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Introduction.

Let A be a unital C*-algebra and A, ,. the self-adjoint part of A. If each
bounded increasing net (resp. sequence) in A, ,. has a supremum then A is said
to be monotone (resp. monotone o-) complete. [In the literature, e. g., [10, 16, 207,
the adjective “ monotone (resp. monotone o-) closed ” is employed as a synonym
for “ monotone (resp. monotone ¢-) complete ”, but in this paper we will use it
in a different sense (cf. Definition 1.2).] As was shown by J. D. M. Wright [22],
each unital C*-algebra A possesses a unique regular e-completion, i.e., a mono-
tone o-complete C*-algebra A which contains A as a C*-subalgebra and satisfies
the following properties :

i) A,.,. itself is a unique monotone o-closed subspace of A, , which con-
tains As.q.;

ii) each x in A, is the supremum in A, . of {ac A, . : a<x}; and

iii) whenever a subset &F of A; .. has a supremum x in A, .. then x remains
the supremum of & in A, ,.

On the other hand the present author proved in that each unital
C*-algebra A has a unique injective envelope, which will be written as I(A),
i.e., a minimal injective C*-algebra containing A as a C*-subalgebra. In this
paper we give a monotone complete version of the above J. D. M. Wright’s result
by embedding A in its injective envelope I(A) (Theorem 3.I). Namely it is
shown that the monotone closure A of A in I(A) is a monotone complete
C*-algebra which satisfies the above properties i), ii) and iii) with A replaced
by A and moreover “monotone o-” in i) replaced by “ monotone”. We call A
the regular monotone completion of A. To see that A satisfies ii) we consider
the family of all unital C*-algebras which contain A as a C*-subalgebra and
satisfy ii) (called “regular extensions” of A) and we show that, instead of A4,
a maximal regular extension of A, written ﬁ, is realized as a monotone closed
C*-subalgebra of I(A), hence that ACA satisfies ii). By the construction we
have the canonical inclusions ACflCECﬁCI(A); however it remains open
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whether or not the inclusions EC/NlCI(A) can be proper. In case A is GCR
we will see that A=A=I(A) (Theorem 6.6).

The contents of the paper are summarized as follows. In section 1 we estab-
lish notation and provide preliminary -lemmas. In section 2 we give a Banach
space-like characterization of regular extensions. Section 3 is devoted to the
proof of the existence and uniqueness of A and A. Section 4 concerns the
embedding of a C*-algebra into another C*-algebra which preserves suprema
and infima, and in section 5 the results of section 4 are applied to examine the
regular extensions of the minimal C*-tensor products of special C*-algebras. In
section 6 we investigate the type I direct summand of the injective envelope
I(A). In section 7 we characterize such a C*-algebra whose regular monotone
completion is an AW*-factor. :

Finally the author would like to thank Dr. K. Saité for callmg his attention
to the papers [22, 23] of J. D. M. Wright. He is also grateful to Professors T.
Saitd, T. Okayasu, T. Yoshino and H. Takemoto for their valuable suggestions
in the presentation of the first version of this paper.

§1. Preliminaries and notation.

Throughout the paper C*-algebras to be considered are always unital, and
A and I(A) denote an arbitrary but fixed C*-algebra and its injective envelope,
respectively. The algebra I(A) exists uniquely for any A and is characterized
as an injective C*-algebra, containing A as a C*-subalgebra, such that the
identity map id;, on I(A) is a unique completely positive map of I(A) into
itself which fixes A elementwise [6]. The sets of all positive elements, projec-
tions, unitary elements of A, the center of A and the state space of A are
denoted by A*, A,, A4, Z4 and S(A), respectively.

By an extension of A we mean a pair (B, k) of a C*-algebra B and a unital
*.monomorphism £ of A into B. In what follows we sometimes identify A with
r(A)C B and abbreviate (B, £) to B. In the family of all extensicns of A we
define a relation < (resp. equivalence relation ~) by (B, x)<(C, A) [resp. (B, k)
~(C, A)] if there exists a unital *-monomorphism (resp. *-isomorphism) ¢ of B
into (resp. onto) C with cex=A.

DEFINITION 1.1. An extension (B, k) of A is regular if each x in B,,. is
the supremum in B,,. of {¢d€k(A)...: a=x} (written (—oo, x],cs for short).
In this situation /:(A)’is said to be order dense in B. A maximal regular
extension of A, written A is a regular extension of A such that A<(B IE) with
(B, k) a regular extension of A 1mphes AN(B ).

As will be seen below (Lemma 2.5) if (B, #) is a regular extension of A and
(C, 1) is a regular extension of B then the extension (C, A-x) of A is regular.
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Hence A is a regular extension of A which has no proper regular extension of
itself, so that (A)"=A.

DerFINITION 1.2. Let B be an extension of A. A subset S of B;, is
monotone closed in B;,. if it is closed with respect to taking suprema (resp.
infima) of bounded increasing (resp. decreasing) nets, i.e., whenever a bounded
increasing (resp. decreasing) net & in S has a supremum (resp. infimum) in
B;..., written supp& (resp. infzF), then supzs (resp. infz%) is in S. Similarly
monotone o-closedness of S in B, is defined with “nets” replaced by
“sequences”. The monotone (resp. monotone o-) closure of As, in B,
written m-clzA, .. (resp. o-clgA;.q.), is the smallest monotone (resp. monotone
o-) closed subset of B, ,. containing A;,., and that of A in B is the set

m-clgA=m-ClgA;. o.+1m-clgA; ..
(resp. o-clgA=o0-clgA; q.+1i0-ClgAs.a.).

The algebra A is monotone (resp. monotone o-) closed in B if m-clgA (resp.
o-clgA)=A, and it is monotone (resp. monotone o-) dense in B if m-clgA (resp.
o-clgA)=B.

DEFINITION 1.3. A monotone completion of A is an extension B of A such
that B is monotone complete and m-clpA=B. We write A for the regular
monotone completion of A.

Let B be an extension of A. In case B is a W*-algebra the arguments by
R. V. Kadison [9; pp. 316-318] and G.K. Pedersen [16; the proof of Theorem
1] show that m-clgA (resp. o-clzA) is a monotone (resp. monotone ¢-) closed
C*-subalgebra of B. Note also that m-clzA is the weak closure of A in B
(R.V. Kadison [8; Lemma 1]). But the same argument can be applicable for a
not necessarily W*, C*-algebra B since, as is readily seen, m-clgA;. .. (resp.
og-clgA;..) is a real linear subspace of B, ,. and the existence of supzF with &
a bounded increasing net in B, ,. implies supgb*Fb=>0*(supsF)b for every b in
B [10; the proof of Lemma 2.1]. Hence we obtain:

LEMMA 14. If B is an extension of A then the monotone (resp. monotone
o-) closure m-clzgA (vesp. o-clgA) of A in B is a monotone (resp. monotone o-)
closed C*-subalgebra of B.

From now on we use the following notation: With B an extension of A,
x€ B;.,. and FC B, ,. we write

(—oo, xlu={a€Asa.t a=x}, [x, +o0),={aE€ As.o.: x=a}.

The symbol “supF=x " means that supz¥ (the supremum of F in B, ) exists
and equals x, and “ F<x” means that y=<x for all y in ¥. Moreover similar
notations should be naturally understood.

DEFINITION 1.5. Let B be an extension of A and put
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s-ClgAs.q.={xE By.q.: x=supg(—o0, x14},
S-CIBA:S‘CIBAS.G_"}“T: S-ClBAs_a. .

We call s-clzA the sup-closure of A in B. If s-clzA=A then A is said to be
sup-closed in B.

Clearly B is a regular extension of A if and only if s-clzA=B, and it is
also immediate to see that s-clzA, .. is the smallest subset of B, ,. which con-
tains A,.q. and is closed with respect to taking suprema which exist in B;.,..
In contrast to m-clzA or o-clgA, s-clzA is generally not a C*-subalgebra of B;
whereas it is the case under an additional hypothesis:

LEMMA 1.6. With notation as above suppose that s-clgA;.,. is a real linear
subspace of Bs.a.. Then s-clgA 1s a monotone closed C*-subalgebra of B (hence
it is a regular extension of A).

PrRoOoOF. For simplicity we write C=s-clzA; hence C; ., =s-clgA;.,.. The
monotone closedness of C in B is immediate since by hypothesis C,. .. is closed
with respect to taking both suprema and infima. Moreover C; .. is norm closed
in B. For if x,—x in norm with {x,} a sequence in C;,. and x< B;.,. then

x=supp{x,—|x—x.l: n=1, 2, -}
=supp{sups(—0, xn—lx—x.l1s: n=1, 2, ---}
=supsJ (—0, 2[5~ x4/ La
=supp(—o0, x14E Cs.a.

since x=x,—||x—x,ll—x in norm and x,—||x—x.]|=C;... (note that A, .., hence
C,.,. contains the unit of B).

We follow a reasoning analogous to those of R. V. Kadison and G. K. Pedersen
cited above. By the linearity of C;,. we see that x=C;,. if and only if x=
infg[x, +00),, if and only if x=suppT (resp. x=infz@) for some & (resp. Q)T A;.,..

(1) If xeC,,,. is positive and invertible in B then x 'e(C;.,..

From above x=infg[x, +o0),. Then we have x *=supp[x, +o0);'eC;.,.,
where [x, +oo)z'={a"': as[x, +),}. In fact, since x=[x, +0), and each
element in [x, +o0), is invertible, we have x =[x, 4c0);'; moreover B, >
y=[x, +o00)z! implies y*=<[x, -+o0),4, so that y'<infp[x, +oo),=x and y=x""

(2) If x=C,,,. then x"=C;,. for n=1, 2, ---.

To make an induction on n we assume that x, x%, ---, x"=C;,. We may
also assume that |x||<1/2. Then for each 0<a=l, C;,. 21+ ax=1—|x|=1/2;
hence (1+ax)"'eC;,. by (1). Thus

2" (14t ax) = (—a) O+ ax) ' — {1+ (—ax)+ - FH(—ax)"} e 4.
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and so x"*'e(;,,,, since x""*(1+ax)'—>x in norm as a |0 and C,, is norm
closed.

3) If x, yels.,. then yxyeCs,..

We have

yxyEtxyx=(x£y)P’—(x*£y)’—(x+ )+ x'—x*+ 22+ y*'F y*+1y*eC;..

by (2), so that we add these equalities to obtain yxyeC;.,..

4) If x=Cs,,. and ye A;,. then [x, y1=1(xy—yx)EC;s.q..

Since [x, ay]=alx, y], we may assume by replacing y by ay with a a
suitable scalar that 141y is invertible. Then the map B; ,.2z—(1+iy)*z(1+1y)
€ B,.,. is one-to-one, onto and bipositive, so that

(A+iy)*x(+iy)=1+iy)*supp(—oo, xJ4(1+iy)
=supp(l+iy)*(—oo, x14(1+iy)€C..

Hence [x, y1=1+iyy*x(1+iy)—x—yxy€Cs.q. by (3).
(6) If x, yelCs.,. then [x, y]=C;,..
For a= A;,,. and ye(C;,. we have

(A+iy)*a(l+i1y)=—Ly, al+a+ayacsC;.,.
by (3), (4). Hence for x, yCs,,

A+iy)*x(1+iy)=1+iy)*supg(—oo, x].(1+1y)
=supp(l+iy)*(—oo, x14(1+iy)eCs.q.

by the reasoning as in (4) and the sup-closedness of C;,, in B;,., so that
Cx, y]1=14+0)*x(1+iy)—x—yxyECsa. by 3).

6) If x, yeCs.,. then (x+iy)*(x+iy)=x*+y*+Lx, y]€Cs, by (2), 6).
This and the polarization identity imply xyeC;.q.+1Cs...=C for all x, yeCs.,..
Hence C is a C*-subalgebra of B. g.e.d.

REMARK 1.7. Under the same hypothesis as in we see that for
each xes-clgA, .. there exists a bounded subset & of A, .. such that x=supzZ.
In fact, if x=s-clzA;. .. is positive and invertible then x '=infg[x~}, 4+o0), and
s0 x=supg[x7!, +oo)it=supp[0, x14, where [0, xlu={a€ Ao : 0=Za=x} (see
(1) above). Hence for each xe=s-clzA;.q.,

x=x+|xl|+1—=(x[[+D=supp{L0, x+[x[+1]s—(lx]+D}.

We close this section with a remark on the regular monotone completion
of a C*-algebra, whose existence and uniqueness will be proved in section 3.
First we need the following definition and lemmas.

DEFINITION 1.8. A subset S of a partially ordered vector space V is order



164 M. HamMAaNA

dense in V if for each vV we have v=supy{weS: w=v}=inf, {weS: w=v}.
LEMMA 1.9. Let B be a C*-algebra and a= B*. If F is a bounded subset
of Bs.q. such that supgF exists then supgaFa=a(supzF)a.
PROOF. Put supgF=ux, By hypothesis there exists an a>0 such that || x|
Za for all x€9. If B, 2y=axa for all xe & then for each ¢>0 we have

(a+e)x(a+e)=axa+elax+xa)te?x=y+ae2|al+e),
x=(a+e) {y+aeclal+e}t(ate)™?;

hence
ro=(a+e) {y+ae|all+e)}(ate)™,
(ate)xate)=y+acZ|al+e).

Therefore ax,a=y and so ax,a=supgzaFa. q.e.d.

LEMMA 1.10. Let A be a C*-algebra and B a regular extension of A. Then
for each a= B*, (aAa);s... is order dense in (aBa).q..

Proor. The regularity of B is equivalent to s-clzA=DB, so that for each
xE€ B, 4. there exists a bounded subset & of A;,. with supsF=x (Remark 1.7).
Hence Lemma 1.9 completes the proof. g.e.d.

PROPOSITION 1.11. Let A be a C*-algebra, A its regular monotone comple-
tion and e a projection of A. Then eAe is a regular monotone completion of
eAe, i.e., eAe=(eAe)..

PrOOF. By eAe is a regular extension of eAe, and it is mono-
tone closed in A4, hence monotone complete. In fact, if & is a bounded increasing
net in (ede); . then supz& exists, so that supzF=supzeFe=e(supzF)ec (eAe);.q.
(Lemma 1.9). Hence m-clzede=m-cl,z,e AeCeAe is a regular monotone comple-
tion of ede. Similarly m-clz(l—e)A(l—e)C(1—e)A(1—e). Put

V=m-clzeAe+eA(l—e)+(1—e)Ae+m-clz(1—e)A(1—e).
Then VDA is monotone closed in A. For if & is a bounded increasing net in
V... then supz & exists, and since eFeC m-clzeAe, e(supzF)e=supzeFesm-clzeAe
(Lemma 1.9). Similarly (1—e)(supzF)(1—e)em-clz(l—e)A(1—e). Hence
supzF=ce(supzF)e+e(supzF)(1—e)+(1—e)(supzF)e
+(1—e)(supzF)(1—e)cV

and so V=A. Thus ede=eVe=m-clzeAe is a regular monotone completion of
eAe. g.e.d.

§2. A Characterization of regular extensions.

The self-adjoint part of a C*-algebra is regarded as a function system, i.e.,
an Archimedean partially ordered vector space having the unit of the C*-algebra
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as the order unit (cf. [2; pp. 588-589]). And the definition of regularity for
extensions of C*-algebras depends only on the order structure, as function sys-
tems, of the self-adjoint parts of the C*-algebras. Therefore it will be convenient
to generalize the notion of regularity to function systems and characterize it for
function systems.

In the following a function system V with a distinguished order unit 1 will
be viewed as a normed linear space with the order-unit norm: |v|=
inf{A>0: —Al=<v=2a1}. Note that a unital linear map between function sys-
tems is contractive (resp. isometric) if and only if it is positive (resp. bipositive).
The state space of V is the set S(V)={feV*: | fl=51)=1}.

DEFINITION 2.1. An extension of a function system V is a pair (W, a) of a
function system W and a unital order injection o of V into W (i.e., a(1)=1 and
« is an order isomorphism of V onto a(V)). The extension (W, «) is a regular
extension of V if w=supw(—oo, wl.u, for all we W, where as before “supy ”
means the supremum taken in W and (—oo, wlean={w'ea(V): w=Zw}. The
extension (W, «) is a bound extension of V if the norm on W is a unique semi-
norm p on W such that p(w)=|w| and pla(v))=|v| for all weW and veV,
and it is an essential extension of V if given any unital positive linear map fj
of W into a function system Z, B is bipositive whenever Bea is (cf. [14], [15;
pp. 38-39]).

The equivalence of boundness and essentiality is known in the context of
the extensions of normed linear spaces [15; p. 89, Corollary to Lemma 2], and
we will see that the equivalence of regularity and essentiality (Proposition 2.6).
Then it will result that these three notions coincide. We need another definition.

DEFINITION 2.2. A positive linear map « of a function system V into
another W is sup-preserving (resp. normal) if sup,F=v with & a subset (resp.
a bounded increasing net) of V and veV implies suppa(F)=a(v). A positive
linear map ¢ of a C*-algebra A into another B is sup-preserving (resp. normal)
if its restriction ¢4, , : As.a.—Bs.q. is sO.

Given a C*-algebra A and its extension B it is obvious that if A is mono-
tone complete and the inclusion map AC. B is normal then A is monotone closed
in B, and that if B is monotone complete and A is monotone closed in B then
the map Ac,B is normal.

For a while V denotes a fixed function system. The Dedekind completion
of V is a regular extension (17, jv) of V such that Vis a boundedly complete
vector lattice (cf. [21]). Such a V is unique and is the self-adjoint part of a
commutative AW=*-algebra or an injective real Banach space in the sense of
H.B. Cohen [4]; moreover we have:

LEMMA 23. (V, Jv) 1S the injective envelope of V in the sense of H.B.
Cohen [4], i.e., V is an injective Banach space and is the only injective subspace
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of itself which contains j, (V).

ProoF. To see this it suffices to show that ¢-j,=j, with ¢ a contractive
linear map of V into itself implies ¢=idp (cf. [7]. But ¢ is then positive, and
the regularity of (17, jv) implies that for each we 17, w=supp(—oo, wl;,» and
d(w)=P((—o0, wljpw)=(—0o0, wl;,w», hence that ¢(w)=w. Similarly ¢(—w)
=Z—w and so ¢(w)=w for all we V. g.e.d.

The following fact is stated without proof in [22; p. 303, 1.18-20]:

LEMMA 24. If (W, @) is a regular extension of V then a is sup-preserving.

PrROOF. Suppose that supy,F=v for some FCV and veV. If Wow=alF)
then [w, +0);mza(F), a([w, +0).p»)=F and so a (Lw, +0)aqy)=,
[w, +0);an=alv). Moreover by regularity w=infy[w, +).u- ; hence w=a(v),
so that supya(F)=a(v). q.e.d.

LEMMA 25. If (W, a) is a regular extension of V and (Z, B) is a regular
extension of W then (Z, Bea) is a regular extension of V.

Proor. If weW then w=supw(—o0, wl.gn and Bw)=supzB(—oo, wl.w»)
=supz(—o0, f(w)lgear bY Hence for zeZ,

z=supz(—o0, zlgm =supz{f(w): Bw)=z, we W}
=supz{supz(— o, B(w)lsear : W)=z, we W}
=supz(—0, 2]g.acz - g.e.d.

PROPOSITION 2.6. Let V be a function system and (W, «) its extension. Then
(W, a) is regular if and only if it is essential.

PROOF. Suppose (W, a) is regular and take the Dedekind completion (W, ju)
of W. Then the extension (W, jyea) of V is the Dedekind completion of V
since it is regular by so that it is the injective envelope of V by
Since the injective envelope is a maximal essential extension,
(W, jwea), hence (W, a) is an essential extension of V.

Conversely let (W, a) be an essential extension of V and (17, jv) the Dede-
kind completion of V. Since V is injective, there exists a contractive linear
map 8 of W into V with Bea=idy. Then the essentiality of (W, a) implies
that B is an order injection. Hence (W, a), being contained in the regular
extension (17, Jv), 1s regular. q.e.d.

§3. The main theorem.

This section is devoted to the proof of the following :

THEOREM 3.1. Any C*-algebra A has a regular monotone completion A
(resp. maximal regular extension ﬁ) which 1s unique up to the equivalence rela-
tion ~, and we have canonical inclusion maps AQEQﬁQI(A). Moreover A is
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monotone complete and the respective inclusion maps are sup-preserving.

For the proof we need several lemmas. The first one is a modification of
[6; the proof of Theorem 3.4].

LEMMA 3.2. With A and I(A) as above let p be a seminorm on I(A)s... such
that p(xX)=Z|xll, plu*xuw)=p(x) and pla)=l|al for all x€I(A)s.q., usA, and
a<Asq.. Then p(x)=|x| for all xI(A).q..

Proor. Take a family {f;} of pure states of A such that the direct sum™
2% {ms;, Hy,} of the cyclic representations {7, H;} of A induced by f; is
faithful. We apply the Hahn-Banach theorem to obtain a state extension g; of
fi to I(A) such that | gi(x)| = p(x) for all x&I(A)s.q... Let {z, H} =3 {m,,, Hg}
be the direct sum of the cyclic representations {7, , H;,} of I(A) and let E be
the projection of H onto 2¢A, C>$H, =H. (Since f; is pure, A;,=H,, and so
Ag,CH,, being isometric to Ay, is closed.) Then E€z(A)’ (the commutant
of n(A)), X%{nys,, Hy,}={x(-)E|4, EH} (the representation of A restricted to
EH) and 7n(A) acts irreducibly on A, ,CH,, since g;|.=f; is pure. So defining
¢: [(A)—En(I(A)E by ¢(x)=En(x)E we get a *-isomorphism ¢|,: A—¢@(A)=
n(A)E and its inverse ¢=(¢p|.)': n(A)E—A. Since I(A) is injective, there
exists a completely positive extension ¢ : Ex(I(A))E—I(A) of ¢. Then go¢: I(A)
—I(A) is a completely positive map with J-¢|,=id,, so that og=id; .

We show that [|¢(x)|=p(x) for all x€I(A).,. Given an ¢>0 and an
x€I(A)s.q. choose a family {a;} of elements of A such that [>;(as),, =1 and

() 2i(a)gy 2dadg )| ZNIEn(x)E|—e=]¢(x)|—¢.
Since #(A) acts irreducibly on A, the transitivity theorem implies the existence
of a unitary element u; of A such that (u;),,=n(uy)l;,=l(as,,ll""(a:),; Hence
[(m(x) 2@ g, 2Diag)| =2ll(a)g, 1P| gluFxus)|
=20ll(ad) g, I?p(ufxus)
=2 adg,;1?p(x)=p(x).
Therefore [¢(x)[=p(x), so that |[x]|=[d-d(x)=](x)|=p(x) and p(x)=|x].
g.e.d.
Now let V be the Dedekind completion of the partially ordered linear space
A;.q. with order unit 1, where we identify A ,. with its image in ¥ and so we

consider A;,.CV. By [Lemma 2.3, V is the injective envelope (as a real Banach
space) of A;,.. Hence the set

0= {contractive linear maps ¢ of I(A);.,. into V with ¢|,, , =id,,  }

is nonvoid. We apply to show the following:
LEMMA 3.3. For x€l(A)s.q., ¢(x)=0 for all ¢=@ implies x=0.
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PrROOF. We observe that the seminorm p on I(A),,. defined by p(x)=
sup{[¢(x)| : p= P} satisfies the conditions of In fact, fix x€I(A)s.q.,
usA, and ¢<=@, and define a map Ty,: I[(A)s.a.—I(A)s.a. by Tulx)=u*xu.
Then, since V is the injective envelope of A ,., the linear isometry T4, , :
As.q.—As.q. extends to a linear isometry S,: V—V. Hence Sy ¢-T,=@ and
P(x)Z[|Suse o Tu(X)=ll@ T ()| =l g(w*xu)|. Thus p(x)=p(u*xu), so that p(x)
=p(u*xu). The other conditions are clearly satisfied. Therefore by Lemma 3.2,

sup{llg(x)] : g @} =p(x)=| x| for all x€I(A);.q.,

and the left-hand side=sup{|f-¢(x)| : p= @, f=S(V)}, so that the weak* closed
convex hull of {fe¢: ¢p= @, f&S(V)}=S(I(A)), the state space of I(A). Hence
if @(x)=0 for all g=@ then g(x)=0 for all g=S((A)) and consequently x=0.

g.e.d.
LEMMA 3.4. For x€I(A);.,.,

{¢p(x): p= @} ={veV: supy(—oo, x 4= v=infy[x, +00),}.

(The both sides in the inequalities exist since V is a boundedly complete vector
lattice.)

PROOF. Since each contractive linear map ¢: A;...+Rx—V with ¢, , =
id4, ,. extends to an element of @, we have

{p(x): p=@}={¢(x): ¢ is a contractive linear map of
As.q.+Rx into V with ¢4, , =idy, ,}.

A veV belongs to the right-hand side if and only if

—lx+al|Zv+ag|x+a| for all ac A,

supy{—lx+all—a: ac A} =v=infy{|lxtall—a: as 4;..}.

Clearly supy{—|x+all—a: a€ A;,.} =w (say)<supy(—oo, x],. Moreover from
the foregoing w=g¢(x) for some ¢g< @, so that (—oo, x],=¢(—o0, x]H=d(x)=w
and supy(—oo, x],=w. Hence supy{—|x+al—a:acs A, }=supy(—co, x]4 and
similarly infy{|x+al|—a: a€ A} =inf, [ x, +00),. g.e.d.

LEMMA 3.5. The sup-closure s-clyayAs.a. 0f Asq. it I(A)s.q. 1S a real linear
subspace of 1(As.q..

ProOOF. We show s-cl;pAs.a. ={xEI(A)s.q.: ¢(x)=¢(x) for all ¢, p= O} =W,
say. This will complete the proof since W is linear. If x&s-cl; A, then
x=supjsp(—oo, x]1,4. Put v=supy(—oco, xJ,= V; then v=inf, & for some FC A, ,.
by the order density of A;,. in V. Hence I(A) .. 2(—oc0, x1u<v<FCI(As.q.,
x=sup;n(—oo, x],=F, and FC[x, +o0),4 Then supy(—oco, x],=v=inf, F=
inf,[x, +c0)4 and so supy(—co, x]=inf,[x, +0),. Hence x=W by Lemma
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34. Conversely let xeW. If I(A)...2y=(—o0, x]4 then @¢(y)=d(—o0, x])=
(—oo, x4 for all g @, so that ¢(y)=supy(—o0, x]14=¢(x) by and
é(y—x)=0. implies y—x=0, y=x. Thus x=sup;(—o0, x4 i.e€,
xes-clynAsa.n. g.e.d.

LEMMA 3.6. The inclusion map AGI(A) is sup-preserving.

PROOF. Suppose that sup,F=a for some FCA;, and a<A;,. Then
I(A)s.c.2x=F implies ¢(x)=@(F)=F for all =@, and ¢(x)=supyrF=sup,F=a
since the inclusion map A, ,.CV is sup-preserving. Hence ¢(x—a)=¢(x)—a=0
for all g=@ and x=a by so that sup;nF=a. g.e.d.

LEMMA 3.7. Let (B, k) be a regular extension of A and I(B) the injective
envelope of B (B being considered as a C*-subalgebra of I(B)). Then the exten-
sion (I(B), k) of A is the injective envelope of A.

ProoF. To see this we need only show that if ¢ex=x with ¢ a completely
positive map of I(B) into itself then ¢=id;. By the regularity of (B, &) and
with A replaced by B we have for each x< B, .,

x=supp(—0, x e =Suprm(—0, X e -

Now x=(—00, x]csy implies ¢(x)=d((—o0, x]ear)=(—00, x]en, Which in turn

implies ¢(x)=supsp(—o0, xJccy=x. Similarly ¢(—x)=—x and ¢(x)=x. Hence

¢(x)=x for all x€ B;,. and, since I(B) is the injective envelope of B, ¢=id .
g.e.d.

PROOF OF THEOREM 3.1. Define A (resp. /Nl) as the monotone (resp. sup-)
closure of A in its injective envelope I(A): A=m-cl; A (resp. les-cl,mA).
Then Lemmas and [.6, together with [Cemma 35, imply that A and A are
both monotone closed C*-subalgebras of I(A), hence also that ACA. Thus A
and A are regular extensions of A. Moreover I(A), being injective, is monotone
complete [20; Theorem 7.1], so that A and A are monotone complete. Since
I(K):I(/Nl):I(A), implies that the inclusion maps A, Ac, AL I(A)
are sup-preserving.

To see the maximality of A and the uniqueness of A and A take a regular
extension (B, k) of A. Then (I(B), £) is the injective envelope of A (Lemma
3.7), so that by the uniqueness of the injective envelope there exists a *-isomor-
phism ¢ of I(B) onto I(A) with rex=id,. As seen in the proof of Lemma 3.7,
x=suprm(—oo, xJ. for all x= B, ,. and so

t(x)=sup;t((—00, x]ccay)=SUpysca(—00, l(xﬂAE/Nl .

Hence z(B)C;l, i.e. (B, /:)<ﬁ, and if in addition (B, £) is a maximal regular
extension (resp. regular monotone completion) of A then (B, /c)wfl [resp. ¢(B)=
t(m-clgr(A))=c(m-cl; zyr(A)=m-cl; sy A=A; hence (B, r)~A]. Thus A (resp.
A) is a unique maximal regular extension (resp. regular monotone completion)
of A. g.e.d.
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REMARK 3.7. With A and I(A) as above take the monotone o¢-closure
o-clyyA of A in I(A). Then o-cl; yACACA and so o-clynA is identified
with the regular o-completion A of A in the sense of J.D.M. Wright
14); hence ACACACACI(A). Moreover Z,CZiCZ2CZiC 21 (cf. [6;
Corollary 4.31), and if A is simple then so are A, A, A and I(A); hence A, A
and I(A) are AW#*-factors (cf. [6; Proposition 4.15]).

COROLLARY 3.8. If A is a separable, infinite dimensional, simple C*-algebra
then its injective envelope I(A) is a o-finite, injective, non W*, AW*-factor of
type 1IL

PROOF. As noted above ACACI(A) and I(A) is an injective AW*-factor.
By [23; Theorem NJ] A is a monotone complete non W*, AW*-factor of type
III and so A=A. Since A is monotone closed in I(A) and is non W*, I(A) is
also non W*, Moreover I(A) is of type Il since it is a simple AW*-factor and
1 is an infinite projection of A, hence of I(A). By the separability of A and
the construction of I(A) [6; Theorem 5.1] we may assume that A is a C*-sub-
algebra of B(H) with H a separable Hilbert space and I(A) is completely order
isomorphic to a self-adjoint linear subspace, containing A, of B(H). Since B(H)
has a faithful state, V hence I(A) also has a faithful state. Hence I(A) is
o-finite. q.e.d.

REMARK 3.9. The following problem was left open in [6]: If A is a
C*-algebra and is embedded in an injective C*-algebra B as a C*-subalgebra,
containing the unit, of B then can we take the injective envelope of A as a
C*-subalgebra of B ? (The injective envelope of A is completely order isomorphic
to some self-adjoint linear subspace of B and is *-isomorphic to a quotient
C*-algebra of some C*-subalgebra of B.) This problem is affirmative in case A
is commutative, but is negative in the general case. In fact let A be a UHF
algebra acting on a Hilbert space so that the von Neumann algebra B generated
by A is a hyperfinite II,-factor. Then B is injective and the injective envelope
I(A) of A is an AW*-factor of type Il by Hence I(A) cannot be
*_.jsomorphic to any C*-subalgebra of B.

CoroLLARY 3.10. If A is a C*algebra and M, is the C*-algebra of all
nXn matrices over C then (AQM,) =ARQM,. In particular if A is monotone
complete then so 1s AQM,, too.

ProoF. By [Theorem 3.1, A and (AQM,) =B, say, exist. If ¢ is a minimal
projection of M, then B=(1®e)B(1&e)RQM, and A=(1XRe)ARQM,)X1Re), so that
Az=(1Qe)(ARM,) (1Qe)=(1Re)B(1Re) (Proposition 1.11). Hence B=ARM,.

q.e.d.

If A is a monotone complete C*-algebra then A=A is a monotone closed
C*-subalgebra of I(A) and, in particular, it is an AW*-subalgebra of I(A). More
generally we consider the following problem: If A is an AW*-algebra then is
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A an AW*-subalgebra of I(A)? This is the case, as will be seen below, for a
finite AW#*-algebra A; whereas the general case remains open. For a C*-
algebra A and a subset F of A, we denote the supremum (resp. infimum) of &
in A, by V. (resp. \49F) if it exists. The existence of \/,Z need not imply
that of sup,& (the supremum in A, ,.) (see Example 4.7 below), but the converse
is true:

LEMMA 3.11. With notation as above suppose that sup,<F exists. Then \/ ,F
exists and equals sup<.

Proor. We need only check that sup,& is a projection. Put x=sup,Z.
Since F<£1, ¢e<x=1 for all eeF; hence ¢ and x commute and so e=e?= x2.
Thus 0= x=sup,F=x*<1 and x=x> g.e.d.

LEMMA 3.12. If A is a finite AW*-algebra and F is an increasing net in
A, then sup,F exists and \ 4F=sup,F=supxd=\ 3<.

ProoF. Regard A as a C*-subalgebra of A. Since A is monotone complete,
supiZ exists and supyF=\3F=2¢, say (Lemma 3.11). Put e=\,F<A, (this
exists since A is AW*). We need only show that e=¢& since it follows then
that supyF< A, and sup,F=supzF=e. Since A is order dense in }I, so is eAe
in eAde (Cemma 1.10). Hence if a seminorm p on (ede)s,. satisfies p(x)=|x||
and p(a)=|al for all xe(ede)s.,. and ac(ede)s,. then plx)=|x| for all
xe(eAe),,. (Proposition 2.6). Define a seminorm p on (elee)s_a_ by plx)=
sup{llxfll: feF}. Clearly p(x)=]| x| for all xE(eAe)s.,. and p(e—&)=0. Hence
if we show

3.1) pla)=|a| for all as(eAe);.,.

the proof is complete since we have then |e¢—¢&||=p(e—&)=0 and e=2.

Proof of [3.I): Suppose on the contrary that there exist an a=(eAe)s.q.
and an ¢>0 such that p(a)<|all—e. Then afe=|afal|=|afII’=p(a)*<(|a]—e)
for all fe#. We may assume that ||a|| is in the spectrum of a (if necessary,
replace a by —a). Then we can take a nonzero projection g in a maximal
commutative *-subalgebra, containing a, of e¢Ae so that

lag—lallgll <o and 0>0 satisfies (fall—e)*+2[|ald<|lal>
Hence for each fe & we have

gafag=(lall—e)ig
and

lgafag—lal’gfel=l(ga—lalg)fag+lalgflag~—|alg)]
=2|alllag—|algl<2lald.
Then
lall’gfg<gafag+2ialog={lall—e)+2|aild}g.
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I/ngl=llg(frngl=llgrgl=1/lal®{(lall—e)*+2]ald} gl <1

and so fAg=0. Hence by the continuity of the lattice operation in finite AW*-
algebras [11; Theorem 6.5] g=eAg=(V.iF)INg=V+{fAg: feF}=0. This is
a contradiction. g.e.d.

From [emma 312 and the fact that A, being monotone closed in I(A4), is an
AW*.subalgebra of I(A) we deduce the following :

PrROPOSITION 3.13. A finite AW*-algebra A is an AW*-subalgebra of its
injective envelope I(A).

REMARK 3.14. The above argument shows that if A is an AW*-algebra for
which the conclusion of i.e.,

3.2) sup,Z exists for any increasing net & in A,,

holds then A is an AW#*-subalgebra of the monotone complete C*-algebra A (or
A or I(A)). Conversely it is readily seen that if A is an AW*-subalgebra of
some monotone complete C*-algebra then (3.2) holds.

§4. Normal and sup-preserving embeddings.

In this section some embeddings of C*-algebras into another C*-algebras are
shown to be normal or sup-preserving. In the remainder of the paper the C*-
tensor product of two C*-algebras A and B will always mean the minimal C*-tensor
product and will be denoted by AXB.

PrOPOSITION 4.1. For any C*-algebras A and B the map A= x—xXR1 ARB
1S normal.

PROOF. Representing the injective envelope I(A) of A and B faithfully on
some Hilbert spaces H and K respectively, we may assume that ACI(A)C B(H)
and BCB(K), hence that ARBCI(AYRI(B)C BIH)RB(K)C B(HRK). Since
I(A) is injective, we have a projection ¢ of norm one from B(H) onto I(A);
hence there is a projection ¢&1 of norm one from B(H)XB(K) onto I(A)QB(K)
such that (1) (xR y)=¢(x)Xy for all xe B(H) and ye B(K) [19; Theorem 17.
Let & be a bounded increasing net in A, ,. with sup,F=x<A,,. Since B(H)
DA is W*, supgup F=strong limit of F=y< B(H), say. Then we have

@(y)=sup;p F=sup,F=x

([20; the proof of Theorem 7.1] and [Theorem 3.1) and strong limit of ¥®1 in
B(HRK)=yR1e B(H)QB(K). Hence if (ARB);...22=9R®1 then z=yR1, so
that z=(R1)(2)=(dR(YR)=¢(y)R1=x&R1. Therefore xQ1=supsepFX1.
g.e.d.
COROLLARY 4.2. Let A and B be C*-algebras and let A, and By be exten-
sions of A and B respectively. Then
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m-cly,ep, AQ1=(m-cl, A)R1
and
(m-cly, A)R(m-clp, BYTm-cly, 05, AQB .

PROOF. Since the map A;2x—x®1€A;QB; is normal, (m-cly, A)QL is
monotone closed in A;&B; and so m-cly,ep, AQIC(m-cl , AAQICA;QL. Hence
m-Cly,e5,AQ1 is monotone closed in A,®1. So if ¢ denotes the *-isomorphism
of A; onto A;@®1 given by ¢(x)=x&1 then ¢~ '(m-clyep,AQI)DA is monotone
closed in A;; hence ¢~ '(m-cly o5, A1) Dm-cly, A. Thus m-cly g5, ARQ1DG(m-cly A)
=(m-cly, A)P1 and m-clyep, ARQI=(m-cl,A)R1. By symmetry m-clyep 1QB=
1&)(m-clg,B). On the other hand,

(m-cly, A)R(m-clg, B)=C*{(m-cl4, A)R1\J1K(m-clp, B))
:C*‘im—cl“il@BlA@lU77'I-C1A1®311®B)
Cm-cly,ep, AQB (Lemma 14). g.e.d.

COROLLARY 4.3. Let A and B be C*-algebras with A monotone complete.
Then AR is a monotone closed C*-subalgebra of (ARQB)..

ProOOF. Immediate from and the fact that the inclusion map
ARQBG(ARB) is sup-preserving, hence normal. g.e.d.

This corollary shows that if A is a simple monotone complete non W
AW#*-factor then (AQB)- is also a simple non W*, AW#*-factor for any simple
C*-algebra B since AX®B is simple (Remark 3.7).

PROPOSITION 4.4. Let A and B be C*-algebras. If B is commutative then
the maps A2x—xQRQle AQB, B2y—1Qye AQB are sup-preserving.

PrROOF. Put ¢(x)=xR1= ARQB for xc A. For g=S(B) let L, be the linear

map of AQB into A such that L, 2_31 1 ®y9)= ﬁl g(y)xs (cf. [20]); then L, is

positive and L,-¢=id,. Moreover L,(2)=0, z€(AQRB);..., for all geS(B)
implies z=0. In fact, since B is commutative, the weak* closed convex hull of
S(A)RS(B) in (AR B)*=S(ARB) [18; Proposition 1]. Hence if L, (2)=0 for all
f€S(A) and g= S(B) then (fRg)(z)=,(L,(z))=0 for all f€S(A) and g S(B), so
that A(z)=0 for all he S(ARQB). Therefore z=0.

Let & be a subset of A;, with sup,F=xEA,,.. If (AQB);s...22=¢(F)
then Ao 2L, (2)=L,¢(F)=F and L,(z2)=sup;F==x. Hence L, (z—¢(x))=
Ly(z)—x=0 for all geS(B) and from the foregoing z—¢@(x)=0, z=¢(x). Thus
Sup.es@(F)=¢(x). Similarly for the map B2 y—1Qy=s ARQB. g.e.d.

We give an example which shows that [Proposition 4.4 is not true for
general C*-algebras A and B. First we show the following:

LEMMA 4.5. For a Hilbert space H and a family F consisting of projections
of B(H) we have supgy,F=1 if and only if the set D={sH: |&||=1, pE=§&
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for some pEF} is dense in the unit sphere of H.

Proor. Sufficiency: Suppose that D is dense in the unit sphere of H. Then
B(H);...2x=F implies (x&, &)=(pé, £)=(¢, &) for all éD and peF with p=¢,
and so (x&, £)=(&, &) for all unit vectors &€ of H. Hence x=1 and supzupF=1.

Necessity : Suppose that supg;,F=1 but that D is not dense in the unit
sphere of H. Then there exist a unit vector &&= H and an ¢>0 such that
léo—&ll=e for all EeD. Let p, be the projection of H onto C§. We have
[ péo S1—¢*/2 for all pe T since 2= (& —(péo/ll pEl)I*=2(1—] p&,l)). Hence for

PET,
DPobbe=lDeppollps and | peppoll=(p&0, E)=I1p&,|*=(1—€?/2)%,

so that peFp,<(1—e®/2)%p,. On the other hand, by SUPgcm PoF Po=
Do(SUpsn F) po=p,, a contradiction. g.e.d.

EXAMPLE 4.6. The map M,>x— xQle M,QM, is not sup-preserving, where
M, denotes the C*-algebra of 2X2 matrices over C.

We identify M, with B(C?), where C? is the two-dimensional Hilbert space.
Suppose that the map ¢: M, x— x@le M,QM, is sup-preserving and let & be
the family of all minimal projections in M,. Then supy,%=1 by [Lemma 4.5 and
SO SUD,e1, FRL=8UDy,eu,d(F)=¢(1)=1K1. By symmetry supy,ex,lXF=11.
Hence by [Lemma 119,

SUP,eu, FOG=(1Q¢)(supw,eu, FOLN1XP=1Xq
for all g= &, so that
SUD e, FRF=SUDy e, {FQq: g€ F}
=SUDy e, {SUPM,ex, TR : ¢E T}
=SUDu,em, 110 : ¢E F}
=SUDy,eu, KF=1E]1,

which implies again by [Lemma 45 that the set D={RneC*RC?: & »=C?,
El=lInll=1} is dense in the unit sphere of C*XC? But this is a contradiction

since the unit vector (§,®§,+&:Q&:+E,Q68,—E6:XE)/2 with {£, &} an ortho-
normal basis in C? does not belong to the closed set D.

We give another example, which will be used later.
0

B
I
map AC M, is not sup-preserving.

10 00 10
In fact supy , = since A is commutative. But

[44
ExaMPLE 4.7. Let A:{( )EMZ: a, BEC}CMZ. Then the inclusion

0 0 01 01
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1 0 00
{4.1) Supy, ( , does not exist
0 0 01

since if it does then it must be a projection (Lemma 3.11)), and so

woelly o} o o 1)
while (v?f)%é Z) (g (1))

but 4_ * .
V2 2 01

The next lemma is motivated by the observation due to E.G. Effros [5;
(2.2)]:

LEMMA 48. Let A be a C*-algebra and p a projection of A. Then for
xE As.q. we have x=0 if and only if pxp=0, 1—p)x(1—p)=0 and pxp+ep=
px(L—p){L—p)x(L—p)+e} " *A—p)xp for all ¢>0.

Proor. For ¢>0 put x.=x+e and (x.);;=p:x.p; 1, j=1, 2, where p,=p
and p,=1—p. Then x=0 if and only if x.=0 for all ¢>0 if and only if
(x)11=0, (x:)22=0 and

4.2) T (x )it (e )1a(x ) 2 (x et (e (x )12
={(x ) *H(x)z 1 x A(x )P+ (x )22 =0

for all ¢>0, where (x.)7#/? [= the —1/2 power of (x.);: In p;Apil=
b pix psite)M2p;, i=1, 2. Moreover holds if and only if

{(x ) 2(xDw(x )z PHx IR A (x we(x 5w P * = Dy
ie, px(lﬂp){(l—p)x(l——p)ﬂ}'l(l—zb){cpépxpﬂp-

In fact, putting y=(x % (x)e(x)5%, 1+y+3y¥=0 implies p,—yy*=
(p1—A+y+y¥)(p—y)*=0, and conversely yy*=<p, implies 1+y+y*=
(poty) Dot y)*+ py—yy*=0. q.e.d.
PROPOSITION 4.9. For a C*-algebra A and a projection p of A the inclusion
map PAPA is sup-preserving.
PrOOF. Let & be a subset of (pApP)s.q. With sup,up,F=x<=(pApP)s.a.. By
Ay .. 2y=a for all ac 7 if and only if pyp=a, (1—p)y(1—p)=0
and pyp—a-+tep=pyl—p{1—p)y1—p)+e}*A—p)yp for all aecF and >0,
which imply pyp=x, (1—p)y(1—p)=0and pyp—x+ep=pyd—p){1—p)y(1—p)
+e} i 1—p)yp for all >0, so that y=x again by Lemma 4.8 Hence sup,F=x.
g.e.d.
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From this proposition a sharpening of follows (compare with
[10; Lemma 2.17):

COROLLARY 4.10. Let A be a C*-algebra and a any element of A. If F is
a bounded subset of As.,. such that sup,SF exists then sup,a*Fa—a*(sup,Fa.

ProOOF. Embed A4 in its regular monotone completion A. Since A is AW*,
a has the polar decomposition a=wr, where r=(a*a)"/? A and w is a partial
isometry of A such that w*w=RP(a¢) and ww*=LP(a) [1; p. 133, Proposition
2]. Put e=w*w and f=ww* By [Theorem 3.1, sup,F=supzZ, and by
1.9 and [Proposition 4.9,

w¥(supzF)w=w*f(supzF)fw=w*(supz fF/)w
=w*(supsas fFf)w=supez.w*Fw
=supzw*gw,

where we used also the facts that if supz@ with @C(fAf),... exists then
supz¢=sup;z;¢ and that the map fAfox—w*xwceAe is a *-isomorphism.
Hence again by Lemma 1.9,

a*(sup,F)a=rw*(supzF)wr=r(supzw*Fw)r
=supzrw*Fwr=sup,ya*Fa. g.e.d.

We characterize the sup-preserving unital *-monomorphism of a commuta-
tive AW*-algebra into another C*-algebra.

LemMMA 4.11. If A is a monotone closed C*-subalgebra of a commutative
AW*-algebra C then the inclusion map ASC is sup-preserving.

ProoOF. By hypothesis the inclusion map AC.C is normal. If & is a subset
of A;.,. with sup,F=x< A, ,. then, for a fixed a,€F, ¢={sup (F'I{a,}): F’
is a finite subset of #} is a bounded increasing net in A, , with sup,g==x.
(Note that A, ,. is a lattice.) Hence supc@¢=x. Moreover, since sup(F’'\J {a.})
=supe(F’'\J{a,} )Ssup,F, we have supcg=sup,F. Thus sup,F=sup,&=supcg
=sup,<. q.e.d.

LEMMA 4.12. Let B be an AW*-algebra and e,, e, two orthogonal projections
of B. If supgie,, e} =e,+e, then Cle,)C(e,)=0, where C(p) with p a projection
denotes the central cover of p in B.

PrROOF. By the comparability theorem [1; p. 80, Corollary 1] there exists
a central projection 4 such that

he,<he, and (1—h)e, >~(1—h)e,.

Suppose C(e;)C(e,)#0. Then he,;#0 or (1—h)e,#0; e. g, let he;#0. We have a
projection p= B and a partial isometry we< B such that he,=w*w~p=ww*=he,.
It follows from supg{e;, .} =e,+e, that
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4.3) supglhe;, p}=he;+p.

In fact if B;,.2x=he,, p then
x+1—h)e;=ze,

xte,—p=e;;

hence x+(1—h)e,+e,—p=e,+e, and x=he,+p. Since the algebra Che,+Cw
+Cw*+CpC B is *-isomorphic to M, under the *-isomorphism which sends he,,

10 0 0 01 00
w, w* p to ( ),( ),( ,( ) respectively, means that
1

x+(1—h)e1+ez—pz{

00 10 00 0
10 0 0 10
supM2{< ),( )}:( ), contradictory to (4.1) in Example 4.7.
00 0 1 01 ¢e d.

LEMMA 4.13. Let A be a commutative AW*-algebra and B an extension of
A which is AW* and contains A as a monotone closed C*-subalgebra. Then the
nclusion map ASB is sup-preserving if and only if ACZs.

PrOOF. Sufficiency: Let sup,F=a, for some FC A;,. and a,= A;.,.. Then
we must show that B, ,. 2x=9% implies x=a, But, since ACZg, there exists
a maximal commutative *-subalgebra C of B which contains A and x. Then
by Lemma 411, x=sup,F=sup,F=da,.

Necessity : Suppose that the inclusion map AC B is sup-preserving and let
ec A,. Then supg{e, 1—e} =sup,{e, 1—e} =1, and by Cle)C(1—e)
=0; hence eZC(e)=1—-C(1—e)Z1—(1—e)=¢, e=Cle)eZ;. Thus ACZ;.

g.e.d.

PROPOSITION 4.14. Let A be a commutative AW*-algebra and B an exten-
ston of A. Then the inclusion map ASB is sup-preserving if and only if it is
normal and ACZs.

ProoF. Since the inclusion map BC.B is sup-preserving, the inclusion map
AGB is sup-preserving if and only if AC.B is. Moreover, since ZzCZz
(Remark 3.7) and so Z,=7Z3"\B, ACZy if and only if ACZs. On the other
hand, since A is monotone complete, AC.B is normal if and only if A is
monotone closed in B. Hence applied to A and B completes the
proof. g.e.d.

REMARK 4.15. Let A be a commutative AW*-algebra and B an extension
of A which is an AW*-algebra. Then A is monotone closed in B if and only
if it is an AW#*-subalgebra of B. Necessity is clear. Sufficiency: Take a
maximal commutative *-subalgebra C of B which contains A. Then C is
monotone closed in B since supzF=x with & a bounded increasing net in C,.,.
and x< B, ,. implies that u*xu=suppu*Fu=supzF=x for all ueC,, hence that
xeC’'NnB=C. Moreover it is readily seen that an AW*-subalgebra of a com-
mutative AW#*-algebra is monotone closed.
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§5. Regular extensions of C*-tensor products.

In this section we consider the regular extensions of the C*-tensor products
of special C*-algebras.

PROPOSITION 5.1. Let A be a commutative C*-algebra and B(H) the type
I W*-factor with dim H=¥. Then (AQBH))- is the {-homogeneous type |
AW*-algebra with center isomorphic to A. Conversely an R-homogeneous type |
AW*-algebra B is of the form B=(ZRQB(H))» with Z the center of B and
dim H=¥.

ProOF. Take an orthogonal family {p:}ics of minimal projections in B(H)
with Vaan {p:: i€l}=1 and I=¥. Then {Zic,p:: JCI finite subsets} is an
increasing net with supremum 1 and so by [Proposition 4.1}

SUper»— {12/ l@pst JCI finite subsets} =11 ;"
hence

Vussun={1Q@p:: ie}=1Q1.
By Proposition 1.11 we have
1R NARBH)) 1Qp)={1Qp: X AQBH)AQp:)} -
=(ARp.) =A

with A commutative, so that the 1®p; are mutually equivalent abelian projec-
tions of (AQB(H)). with supremum 1®1. Hence (ARQB(H)). is an ¥-homo-
geneous type I AW*-algebra with center AR1. The second statement of the
theorem is obvious from the first one and the uniqueness of the ¥-homogeneous
type I AW#*-algebra for the given center and ¥ [13; Theorem 1]. g.e.d.

The next result shows that with notation as above we have (AQB(H)) =
(AQB(H))=I(AQB(H)).

PROPOSITION 5.2. Any type | AW*-algebra is injective.

PrOOF. Let A be a type | AW*-algebra. We may and will assume that A
is homogeneous since each type I AW*-algebra is a C*-direct sum of homogene-
ous ones and a C*-direct sum is injective whenever each direct summand is.
Then by [Proposition 5.1 we have A=(ZRXQB(K)): with Z a commutative AW*-
algebra and K a Hilbert space. We assume that Z is a C*-subalgebra, contain-
ing the unit, of B(H) with H a Hilbert space. Since Z is injective, there exists
a completely positive projection ¢ of B(H) onto Z. Let {7.}ac; be an ortho-
normal basis in K, =¥ and J,: H—-HXK the linear isometry defined by J,&
=£Qn.. Then each x& B(HRK) has the matrix representation x=[x,5] with
xap=J4ixJs€B(H), @, fI. Then the map

$R1: BHRYK)—B(HRK), (pQ1)[xap)=L[(xas)]
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is a well-defined completely positive projection. In fact let p, be the projection
of K onto C7, and let {¢,} be the family of all finite sums of the p,. Then,
since ¢ is completely positive, for each xe B(HRQK) we have

sup, (1&g (xep) 1@ )| =sup|(1Q¢)[ x a5 11Rg,)|

=lxl,

where (1Q¢,)[¢(x45)1(1&g;) denotes the matrix [y,p]€ B(HQYK) such that y,p
=¢(x4p) if pagy=1pa and psqy;=pg; =0 otherwise. This implies that the element
in B(HQK) with the matrix representation [¢(x.p)] exists and that ¢®1 is a
well-defined contractive projection. Moreover, replacing K in the above argu-
ment by the direct sum of n copies of K (n=l, 2, ---), we see that ¢Q1 is
completely positive. Hence (¢&Q1)(B(HYK))=V, say, is an injective operator
system and so V, equipped with the multiplication given by x-y=(¢&1)(xy), is
an injective C*-algebra which contains ZQB(K) as a C*-subalgebra [3; Theo-
rem 3.1]. As in [Proposition 5.1 we have

(1Qpa)e Vel@pa)={[xaslEV: xa5=0 if a#a’ or f+#a’}
VA

and Vy1@p.=suprlRq,=(¢R1)(supsmer)1®q;)=1K1, so that V is an ¥-homo-
geneous type 1 AW*-algebra with center Z. Hence A=V is injective. q.e.d.

PROPOSITION 5.3. Let A be an arbitrary C*-algebra and suppose that (i) B
is a commutative C*-algebra or that (ii) B is a type | AW*-algebra. Then ;1®1§
is a regular extension of AQRB, i.e., A7®Z§C(A®B)~.

PrROOF. (i) We first show that A®B is order dense in AQB. If x€A,.,.
then x=supy¥ for some FC A,,, and by [Proposition 4.4, xQl=supigzFI.
Hence for ye BY,

1R

1Qy=>1& """ N x Q1A y*'*)
=supaes(1Qy " NFQHUAQy!)
=supies?®y  ([Lemma 1.9

The set consisting of the elements of the form x,Qy,+ -+ +x,Qy, with
X1, v, XnEAsq. and y,, -+, yo,€B* is norm dense in (AQB);,.,., and from the
foregoing x;Qy;=supies?; for some ¢, (AQRB);...; hence

X1yt - Fx2Qyn=supies(G:+ - +Gn).

Thus AQB is order dense in /~1®B. A similar process shows that ;1®B is
order dense in A®B, so that AQB is order dense in AQB (Lemma 2.5).

(i) Since B is type | AW* there exists an orthogonal family {p;}:c; of
nonzero abelian projections of B with supremum 1. The family {g,} of all finite
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sums ¢,=>;esp; (JCI finite subsets) forms an increasing net and we have
supzqg;=1 since B is monotone complete and supzqg, is a projection (Lemma 3.11)).
Hence by [Proposition 4.1, supxesl®@q,=1&1, and for each x At

x@1=(x""*Q1(1Q1)(x*P1)=supiesxqy .

Moreover, since p;Bp; is commutative, by (i) and Proposition 4.9 we have

xQpi=SUDdep:Bp;Fi=SUPAeBF:
for some F;C(ARp:;Bpi)s.a., 50 that
1Qq,=2 jesxQ pi=supiesics F -
Hence we have
xQl=supies{XicsF:: JCI finite subsets},

and so for xe;ls.a,,
x@1=(x+[|x N1 — | x |(1R1)=supzes {¢—| x[1Q1)}

with ¢C(AQRB);.,.. Since B=B by [Proposition 5.2, the reasoning as in (i)
completes the proof. q.e.d.
COROLLARY 5.4. Under the same hypothesis as above we have AQBC(ARB) .
ProoF. Note by the construction that A=m-clyA and B=m-clzB. Since
AQBC(A®B)~ and the inclusion map AQB(ARQB)™ is normal, m-cligzARQB
Cm-clien~ARQB=(ARQB)-. Moreover by

AR B=(m-clz ARQ(m-clz B)Cm-clzez AQB .

Hence AQBC(ARB)-. g.e.d.
COROLLARY 5.5. For any C*-algebra A we have (A®Mn)“=;1®Mn.
PROOF. We have AQM,C(AQM,)". Since 1QM,C(ARM.,), (AQM,)

is of the form BRM, with BDA a C*-algebra. Take a minimal projection e

of M,. Then (1Re)(AQM,)Y1RXe)=A and (1Re)BRM,)(1Re)=B, so that A is

order dense in B (Cemma 110), i.e, ACBCA. Hence (ARQM,)Y=BRM,C

AQM, and so (AQM,)"=AQM,. q.e.d.

§6. The type I direct summand of the injective envelope.

In this section we see that for any C*-algebra A the maximum type I direct
summands of A and I(A) coincide (Corollary 6.5). Hence the study of I(A) is
reduced to those of A with A any C*-algebra and of I(A) with A a continuous
monotone complete AW*-algebra.

We prepare some lemmas.

LEMMA 6.1. Let A be a monotone complete C*-algebra, I(A) its injective
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envelope and ey, e, projections of A. Then we have

Vale, ex} =V iwie, eid and Aufes, e =N le, €.

RROOF. Put a=(e,+¢,)/|e;+es| = As.0.. Then supy{a'/™: n=1, 2, ---} exists
and equals \ 4{e;, e;}. Similarly sup;cp» {a*™: n=1, 2, ---}=V ;> {e:, e:}. Hence
by [Theorem 3.1, V 4{es, ex} =sups{a¥®: n=1, 2, ---}=sup;p {a¥": n=1, 2, -} =
Viwfes, e}, Moreover A4fe), e =1—V {l—e), 1—e}=1—V 1 {l—e;, 1—e}
=N 1w e, es}. q.e.d.

LEMMA 6.2. Let A be a C*-algebra, I(A) its injective envelope and h a
central projection of I(A). Then the injective envelope of hA is hI(A).

PrRoOOF. We have "AChI(A), and hI(A) is injective. Hence we need only
show that if ¢: hI(A)—hI(A) is a completely positive map with ¢|,,=ids4
then ¢=idr;sy. But the map ¢: I(A)—I(A) defined by ¢(x)=¢(hx)+(1—h)x,
x€I(A) is completely positive and ¢|,=id,, so that ¢=id; and ¢=ids;n
as desired. q.e.d.

THEOREM 6.3. If A is monotone complete C*-algebra and I(A) is its injec-
tive envelope then Z,=Z;s.

ProOF. We know that Z,CZ;4 [6; Corollary 4.3]. To see the converse
inclusion take a projection h&eZ; and let F={ecA,: e=h}. Put h,=A\,F
€A,; then hyeZ, and hy=h. In fact, since u*Fu=9 for all uc A,, we have
u*hu=h, for all u€A,. Moreover F is a decreasing net since for e,, e,€ F
we have Ai{es, e} =A 1w {es, e.} =h by Lemma 6., so that h,= A\ ,F=inf,F=
inf; 0 F=h (Lemma 3.11).

Define a *-homomorphism =z : 2,J(A)—hI(A) by n(x)=hx; then x|z, is a
*.isomorphism of h,A onto hA. In fact, Ker(z|,,4), being a two-sided ideal of
the AW*-algebra h,A, is generated by its projections [1; p. 140, Proposition 5].
So if Ker(x|s,4)#0 then there exists a nonzero projection ecKer(r|s,4). Hence
he=n(e)=0, h=<h,—e=h, and h,—e= A,, a contradiction.

Moreover by h(A) and hI(A) are injective envelopes of h A
and hA respectively. Hence by the uniqueness of the injective envelope « is a
*.isomorphism and so w(h,—h)=h(h,—h)=0 implies h=h,= Z,. g.e.d.

COROLLARY 6.4. The injective envelope of a monotone complete AW*-factor
s also an AW*-factor.

COROLLARY 6.5. With notation as in Theorem 6.3 let h (resp. h,) be the
central projection of A (resp. I(A)) such that hA (resp. h,I(A)) is the maximum
type 1 direct summand of A (resp. I(A)). Then h=h, and hA=hI(A). In par-
ticular A is discrete (vesp. continuous) if and only if I(A) is so.

Proor. We have h, h,eZ,=Z;, and hI(A)=I(hA)=hA is of type I
(Cemma 6.2 and [Proposition 5.2). Hence h=h,;. On the other hand h;A is a
monotone closed, hence AW*-subalgebra of h,[(A) with Z, 4=Z3 1. Thus by




182 M. Hamana

[17; Theorem 1] h;A=(h,;A)” (the double commutant of h,A in h,J(A)). More-
over (hiA) =2 1 [6; Corollary 4.3], so that i, A=(Zs, ;) =hiI(A) is of type
I. Hence h,;=h, and consequently A=h, and hA=hI(A). - q.e.d.

THEOREM 6.6. If A 1s a GCR-algebra then 21—:171:[(14) and this is a type |
AW*-glgebra.

ProOF. It suffices to show that A is of type I since it will follow then
from Proposition 5.2 that A=A=I(A). Let h be the central projection of A
such that 24 is the maximum type I direct summand of A. Suppose h+1. Then
(1—h)A is order dense in (1—h)A (Cemma 1.10). In particular (1—h)A+0 and it,
being *-isomorphic to a quotient C*-algebra of A, is GCR. Hence by [12;
Lemma 3] there exists a nonzero element x=((1—h)A)t such that x(1—h)Ax
is commutative. Then x(1—h)Ax is commutative. In fact, by
x(1—h)Ax is order demse in x(1—h)Ax, and so is B=[the norm closure of
C(1—h)+x(1—h)Ax] in C=[the norm closure of C(1—h)+x(1—h)Ax]. Hence
C, being a regular extension of the commutative C*-algebra B, is commutative.
Since x#0 is in the AW#*-algebra (1—h)A, there exist a nonzero projection
pe(l—h)A and an element ye(1—h)A such that xy=yx=p [1; p. 42, Prop-
osition 3]. Then pAp=xyAyxCx(1—h)Ax is commutative. Hence p is a non-
zero abelian projection <1—h, a contradiction. Thus A is of type I. q.e.d.

§7. The C*-algebra whose regular monotone completion is an AW*-factor.

A C*-algebra is said to be prime if there are no nonzero closed two-sided
ideals J and K such that JK=0.

THEOREM 7.1. Given a C*-algebra A its regular monotone completion A is
an AW*-factor if and only if A is prime.

ProoF. Sufficiency : Suppose that A is not an AW*-factor. Then there exists
a central projection A of A with 0#h=1, and J=ANhA and K=AN(1—h)A
are nonzero closed two-sided ideals of A with JK=0, i.e., A is not prime. In
fact suppose /=0 and define a *-homomorphism r : A—(1—h)A by z(x)=1—h)x.
Then x|, is one-to-one, so that = is a *-isomorphism and ~A=0, a contradiction.
Hence J+#0 and similarly K=0.

Necessity: If A is not prime then there exist nonzero closed two-sided
ideals J and K with JK=0. Put hA=supz{LP(x): xeJ*}, where LP(x) denotes
the left projection of x in A and & exists since {LP(x): x€/J*} is an increasing
net. Clearly =0, and it is a central projection of A since u*hu=supz{LP(u*xu):
x€J*}=h for all u€A, and so heZz [6; Corollary 4.3]. Take a nonzero
ye K*. Then yxy=0 for all x&J* implies yLP(x)y=0, hence yhy=0
1.9). Therefore h#1 and A is not an AW*-factor. qg.e.d.
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