote the set of all connected algebraic subgroups of G defined over k. Any two elements of \mathcal{A} are commensurable if and only if they have the same connected component of the identity element. Therefore the pair (G, \mathcal{A}_0) has the property ($\mathfrak{F}1$). Since the dimension of any element of \mathcal{A}_0 is invariant by the inner automorphisms of G, the pair (G, \mathcal{A}_0) has the property ($\mathfrak{F}2$).

Hence the pair (G, \mathcal{A}_0) has Property (\mathcal{F}) and obviously $\mathcal{A}_0^* = \mathcal{A}$ and $\overline{\mathcal{A}}_0 = \mathcal{A}_0$.

1.6. REMARK. (i) In view of 1.1, we may assume $\mathcal{A}=\bar{\mathcal{A}}$ without important loss of generality for our purpose. However in the statement of 1.4, the assumption, $\mathcal{A}=\bar{\mathcal{A}}$, is essential. For example, if \mathcal{A}^*/\sim has only one point, say $\mathcal{C}l(H)$, then the assumption $\mathcal{A}=\bar{\mathcal{A}}$ reduces the case to the trivial one where H is normal in G.

(ii) \mathcal{A} is not necessarily unique for a given \mathcal{A}^* . For example let \mathcal{A}^* be the set of all one dimensional algebraic subgroups of G of Example 1.5. Then any conjugacy closed section of the canonical projection $p: \mathcal{A}^* \to \mathcal{A}^*/\sim$ preserves the inclusion, because there is no non-trivial order relation in \mathcal{A}^*/\sim .

1.7. PROPOSITION. Let (G, \mathcal{A}) be a pair with Property (\mathfrak{F}). Suppose G has the topology such that the left and right translations are closed mappings. For a subgroup G' of G, put $\mathcal{A}' = \{H \cap G' | H \in \mathcal{A} \text{ and } H \cap G' \text{ is dense in } H\}$. Then the pair (G', \mathcal{A}') has Property (\mathfrak{F}).

PROOF. For a subset X of G, let \overline{X} denote its topological closure. If $H'_i \in \mathcal{A}'$, by our definition of \mathcal{A}' , H'_i has the form $H'_i = H_i \cap G'$ with $H_i \in \mathcal{A}$ and $\overline{H'_i} = H_i$.

To see $(\mathcal{F}1)$, note that:

 $[H'_1: H'_1 \cap x^{-1}H'_2x] < \infty$, where $x \in G'$

$$\Leftrightarrow^{\exists} g_{j} \in H'_{1} \text{ for } j \leq N, \ H'_{1} = \bigcup_{j=1}^{N} g_{j}(H'_{1} \cap x^{-1}H'_{2}x),$$

where N is a suitable natural number

$$\Rightarrow H_1 = \overline{H'_1} = \bigcup_{j=1}^N \overline{g_j(H'_1 \cap x^{-1}H'_2 x)}.$$

Now, the closedness of translations implies: $\overline{g_{j}(H_{1}^{\prime} \cap x^{-1}H_{2}^{\prime}x)} \subset g_{j}(\overline{H_{1}^{\prime} \cap x^{-1}H_{2}^{\prime}x)} \subset g_{j}(\overline{H_{1}^{\prime} \cap x^{-1}H_{2}^{\prime}x)}) = g_{j}(H_{1} \cap x^{-1}H_{2}x).$ $= g_{j}(H_{1} \cap x^{-1}H_{2}x).$ Namely $[H_{1}^{\prime}: H_{1}^{\prime} \cap x^{-1}H_{2}^{\prime}x] < \infty$ implies $[H_{1}: H_{1} \cap x^{-1}H_{2}x] < \infty$, hence $H_{1} \subset x^{-1}H_{2}x$

and $H'_1 \subset x^{-1}H'_2 x \cap G' = x^{-1}H'_2 x$.

To see (F2), take $H' \in \mathcal{A}'$ and $x \in G'$ such that $x^{-1}H'x \subset H'$. Since H' has the form $H' = H \cap G'$ with $H \in \mathcal{A}$ and $\overline{H'} = H$, $x^{-1}H'x \subset H'$ implies $H = \overline{H'} \subset \overline{xH'x^{-1}} \subset \overline{xH'x^{-1}} = xHx^{-1}$. Hence $H = xHx^{-1}$ by the property (F2) for (G, \mathcal{A}) and $H' = H \cap G' = xHx^{-1} \cap G' = xH'x^{-1}$.

1.8. COROLLARY. Let k be an infinite perfect field and G an algebraic group defined over k. Let \mathcal{A} be the set of all connected algebraic subgroups of G defined over k and let G'=G(k) the group of k-rational points of G, and $\mathcal{A}'=\{H(k)|H\in\mathcal{A}\}$. Then the pair (G', \mathcal{A}') has Property (\mathcal{F}) .

PROOF. Combine 1.5 and 1.7, and use the fact that if k is perfect and infinite, then H(k) is Zariski dense in H which is a connected algebraic group defined over k (Rosenlicht [6]).

1.9. COROLLARY. Let k, G and A be as in 1.8. Let O be a subring of k with the identity and G'=G(O): the group of O-valued points and put A'= $\{H(O)|H\in A \text{ and } H(O) \text{ is Zariski-dense in } H\}$. Then the pair (G', A') has Property (\mathcal{F}) .

PROOF. It is immediate from 1.7.

This example will be discussed in more detail in the next section. In particular, it will be seen that the pair (G, \mathcal{A}) of (\mathbb{II}) in §0 is essentially a special case of our (G', \mathcal{A}') .

§2. Remarks on $SL_2(Z)$.

2.0. Let G be SL_2 and \mathcal{A} a family of connected algebraic subgroups of G defined over Q. Let G' denote $SL_2(Z)$ and \mathcal{B} denote the subfamily of \mathcal{A} such that $H \in \mathcal{B}$ if and only if $H \cap G'$ is Zariski dense in H.

2.1. PROPOSITION. (i) $H \in \mathcal{A}$ belongs to \mathcal{B} if and only if H is equal to one of the following three.

(1) H=G,

- (2) $H \cong G_m$ over the algebraic closure \bar{Q} of Q and $|H(Z)| = \infty$,
- (3) $H \cong G_a$ over Q.
- (ii) In the case (2), we have $[N_G(H): H]=2$, hence $[N_{G'}(H'): H'] \leq 2$,

where $H' = H(\mathbf{Z})$.

(iii) In the case (3), we have $H \cong \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$. Then $N_G(H) \cong B = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$: a Borel subgroup of G. Accordingly, $H' \cong \begin{pmatrix} 1 & Z \\ 0 & 1 \end{pmatrix}$ and $N_{G'}(H') \cong B(Z) = \pm \begin{pmatrix} 1 & Z \\ 0 & 1 \end{pmatrix}$.

PROOF. To see (i), take $H \in \mathcal{A}$. Since dim $SL_2=3$, dim $H \leq 3$. If dim H=3, then $H=SL_2$ by the connectedness of H and SL_2 . Since $SL_2(\mathbb{Z})$ is Zariski dense in SL_2 by Borel [2], this is the case (1).

If dim $H \leq 2$, then H is solvable over \bar{Q} by Borel [1] (Theorem 11.6). So there exists a Borel subgroup defined over \bar{Q} which contains H.

If dim H=2, then H itself is a Borel subgroup. Since H is defined over Q, by the uniqueness of the minimal parabolic subgroup (Borel-Tits [3]) H is a split Borel subgroup, i.e. $H\cong\begin{pmatrix} * & *\\ 0 & * \end{pmatrix}$. But $H(Z)\cong\pm\begin{pmatrix} 1 & Z\\ 0 & 1 \end{pmatrix}$ is not Zariski dense in H.

If dim H=1, then by Borel [1] (Theorem 10.9) H is isomorphic to G_m or G_a over \overline{Q} . If H is isomorphic to G_m , then clearly H(Z) is Zariski dense in H if and only if $|H(Z)| = \infty$. This is the case (2). If H is isomorphic to G_a , then H is isomorphic to G_a over Q by Borel [1] (remark after Theorem 10.9). Again, by the uniqueness of the minimal Q-parabolic subgroup, H is isomorphic to the unipotent radical of a suitable split Borel subgroup. This is the case (3).

(i) In the case (2), H is the maximal torus of SL_2 . Therefore $N_G(H)/H$ is isomorphic to the Weyl group of SL_2 , which is isomorphic to the symmetric group of degree 2. Thus we get (ii).

(iii) In the case (3), clearly $N_{G'}(H') = G' \cap N_G(H) = B(\mathbf{Z})$.

2.2. COROLLARY. Let $\mathscr{B}' = \{H \cap G' | H \in \mathscr{B}, H \neq G\}$ and C be the set of all Cartan subgroups of G'. Then $(\mathscr{B}')^* = \mathcal{C}^*$. Here, the definition of a Cartan subgroup C is in the sense of Chevalley characterized by the following.

(1) C is a maximal nilpotent subgroup, and

(2) every subgroup of finite index in C has finite index in its normalizer in G' (cf. Borel [1] p. 290).

PROOF. Let $C \in \mathcal{C}$ and \overline{C} (resp. \overline{C}^0) be the Zariski closure of C in SL_2 (resp. the connected component of the identity of \overline{C}). $[\overline{C}:\overline{C}^0]<\infty$ and \overline{C} normalizes \overline{C}^0 . Since \overline{C}^0 is nilpotent and connected, \overline{C}^0 is isomorphic to G_a or G_m over \overline{Q} . By the nilpotency of \overline{C} and the maximality of C, it follows that $C=\overline{C} \cap SL_2(Z)$. Moreover $|C|=\infty$ by the definition of a Cartan subgroup. Hence $|\overline{C}^0(Z)|=|\overline{C}^0 \cap SL_2(Z)|=\infty$. Therefore by a proper H of the type of (2) or (3) in \mathcal{B} , we have $N_{G'}(H')\supset C\supset H'$. In the case (2), $N_{G'}(H')$ induces the action of the Weyl group on H', i.e. $nhn^{-1}=h^{-1}$ for $h\in H'$ and $n\in N_{G'}(H')$, $n\notin H'$, hence $N_{G'}(H')$ is not nilpotent. Thus C must be equal to H'.

In the case (3), by (3) of 2.1, $N=N_{G'}(H')$ is nilpotent. Since C is a maximal nilpotent subgroup, C must be equal to N.

Therefore we see that for any $H \in \mathcal{B}'$ (resp. $C \in \mathcal{C}$) there exists a suitable $C \in \mathcal{C}$ (resp. $H \in \mathcal{B}'$) such that $H \sim C$. Hence we have $(\mathcal{B}')^* = \mathcal{C}^*$.

In particular, if we denote by \mathcal{D} the set $\{N_{G'}(C) | C \in \mathcal{C}\}$, then we have $\mathcal{D}^* = \mathcal{C}^*$, because $[N_{G'}(C): C] < \infty$ by the definition of a Cartan subgroup.

2.3. REMARK. (i) In the view points of the construction of the representations of $SL_2(\mathbb{Z})$ induced from the characters of a subgroup of $SL_2(\mathbb{Z})$ as will be seen in § 3, the choice of an inclusion preserving section of the canonical projection $\mathcal{C}^* = (\mathcal{B}')^* \rightarrow \mathcal{C}^* / \sim$ does not yield any essential difference.

(ii) Given an algebraic group defined over a field k, the problem of the classification of \mathcal{A}' in 1.9 can be very complicated. However there are some cases where such classifications are essentially known. For example, let $G=SL_2$ and $G'=\Gamma_0(N)$. Then the classification is implicitly done in efforts to give an explicit formula for the traces of Hecke operators (cf. Hijikata [4]).

§ 3. Representations.

3.0. In this section, let G be a separable locally compact group, and \mathcal{A} be a conjugacy closed family of open subgroups of G. Suppose that the pair (G, \mathcal{A}) has Property (\mathcal{F}) .

Let $K \in \mathcal{A}^*$ and $\rho: K \to GL(V)$ be a finite dimensional unitary representation, where V denotes a finite dimensional vector space over the complex number field C with the scalar product (,).

Let $U(\rho)$ denote the representation of G induced from ρ . By the definition of \mathcal{A}^* , there exists some $H \in \mathcal{A}$ such that $H \sim K$. Since such H is unique by 1.3, let us denote this H by H(K). Let K' be another member of \mathcal{A}^* in the same commensurability class as K, H(K) = H(K'). If $K \supset K'$, let ρ' be the restriction of ρ to K'. Then every irreducible constituent of $U(\rho')$ is contained in $U(\rho)$. Hence in the view points of the construction of the representations we may restrict our attention to only large enough K in $\mathcal{C}l(H)$.

For example we may assume $K \supset H(K)$ without any important loss of generality.

3.1. LEMMA. Assume $K \supset H(K) = H$, and put $\chi = \rho |_{H}$ and $N_{\chi} = \{g \in N_{G}(H) | \chi \sim^{g} \chi\}$. Then K is a subgroup of N_{χ} .

PROOF. If $k \in K$, then $[H: H \cap k^{-1}Hk] \leq [K: k^{-1}Hk] = [K: H] < \infty$. Hence $H \subset k^{-1}Hk$ by the property ($\mathcal{F}1$) and then $H = k^{-1}Hk$ by the property ($\mathcal{F}2$). Since $\chi(k^{-1}hk) = \rho(k^{-1}hk) = \rho(k)^{-1}\chi(h)\rho(k)$ for any $k \in K$ and any $h \in H$, we have $k \in N_{\chi}$.

3.2. We assume the quotient $K \setminus G$ is denumerable for any $K \in \mathcal{A}^*$. Then recall that $U(\rho)$ is realized on the Hilbert space

$$\mathcal{C}V = \{f: \Theta \rightarrow V \mid ||f||^2 = \sum_{x \in \Theta} |f(x)|^2 < \infty\}$$

by the action of $g \in G$ as follows,

 $(U(\rho)(g)f)(x) = \rho(\eta(xg))f(\theta(xg))$ for $f \in \mathcal{V}$ and $x \in \Theta$.

Here Θ denotes a system of representatives of the quotient $K \setminus G$, $|f(x)|^2 = (f(x), f(x))$, and θ is the section $K \setminus G \rightarrow \Theta$, and $\eta(g) = g\theta(Kg)^{-1}$ is a mapping from G into K.

This action of $g \in G$ is essentially independent of the choice of the system Θ . For, if Θ' denotes another system of representatives of the quotient $K \setminus G$, and $\mathcal{C}V'$ denotes another space with respect to Θ' , then we can define a unitary operator $I: \mathcal{C}V \to \mathcal{C}V'$ such that $I \circ U(\rho)(g) = U(\rho)(g) \circ I$ for $g \in G$ as follows.

$$(I(f))(x') = \rho(\eta(x')f(\theta(x')))$$
 for $f \in \mathcal{V}$ and $x' \in \Theta'$.

In particular, we may assume that the system Θ contains the identity element of G.

3.3. THEOREM. Let G be a separable locally compact group and \mathcal{A} be a family of open subgroups of G such that the pair (G, \mathcal{A}) has Property (\mathcal{F}) . Let \mathcal{A}^* be a commensurability closure of \mathcal{A} . Let $K_i \in \mathcal{A}^*$ and let $H_i = \mathbf{H}(K_i)$ and assume $K_i \supset H_i$, where i=1, 2. Let ρ_i be a unitary representation of K_i acting on a finite dimensional vector space V_i over C, and $\chi_i = \rho_i|_{H_i}$ the restriction of ρ_i to H_i .

If χ_i 's are irreducible, then

(i) $U(\rho_1)$ and $U(\rho_2)$ are disjoint from each other unless there exists $g \in G$ such that $H_2 = g^{-1}H_1g$ and $\chi_2 = {}^{g}\chi_1$.

(ii) If $H_1=H_2=H$ and $\chi_1=\chi_2=\chi$, then the dimension of the space of all intertwining operators from $U(\rho_2)$ to $U(\rho_1)$ is not greater than the group index $[N_{\chi}: K_1]$.

(iii) In particular, if $K_1 = K_2 = N_{\chi}$, then $U(\rho_1)$ and $U(\rho_2)$ are equivalent to each other if and only if ρ_1 and ρ_2 are equivalent to each other.

PROOF. We use the notations in 3.2 attaching the index *i* as \mathcal{V}_i , θ_i , η_i , etc. for i=1, 2.

Suppose dim $V_i = n_i$ and let $\{v_t | t=1, 2, \dots, n_1\}$ (resp. $\{u_j | j=1, 2, \dots, n_2\}$) be a basis of V_1 (resp. V_2). We may assume these bases are orthonormal.

Then we can set, for any $k_i \in K_i$,

$$\rho_{2}(k_{2})u_{j} = \sum_{s=1}^{n_{2}} a_{j,s}(k_{2})u_{s} \quad a_{j,s}(k_{2}) \in C$$

$$\rho_{1}(k_{1})v_{t} = \sum_{r=1}^{n_{1}} b_{t,r}(k_{1})v_{r} \quad b_{t,r}(k_{1}) \in C.$$

and

Let φ_x (resp. ψ_y) denote the characteristic function on Θ_2 (resp. Θ_1) of x (resp. y).

Under these notations, we have

$$U(\rho_2)(g)(u_j\varphi_x) = \sum_{s=1}^{n_2} a_{j,s}(\gamma_2(\theta_2(xg^{-1})g))u_s\varphi_{\theta_2(xg^{-1})})$$

for any $g \in G$, where $x \in \Theta_2$ and $u_j \psi_x$ denotes the assignment $x' \mapsto \varphi_x(x') u_j$ for $x' \in \Theta_2$.

3.4. LEMMA. Let $\mathcal{C}(U(\rho_2), U(\rho_1))$ be the space of all intertwining operators from $U(\rho_2)$ to $(U\rho_1)$. If there exists a non trivial $M \in \mathcal{C}(U(\rho_2), U(\rho_1))$, then $H_2 \subset x^{-1}H_1x$ for any $x \in \bigcup_{j=1}^{n_2} \operatorname{Supp} \|M(u_j\varphi_e)\| \subset \Theta_1$.

PROOF. Since we have

$$U(\rho_1)(k)M(u_j\varphi_e) = \sum_{s=1}^{n_2} a_{j,s}(k)M(u_s\varphi_e) \quad \text{for any } k \in K_1,$$

it holds that

$$\sum_{j=1}^{n_2} |U(\rho_1)(k)M(u_j\varphi_e)(x)|^2 = \sum_{j=1}^{n_2} |M(u_j\varphi_e)(x)|^2$$

for each $x \in \Theta_1$. On the other hand we have

$$\sum_{j=1}^{n_2} |U(\rho_1)(k)M(u_j\varphi_e)(x)|^2 = \sum_{j=1}^{n_2} |M(u_j\varphi_e)(\theta_1(xk))|^2$$

by the definition of $U(\rho)$. Hence we get

(1)
$$\sum_{j=1}^{n_2} |M(u_j\varphi_e)(x)|^2 = \sum_{j=1}^{n_2} |M(u_j\varphi_e)(\theta_1(xk))|^2$$

for each $x \in \Theta_1$ and each $k \in K_2$.

Therefore if $x \in \text{Supp} || M(u_j \varphi_e) ||$ for some *j*, then the orbit of the action of K_2 on Θ_1 containing *x* must be a finite set, because we have (1) and

$$\sum_{x \in \Theta_1} \sum_{j=1}^{n_2} \|M(u_j \varphi_e)(x)\|^2 = \sum_{j=1}^{n_2} \|M(u_j \varphi_e)\| < \infty.$$

In other words $[K_2: K_2 \cap x^{-1}K_1x] < \infty$. This implies $[H_2: H_2 \cap x^{-1}H_1x] < \infty$ and hence $H_2 \subset x^{-1}H_1x$ by the property ($\mathcal{F}1$). This completes the proof of the lemma.

3.5. PROOF OF 3.3 (i). Suppose $U(\rho_2)$ and $U(\rho_1)$ are not disjoint. That is to say that there exist non trivial members $M \in \mathcal{C}(U(\rho_2), U(\rho_1))$ and $N \in \mathcal{C}(U(\rho_1), U(\rho_2))$. Accordingly we have $\bigcup_{j} \text{Supp} \|M(u_j\varphi_e)\| \neq \emptyset$ and $\bigcup_{t} \text{Supp} \|N(v_t\varphi_e)\| \neq \emptyset$. By the lemma of 3.4, there exists $x \in \Theta_1$ and $y \in \Theta_2$ such that $H_2 \subset x^{-1}H_1x$ and $H_1 \subset y^{-1}H_2y$. Thus we get $H_2 \subset x^{-1}H_1x \subset x^{-1}y^{-1}H_2yx$, hence $yx \in N_G(H_2)$ by the property (I2) and $H_2 = x^{-1}H_1x$. This shows the first part of (i).

To see the second part of (i), we may assume $H_1 = H_2 = H$ by the first part of (i). Then it is clear that $\bigcup_j \text{Supp} \|M(u_j\varphi_e)\| \subset N_G(H) \cap \Theta_1$. So we get, for each j,

$$M(u_j\varphi_e) = \sum_{\substack{1 \leq t \leq n_1 \\ x \in N_G(H) \cap \Theta_1}} \alpha_{j,t}(x)(v_t \phi_x), \quad \alpha_{j,t}(x) \in C.$$

This is symbolically

(1)
$${}^{t}(\cdots, M(u_{j}\varphi_{e}), \cdots) = \sum_{x \in N_{G}(H) \cap \Theta_{1}} (\alpha_{j, t}(x))^{t}(\cdots, v_{t}\psi_{x}, \cdots)$$

where t on the left shoulder denotes the transposing symbol and $(\alpha_{j,t}(x))$ is an $n_2 \times n_1$ matrix.

Applying $U(\rho_1)(h)$ $(h \in H)$ to the both sides of (1), we have

the left side=
$${}^{t}(\cdots, MU(\rho_{2})(h)(u_{j}\varphi_{e}), \cdots)$$

= ${}^{t}(\cdots, M(\sum_{s} a_{j,s}(h)(u_{s}\varphi_{e})), \cdots)$
= $(a_{j,s}(h))^{t}(\cdots, M(u_{s}\varphi_{e}), \cdots)$
(2) = $\sum_{x \in N_{G}(H) \cap \Theta_{1}} (a_{j,s}(h))(\alpha_{j,t}(x))^{t}(\cdots, v_{t}\varphi_{x}, \cdots)$

and

the right side =
$$\sum_{x \in N_G(H) \cap \Theta_1} (\alpha_{j,t}(x))^t (\cdots, U(\rho_1)(h)(v_t \phi_x), \cdots)$$

(3)
$$= \sum_{x \in N_G(H) \cap \Theta_1} (\alpha_{j, t}(x)) (b_{t, r}(xhx^{-1}))^t (\cdots, v_r \psi_x, \cdots).$$

Since $\{v_t \phi_x | j, x\}$ is a linearly independent subset of V_1 , comparing (2) and (3) we get

$$(a_{j,s}(h))(\alpha_{j,t}(x)) = (\alpha_{j,t}(x))(b_{t,r}(xhx^{-1})).$$

Since M is non trivial, there exists some $x \in N_G(H) \cap \Theta_1$ such that $(\alpha_{j,t}(x)) \neq 0$. Hence the irreducibility of χ_i 's shows that $n_1 = n_2$ and $(\alpha_{j,t}(x))$ is invertible by the Schur's lemma. This implies $\chi_2 \sim x \chi_1$, because $\chi_2(h) = (a_{j,s}(h))$, and $x \chi_1(h) = (b_{t,r}(xhx^{-1}))$ by the definition.

3.6. PROOF OF 3.3 (ii). We may assume $\chi_2 = \chi_1 = \chi$ by (i). Since $\chi \sim \chi$ for any x such that $(\alpha_{j,t}(x)) \neq 0$, it follows that if $M \in \mathcal{E}(U(\rho_2), U(\rho_1))$, then $M(u_j \varphi_e)$ appears in

$$\langle v_{t} \psi_{x} | t \!=\! 1, \cdots$$
, n, $x \!\in\! N_{\mathsf{X}} \! \cap\! \Theta_{1}
angle_{c}$

for each j, where $n = \dim \chi$ and $\langle S \rangle_c$ denotes the vector subspance spanned by the subset S of \mathcal{V} over C. Since the action of G on Θ_2 is transitive, $\{u_j \varphi_e | j\}$ generates the space \mathcal{V}_2 as a G-space. Therefore, to define a member M in

 $\mathcal{E}(U(\rho_2), U(\rho_1))$, we must define a suitable linear mapping:

$$\langle u_j \varphi_e | j \rangle_c \rightarrow \langle v_j \psi_x | j, x \in N_{\chi} \cap \Theta_1 \rangle_c.$$

Clearly $\langle v_j \psi_x | j, x \rangle_c = \bigoplus_x \langle v_j \psi_x | j \rangle_c$ (direct sum of vector spaces). We can easily check that $\langle u_j \varphi_e | j \rangle_c$ (resp. $\langle v_j \psi_x | j \rangle_c$) is closed under the action of H by $U(\rho_2)(H)$ (resp. $U(\rho_1)(H)$) and is isomorphic to V_2 (resp. V_1) as an H-space. We note that V_1 and V_2 are isomorphic to each other as H-spaces by our assumption. Thus, since V_i 's are irreducible H-spaces, we have

dim Hom_H($\langle u_j \varphi_e | j \rangle_c, \langle v_j \psi_x | j \rangle_c$)=1.

Therefore dim $\mathcal{E}(U(\rho_2), U(\rho_1))$ is not greater than the cardinality $|N_{\mathbb{X}} \cap \Theta_1|$. Since $|N_{\mathbb{X}} \cap \Theta_1| = [N_{\mathbb{X}}: K_1]$, we get (ii).

3.7. PROOF OF 3.3 (iii). Since $K_1 = K_2 = N_{\chi} \subset N_G(H)$, we may assume that $\Theta_1 = \Theta_2$, $v_j = u_j$ for each j, and $\varphi_e = \psi_e$. Then we have, for each j,

$$M(u_{j}\varphi_{e}) = \sum_{t=1}^{n} \alpha_{j,t}(u_{t}\varphi_{e}) \quad \alpha_{j,t} \in C.$$

(Note that $N_G(H) \cap \Theta_1 = \{e\}$.) This is symbolically

(1)
$${}^{t}(\cdots, M(u_{j}\varphi_{e}), \cdots) = (\alpha_{j,t})^{t}(\cdots, u_{t}\varphi_{e}, \cdots).$$

Applying $U(\rho_1)(k)$ $(k \in K_1 = K_2 = N_{\chi})$ to the both side of (1), we get

 $(a_{j,t}(k))(\alpha_{j,t})^{t}(\cdots, u_{t}\varphi_{e}, \cdots) = (\alpha_{j,t})(b_{j,t}(k))^{t}(\cdots, u_{t}\varphi_{e}, \cdots).$

Since $\{u_j\varphi_e \mid j\}$ is a linearly independent subset of \mathcal{O} , we have $(a_{j,t}(k))(\alpha_{j,t}) = (\alpha_{j,t})(b_{j,t}(k))$. If $U(\rho_1)$ and $U(\rho_2)$ are not disjoint, then there exists non trivial member $M \in \mathcal{C}(U(\rho_2), U(\rho_1))$, and then $(\alpha_{j,t}) \neq 0$. Since ρ_i 's are irreducible, $(\alpha_{j,t})$ is invertible. That is to say $\rho_1 \sim \rho_2$. This completes the proof.

3.8. Under the same notations as in 3.3, let $W(\rho_2, \rho_1)$ be the set of all $x \in N_{\chi} \cap \Theta_1$ which satisfy the following two condition.

(1) x is fixed by K_2 , i.e. $x = \theta_1(xk)$ for $\forall k \in K_2$.

(2) $\rho_2 = {}^x \rho_1$ on $x^{-1}K_1 x \cap K_2$.

COROLLARY. If dim $\chi = 1$ in 3.3 (ii), then

$$|W(\rho_2, \rho_1)| \leq \dim \mathcal{E}(U(\rho_2), U(\rho_1)) \leq |K_1 \setminus N_{\chi}/K_2|.$$

PROOF. From Mackey [5] Theorem 3', we have

dim
$$\mathcal{E}(U(\rho_2), U(\rho_1)) = \sum_{D \in \mathcal{D}_f} \dim \mathcal{E}(\rho_2, \rho_1; D),$$

where \mathcal{D}_f denote the set of all double cosets, namely $D=K_1xK_2$ ($x\in G$), such that K_2 and $x^{-1}K_1x$ are commensurable, and $\mathcal{E}(\rho_2, \rho_1; D)$ denotes the space of all intertwining operators between the restrictions of ρ_2 and $x\rho_1$ to $x^{-1}K_1x \cap K_2$.

The dimension of $\mathcal{E}(\rho_2, \rho_1; D)$ is independent of the choice of the representative x of $D = K_1 x K_2$.

If $D=K_1xK_2\in \mathcal{D}_f$, then the commensurability of $x^{-1}K_1x$ and K_2 shows $x\in N_G(H)$ by Property (F) for (G, \mathcal{A}) . Moreover dim $\mathcal{C}(\rho_2, \rho_1: D)=1$ or 0, because dim $\rho_2=$ dim $\rho_1=1$. If this value is equal to 1, then $x\in N_{\chi}$. Thus we have

dim
$$\mathcal{E}(U(\rho_2), U(\rho_1)) \leq |K_1 \setminus N_{\chi}/K_2|.$$

On the other hand, if $x \in W(\rho_2, \rho_1)$, then $K_2 \subset x^{-1}K_1x$ from $x = \theta_1(xk)$ for any $k \in K_2$, and then we can define a member of $\mathcal{E}(U(\rho_2), U(\rho_1))$ by setting $\varphi_e \mapsto \varphi_x$ from $\rho_2 = x \rho_1$. So we get $|W(\rho_2, \rho_1)| \leq \dim \mathcal{E}(U(\rho_2), U(\rho_1))$.

3.9. REMARK. In 3.8, if we take $K_2 = K_1 = H_2 = H_1 = H$ and $\rho_1 = \rho_2 = \chi_1 = \chi_2 = \chi$, then it holds that dim $\mathcal{E}(U(\chi), U(\chi)) = |N_{\chi}/H|$. This is the result of Théorème 1 of Saito [7].

References

- [1] A. Borel, Linear algebraic groups, Benjamin, New York, 1969.
- [2] A. Borel, Density and maximality of arithmetic subgroups, J. Reine Angew. Math., 224 (1965), 78-89.
- [3] A. Borel and J. Tits, Groupes réductifs, Publ. Math. I. H. E. S., 27 (1965), 55-151.
- [4] H. Hijikata, Explicit formula of the traces of Hecke operators for $\Gamma_0(N)$, J. Math. Soc. Japan, 26 (1974), 56-82.
- [5] G.M. Mackey, On induced representations of groups, Amer. J. Math., 73 (1951), 576-592.
- [6] M. Rosenlicht, Some rationality questions on algebraic groups, Annali di Math., (IV)
 43 (1957), 25-50.
- [7] M. Saito, Représentations unitaires monomiales d'un groupe discret, en particulier du groupe modulaire, J. Math. Soc. Japan, 26 (1974), 464-482.

Yoshiyuki SATO Department of Mathematics Faculty of Science Kyoto University Kyoto 606 Japan