Regular embeddings of C^* -algebras in monotone complete C^* -algebras

By Masamichi HAMANA

(Received Nov. 27, 1978) (Revised May 10, 1979)

Introduction.

Let A be a unital C^* -algebra and $A_{s.a.}$ the self-adjoint part of A. If each bounded increasing net (resp. sequence) in $A_{s.a.}$ has a supremum then A is said to be monotone (resp. monotone σ -) complete. [In the literature, e. g., [10, 16, 20], the adjective "monotone (resp. monotone σ -) closed" is employed as a synonym for "monotone (resp. monotone σ -) complete", but in this paper we will use it in a different sense (cf. Definition 1.2).] As was shown by J. D. M. Wright [22], each unital C^* -algebra A possesses a unique regular σ -completion, i. e., a monotone σ -complete C^* -algebra \hat{A} which contains A as a C^* -subalgebra and satisfies the following properties:

- i) $\hat{A}_{s.a.}$ itself is a unique monotone σ -closed subspace of $\hat{A}_{s.a.}$ which contains $A_{s.a.}$;
 - ii) each x in $\hat{A}_{s,a}$ is the supremum in $\hat{A}_{s,a}$ of $\{a \in A_{s,a}: a \leq x\}$; and
- iii) whenever a subset \mathcal{F} of $A_{s.a.}$ has a supremum x in $A_{s.a.}$ then x remains the supremum of \mathcal{F} in $\hat{A}_{s.a.}$.

On the other hand the present author proved in [6] that each unital C^* -algebra A has a unique injective envelope, which will be written as I(A), i.e., a minimal injective C^* -algebra containing A as a C^* -subalgebra. In this paper we give a monotone complete version of the above J. D. M. Wright's result by embedding A in its injective envelope I(A) (Theorem 3.1). Namely it is shown that the monotone closure \overline{A} of A in I(A) is a monotone complete C^* -algebra which satisfies the above properties i), ii) and iii) with \widehat{A} replaced by \overline{A} and moreover "monotone σ -" in i) replaced by "monotone". We call \overline{A} the regular monotone completion of A. To see that \overline{A} satisfies ii) we consider the family of all unital C^* -algebras which contain A as a C^* -subalgebra and satisfy ii) (called "regular extensions" of A) and we show that, instead of \overline{A} , a maximal regular extension of A, written \widetilde{A} , is realized as a monotone closed C^* -subalgebra of I(A), hence that $\overline{A} \subset \widetilde{A} \subset \widetilde{A} \subset I(A)$; however it remains open

whether or not the inclusions $\overline{A} \subset \widetilde{A} \subset I(A)$ can be proper. In case A is GCR we will see that $\overline{A} = \widetilde{A} = I(A)$ (Theorem 6.6).

The contents of the paper are summarized as follows. In section 1 we establish notation and provide preliminary lemmas. In section 2 we give a Banach space-like characterization of regular extensions. Section 3 is devoted to the proof of the existence and uniqueness of \overline{A} and \widetilde{A} . Section 4 concerns the embedding of a C^* -algebra into another C^* -algebra which preserves suprema and infima, and in section 5 the results of section 4 are applied to examine the regular extensions of the minimal C^* -tensor products of special C^* -algebras. In section 6 we investigate the type I direct summand of the injective envelope I(A). In section 7 we characterize such a C^* -algebra whose regular monotone completion is an AW^* -factor.

Finally the author would like to thank Dr. K. Saitô for calling his attention to the papers [22, 23] of J. D. M. Wright. He is also grateful to Professors T. Saitô, T. Okayasu, T. Yoshino and H. Takemoto for their valuable suggestions in the presentation of the first version of this paper.

§ 1. Preliminaries and notation.

Throughout the paper C^* -algebras to be considered are always unital, and A and I(A) denote an arbitrary but fixed C^* -algebra and its injective envelope, respectively. The algebra I(A) exists uniquely for any A and is characterized as an injective C^* -algebra, containing A as a C^* -subalgebra, such that the identity map $\mathrm{id}_{I(A)}$ on I(A) is a unique completely positive map of I(A) into itself which fixes A elementwise [6]. The sets of all positive elements, projections, unitary elements of A, the center of A and the state space of A are denoted by A^+ , A_p , A_u , Z_A and S(A), respectively.

By an extension of A we mean a pair (B, κ) of a C^* -algebra B and a unital *-monomorphism κ of A into B. In what follows we sometimes identify A with $\kappa(A) \subset B$ and abbreviate (B, κ) to B. In the family of all extensions of A we define a relation \prec (resp. equivalence relation \sim) by $(B, \kappa) \prec (C, \lambda)$ [resp. $(B, \kappa) \sim (C, \lambda)$] if there exists a unital *-monomorphism (resp. *-isomorphism) ι of B into (resp. onto) C with $\iota \circ \kappa = \lambda$.

DEFINITION 1.1. An extension (B, κ) of A is regular if each x in $B_{s.a.}$ is the supremum in $B_{s.a.}$ of $\{a \in \kappa(A)_{s.a.} : a \leq x\}$ (written $(-\infty, x]_{\kappa(A)}$ for short). In this situation $\kappa(A)$ is said to be order dense in B. A maximal regular extension of A, written \widetilde{A} , is a regular extension of A such that $\widetilde{A} \prec (B, \kappa)$ with (B, κ) a regular extension of A implies $\widetilde{A} \sim (B, \kappa)$.

As will be seen below (Lemma 2.5) if (B, κ) is a regular extension of A and (C, λ) is a regular extension of B then the extension $(C, \lambda \circ \kappa)$ of A is regular.

Hence \tilde{A} is a regular extension of A which has no proper regular extension of itself, so that $(\tilde{A})^{\sim} = \tilde{A}$.

DEFINITION 1.2. Let B be an extension of A. A subset S of $B_{s.a.}$ is monotone closed in $B_{s.a.}$ if it is closed with respect to taking suprema (resp. infima) of bounded increasing (resp. decreasing) nets, i. e., whenever a bounded increasing (resp. decreasing) net \mathcal{F} in S has a supremum (resp. infimum) in $B_{s.a.}$, written $\sup_B \mathcal{F}$ (resp. $\inf_B \mathcal{F}$), then $\sup_B \mathcal{F}$ (resp. $\inf_B \mathcal{F}$) is in S. Similarly monotone σ -closedness of S in $B_{s.a.}$ is defined with "nets" replaced by "sequences". The monotone (resp. monotone σ -) closure of $A_{s.a.}$ in $B_{s.a.}$, written m-cl_B $A_{s.a.}$ (resp. σ -cl_B $A_{s.a.}$), is the smallest monotone (resp. monotone σ -) closed subset of $B_{s.a.}$ containing $A_{s.a.}$, and that of A in B is the set

$$m$$
-cl_B $A = m$ -cl_B $A_{s.a.} + i m$ -cl_B $A_{s.a.}$

(resp.
$$\sigma$$
-cl_B $A = \sigma$ -cl_B $A_{s,a} + i \sigma$ -cl_B $A_{s,a}$).

The algebra A is monotone (resp. monotone σ -) closed in B if $m\text{-cl}_BA$ (resp. $\sigma\text{-cl}_BA$)=A, and it is monotone (resp. monotone σ -) dense in B if $m\text{-cl}_BA$ (resp. $\sigma\text{-cl}_BA$)=B.

DEFINITION 1.3. A monotone completion of A is an extension B of A such that B is monotone complete and $m\text{-cl}_BA=B$. We write \overline{A} for the regular monotone completion of A.

Let B be an extension of A. In case B is a W^* -algebra the arguments by R. V. Kadison [9; pp. 316-318] and G. K. Pedersen [16; the proof of Theorem 1] show that m-cl_BA (resp. σ -cl_BA) is a monotone (resp. monotone σ -) closed C^* -subalgebra of B. Note also that m-cl_BA is the weak closure of A in B (R. V. Kadison [8; Lemma 1]). But the same argument can be applicable for a not necessarily W^* , C^* -algebra B since, as is readily seen, m-cl_B $A_{s.a.}$ (resp. σ -cl_B $A_{s.a.}$) is a real linear subspace of $B_{s.a.}$ and the existence of $\sup_B \mathcal{F}$ with \mathcal{F} a bounded increasing net in $B_{s.a.}$ implies $\sup_B b^* \mathcal{F} b = b^* (\sup_B \mathcal{F}) b$ for every b in B [10; the proof of Lemma 2.1]. Hence we obtain:

LEMMA 1.4. If B is an extension of A then the monotone (resp. monotone σ -) closure m-cl_BA (resp. σ -cl_BA) of A in B is a monotone (resp. monotone σ -) closed C*-subalgebra of B.

From now on we use the following notation: With B an extension of A, $x \in B_{s,a}$, and $\mathcal{F} \subset B_{s,a}$, we write

$$(-\infty, x]_A = \{a \in A_{s.a.}: a \leq x\}, [x, +\infty)_A = \{a \in A_{s.a.}: x \leq a\}.$$

The symbol " $\sup_B \mathcal{F} = x$ " means that $\sup_B \mathcal{F}$ (the supremum of \mathcal{F} in $B_{s.a.}$) exists and equals x, and " $\mathcal{F} \leq x$ " means that $y \leq x$ for all y in \mathcal{F} . Moreover similar notations should be naturally understood.

DEFINITION 1.5. Let B be an extension of A and put

$$s\text{-cl}_B A_{s.a.} = \{x \in B_{s.a.} : x = \sup_B (-\infty, x]_A\},$$

 $s\text{-cl}_B A = s\text{-cl}_B A_{s.a.} + i s\text{-cl}_B A_{s.a.}.$

We call s- cl_BA the sup-closure of A in B. If s- $cl_BA = A$ then A is said to be sup-closed in B.

Clearly B is a regular extension of A if and only if $s\text{-cl}_BA=B$, and it is also immediate to see that $s\text{-cl}_BA_{s.a.}$ is the smallest subset of $B_{s.a.}$ which contains $A_{s.a.}$ and is closed with respect to taking suprema which exist in $B_{s.a.}$. In contrast to $m\text{-cl}_BA$ or $\sigma\text{-cl}_BA$, $s\text{-cl}_BA$ is generally not a C^* -subalgebra of B; whereas it is the case under an additional hypothesis:

LEMMA 1.6. With notation as above suppose that $s-cl_BA_{s.a.}$ is a real linear subspace of $B_{s.a.}$. Then $s-cl_BA$ is a monotone closed C*-subalgebra of B (hence it is a regular extension of A).

PROOF. For simplicity we write $C=s\text{-}\operatorname{cl}_BA$; hence $C_{s,a}=s\text{-}\operatorname{cl}_BA_{s,a}$. The monotone closedness of C in B is immediate since by hypothesis $C_{s,a}$ is closed with respect to taking both suprema and infima. Moreover $C_{s,a}$ is norm closed in B. For if $x_n \rightarrow x$ in norm with $\{x_n\}$ a sequence in $C_{s,a}$ and $x \in B_{s,a}$, then

$$x = \sup_{B} \{x_{n} - \|x - x_{n}\| : n = 1, 2, \dots\}$$

$$= \sup_{B} \{\sup_{B} (-\infty, x_{n} - \|x - x_{n}\|]_{A} : n = 1, 2, \dots\}$$

$$= \sup_{B} \bigcup_{n=1}^{\infty} (-\infty, x_{n} - \|x - x_{n}\|]_{A}$$

$$= \sup_{B} (-\infty, x]_{A} \in C_{s.a.}$$

since $x \ge x_n - ||x - x_n|| \to x$ in norm and $x_n - ||x - x_n|| \in C_{s.a.}$ (note that $A_{s.a.}$, hence $C_{s.a.}$ contains the unit of B).

We follow a reasoning analogous to those of R. V. Kadison and G. K. Pedersen cited above. By the linearity of $C_{s.a.}$ we see that $x \in C_{s.a.}$ if and only if $x = \inf_B [x, +\infty)_A$, if and only if $x = \sup_B \mathcal{F}$ (resp. $x = \inf_B \mathcal{G}$) for some \mathcal{F} (resp. \mathcal{G}) $\subset A_{s.a.}$.

(1) If $x \in C_{s,a}$ is positive and invertible in B then $x^{-1} \in C_{s,a}$.

From above $x=\inf_{B}[x,+\infty)_A$. Then we have $x^{-1}=\sup_{B}[x,+\infty)_A^{-1}\in C_{s.a.}$, where $[x,+\infty)_A^{-1}=\{a^{-1}:a\in[x,+\infty)_A\}$. In fact, since $x\leq[x,+\infty)_A$ and each element in $[x,+\infty)_A$ is invertible, we have $x^{-1}\geq[x,+\infty)_A^{-1}$; moreover $B_{s.a.}\ni y\geq[x,+\infty)_A^{-1}$ implies $y^{-1}\leq[x,+\infty)_A$, so that $y^{-1}\leq\inf_{B}[x,+\infty)_A=x$ and $y\geq x^{-1}$.

(2) If $x \in C_{s.a.}$ then $x^n \in C_{s.a.}$ for $n=1, 2, \cdots$.

To make an induction on n we assume that x, x^2 , \cdots , $x^n \in C_{s.a.}$. We may also assume that $||x|| \le 1/2$. Then for each $0 < \alpha \le 1$, $C_{s.a.} \ni 1 + \alpha x \ge 1 - ||x|| \ge 1/2$; hence $(1+\alpha x)^{-1} \in C_{s.a.}$ by (1). Thus

$$x^{n+1}(1+\alpha x)^{-1} = (-\alpha)^{-(n+1)} \lceil (1+\alpha x)^{-1} - \{1+(-\alpha x) + \cdots + (-\alpha x)^n\} \rceil \in C_{s,a}$$

and so $x^{n+1} \in C_{s.a.}$ since $x^{n+1}(1+\alpha x)^{-1} \rightarrow x$ in norm as $\alpha \downarrow 0$ and $C_{s.a.}$ is norm closed.

(3) If $x, y \in C_{s.a.}$ then $yxy \in C_{s.a.}$

We have

$$yxy\pm xyx = (x\pm y)^3 - (x^2\pm y)^2 - (x+y^2)^2 + x^4 - x^3 + x^2 + y^4 \mp y^3 + y^2 \in C_{s.a.}$$

by (2), so that we add these equalities to obtain $yxy \in C_{s,a}$.

(4) If $x \in C_{s,a}$ and $y \in A_{s,a}$ then $[x, y] = i(xy - yx) \in C_{s,a}$.

Since $[x, \alpha y] = \alpha[x, y]$, we may assume by replacing y by αy with α a suitable scalar that 1+iy is invertible. Then the map $B_{s.a.} \ni z \mapsto (1+iy)*z(1+iy)$ $\in B_{s.a.}$ is one-to-one, onto and bipositive, so that

$$(1+iy)*x(1+iy) = (1+iy)*\sup_{B}(-\infty, x]_{A}(1+iy)$$
$$= \sup_{B}(1+iy)*(-\infty, x]_{A}(1+iy) \in C_{s.a.}.$$

Hence $[x, y] = (1+iy)*x(1+iy)-x-yxy \in C_{s.a.}$ by (3).

(5) If $x, y \in C_{s.a.}$ then $[x, y] \in C_{s.a.}$

For $a \in A_{s,a}$ and $y \in C_{s,a}$ we have

$$(1+iy)*a(1+iy) = -[y, a]+a+aya \in C_{s.a.}$$

by (3), (4). Hence for $x, y \in C_{s.a.}$,

$$(1+iy)*x(1+iy) = (1+iy)*\sup_{B}(-\infty, x]_{A}(1+iy)$$
$$= \sup_{B}(1+iy)*(-\infty, x]_{A}(1+iy) \in C_{s.a.}$$

by the reasoning as in (4) and the sup-closedness of $C_{s.a.}$ in $B_{s.a.}$, so that $[x, y] = (1+iy)*x(1+iy)-x-yxy \in C_{s.a.}$ by (3).

(6) If $x, y \in C_{s.a.}$ then $(x+iy)*(x+iy)=x^2+y^2+[x, y]\in C_{s.a.}$ by (2), (5). This and the polarization identity imply $xy\in C_{s.a.}+iC_{s.a.}=C$ for all $x, y\in C_{s.a.}$. Hence C is a C^* -subalgebra of B.

REMARK 1.7. Under the same hypothesis as in Lemma 1.6 we see that for each $x \in s\text{-}\mathrm{cl}_B A_{s.a.}$ there exists a bounded subset \mathcal{F} of $A_{s.a.}$ such that $x = \sup_B \mathcal{F}$. In fact, if $x \in s\text{-}\mathrm{cl}_B A_{s.a.}$ is positive and invertible then $x^{-1} = \inf_B [x^{-1}, +\infty)_A$ and so $x = \sup_B [x^{-1}, +\infty)_A^{-1} = \sup_B [0, x]_A$, where $[0, x]_A = \{a \in A_{s.a.} : 0 \le a \le x\}$ (see (1) above). Hence for each $x \in s\text{-}\mathrm{cl}_B A_{s.a.}$,

$$x=x+\|x\|+1-(\|x\|+1)=\sup_{B}\{[0, x+\|x\|+1]_{A}-(\|x\|+1)\}.$$

We close this section with a remark on the regular monotone completion of a C^* -algebra, whose existence and uniqueness will be proved in section 3. First we need the following definition and lemmas.

DEFINITION 1.8. A subset S of a partially ordered vector space V is order

dense in V if for each $v \in V$ we have $v = \sup_{v} \{w \in S : w \le v\} = \inf_{v} \{w \in S : w \ge v\}$.

LEMMA 1.9. Let B be a C*-algebra and $a \in B^+$. If \mathcal{F} is a bounded subset of $B_{s,a}$, such that $\sup_{\mathcal{B}} \mathcal{F}$ exists then $\sup_{\mathcal{B}} a \mathcal{F} a = a(\sup_{\mathcal{B}} \mathcal{F})a$.

PROOF. Put $\sup_B \mathcal{F} = x_0$. By hypothesis there exists an $\alpha > 0$ such that $||x|| \le \alpha$ for all $x \in \mathcal{F}$. If $B_{s,\alpha} \ni y \ge a x a$ for all $x \in \mathcal{F}$ then for each $\varepsilon > 0$ we have

$$(a+\varepsilon)x(a+\varepsilon) = axa + \varepsilon(ax+xa) + \varepsilon^2 x \le y + \alpha\varepsilon(2\|a\|+\varepsilon),$$

$$x \le (a+\varepsilon)^{-1} \{y + \alpha\varepsilon(2\|a\|+\varepsilon)\} (a+\varepsilon)^{-1};$$

hence

$$x_0 \leq (a+\varepsilon)^{-1} \{ y + \alpha \varepsilon (2||a|| + \varepsilon) \} (a+\varepsilon)^{-1},$$

$$(a+\varepsilon)x_0(a+\varepsilon) \leq y + \alpha \varepsilon (2||a|| + \varepsilon).$$

Therefore $a x_0 a \leq y$ and so $a x_0 a = \sup_{B} a \mathcal{F} a$.

q. e. d.

LEMMA 1.10. Let A be a C*-algebra and B a regular extension of A. Then for each $a \in B^+$, $(aAa)_{s.a.}$ is order dense in $(aBa)_{s.a.}$.

PROOF. The regularity of B is equivalent to $s\text{-cl}_BA=B$, so that for each $x \in B_{s,a}$, there exists a bounded subset \mathcal{F} of $A_{s,a}$, with $\sup_B \mathcal{F} = x$ (Remark 1.7). Hence Lemma 1.9 completes the proof.

PROPOSITION 1.11. Let A be a C*-algebra, \overline{A} its regular monotone completion and e a projection of A. Then $e\overline{A}e$ is a regular monotone completion of eAe, i.e., $e\overline{A}e=(eAe)$.

PROOF. By Lemma 1.10 $e\overline{A}e$ is a regular extension of eAe, and it is monotone closed in \overline{A} , hence monotone complete. In fact, if \mathcal{F} is a bounded increasing net in $(e\overline{A}e)_{s.a.}$ then $\sup_{\overline{A}}\mathcal{F}$ exists, so that $\sup_{\overline{A}}\mathcal{F} = \sup_{\overline{A}}e\mathcal{F}e = e(\sup_{\overline{A}}\mathcal{F})e \in (e\overline{A}e)_{s.a.}$ (Lemma 1.9). Hence $m\text{-cl}_{\overline{A}}eAe = m\text{-cl}_{e\overline{A}e}eAe \subset e\overline{A}e$ is a regular monotone completion of eAe. Similarly $m\text{-cl}_{\overline{A}}(1-e)A(1-e)C(1-e)\overline{A}(1-e)$. Put

$$V\!=\!m\text{-}\!\operatorname{cl}_{\overline{A}} eAe+e\overline{A}(1-e)+(1-e)\overline{A}e+m\text{-}\!\operatorname{cl}_{\overline{A}}(1-e)A(1-e)\,.$$

Then $V \supset A$ is monotone closed in \overline{A} . For if \mathcal{F} is a bounded increasing net in $V_{s.a.}$ then $\sup_{\overline{A}} \mathcal{F}$ exists, and since $e \mathcal{F} e \subset m\text{-}\mathrm{cl}_{\overline{A}} e A e$, $e(\sup_{\overline{A}} \mathcal{F}) e = \sup_{\overline{A}} e \mathcal{F} e \in m\text{-}\mathrm{cl}_{\overline{A}} e A e$ (Lemma 1.9). Similarly $(1-e)(\sup_{\overline{A}} \mathcal{F})(1-e) \in m\text{-}\mathrm{cl}_{\overline{A}}(1-e) A(1-e)$. Hence

$$\begin{split} \sup_{\overline{A}} \mathcal{F} = & e(\sup_{\overline{A}} \mathcal{F}) e + e(\sup_{\overline{A}} \mathcal{F}) (1-e) + (1-e)(\sup_{\overline{A}} \mathcal{F}) e \\ & + (1-e)(\sup_{\overline{A}} \mathcal{F}) (1-e) \in V \end{split}$$

and so $V=\overline{A}$. Thus $e\overline{A}e=eVe=m\text{-}cl_{\overline{A}}eAe$ is a regular monotone completion of eAe.

§ 2. A Characterization of regular extensions.

The self-adjoint part of a C^* -algebra is regarded as a function system, i.e., an Archimedean partially ordered vector space having the unit of the C^* -algebra

as the order unit (cf. [2; pp. 588-589]). And the definition of regularity for extensions of C^* -algebras depends only on the order structure, as function systems, of the self-adjoint parts of the C^* -algebras. Therefore it will be convenient to generalize the notion of regularity to function systems and characterize it for function systems.

In the following a function system V with a distinguished order unit 1 will be viewed as a normed linear space with the order-unit norm: $||v|| = \inf\{\lambda > 0: -\lambda 1 \le v \le \lambda 1\}$. Note that a unital linear map between function systems is contractive (resp. isometric) if and only if it is positive (resp. bipositive). The state space of V is the set $S(V) = \{f \in V^*: ||f|| = f(1) = 1\}$.

DEFINITION 2.1. An extension of a function system V is a pair (W, α) of a function system W and a unital order injection α of V into W (i.e., $\alpha(1)=1$ and α is an order isomorphism of V onto $\alpha(V)$). The extension (W, α) is a regular extension of V if $w=\sup_{w}(-\infty,w]_{\alpha(V)}$ for all $w\in W$, where as before " \sup_{w} " means the supremum taken in W and $(-\infty,w]_{\alpha(V)}=\{w'\in\alpha(V):w'\leq w\}$. The extension (W,α) is a bound extension of V if the norm on W is a unique seminorm p on W such that $p(w)\leq \|w\|$ and $p(\alpha(v))=\|v\|$ for all $w\in W$ and $v\in V$, and it is an essential extension of V if given any unital positive linear map β of W into a function system Z, β is bipositive whenever $\beta \circ \alpha$ is (cf. [14], [15; pp. 38-39]).

The equivalence of boundness and essentiality is known in the context of the extensions of normed linear spaces [15; p. 89, Corollary to Lemma 2], and we will see that the equivalence of regularity and essentiality (Proposition 2.6). Then it will result that these three notions coincide. We need another definition.

DEFINITION 2.2. A positive linear map α of a function system V into another W is $\sup p$ -preserving (resp. normal) if $\sup_V \mathcal{F} = v$ with \mathcal{F} a subset (resp. a bounded increasing net) of V and $v \in V$ implies $\sup_W \alpha(\mathcal{F}) = \alpha(v)$. A positive linear map ϕ of a C^* -algebra A into another B is $\sup p$ -preserving (resp. normal) if its restriction $\phi|_{A_{s,a}}: A_{s,a} \to B_{s,a}$ is so.

Given a C^* -algebra A and its extension B it is obvious that if A is monotone complete and the inclusion map $A \subseteq B$ is normal then A is monotone closed in B, and that if B is monotone complete and A is monotone closed in B then the map $A \subseteq B$ is normal.

For a while V denotes a fixed function system. The *Dedekind completion* of V is a regular extension (\hat{V}, j_V) of V such that \hat{V} is a boundedly complete vector lattice (cf. [21]). Such a \hat{V} is unique and is the self-adjoint part of a commutative AW^* -algebra or an injective real Banach space in the sense of H.B. Cohen [4]; moreover we have:

LEMMA 2.3. (\hat{V}, j_V) is the injective envelope of V in the sense of H.B. Cohen [4], i.e., \hat{V} is an injective Banach space and is the only injective subspace

of itself which contains $j_{\nu}(V)$.

PROOF. To see this it suffices to show that $\phi \circ j_V = j_V$ with ϕ a contractive linear map of \hat{V} into itself implies $\phi = \mathrm{id}\hat{v}$ (cf. [7]). But ϕ is then positive, and the regularity of (\hat{V}, j_V) implies that for each $w \in \hat{V}$, $w = \sup_{\hat{V}} (-\infty, w]_{j_V(V)}$ and $\phi(w) \ge \phi((-\infty, w]_{j_V(V)}) = (-\infty, w]_{j_V(V)}$, hence that $\phi(w) \ge w$. Similarly $\phi(-w) \ge -w$ and so $\phi(w) = w$ for all $w \in \hat{V}$.

The following fact is stated without proof in [22; p. 303, Il.18-20]:

LEMMA 2.4. If (W, α) is a regular extension of V then α is sup-preserving. PROOF. Suppose that $\sup_{V} \mathcal{F} = v$ for some $\mathcal{F} \subset V$ and $v \in V$. If $W \ni w \trianglerighteq \alpha(\mathcal{F})$ then $[w, +\infty)_{\alpha(V)} \trianglerighteq \alpha(\mathcal{F})$, $\alpha^{-1}([w, +\infty)_{\alpha(V)}) \trianglerighteq \mathcal{F}$ and so $\alpha^{-1}([w, +\infty)_{\alpha(V)}) \trianglerighteq v$, $[w, +\infty)_{\alpha(V)} \trianglerighteq \alpha(v)$. Moreover by regularity $w = \inf_{W} [w, +\infty)_{\alpha(V)}$; hence $w \trianglerighteq \alpha(v)$, so that $\sup_{W} \alpha(\mathcal{F}) = \alpha(v)$.

LEMMA 2.5. If (W, α) is a regular extension of V and (Z, β) is a regular extension of W then $(Z, \beta \circ \alpha)$ is a regular extension of V.

PROOF. If $w \in W$ then $w = \sup_{w} (-\infty, w]_{\alpha(v)}$ and $\beta(w) = \sup_{z} \beta((-\infty, w]_{\alpha(v)})$ = $\sup_{z} (-\infty, \beta(w)]_{\beta \circ \alpha(v)}$ by Lemma 2.4. Hence for $z \in Z$,

$$\begin{split} z &= \sup_{Z} (-\infty, z]_{\beta(W)} = \sup_{Z} \{\beta(w) : \beta(w) \leq z, w \in W\} \\ &= \sup_{Z} \{\sup_{Z} (-\infty, \beta(w)]_{\beta \circ \alpha(Y)} : \beta(w) \leq z, w \in W\} \\ &= \sup_{Z} (-\infty, z]_{\beta \circ \alpha(Z)}. \end{split}$$
 q. e. d.

PROPOSITION 2.6. Let V be a function system and (W, α) its extension. Then (W, α) is regular if and only if it is essential.

PROOF. Suppose (W, α) is regular and take the Dedekind completion (\hat{W}, j_W) of W. Then the extension $(\hat{W}, j_W \circ \alpha)$ of V is the Dedekind completion of V since it is regular by Lemma 2.5, so that it is the injective envelope of V by Lemma 2.3. Since the injective envelope is a maximal essential extension, $(\hat{W}, j_W \circ \alpha)$, hence (W, α) is an essential extension of V.

Conversely let (W, α) be an essential extension of V and (\hat{V}, j_V) the Dedekind completion of V. Since \hat{V} is injective, there exists a contractive linear map β of W into \hat{V} with $\beta \circ \alpha = \mathrm{id}_V$. Then the essentiality of (W, α) implies that β is an order injection. Hence (W, α) , being contained in the regular extension (\hat{V}, j_V) , is regular.

§ 3. The main theorem.

This section is devoted to the proof of the following:

Theorem 3.1. Any C*-algebra A has a regular monotone completion \overline{A} (resp. maximal regular extension \widetilde{A}) which is unique up to the equivalence relation \sim , and we have canonical inclusion maps $A \subseteq \overline{A} \subseteq \widetilde{A} \subseteq I(A)$. Moreover \widetilde{A} is

monotone complete and the respective inclusion maps are sup-preserving.

For the proof we need several lemmas. The first one is a modification of [6; the proof of Theorem 3.4].

LEMMA 3.2. With A and I(A) as above let p be a seminorm on $I(A)_{s.a.}$ such that $p(x) \le ||x||$, $p(u^*xu) = p(x)$ and p(a) = ||a|| for all $x \in I(A)_{s.a.}$, $u \in A_u$ and $a \in A_{s.a.}$. Then p(x) = ||x|| for all $x \in I(A)_{s.a.}$.

PROOF. Take a family $\{f_i\}$ of pure states of A such that the direct sum $\sum_i^{\oplus} \{\pi_{f_i}, H_{f_i}\}$ of the cyclic representations $\{\pi_{f_i}, H_{f_i}\}$ of A induced by f_i is faithful. We apply the Hahn-Banach theorem to obtain a state extension g_i of f_i to I(A) such that $|g_i(x)| \leq p(x)$ for all $x \in I(A)_{s.a.}$. Let $\{\pi, H\} = \sum_i^{\oplus} \{\pi_{g_i}, H_{g_i}\}$ be the direct sum of the cyclic representations $\{\pi_{g_i}, H_{g_i}\}$ of I(A) and let E be the projection of H onto $\sum_i^{\oplus} A_{g_i} \subset \sum_i^{\oplus} H_{g_i} = H$. (Since f_i is pure, $A_{f_i} = H_{f_i}$, and so $A_{g_i} \subset H_{g_i}$, being isometric to A_{f_i} , is closed.) Then $E \in \pi(A)'$ (the commutant of $\pi(A)$), $\sum_i^{\oplus} \{\pi_{f_i}, H_{f_i}\} \cong \{\pi(\cdot)E|_A, EH\}$ (the representation of A restricted to EH) and $\pi(A)$ acts irreducibly on $A_{g_i} \subset H_{g_i}$ since $g_i|_A = f_i$ is pure. So defining $\phi: I(A) \to E\pi(I(A))E$ by $\phi(x) = E\pi(x)E$ we get a *-isomorphism $\phi|_A: A \to \phi(A) = \pi(A)E$ and its inverse $\phi = (\phi|_A)^{-1}: \pi(A)E \to A$. Since I(A) is injective, there exists a completely positive extension $\hat{\phi}: E\pi(I(A))E \to I(A)$ of ϕ . Then $\hat{\phi} \circ \phi: I(A) \to I(A)$ is a completely positive map with $\hat{\phi} \circ \phi|_A = \mathrm{id}_A$, so that $\hat{\phi} \circ \phi = \mathrm{id}_{I(A)}$.

We show that $\|\phi(x)\| \le p(x)$ for all $x \in I(A)_{s.a.}$. Given an $\varepsilon > 0$ and an $x \in I(A)_{s.a.}$ choose a family $\{a_i\}$ of elements of A such that $\|\sum_i (a_i)_{g_i}\| = 1$ and

$$|(\pi(x)\sum_{i}(a_i)_{g_i}, \sum_{i}(a_i)_{g_i})| \ge ||E\pi(x)E|| - \varepsilon = ||\phi(x)|| - \varepsilon$$
.

Since $\pi(A)$ acts irreducibly on A_{g_i} , the transitivity theorem implies the existence of a unitary element u_i of A such that $(u_i)_{g_i} = \pi(u_i)1_{g_i} = \|(a_i)_{g_i}\|^{-1}(a_i)_{g_i}$. Hence

$$\begin{aligned} |(\pi(x)\sum_{i}(a_{i})_{g_{i}}, \sum_{i}(a_{i})_{g_{i}})| &= \sum_{i} ||(a_{i})_{g_{i}}||^{2} |g_{i}(u_{i}^{*}xu_{i})| \\ &\leq \sum_{i} ||(a_{i})_{g_{i}}||^{2} p(u_{i}^{*}xu_{i}) \\ &= ||\sum_{i}(a_{i})_{g_{i}}||^{2} p(x) = p(x). \end{aligned}$$

Therefore $\|\phi(x)\| \le p(x)$, so that $\|x\| = \|\hat{\phi} \circ \phi(x)\| \le \|\phi(x)\| \le p(x)$ and $p(x) = \|x\|$.

Now let V be the Dedekind completion of the partially ordered linear space $A_{s.a.}$ with order unit 1, where we identify $A_{s.a.}$ with its image in V and so we consider $A_{s.a.} \subset V$. By Lemma 2.3, V is the injective envelope (as a real Banach space) of $A_{s.a.}$. Hence the set

 $\Phi = \{\text{contractive linear maps } \phi \text{ of } I(A)_{s.a.} \text{ into } V \text{ with } \phi|_{A_{s.a.}} = \mathrm{id}_{A_{s.a.}} \}$

is nonvoid. We apply Lemma 3.2 to show the following:

LEMMA 3.3. For $x \in I(A)_{s.a.}$, $\phi(x) \ge 0$ for all $\phi \in \Phi$ implies $x \ge 0$.

PROOF. We observe that the seminorm p on $I(A)_{s.a.}$ defined by $p(x)=\sup\{\|\phi(x)\|:\phi\in\Phi\}$ satisfies the conditions of Lemma 3.2. In fact, fix $x\in I(A)_{s.a.}$, $u\in A_u$ and $\phi\in\Phi$, and define a map $T_u:I(A)_{s.a.}\to I(A)_{s.a.}$ by $T_u(x)=u^*xu$. Then, since V is the injective envelope of $A_{s.a.}$, the linear isometry $T_u|_{A_{s.a.}}:A_{s.a.}\to A_{s.a.}$ extends to a linear isometry $S_u:V\to V$. Hence $S_{u^*}\circ\phi\circ T_u\in\Phi$ and $p(x)\geq \|S_{u^*}\circ\phi\circ T_u(x)\|=\|\phi\circ T_u(x)\|=\|\phi(u^*xu)\|$. Thus $p(x)\geq p(u^*xu)$, so that $p(x)=p(u^*xu)$. The other conditions are clearly satisfied. Therefore by Lemma 3.2,

$$\sup\{\|\phi(x)\|: \phi \in \Phi\} = p(x) = \|x\| \text{ for all } x \in I(A)_{s.a.},$$

and the left-hand side=sup{ $|f \circ \phi(x)| : \phi \in \Phi, f \in S(V)$ }, so that the weak* closed convex hull of $\{f \circ \phi : \phi \in \Phi, f \in S(V)\} = S(I(A))$, the state space of I(A). Hence if $\phi(x) \ge 0$ for all $\phi \in \Phi$ then $g(x) \ge 0$ for all $g \in S(I(A))$ and consequently $x \ge 0$. q. e. d.

LEMMA 3.4. For $x \in I(A)_{s,a,s}$

$$\{\phi(x): \phi \in \Phi\} = \{v \in V: \sup_{V} (-\infty, x]_A \leq v \leq \inf_{V} [x, +\infty)_A\}.$$

(The both sides in the inequalities exist since V is a boundedly complete vector lattice.)

PROOF. Since each contractive linear map $\psi: A_{s.a.} + Rx \to V$ with $\psi|_{A_{s.a.}} = \mathrm{id}_{A_{s.a.}}$ extends to an element of Φ , we have

$$\{\phi(x): \phi \in \Phi\} = \{\phi(x): \phi \text{ is a contractive linear map of } A_{s.a.} + \mathbf{R}x \text{ into } V \text{ with } \phi|_{A_{s.a.}} = \mathrm{id}_{A_{s.a.}}\}.$$

A $v \in V$ belongs to the right-hand side if and only if

$$-\|x+a\| \le v+a \le \|x+a\|$$
 for all $a \in A_{s,a,s}$

i. e.,

$$\sup_{V} \{-\|x+a\|-a: a \in A_{s.a.}\} \le v \le \inf_{V} \{\|x+a\|-a: a \in A_{s.a.}\}.$$

Clearly $\sup_{V} \{-\|x+a\|-a: a \in A_{s.a.}\} = w \text{ (say)} \leq \sup_{V} (-\infty, x]_A$. Moreover from the foregoing $w = \phi(x)$ for some $\phi \in \Phi$, so that $(-\infty, x]_A = \phi((-\infty, x]_A) \leq \phi(x) = w$ and $\sup_{V} (-\infty, x]_A \leq w$. Hence $\sup_{V} \{-\|x+a\|-a: a \in A_{s.a.}\} = \sup_{V} (-\infty, x]_A$ and similarly $\inf_{V} \{\|x+a\|-a: a \in A_{s.a.}\} = \inf_{V} [x, +\infty)_A$. q. e. d.

LEMMA 3.5. The sup-closure s-cl_{I(A)} $A_{s.a.}$ of $A_{s.a.}$ in $I(A)_{s.a.}$ is a real linear subspace of $I(A)_{s.a.}$.

PROOF. We show $s\text{-cl}_{I(A)}A_{s.a.} = \{x \in I(A)_{s.a.} : \phi(x) = \psi(x) \text{ for all } \phi, \psi \in \Phi\} = W$, say. This will complete the proof since W is linear. If $x \in s\text{-cl}_{I(A)}A_{s.a.}$ then $x = \sup_{I(A)}(-\infty, x]_A$. Put $v = \sup_{V}(-\infty, x]_A \in V$; then $v = \inf_{V} \mathcal{F}$ for some $\mathcal{F} \subset A_{s.a.}$ by the order density of $A_{s.a.}$ in V. Hence $I(A)_{s.a.} \supset (-\infty, x]_A \leq v \leq \mathcal{F} \subset I(A)_{s.a.}$, $x = \sup_{I(A)}(-\infty, x]_A \leq \mathcal{F}$, and $\mathcal{F} \subset [x, +\infty)_A$. Then $\sup_{V}(-\infty, x]_A = v = \inf_{V} \mathcal{F} \leq \inf_{V} [x, +\infty)_A$ and so $\sup_{V}(-\infty, x]_A = \inf_{V} [x, +\infty)_A$. Hence $x \in W$ by Lemma

3.4. Conversely let $x \in W$. If $I(A)_{s.a.} \ni y \ge (-\infty, x]_A$ then $\phi(y) \ge \phi((-\infty, x]_A) = (-\infty, x]_A$ for all $\phi \in \Phi$, so that $\phi(y) \ge \sup_V (-\infty, x]_A = \phi(x)$ by Lemma 3.4, and $\phi(y-x) \ge 0$. Lemma 3.3 implies $y-x \ge 0$, $y \ge x$. Thus $x = \sup_{I(A)} (-\infty, x]_A$, i. e., $x \in s\text{-cl}_{I(A)} A_{s.a.}$.

LEMMA 3.6. The inclusion map $A \subseteq I(A)$ is sup-preserving.

PROOF. Suppose that $\sup_A \mathcal{F} = a$ for some $\mathcal{F} \subset A_{s.a.}$ and $a \in A_{s.a.}$. Then $I(A)_{s.a.} \ni x \ge \mathcal{F}$ implies $\phi(x) \ge \phi(\mathcal{F}) = \mathcal{F}$ for all $\phi \in \Phi$, and $\phi(x) \ge \sup_V \mathcal{F} = \sup_A \mathcal{F} = a$ since the inclusion map $A_{s.a.} \subset V$ is sup-preserving. Hence $\phi(x-a) = \phi(x) - a \ge 0$ for all $\phi \in \Phi$ and $x \ge a$ by Lemma 3.3, so that $\sup_{I(A)} \mathcal{F} = a$. q. e. d.

LEMMA 3.7. Let (B, κ) be a regular extension of A and I(B) the injective envelope of B (B being considered as a C^* -subalgebra of I(B)). Then the extension $(I(B), \kappa)$ of A is the injective envelope of A.

PROOF. To see this we need only show that if $\phi \circ \kappa = \kappa$ with ϕ a completely positive map of I(B) into itself then $\phi = \mathrm{id}_{I(B)}$. By the regularity of (B, κ) and Lemma 3.6 with A replaced by B we have for each $\kappa \in B_{s.a.}$,

$$x = \sup_{B}(-\infty, x]_{\kappa(A)} = \sup_{I(B)}(-\infty, x]_{\kappa(A)}$$
.

Now $x \ge (-\infty, x]_{\kappa(A)}$ implies $\phi(x) \ge \phi((-\infty, x]_{\kappa(A)}) = (-\infty, x]_{\kappa(A)}$, which in turn implies $\phi(x) \ge \sup_{I(B)} (-\infty, x]_{\kappa(A)} = x$. Similarly $\phi(-x) \ge -x$ and $\phi(x) \le x$. Hence $\phi(x) = x$ for all $x \in B_{s.a.}$ and, since I(B) is the injective envelope of B, $\phi = \operatorname{id}_{I(B)}$.

q. e. d.

PROOF OF THEOREM 3.1. Define \overline{A} (resp. \widetilde{A}) as the monotone (resp. sup-) closure of A in its injective envelope I(A): $\overline{A} = m\text{-}\mathrm{cl}_{I(A)}A$ (resp. $\widetilde{A} = s\text{-}\mathrm{cl}_{I(A)}A$). Then Lemmas 1.4 and 1.6, together with Lemma 3.5, imply that \overline{A} and \widetilde{A} are both monotone closed C^* -subalgebras of I(A), hence also that $\overline{A} \subset \widetilde{A}$. Thus \overline{A} and \widetilde{A} are regular extensions of A. Moreover I(A), being injective, is monotone complete [20; Theorem 7.1], so that \overline{A} and \widetilde{A} are monotone complete. Since $I(\overline{A}) = I(A) = I(A)$, Lemma 3.6 implies that the inclusion maps $A \hookrightarrow \overline{A} \hookrightarrow \widetilde{A} \hookrightarrow I(A)$ are sup-preserving.

To see the maximality of \widetilde{A} and the uniqueness of \overline{A} and \widetilde{A} take a regular extension (B, κ) of A. Then $(I(B), \kappa)$ is the injective envelope of A (Lemma 3.7), so that by the uniqueness of the injective envelope there exists a *-isomorphism ι of I(B) onto I(A) with $\iota \circ \kappa = \mathrm{id}_A$. As seen in the proof of Lemma 3.7, $\kappa = \sup_{I(B)} (-\infty, \kappa]_{\kappa(A)}$ for all $\kappa \in B_{s,\alpha}$ and so

$$\iota(x) = \sup_{I(A)} \iota((-\infty, x]_{\kappa(A)}) = \sup_{I(A)} (-\infty, \iota(x)]_A \in \widetilde{A}.$$

Hence $\iota(B) \subset \widetilde{A}$, i. e., $(B, \kappa) \prec \widetilde{A}$, and if in addition (B, κ) is a maximal regular extension (resp. regular monotone completion) of A then $(B, \kappa) \sim \widetilde{A}$ [resp. $\iota(B) = \iota(m\text{-cl}_B\kappa(A)) = \iota(m\text{-cl}_{I(B)}\kappa(A)) = m\text{-cl}_{I(A)}A = \overline{A}$; hence $(B, \kappa) \sim \overline{A}$]. Thus \widetilde{A} (resp. \overline{A}) is a unique maximal regular extension (resp. regular monotone completion) of A.

REMARK 3.7. With A and I(A) as above take the monotone σ -closure σ -cl_{I(A)}A of A in I(A). Then σ -cl_{I(A)} $A \subset \overline{A} \subset \widetilde{A}$ and so σ -cl_{I(A)}A is identified with the regular σ -completion \widehat{A} of A in the sense of J. D. M. Wright (Lemma 1.4); hence $A \subset \widehat{A} \subset \overline{A} \subset \widetilde{A} \subset I(A)$. Moreover $Z_A \subset Z_{\widehat{A}} \subset Z_{\overline{A}} \subset Z_{\widehat{A}} \subset Z_{I(A)}$ (cf. [6; Corollary 4.3]), and if A is simple then so are \widehat{A} , \widehat{A} , \widehat{A} and I(A); hence \overline{A} , \widehat{A} and I(A) are AW^* -factors (cf. [6; Proposition 4.15]).

COROLLARY 3.8. If A is a separable, infinite dimensional, simple C*-algebra then its injective envelope I(A) is a σ -finite, injective, non W*, AW^* -factor of type III.

PROOF. As noted above $A \subset \widehat{A} \subset I(A)$ and I(A) is an injective AW^* -factor. By $[23\,;$ Theorem N] \widehat{A} is a monotone complete non W^* , AW^* -factor of type III and so $\widehat{A} = \overline{A}$. Since \overline{A} is monotone closed in I(A) and is non W^* , I(A) is also non W^* . Moreover I(A) is of type III since it is a simple AW^* -factor and 1 is an infinite projection of \widehat{A} , hence of I(A). By the separability of A and the construction of I(A) [6; Theorem 5.1] we may assume that A is a C^* -subalgebra of B(H) with H a separable Hilbert space and I(A) is completely order isomorphic to a self-adjoint linear subspace, containing A, of B(H). Since B(H) has a faithful state, V hence I(A) also has a faithful state. Hence I(A) is σ -finite.

REMARK 3.9. The following problem was left open in [6]: If A is a C^* -algebra and is embedded in an injective C^* -algebra B as a C^* -subalgebra, containing the unit, of B then can we take the injective envelope of A as a C^* -subalgebra of B? (The injective envelope of A is completely order isomorphic to some self-adjoint linear subspace of B and is *-isomorphic to a quotient C^* -algebra of some C^* -subalgebra of B.) This problem is affirmative in case A is commutative, but is negative in the general case. In fact let A be a UHF algebra acting on a Hilbert space so that the von Neumann algebra B generated by A is a hyperfinite II₁-factor. Then B is injective and the injective envelope I(A) of A is an AW^* -factor of type III by Corollary 3.8. Hence I(A) cannot be *-isomorphic to any C^* -subalgebra of B.

COROLLARY 3.10. If A is a C*-algebra and M_n is the C*-algebra of all $n \times n$ matrices over C then $(A \otimes M_n)^{\overline{\ }} = \overline{A} \otimes M_n$. In particular if A is monotone complete then so is $A \otimes M_n$, too.

PROOF. By Theorem 3.1, \overline{A} and $(A \otimes M_n)^{\overline{}} = B$, say, exist. If e is a minimal projection of M_n then $B \cong (1 \otimes e)B(1 \otimes e) \otimes M_n$ and $A \cong (1 \otimes e)(A \otimes M_n)(1 \otimes e)$, so that $\overline{A} \cong (1 \otimes e)(A \otimes M_n)^{\overline{}}(1 \otimes e) = (1 \otimes e)B(1 \otimes e)$ (Proposition 1.11). Hence $B \cong \overline{A} \otimes M_n$.

q. e. d.

If A is a monotone complete C^* -algebra then $A = \overline{A}$ is a monotone closed C^* -subalgebra of I(A) and, in particular, it is an AW^* -subalgebra of I(A). More generally we consider the following problem: If A is an AW^* -algebra then is

A an AW^* -subalgebra of I(A)? This is the case, as will be seen below, for a finite AW^* -algebra A; whereas the general case remains open. For a C^* -algebra A and a subset \mathcal{F} of A_p we denote the supremum (resp. infimum) of \mathcal{F} in A_p by $\bigvee_A \mathcal{F}$ (resp. $\bigwedge_A \mathcal{F}$) if it exists. The existence of $\bigvee_A \mathcal{F}$ need not imply that of $\sup_A \mathcal{F}$ (the supremum in $A_{s.a.}$) (see Example 4.7 below), but the converse is true:

LEMMA 3.11. With notation as above suppose that $\sup_A \mathcal{F}$ exists. Then $\bigvee_A \mathcal{F}$ exists and equals $\sup_A \mathcal{F}$.

PROOF. We need only check that $\sup_A \mathcal{F}$ is a projection. Put $x = \sup_A \mathcal{F}$. Since $\mathcal{F} \leq 1$, $e \leq x \leq 1$ for all $e \in \mathcal{F}$; hence e and x commute and so $e = e^2 \leq x^2$. Thus $0 \leq x = \sup_A \mathcal{F} \leq x^2 \leq 1$ and $x = x^2$.

LEMMA 3.12. If A is a finite AW*-algebra and \mathcal{F} is an increasing net in A_p then $\sup_A \mathcal{F}$ exists and $\bigvee_A \mathcal{F} = \sup_A \mathcal{F} = \sup_A \mathcal{F} = \bigvee_A \mathcal{F}$.

PROOF. Regard A as a C^* -subalgebra of \tilde{A} . Since \tilde{A} is monotone complete, $\sup_{\tilde{A}} \mathcal{F}$ exists and $\sup_{\tilde{A}} \mathcal{F} = \bigvee_{\tilde{A}} \mathcal{F} = \tilde{\ell}$, say (Lemma 3.11). Put $e = \bigvee_{\tilde{A}} \mathcal{F} \in A_p$ (this exists since A is AW^*). We need only show that $e = \tilde{\ell}$ since it follows then that $\sup_{\tilde{A}} \mathcal{F} \in A_p$ and $\sup_{\tilde{A}} \mathcal{F} = \sup_{\tilde{A}} \mathcal{F} = e$. Since A is order dense in \tilde{A} , so is eAe in $e\tilde{A}e$ (Lemma 1.10). Hence if a seminorm p on $(e\tilde{A}e)_{s.a.}$ satisfies $p(x) \leq \|x\|$ and $p(a) = \|a\|$ for all $x \in (e\tilde{A}e)_{s.a.}$ and $a \in (eAe)_{s.a.}$ then $p(x) = \|x\|$ for all $x \in (e\tilde{A}e)_{s.a.}$ (Proposition 2.6). Define a seminorm p on $(e\tilde{A}e)_{s.a.}$ by $p(x) = \sup\{\|xf\|: f \in \mathcal{F}\}$. Clearly $p(x) \leq \|x\|$ for all $x \in (e\tilde{A}e)_{s.a.}$ and $p(e-\tilde{e}) = 0$. Hence if we show

$$p(a) = ||a|| \quad \text{for all } a \in (eAe)_{s.a.}$$

the proof is complete since we have then $||e-\tilde{e}|| = p(e-\tilde{e}) = 0$ and $e=\tilde{e}$.

Proof of (3.1): Suppose on the contrary that there exist an $a \in (eAe)_{s.a.}$ and an $\varepsilon > 0$ such that $p(a) \le ||a|| - \varepsilon$. Then $afa \le ||afa|| = ||af||^2 \le p(a)^2 \le (||a|| - \varepsilon)^2$ for all $f \in \mathcal{F}$. We may assume that ||a|| is in the spectrum of a (if necessary, replace a by -a). Then we can take a nonzero projection g in a maximal commutative *-subalgebra, containing a, of eAe so that

$$||ag-||a||g|| < \delta$$
 and $\delta > 0$ satisfies $(||a||-\epsilon)^2 + 2||a||\delta < ||a||^2$.

Hence for each $f \in \mathcal{F}$ we have

$$gafag \leq (\|a\| - \varepsilon)^2 g$$

and

$$||gafag - ||a||^2 gfg|| = ||(ga - ||a||g)fag + ||a||gf(ag - ||a||g)||$$

$$\leq 2||a|||ag-||a||g|| < 2||a||\delta$$
.

Then

$$||a||^2 gfg < gafag + 2||a||\delta g \le \{(||a|| - \varepsilon)^2 + 2||a||\delta\}g$$

$$||f \wedge g|| = ||g(f \wedge g)g|| \le ||gfg|| \le (1/||a||^2) \{(||a|| - \varepsilon)^2 + 2||a||\delta\} ||g|| < 1$$

and so $f \wedge g = 0$. Hence by the continuity of the lattice operation in finite AW^* -algebras [11; Theorem 6.5] $g = e \wedge g = (\bigvee_A \mathcal{F}) \wedge g = \bigvee_A \{f \wedge g : f \in \mathcal{F}\} = 0$. This is a contradiction. q. e. d.

From Lemma 3.12 and the fact that \tilde{A} , being monotone closed in I(A), is an AW^* -subalgebra of I(A) we deduce the following:

PROPOSITION 3.13. A finite AW^* -algebra A is an AW^* -subalgebra of its injective envelope I(A).

REMARK 3.14. The above argument shows that if A is an AW^* -algebra for which the conclusion of Lemma 3.12, i.e.,

(3.2)
$$\sup_{A} \mathcal{F}$$
 exists for any increasing net \mathcal{F} in A_p ,

holds then A is an AW^* -subalgebra of the monotone complete C^* -algebra \widetilde{A} (or \overline{A} or I(A)). Conversely it is readily seen that if A is an AW^* -subalgebra of some monotone complete C^* -algebra then (3.2) holds.

§ 4. Normal and sup-preserving embeddings.

In this section some embeddings of C^* -algebras into another C^* -algebras are shown to be normal or sup-preserving. In the remainder of the paper the C^* -tensor product of two C^* -algebras A and B will always mean the minimal C^* -tensor product and will be denoted by $A \otimes B$.

PROPOSITION 4.1. For any C*-algebras A and B the map $A \ni x \mapsto x \otimes 1 \in A \otimes B$ is normal.

PROOF. Representing the injective envelope I(A) of A and B faithfully on some Hilbert spaces H and K respectively, we may assume that $A \subset I(A) \subset B(H)$ and $B \subset B(K)$, hence that $A \otimes B \subset I(A) \otimes I(B) \subset B(H) \otimes B(K) \subset B(H \otimes K)$. Since I(A) is injective, we have a projection ϕ of norm one from B(H) onto I(A); hence there is a projection $\phi \otimes 1$ of norm one from $B(H) \otimes B(K)$ onto $I(A) \otimes B(K)$ such that $(\phi \otimes 1)(x \otimes y) = \phi(x) \otimes y$ for all $x \in B(H)$ and $y \in B(K)$ [19; Theorem 1]. Let \mathcal{F} be a bounded increasing net in $A_{s.a.}$ with $\sup_A \mathcal{F} = x \in A_{s.a.}$. Since $B(H) \supset A$ is W^* , $\sup_{B(H)} \mathcal{F} = \text{strong limit of } \mathcal{F} = y \in B(H)$, say. Then we have

$$\phi(y) = \sup_{I(A)} \mathcal{G} = \sup_{A} \mathcal{G} = x$$

([20; the proof of Theorem 7.1] and Theorem 3.1) and strong limit of $\mathcal{F} \otimes 1$ in $B(H \otimes K) = y \otimes 1 \in B(H) \otimes B(K)$. Hence if $(A \otimes B)_{s.a.} \ni z \geq \mathcal{F} \otimes 1$ then $z \geq y \otimes 1$, so that $z = (\phi \otimes 1)(z) \geq (\phi \otimes 1)(y \otimes 1) = \phi(y) \otimes 1 = x \otimes 1$. Therefore $x \otimes 1 = \sup_{A \otimes B} \mathcal{F} \otimes 1$.

q. e. d.

COROLLARY 4.2. Let A and B be C*-algebras and let A_1 and B_1 be extensions of A and B respectively. Then

$$m\text{-cl}_{A_1\otimes B_1}A\otimes 1=(m\text{-cl}_{A_1}A)\otimes 1$$

and

$$(m\text{-}\mathrm{cl}_{A_1}A)\otimes (m\text{-}\mathrm{cl}_{B_1}B)\subset m\text{-}\mathrm{cl}_{A_1\otimes B_1}A\otimes B$$
.

PROOF. Since the map $A_1 \ni x \mapsto x \otimes 1 \in A_1 \otimes B_1$ is normal, $(m\text{-}\mathrm{cl}_{A_1}A) \otimes 1$ is monotone closed in $A_1 \otimes B_1$ and so $m\text{-}\mathrm{cl}_{A_1 \otimes B_1}A \otimes 1 \subset (m\text{-}\mathrm{cl}_{A_1}A) \otimes 1 \subset A_1 \otimes 1$. Hence $m\text{-}\mathrm{cl}_{A_1 \otimes B_1}A \otimes 1$ is monotone closed in $A_1 \otimes 1$. So if ϕ denotes the *-isomorphism of A_1 onto $A_1 \otimes 1$ given by $\phi(x) = x \otimes 1$ then $\phi^{-1}(m\text{-}\mathrm{cl}_{A_1 \otimes B_1}A \otimes 1) \supset A$ is monotone closed in A_1 ; hence $\phi^{-1}(m\text{-}\mathrm{cl}_{A_1 \otimes B_1}A \otimes 1) \supset m\text{-}\mathrm{cl}_{A_1}A$. Thus $m\text{-}\mathrm{cl}_{A_1 \otimes B_1}A \otimes 1 \supset \phi(m\text{-}\mathrm{cl}_{A_1}A) = (m\text{-}\mathrm{cl}_{A_1}A) \otimes 1$ and $m\text{-}\mathrm{cl}_{A_1 \otimes B_1}A \otimes 1 = (m\text{-}\mathrm{cl}_{A_1}A) \otimes 1$. By symmetry $m\text{-}\mathrm{cl}_{A_1 \otimes B_1}1 \otimes B = 1 \otimes (m\text{-}\mathrm{cl}_{B_1}B)$. On the other hand,

$$\begin{split} (m\text{-}\mathrm{cl}_{A_1}A) \otimes (m\text{-}\mathrm{cl}_{B_1}B) &= C^*((m\text{-}\mathrm{cl}_{A_1}A) \otimes 1 \cup 1 \otimes (m\text{-}\mathrm{cl}_{B_1}B)) \\ &= C^*(m\text{-}\mathrm{cl}_{A_1 \otimes B_1}A \otimes 1 \cup m\text{-}\mathrm{cl}_{A_1 \otimes B_1}1 \otimes B) \\ &\subset m\text{-}\mathrm{cl}_{A_1 \otimes B_1}A \otimes B \quad \text{(Lemma 1.4)}. \qquad \qquad \text{q. e. d.} \end{split}$$

COROLLARY 4.3. Let A and B be C*-algebras with A monotone complete. Then $A \otimes 1$ is a monotone closed C*-subalgebra of $(A \otimes B)$.

PROOF. Immediate from Corollary 4.2 and the fact that the inclusion map $A \otimes B \hookrightarrow (A \otimes B)^{-}$ is sup-preserving, hence normal. q. e. d.

This corollary shows that if A is a simple monotone complete non W^* , AW^* -factor then $(A \otimes B)^{-}$ is also a simple non W^* , AW^* -factor for any simple C^* -algebra B since $A \otimes B$ is simple (Remark 3.7).

PROPOSITION 4.4. Let A and B be C*-algebras. If B is commutative then the maps $A \ni x \mapsto x \otimes 1 \in A \otimes B$, $B \ni y \mapsto 1 \otimes y \in A \otimes B$ are sup-preserving.

PROOF. Put $\phi(x) = x \otimes 1 \in A \otimes B$ for $x \in A$. For $g \in S(B)$ let L_g be the linear map of $A \otimes B$ into A such that $L_g(\sum_{i=1}^n x_i \otimes y_i) = \sum_{i=1}^n g(y_i) x_i$ (cf. [20]); then L_g is positive and $L_g \circ \phi = \mathrm{id}_A$. Moreover $L_g(z) \geq 0$, $z \in (A \otimes B)_{s.a.}$, for all $g \in S(B)$ implies $z \geq 0$. In fact, since B is commutative, the weak* closed convex hull of $S(A) \otimes S(B)$ in $(A \otimes B)^* = S(A \otimes B)$ [18; Proposition 1]. Hence if $L_g(z) \geq 0$ for all $f \in S(A)$ and $g \in S(B)$ then $(f \otimes g)(z) = f(L_g(z)) \geq 0$ for all $f \in S(A)$ and $g \in S(B)$, so that $h(z) \geq 0$ for all $h \in S(A \otimes B)$. Therefore $z \geq 0$.

Let \mathcal{F} be a subset of $A_{s.a.}$ with $\sup_A \mathcal{F} = x \in A_{s.a.}$. If $(A \otimes B)_{s.a.} \ni z \geq \phi(\mathcal{F})$ then $A_{s.a.} \ni L_g(z) \geq L_g \circ \phi(\mathcal{F}) = \mathcal{F}$ and $L_g(z) \geq \sup_A \mathcal{F} = x$. Hence $L_g(z - \phi(x)) = L_g(z) - x \geq 0$ for all $g \in S(B)$ and from the foregoing $z - \phi(x) \geq 0$, $z \geq \phi(x)$. Thus $\sup_{A \otimes B} \phi(\mathcal{F}) = \phi(x)$. Similarly for the map $B \ni y \mapsto 1 \otimes y \in A \otimes B$. q. e. d.

We give an example which shows that Proposition 4.4 is not true for general C^* -algebras A and B. First we show the following:

LEMMA 4.5. For a Hilbert space H and a family \mathcal{F} consisting of projections of B(H) we have $\sup_{B(H)}\mathcal{F}=1$ if and only if the set $D=\{\xi\in H: \|\xi\|=1, p\xi=\xi\}$

for some $p \in \mathcal{F}$ is dense in the unit sphere of H.

PROOF. Sufficiency: Suppose that D is dense in the unit sphere of H. Then $B(H)_{s.a.} \ni x \ge \mathcal{F}$ implies $(x\xi, \xi) \ge (p\xi, \xi) = (\xi, \xi)$ for all $\xi \in D$ and $p \in \mathcal{F}$ with $p\xi = \xi$, and so $(x\xi, \xi) \ge (\xi, \xi)$ for all unit vectors ξ of H. Hence $x \ge 1$ and $\sup_{B(H)} \mathcal{F} = 1$.

Necessity: Suppose that $\sup_{B(H)} \mathcal{F} = 1$ but that D is not dense in the unit sphere of H. Then there exist a unit vector $\xi_0 \in H$ and an $\varepsilon > 0$ such that $\|\xi_0 - \xi\| \ge \varepsilon$ for all $\xi \in D$. Let p_0 be the projection of H onto $C\xi_0$. We have $\|p\xi_0\| \le 1 - \varepsilon^2/2$ for all $p \in \mathcal{F}$ since $\varepsilon^2 \le \|\xi_0 - (p\xi_0/\|p\xi_0\|)\|^2 = 2(1 - \|p\xi_0\|)$. Hence for $p \in \mathcal{F}$,

$$|p_0 p p_0| = ||p_0 p p_0||p_0$$
 and $||p_0 p p_0|| = (p\xi_0, \xi_0) = ||p\xi_0||^2 \le (1 - \varepsilon^2/2)^2$,

so that $p_0 \mathcal{F} p_0 \leq (1 - \varepsilon^2/2)^2 p_0$. On the other hand, by Lemma 1.9, $\sup_{B(H)} p_0 \mathcal{F} p_0 = p_0(\sup_{B(H)} \mathcal{F}) p_0 = p_0$, a contradiction. q. e. d.

EXAMPLE 4.6. The map $M_2 \ni x \mapsto x \otimes 1 \in M_2 \otimes M_2$ is not sup-preserving, where M_2 denotes the C^* -algebra of 2×2 matrices over C.

We identify M_2 with $B(C^2)$, where C^2 is the two-dimensional Hilbert space. Suppose that the map $\phi: M_2 \ni x \mapsto x \otimes 1 \in M_2 \otimes M_2$ is sup-preserving and let $\mathcal F$ be the family of all minimal projections in M_2 . Then $\sup_{M_2 \in \mathcal F} = 1$ by Lemma 4.5 and so $\sup_{M_2 \otimes M_2} \mathcal F \otimes 1 = \sup_{M_2 \otimes M_2} \phi(\mathcal F) = \phi(1) = 1 \otimes 1$. By symmetry $\sup_{M_2 \otimes M_2} 1 \otimes \mathcal F = 1 \otimes 1$. Hence by Lemma 1.9,

$$\sup_{M_2 \otimes M_2} \mathcal{F} \otimes q = (1 \otimes q) (\sup_{M_2 \otimes M_2} \mathcal{F} \otimes 1) (1 \otimes q) = 1 \otimes q$$

for all $q \in \mathcal{F}$, so that

$$\begin{split} \sup_{M_2\otimes M_2} & \mathcal{F} \otimes \mathcal{F} = \sup_{M_2\otimes M_2} \cup \left\{ \mathcal{F} \otimes q : \ q \in \mathcal{F} \right\} \\ & = \sup_{M_2\otimes M_2} \left\{ \sup_{M_2\otimes M_2} \mathcal{F} \otimes q : \ q \in \mathcal{F} \right\} \\ & = \sup_{M_2\otimes M_2} \left\{ 1 \otimes q : \ q \in \mathcal{F} \right\} \\ & = \sup_{M_2\otimes M_2} 1 \otimes \mathcal{F} = 1 \otimes 1 \;, \end{split}$$

which implies again by Lemma 4.5 that the set $D = \{\xi \otimes \eta \in C^2 \otimes C^2 : \xi, \eta \in C^2, \|\xi\| = \|\eta\| = 1\}$ is dense in the unit sphere of $C^2 \otimes C^2$. But this is a contradiction since the unit vector $(\xi_1 \otimes \xi_1 + \xi_1 \otimes \xi_2 + \xi_2 \otimes \xi_1 - \xi_2 \otimes \xi_2)/2$ with $\{\xi_1, \xi_2\}$ an orthonormal basis in C^2 does not belong to the closed set D.

We give another example, which will be used later.

EXAMPLE 4.7. Let $A = \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \in M_2 : \alpha, \beta \in C \right\} \subset M_2$. Then the inclusion map $A \subseteq M_2$ is not sup-preserving.

In fact
$$\sup_{A} \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 since A is commutative. But

(4.1)
$$\sup_{M_2} \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \text{ does not exist}$$

since if it does then it must be a projection (Lemma 3.11), and so

$$\sup_{M_{2}} \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix};$$
$$\begin{pmatrix} 2 & \sqrt{2} \\ \sqrt{2} & 2 \end{pmatrix} \ge \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix};$$
$$\begin{pmatrix} 2 & \sqrt{2} \\ \sqrt{2} & 2 \end{pmatrix} \ge \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

but

while

The next lemma is motivated by the observation due to E.G. Effros [5; (2.2)]:

LEMMA 4.8. Let A be a C^* -algebra and p a projection of A. Then for $x \in A_{s.a.}$ we have $x \ge 0$ if and only if $p \times p \ge 0$, $(1-p)\times(1-p)\ge 0$ and $p \times p + \varepsilon p \ge p \times (1-p)\{(1-p)\times(1-p)+\varepsilon\}^{-1}(1-p)\times p$ for all $\varepsilon > 0$.

PROOF. For $\varepsilon > 0$ put $x_{\varepsilon} = x + \varepsilon$ and $(x_{\varepsilon})_{ij} = p_i x_{\varepsilon} p_j$, i, j = 1, 2, where $p_1 = p$ and $p_2 = 1 - p$. Then $x \ge 0$ if and only if $x_{\varepsilon} \ge 0$ for all $\varepsilon > 0$ if and only if $(x_{\varepsilon})_{11} \ge 0$, $(x_{\varepsilon})_{22} \ge 0$ and

(4.2)
$$1+(x_{\varepsilon})_{11}^{-1/2}(x_{\varepsilon})_{12}(x_{\varepsilon})_{22}^{-1/2}+(x_{\varepsilon})_{22}^{-1/2}(x_{\varepsilon})_{21}(x_{\varepsilon})_{11}^{-1/2}$$
$$=\{(x_{\varepsilon})_{11}^{-1/2}+(x_{\varepsilon})_{22}^{-1/2}\}\ x_{\varepsilon}\{(x_{\varepsilon})_{11}^{-1/2}+(x_{\varepsilon})_{22}^{-1/2}\}\geq 0$$

for all $\varepsilon > 0$, where $(x_{\varepsilon})_{ii}^{-1/2} = \text{the } -1/2$ power of $(x_{\varepsilon})_{ii}$ in $p_i A p_i = p_i (p_i x p_i + \varepsilon)^{-1/2} p_i$, i=1, 2. Moreover (4.2) holds if and only if

$$\{(x_\varepsilon)_{11}^{-1/2}(x_\varepsilon)_{12}(x_\varepsilon)_{22}^{-1/2}\}\;\{(x_\varepsilon)_{11}^{-1/2}(x_\varepsilon)_{12}(x_\varepsilon)_{22}^{-1/2}\}\,*\leqq p_1\,\text{,}$$

i. e.,
$$px(1-p)\{(1-p)x(1-p)+\varepsilon\}^{-1}(1-p)x p \le px p + \varepsilon p$$
.

In fact, putting $y = (x_{\varepsilon})_{11}^{-1/2} (x_{\varepsilon})_{12} (x_{\varepsilon})_{22}^{-1/2}$, $1 + y + y^* \ge 0$ implies $p_1 - yy^* = (p_1 - y)(1 + y + y^*)(p_1 - y)^* \ge 0$, and conversely $yy^* \le p_1$ implies $1 + y + y^* = (p_2 + y)(p_2 + y)^* + p_1 - yy^* \ge 0$. q. e. d.

PROPOSITION 4.9. For a C^* -algebra A and a projection p of A the inclusion map $pAp \hookrightarrow A$ is sup-preserving.

PROOF. Let \mathcal{F} be a subset of $(pAp)_{s.a.}$ with $\sup_{pAp}\mathcal{F}=x\in(pAp)_{s.a.}$. By Lemma 4.8, $A_{s.a.}\ni y\ge a$ for all $a\in\mathcal{F}$ if and only if $pyp\ge a$, $(1-p)y(1-p)\ge 0$ and $pyp-a+\varepsilon p\ge py(1-p)\{(1-p)y(1-p)+\varepsilon\}^{-1}(1-p)yp$ for all $a\in\mathcal{F}$ and $\varepsilon>0$, which imply $pyp\ge x$, $(1-p)y(1-p)\ge 0$ and $pyp-x+\varepsilon p\ge py(1-p)\{(1-p)y(1-p)+\varepsilon\}^{-1}(1-p)yp$ for all $\varepsilon>0$, so that $y\ge x$ again by Lemma 4.8. Hence $\sup_A \mathcal{F}=x$.

From this proposition a sharpening of Lemma 1.9 follows (compare with [10; Lemma 2.1]):

COROLLARY 4.10. Let A be a C*-algebra and a any element of A. If \mathcal{F} is a bounded subset of $A_{s,a}$ such that $\sup_A \mathcal{F}$ exists then $\sup_A a^* \mathcal{F} a = a^* (\sup_A \mathcal{F}) a$.

PROOF. Embed A in its regular monotone completion \overline{A} . Since \overline{A} is AW^* , a has the polar decomposition a=wr, where $r=(a^*a)^{1/2}\in A$ and w is a partial isometry of \overline{A} such that $w^*w=\operatorname{RP}(a)$ and $ww^*=\operatorname{LP}(a)$ [1; p. 133, Proposition 2]. Put $e=w^*w$ and $f=ww^*$. By Theorem 3.1, $\sup_A \mathcal{F}=\sup_{\overline{A}} \mathcal{F}$, and by Lemma 1.9 and Proposition 4.9,

$$\begin{split} w^*(\sup_{\overline{A}} \mathcal{F}) w &= w^* f(\sup_{\overline{A}} \mathcal{F}) f w = w^*(\sup_{\overline{A}} f \mathcal{F} f) w \\ &= w^*(\sup_{f\overline{A}f} f \mathcal{F} f) w = \sup_{e\overline{A}e} w^* \mathcal{F} w \\ &= \sup_{\overline{A}} w^* \mathcal{F} w \;, \end{split}$$

where we used also the facts that if $\sup_{\overline{A}} \mathcal{G}$ with $\mathcal{G} \subset (f\overline{A}f)_{s.a.}$ exists then $\sup_{\overline{A}} \mathcal{G} = \sup_{f\overline{A}f} \mathcal{G}$ and that the map $f\overline{A}f \ni x \mapsto w^*xw \in e\overline{A}e$ is a *-isomorphism. Hence again by Lemma 1.9,

$$a^*(\sup_A \mathcal{F})a = rw^*(\sup_{\overline{A}} \mathcal{F})wr = r(\sup_{\overline{A}} w^* \mathcal{F}w)r$$

= $\sup_{\overline{A}} rw^* \mathcal{F}wr = \sup_A a^* \mathcal{F}a$. q. e. d.

We characterize the sup-preserving unital *-monomorphism of a commutative AW^* -algebra into another C^* -algebra.

LEMMA 4.11. If A is a monotone closed C*-subalgebra of a commutative AW^* -algebra C then the inclusion map $A \subseteq C$ is sup-preserving.

PROOF. By hypothesis the inclusion map $A \subseteq C$ is normal. If \mathcal{F} is a subset of $A_{s.a.}$ with $\sup_A \mathcal{F} = x \in A_{s.a.}$ then, for a fixed $a_0 \in \mathcal{F}$, $\mathcal{G} = \{\sup_A (\mathcal{F}' \cup \{a_0\}) : \mathcal{F}' \text{ is a finite subset of } \mathcal{F} \}$ is a bounded increasing net in $A_{s.a.}$ with $\sup_A \mathcal{G} = x$. (Note that $A_{s.a.}$ is a lattice.) Hence $\sup_C \mathcal{G} = x$. Moreover, since $\sup_A (\mathcal{F}' \cup \{a_0\}) = \sup_C (\mathcal{F}' \cup \{a_0\}) \leq \sup_C \mathcal{F}$, we have $\sup_C \mathcal{G} = \sup_C \mathcal{F}$. Thus $\sup_A \mathcal{F} = \sup_A \mathcal{G} = \sup_C \mathcal{G} = \sup_C \mathcal{F}$.

LEMMA 4.12. Let B be an AW*-algebra and e_1 , e_2 two orthogonal projections of B. If $\sup_{B} \{e_1, e_2\} = e_1 + e_2$ then $C(e_1)C(e_2) = 0$, where C(p) with p a projection denotes the central cover of p in B.

PROOF. By the comparability theorem [1; p. 80, Corollary 1] there exists a central projection h such that

$$he_1 < he_2$$
 and $(1-h)e_1 > (1-h)e_2$.

Suppose $C(e_1)C(e_2)\neq 0$. Then $he_1\neq 0$ or $(1-h)e_2\neq 0$; e.g., let $he_1\neq 0$. We have a projection $p\in B$ and a partial isometry $w\in B$ such that $he_1=w^*w\sim p=ww^*\leq he_2$. It follows from $\sup_{B}\{e_1, e_2\}=e_1+e_2$ that

(4.3)
$$\sup_{B} \{he_1, p\} = he_1 + p.$$

In fact if $B_{s.a.} \ni x \ge he_1$, p then

$$x+(1-h)e_1+e_2-p \ge \begin{cases} x+(1-h)e_1 \ge e_1 \\ x+e_2-p \ge e_2; \end{cases}$$

hence $x+(1-h)e_1+e_2-p\geq e_1+e_2$ and $x\geq he_1+p$. Since the algebra $Che_1+Cw+Cw^*+Cp \subset B$ is *-isomorphic to M_2 under the *-isomorphism which sends he_1 ,

$$w$$
, w^* , p to $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ respectively, (4.3) means that

$$\sup_{M_2} \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \text{ contradictory to (4.1) in Example 4.7.}$$

LEMMA 4.13. Let A be a commutative AW*-algebra and B an extension of A which is AW* and contains A as a monotone closed C*-subalgebra. Then the inclusion map $A \subseteq B$ is sup-preserving if and only if $A \subseteq Z_B$.

PROOF. Sufficiency: Let $\sup_A \mathcal{F} = a_0$ for some $\mathcal{F} \subset A_{s.a.}$ and $a_0 \in A_{s.a.}$. Then we must show that $B_{s.a.} \ni x \ge \mathcal{F}$ implies $x \ge a_0$. But, since $A \subset Z_B$, there exists a maximal commutative *-subalgebra C of B which contains A and x. Then by Lemma 4.11, $x \ge \sup_C \mathcal{F} = \sup_A \mathcal{F} = a_0$.

Necessity: Suppose that the inclusion map $A \subseteq B$ is sup-preserving and let $e \in A_p$. Then $\sup_B \{e, 1-e\} = \sup_A \{e, 1-e\} = 1$, and by Lemma 4.12, C(e)C(1-e) = 0; hence $e \le C(e) \le 1 - C(1-e) \le 1 - (1-e) = e$, $e = C(e) \in Z_B$. Thus $A \subset Z_B$.

a. e. d.

PROPOSITION 4.14. Let A be a commutative AW^* -algebra and B an extension of A. Then the inclusion map $A \subseteq B$ is sup-preserving if and only if it is normal and $A \subseteq Z_B$.

PROOF. Since the inclusion map $B \subseteq \overline{B}$ is sup-preserving, the inclusion map $A \subseteq B$ is sup-preserving if and only if $A \subseteq \overline{B}$ is. Moreover, since $Z_B \subseteq Z_{\overline{B}}$ (Remark 3.7) and so $Z_B = Z_{\overline{B}} \cap B$, $A \subseteq Z_B$ if and only if $A \subseteq Z_{\overline{B}}$. On the other hand, since A is monotone complete, $A \subseteq B$ is normal if and only if A is monotone closed in \overline{B} . Hence Lemma 4.13 applied to A and \overline{B} completes the proof.

Q. e. d.

REMARK 4.15. Let A be a commutative AW^* -algebra and B an extension of A which is an AW^* -algebra. Then A is monotone closed in B if and only if it is an AW^* -subalgebra of B. Necessity is clear. Sufficiency: Take a maximal commutative *-subalgebra C of B which contains A. Then C is monotone closed in B since $\sup_B \mathcal{F} = x$ with \mathcal{F} a bounded increasing net in $C_{s.a.}$ and $x \in B_{s.a.}$ implies that $u^*xu = \sup_B u^*\mathcal{F}u = \sup_B \mathcal{F} = x$ for all $u \in C_u$, hence that $x \in C' \cap B = C$. Moreover it is readily seen that an AW^* -subalgebra of a commutative AW^* -algebra is monotone closed.

§ 5. Regular extensions of C^* -tensor products.

In this section we consider the regular extensions of the C^* -tensor products of special C^* -algebras.

PROPOSITION 5.1. Let A be a commutative C^* -algebra and B(H) the type I W^* -factor with dim $H=\aleph$. Then $(A\otimes B(H))^-$ is the \aleph -homogeneous type I AW^* -algebra with center isomorphic to \overline{A} . Conversely an \aleph -homogeneous type I AW^* -algebra B is of the form $B=(Z\otimes B(H))^-$ with Z the center of B and dim $H=\aleph$.

PROOF. Take an orthogonal family $\{p_i\}_{i\in I}$ of minimal projections in B(H) with $\bigvee_{B(H)} \{p_i \colon i \in I\} = 1$ and $\overline{I} = \aleph$. Then $\{\sum_{i \in J} p_i \colon J \subset I \text{ finite subsets}\}$ is an increasing net with supremum 1 and so by Proposition 4.1,

$$\sup_{(A \otimes B(H))} \{\sum_{i \in J} 1 \otimes p_i : J \subset I \text{ finite subsets}\} = 1 \otimes 1;$$

hence

$$\bigvee_{(A \otimes B(H))} - \{1 \otimes p_i : i \in I\} = 1 \otimes 1$$
.

By Proposition 1.11 we have

$$(1 \otimes p_i)(A \otimes B(H))^{-}(1 \otimes p_i) = \{(1 \otimes p_i)(A \otimes B(H))(1 \otimes p_i)\}^{-}$$
$$= (A \otimes p_i)^{-} \cong \overline{A}$$

with \overline{A} commutative, so that the $1 \otimes p_i$ are mutually equivalent abelian projections of $(A \otimes B(H))$, with supremum $1 \otimes 1$. Hence $(A \otimes B(H))$ is an \aleph -homogeneous type I AW^* -algebra with center $\overline{A} \otimes 1$. The second statement of the theorem is obvious from the first one and the uniqueness of the \aleph -homogeneous type I AW^* -algebra for the given center and \aleph [13; Theorem 1]. q. e. d.

The next result shows that with notation as above we have $(A \otimes B(H))^- = (A \otimes B(H))^- = I(A \otimes B(H))$.

PROPOSITION 5.2. Any type I AW*-algebra is injective.

PROOF. Let A be a type I AW^* -algebra. We may and will assume that A is homogeneous since each type I AW^* -algebra is a C^* -direct sum of homogeneous ones and a C^* -direct sum is injective whenever each direct summand is. Then by Proposition 5.1 we have $A=(Z\otimes B(K))^{-1}$ with Z a commutative AW^* -algebra and K a Hilbert space. We assume that Z is a C^* -subalgebra, containing the unit, of B(H) with H a Hilbert space. Since Z is injective, there exists a completely positive projection ϕ of B(H) onto Z. Let $\{\eta_{\alpha}\}_{\alpha\in I}$ be an orthonormal basis in K, $\overline{I}=\aleph$ and $I_{\alpha}\colon H\to H\otimes K$ the linear isometry defined by $I_{\alpha}\xi=\xi\otimes\eta_{\alpha}$. Then each $x\in B(H\otimes K)$ has the matrix representation $x=[x_{\alpha\beta}]$ with $x_{\alpha\beta}=J_{\alpha}^*xJ_{\beta}\in B(H)$, α , $\beta\in I$. Then the map

$$\phi \otimes 1 : B(H \otimes K) \rightarrow B(H \otimes K), (\phi \otimes 1)([x_{\alpha\beta}]) = [\phi(x_{\alpha\beta})]$$

is a well-defined completely positive projection. In fact let p_{α} be the projection of K onto $C\eta_{\alpha}$ and let $\{q_{\gamma}\}$ be the family of all finite sums of the p_{α} . Then, since ϕ is completely positive, for each $x \in B(H \otimes K)$ we have

$$\sup_{\gamma} \|(1 \otimes q_{\gamma}) [\phi(x_{\alpha\beta})] (1 \otimes q_{\gamma}) \| \leq \sup_{\gamma} \|(1 \otimes q_{\gamma}) [x_{\alpha\beta}] (1 \otimes q_{\gamma}) \|$$

$$= \|x\|,$$

where $(1 \otimes q_7) [\phi(x_{\alpha\beta})] (1 \otimes q_7)$ denotes the matrix $[y_{\alpha\beta}] \in B(H \otimes K)$ such that $y_{\alpha\beta} = \phi(x_{\alpha\beta})$ if $p_{\alpha}q_7 = p_{\alpha}$ and $p_{\beta}q_7 = p_{\beta}$; =0 otherwise. This implies that the element in $B(H \otimes K)$ with the matrix representation $[\phi(x_{\alpha\beta})]$ exists and that $\phi \otimes 1$ is a well-defined contractive projection. Moreover, replacing K in the above argument by the direct sum of n copies of K $(n=1, 2, \cdots)$, we see that $\phi \otimes 1$ is completely positive. Hence $(\phi \otimes 1)(B(H \otimes K)) = V$, say, is an injective operator system and so V, equipped with the multiplication given by $x \circ y = (\phi \otimes 1)(xy)$, is an injective C^* -algebra which contains $Z \otimes B(K)$ as a C^* -subalgebra [3; Theorem 3.1]. As in Proposition 5.1 we have

$$(1 \otimes p_{\alpha'}) \circ V \circ (1 \otimes p_{\alpha'}) = \{ [x_{\alpha\beta}] \in V : x_{\alpha\beta} = 0 \text{ if } \alpha \neq \alpha' \text{ or } \beta \neq \alpha' \}$$

$$\cong Z$$

and $\bigvee_{v} 1 \otimes p_{\alpha} = \sup_{v} 1 \otimes q_{r} = (\phi \otimes 1)(\sup_{B \in H \otimes K} 1 \otimes q_{r}) = 1 \otimes 1$, so that V is an \aleph -homogeneous type I AW^* -algebra with center Z. Hence $A \cong V$ is injective. q. e. d.

PROPOSITION 5.3. Let A be an arbitrary C^* -algebra and suppose that (i) B is a commutative C^* -algebra or that (ii) B is a type I AW^* -algebra. Then $\widetilde{A} \otimes \widetilde{B}$ is a regular extension of $A \otimes B$, i.e., $\widetilde{A} \otimes \widetilde{B} \subset (A \otimes B)^{\sim}$.

PROOF. (i) We first show that $A \otimes B$ is order dense in $\widetilde{A} \otimes B$. If $x \in \widetilde{A}_{s.a.}$ then $x = \sup_{\widetilde{A}} \mathscr{F}$ for some $\mathscr{F} \subset A_{s.a.}$, and by Proposition 4.4, $x \otimes 1 = \sup_{\widetilde{A} \otimes B} \mathscr{F} \otimes 1$. Hence for $y \in B^+$,

$$\begin{split} x \otimes y &= (1 \otimes y^{1/2})(x \otimes 1)(1 \otimes y^{1/2}) \\ &= \sup_{\widetilde{A} \otimes B} (1 \otimes y^{1/2})(\mathcal{F} \otimes 1)(1 \otimes y^{1/2}) \\ &= \sup_{\widetilde{A} \otimes B} \mathcal{F} \otimes y \quad \text{(Lemma 1.9)}. \end{split}$$

The set consisting of the elements of the form $x_1 \otimes y_1 + \cdots + x_n \otimes y_n$ with $x_1, \dots, x_n \in \widetilde{A}_{s.a.}$ and $y_1, \dots, y_n \in B^+$ is norm dense in $(\widetilde{A} \otimes B)_{s.a.}$, and from the foregoing $x_i \otimes y_i = \sup_{\widetilde{A} \otimes B} \mathcal{G}_i$ for some $\mathcal{G}_i \subset (A \otimes B)_{s.a.}$; hence

$$x_1 \otimes y_1 + \cdots + x_n \otimes y_n = \sup_{A \otimes B} (\mathcal{G}_1 + \cdots + \mathcal{G}_n).$$

Thus $A \otimes B$ is order dense in $\widetilde{A} \otimes B$. A similar process shows that $\widetilde{A} \otimes B$ is order dense in $\widetilde{A} \otimes \widetilde{B}$, so that $A \otimes B$ is order dense in $\widetilde{A} \otimes \widetilde{B}$ (Lemma 2.5).

(ii) Since B is type I AW^* , there exists an orthogonal family $\{p_i\}_{i\in I}$ of nonzero abelian projections of B with supremum 1. The family $\{q_J\}$ of all finite

sums $q_J = \sum_{i \in J} p_i$ ($J \subset I$ finite subsets) forms an increasing net and we have $\sup_B q_J = 1$ since B is monotone complete and $\sup_B q_J$ is a projection (Lemma 3.11). Hence by Proposition 4.1, $\sup_{\widetilde{A} \otimes B} 1 \otimes q_J = 1 \otimes 1$, and for each $x \in \widetilde{A}^+$,

$$x \otimes 1 = (x^{1/2} \otimes 1)(1 \otimes 1)(x^{1/2} \otimes 1) = \sup_{A \otimes B} x \otimes q_J$$
.

Moreover, since $p_i B p_i$ is commutative, by (i) and Proposition 4.9 we have

$$x \otimes p_i = \sup_{A \otimes p_i B p_i} \mathcal{F}_i = \sup_{A \otimes B} \mathcal{F}_i$$

for some $\mathcal{F}_i \subset (A \otimes p_i B p_i)_{s.a.}$, so that

$$x \otimes q_J = \sum_{j \in J} x \otimes p_i = \sup_{\lambda \otimes B} \sum_{i \in J} \mathcal{F}_i$$
.

Hence we have

$$x \otimes 1 = \sup_{A \otimes B} \{ \sum_{i \in J} \mathcal{F}_i : J \subset I \text{ finite subsets} \}$$

and so for $x \in \widetilde{A}_{s,a,s}$

$$x \otimes 1 = (x + ||x||) \otimes 1 - ||x|| (1 \otimes 1) = \sup_{A \otimes B} \{G - ||x|| (1 \otimes 1)\}$$

with $\mathcal{Q}\subset (A\otimes B)_{s.a.}$. Since $\widetilde{B}=B$ by Proposition 5.2, the reasoning as in (i) completes the proof. q. e. d.

COROLLARY 5.4. Under the same hypothesis as above we have $\overline{A} \otimes \overline{B} \subset (A \otimes B)^{\overline{}}$. PROOF. Note by the construction that $\overline{A} = m\text{-}\operatorname{cl}_{\widetilde{A}}A$ and $\overline{B} = m\text{-}\operatorname{cl}_{\widetilde{B}}B$. Since $\widetilde{A} \otimes \widetilde{B} \subset (A \otimes B)^{\sim}$ and the inclusion map $\widetilde{A} \otimes \widetilde{B} \subseteq (A \otimes B)^{\sim}$ is normal, $m\text{-}\operatorname{cl}_{\widetilde{A} \otimes \widetilde{B}}A \otimes B \subset m\text{-}\operatorname{cl}_{(A \otimes B)} \sim A \otimes B = (A \otimes B)^{\overline{}}$. Moreover by Corollary 4.2,

$$\overline{A} \otimes \overline{B} = (m - \operatorname{cl}_{\widetilde{A}} A) \otimes (m - \operatorname{cl}_{\widetilde{B}} B) \subset m - \operatorname{cl}_{\widetilde{A} \otimes \widetilde{B}} A \otimes B$$
.

Hence $\overline{A} \otimes \overline{B} \subset (A \otimes B)^{-}$.

q. e. d.

COROLLARY 5.5. For any C*-algebra A we have $(A \otimes M_n)^{\sim} = \widetilde{A} \otimes M_n$.

PROOF. We have $\widetilde{A} \otimes M_n \subset (A \otimes M_n)^{\sim}$. Since $1 \otimes M_n \subset (A \otimes M_n)^{\sim}$, $(A \otimes M_n)^{\sim}$ is of the form $B \otimes M_n$ with $B \supset A$ a C^* -algebra. Take a minimal projection e of M_n . Then $(1 \otimes e)(A \otimes M_n)(1 \otimes e) \cong A$ and $(1 \otimes e)(B \otimes M_n)(1 \otimes e) \cong B$, so that A is order dense in B (Lemma 1.10), i. e., $A \subset B \subset \widetilde{A}$. Hence $(A \otimes M_n)^{\sim} = B \otimes M_n \subset \widetilde{A} \otimes M_n$ and so $(A \otimes M_n)^{\sim} = \widetilde{A} \otimes M_n$.

§ 6. The type I direct summand of the injective envelope.

In this section we see that for any C^* -algebra A the maximum type I direct summands of \overline{A} and I(A) coincide (Corollary 6.5). Hence the study of I(A) is reduced to those of \overline{A} with A any C^* -algebra and of I(A) with A a continuous monotone complete AW^* -algebra.

We prepare some lemmas.

LEMMA 6.1. Let A be a monotone complete C^* -algebra, I(A) its injective

envelope and e_1 , e_2 projections of A. Then we have

$$\bigvee_{A} \{e_1, e_2\} = \bigvee_{I(A)} \{e_1, e_2\} \quad and \quad \bigwedge_{A} \{e_1, e_2\} = \bigwedge_{I(A)} \{e_1, e_2\}.$$

RROOF. Put $a=(e_1+e_2)/\|e_1+e_2\| \in A_{s.a.}$. Then $\sup_A \{a^{1/n}: n=1, 2, \cdots\}$ exists and equals $\bigvee_A \{e_1, e_2\}$. Similarly $\sup_{I(A)} \{a^{1/n}: n=1, 2, \cdots\} = \bigvee_{I(A)} \{e_1, e_2\}$. Hence by Theorem 3.1, $\bigvee_A \{e_1, e_2\} = \sup_A \{a^{1/n}: n=1, 2, \cdots\} = \sup_{I(A)} \{a^{1/n}: n=1, 2, \cdots\} = \bigvee_{I(A)} \{e_1, e_2\}$. Moreover $\bigwedge_A \{e_1, e_2\} = 1 - \bigvee_A \{1-e_1, 1-e_2\} = 1 - \bigvee_{I(A)} \{1-e_1, 1-e_2\} = \bigwedge_{I(A)} \{e_1, e_2\}$. q. e. d.

LEMMA 6.2. Let A be a C*-algebra, I(A) its injective envelope and h a central projection of I(A). Then the injective envelope of hA is hI(A).

PROOF. We have $hA \subset hI(A)$, and hI(A) is injective. Hence we need only show that if $\phi: hI(A) \to hI(A)$ is a completely positive map with $\phi|_{hA} = \mathrm{id}_{hA}$ then $\phi = \mathrm{id}_{hI(A)}$. But the map $\psi: I(A) \to I(A)$ defined by $\psi(x) = \phi(hx) + (1-h)x$, $x \in I(A)$ is completely positive and $\psi|_A = \mathrm{id}_A$, so that $\psi = \mathrm{id}_{I(A)}$ and $\phi = \mathrm{id}_{hI(A)}$ as desired.

THEOREM 6.3. If A is monotone complete C*-algebra and I(A) is its injective envelope then $Z_A=Z_{I(A)}$.

PROOF. We know that $Z_A \subset Z_{I(A)}$ [6; Corollary 4.3]. To see the converse inclusion take a projection $h \in Z_{I(A)}$ and let $\mathcal{F} = \{e \in A_p : e \geq h\}$. Put $h_1 = \bigwedge_A \mathcal{F} \in A_p$; then $h_1 \in Z_A$ and $h_1 \geq h$. In fact, since $u^* \mathcal{F} u = \mathcal{F}$ for all $u \in A_u$, we have $u^* h_1 u = h_1$ for all $u \in A_u$. Moreover \mathcal{F} is a decreasing net since for e_1 , $e_2 \in \mathcal{F}$ we have $\bigwedge_A \{e_1, e_2\} = \bigwedge_{I(A)} \{e_1, e_2\} \geq h$ by Lemma 6.1, so that $h_1 = \bigwedge_A \mathcal{F} = \inf_{I(A)} \mathcal{F} \geq h$ (Lemma 3.11).

Define a *-homomorphism $\pi: h_1I(A) \to hI(A)$ by $\pi(x) = hx$; then $\pi|_{h_1A}$ is a *-isomorphism of h_1A onto hA. In fact, $\operatorname{Ker}(\pi|_{h_1A})$, being a two-sided ideal of the AW^* -algebra h_1A , is generated by its projections [1; p. 140, Proposition 5]. So if $\operatorname{Ker}(\pi|_{h_1A}) \neq 0$ then there exists a nonzero projection $e \in \operatorname{Ker}(\pi|_{h_1A})$. Hence $he = \pi(e) = 0$, $h \leq h_1 - e \leq h_1$ and $h_1 - e \in A_p$, a contradiction.

Moreover by Lemma 6.2, $h_1I(A)$ and hI(A) are injective envelopes of h_1A and hA respectively. Hence by the uniqueness of the injective envelope π is a *-isomorphism and so $\pi(h_1-h)=h(h_1-h)=0$ implies $h=h_1\in Z_A$. q. e. d.

COROLLARY 6.4. The injective envelope of a monotone complete AW^* -factor is also an AW^* -factor.

COROLLARY 6.5. With notation as in Theorem 6.3 let h (resp. h_1) be the central projection of A (resp. I(A)) such that hA (resp. $h_1I(A)$) is the maximum type I direct summand of A (resp. I(A)). Then $h=h_1$ and hA=hI(A). In particular A is discrete (resp. continuous) if and only if I(A) is so.

PROOF. We have $h, h_1 \in Z_A = Z_{I(A)}$ and hI(A) = I(hA) = hA is of type I (Lemma 6.2 and Proposition 5.2). Hence $h \le h_1$. On the other hand h_1A is a monotone closed, hence AW^* -subalgebra of $h_1I(A)$ with $Z_{h_1A} = Z_{h_1I(A)}$. Thus by

[17; Theorem 1] $h_1A = (h_1A)''$ (the double commutant of h_1A in $h_1I(A)$). Moreover $(h_1A)' = Z_{h_1I(A)}$ [6; Corollary 4.3], so that $h_1A = (Z_{h_1I(A)})' = h_1I(A)$ is of type I. Hence $h_1 \leq h$, and consequently $h = h_1$ and hA = hI(A). q. e. d.

THEOREM 6.6. If A is a GCR-algebra then $\overline{A} = \widetilde{A} = I(A)$ and this is a type I AW^* -algebra.

PROOF. It suffices to show that \overline{A} is of type I since it will follow then from Proposition 5.2 that $\overline{A} = \widetilde{A} = I(A)$. Let h be the central projection of \overline{A} such that $h\overline{A}$ is the maximum type I direct summand of \overline{A} . Suppose $h \neq 1$. Then (1-h)A is order dense in $(1-h)\overline{A}$ (Lemma 1.10). In particular $(1-h)A \neq 0$ and it, being *-isomorphic to a quotient C^* -algebra of A, is GCR. Hence by [12; Lemma 3] there exists a nonzero element $x \in ((1-h)A)^+$ such that x(1-h)Ax is commutative. Then $x(1-h)\overline{A}x$ is commutative. In fact, by Lemma 1.10, x(1-h)Ax is order dense in $x(1-h)\overline{A}x$, and so is B=[the norm closure of $C(1-h)+x(1-h)\overline{A}x]$ in C=[the norm closure of $C(1-h)+x(1-h)\overline{A}x]$. Hence C, being a regular extension of the commutative C^* -algebra B, is commutative. Since $x \neq 0$ is in the AW^* -algebra $(1-h)\overline{A}$, there exist a nonzero projection $p \in (1-h)\overline{A}$ and an element $y \in (1-h)\overline{A}$ such that xy=yx=p [1; p. 42, Proposition 3]. Then $p\overline{A}p=xy\overline{A}yx\subset x(1-h)\overline{A}x$ is commutative. Hence p is a nonzero abelian projection $\leq 1-h$, a contradiction. Thus \overline{A} is of type I. q. e. d.

§ 7. The C^* -algebra whose regular monotone completion is an AW^* -factor.

A C^* -algebra is said to be *prime* if there are no nonzero closed two-sided ideals I and K such that IK=0.

THEOREM 7.1. Given a C*-algebra A its regular monotone completion \overline{A} is an AW^* -factor if and only if A is prime.

PROOF. Sufficiency: Suppose that \overline{A} is not an AW^* -factor. Then there exists a central projection h of \overline{A} with $0 \neq h \neq 1$, and $J = A \cap hA$ and $K = A \cap (1-h)A$ are nonzero closed two-sided ideals of A with JK = 0, i. e., A is not prime. In fact suppose J = 0 and define a *-homomorphism $\pi : \overline{A} \rightarrow (1-h)\overline{A}$ by $\pi(x) = (1-h)x$. Then $\pi|_A$ is one-to-one, so that π is a *-isomorphism and h = 0, a contradiction. Hence $J \neq 0$ and similarly $K \neq 0$.

Necessity: If A is not prime then there exist nonzero closed two-sided ideals J and K with JK=0. Put $h=\sup_{\overline{A}}\{LP(x)\colon x\in J^+\}$, where LP(x) denotes the left projection of x in \overline{A} and h exists since $\{LP(x)\colon x\in J^+\}$ is an increasing net. Clearly $h\neq 0$, and it is a central projection of \overline{A} since $u^*hu=\sup_{\overline{A}}\{LP(u^*xu)\colon x\in J^+\}=h$ for all $u\in A_u$ and so $h\in Z_{\overline{A}}$ [6; Corollary 4.3]. Take a nonzero $y\in K^+$. Then yxy=0 for all $x\in J^+$ implies yLP(x)y=0, hence yhy=0 (Lemma 1.9). Therefore $h\neq 1$ and \overline{A} is not an AW^* -factor. q. e. d.

References

- [1] S.K. Berberian, Baer *-rings, Springer-Verlag, Berlin, 1972.
- [2] M.-D. Choi and E.G. Effros, The completely positive lifting problem for C*-algebras, Ann. of Math., 104 (1976), 585-609.
- [3] M.-D. Choi and E.G. Effros, Injectivity and operator spaces, J. Functional Analysis, 24 (1977), 156-209.
- [4] H.B. Cohen, Injective envelopes of Banach spaces, Bull. Amer. Math. Soc., 70 (1964), 723-726.
- [5] E.G. Effros, Aspects of noncommutative order, Notes for a lecture given at The Second U.S. Japan Seminar on C*-algebras and Applications to Physics, April 1977.
- [6] M. Hamana, Injective envelopes of C*-algebras, J. Math. Soc. Japan., 31 (1979), 181-197.
- [7] J.R. Isbell, Three remarks on injective envelopes of Banach spaces, J. Math. Anal. Appl., 27 (1969), 516-518.
- [8] R.V. Kadison, Operator algebras with a faithful weakly-closed representation, Ann. of Math., 64 (1956), 175-181.
- [9] R.V. Kadison, Unitary invariants for representations of operator algebras, Ann. of Math., 66 (1957), 304-379.
- [10] R. V. Kadison and G. K. Pedersen, Equivalence in operator algebras, Math. Scand., 27 (1970), 205-222.
- [11] I. Kaplansky, Projections in Banach algebras, Ann. of Math., 53 (1951), 235-249.
- [12] I. Kaplansky, Group algebras in the large, Tôhoku Math. J., 3 (1951), 249-256.
- [13] I. Kaplansky, Algebras of type I, Ann. of Math., 56 (1952), 460-472.
- [14] R. Kaufman, A type of extension of Banach spaces, Acta Sci. Math. (Szeged), 27 (1966), 163-166.
- [15] H.E. Lacey, The isometric theory of classical Banach spaces, Springer-Verlag, Berlin, 1974.
- [16] G.K. Pedersen, On weak and monotone σ -closure of C^* -algebras, Commun. Math. Phys., 11 (1969), 221-226.
- [17] K. Saitô, On the embedding as a double commutator in a type I AW^* -algebras II, Tôhoku Math. J., 26 (1974), 333-339.
- [18] M. Takesaki, A note on the cross-norm of the direct product of operator algebra, Kōdai Math. Sem. Rep., 10 (1958), 137-140.
- [19] J. Tomiyama, On the product projection of norm one in the direct product of operator algebras, Tôhoku Math. J., 11 (1959), 305-313.
- [20] J. Tomiyama, Tensor products and projections of norm one in von Neumann algebras, Lecture Notes, Univ. of Copenhagen, 1970.
- [21] J.D.M. Wright, Embedding in vector lattices, J. London Math. Soc. (2), 8 (1974), 699-706.
- [22] J.D.M. Wright, Regular σ -completions of C^* -algebras, J. London Math. Soc. (2), 12 (1976), 299-309.
- [23] J.D.M. Wright, Wild AW^* -factors and Kaplansky-Rickart algebras, J. London Math. Soc. (2), 13 (1976), 83-89.

Masamichi Hamana

Department of Mathematics Faculty of Education Toyama University Toyama 930 Japan