On the relative Mordell-Weil rank of elliptic quartic curves

By Takashi ONO

(Received Jan. 9, 1979)

Let A be an abelian variety defined over a number field k of finite degree over the rationals Q. For a finite extension K of k, let A_K be the group of points of A rational over K. As is well-known, the group A_K is finitely generated [L]. For any finitely generated abelian group G, let $\mathrm{rk}(G)$ be the rank of G. We put $\rho_K(A) = \mathrm{rk}(A_K)$, the Mordell-Weil rank of A with respect to K. By the relative Mordell-Weil rank of A with respect to K/k, we shall mean the difference $\rho_{K/k}(A) = \rho_K(A) - \rho_k(A)$.

In this paper, we shall study this quantity when A is an elliptic quartic curve and K/k is a quadratic extension. Among elliptic curves under consideration, the curve $E(\kappa)$ for non-zero $\kappa \in k$ defined by equations

$$\left\{ egin{array}{l} X_0^2 + \kappa X_1^2 = X_2^2 \ X_0^2 - \kappa X_1^2 = X_3^2 \end{array}
ight.$$

has multiple interests. For example, we shall show that

$$\rho_{k(\sqrt{\lambda})/k}(E(\kappa)) = \rho_{k(\sqrt{\kappa})/k}(E(\lambda))$$

whenever κ , λ are non-square elements of k. Next, let k=Q, and let κ be a square free natural number. Then we shall obtain the relations

$$\rho_K(E(\kappa)) = \rho_Q(E(\kappa))$$
 when $K = Q(\sqrt{\kappa})$ or $Q(\sqrt{-\kappa})$,
$$\rho_K(E(\kappa)) = 2\rho_Q(E(\kappa))$$
 when $K = Q(\sqrt{-1})$.

In the Appendix, I have collected miscellaneous facts and comments on the (absolute) Mordell-Weil rank $\rho_{\mathbf{Q}}(\kappa)$ of $E(\kappa)$ where κ is a square free natural number.

1. We begin with a single lemma on any abelian variety. Let A be an abelian variety defined over a number field k. Assume that K/k is a finite galois extension with the galois group G. We then consider the homomorphism $T_{K/k}: A_K \to A_k$ defined by $T_{K/k}(x) = \sum_{\sigma \in G} x^{\sigma}$, the trace.

(1.1) LEMMA.
$$\rho_{K/k}(A) = \operatorname{rk}(\operatorname{Ker} T_{K/k})$$
.

666 T. Ono

PROOF. Let m be the degree of K/k. Since $mA_k \subset \operatorname{Im} T_{K/k}$ and A_k/mA_k is finite, we have

$$\rho_k(A) = \operatorname{rk}(\operatorname{Im} T_{K/k}) = \rho_K(A) - \operatorname{rk}(\operatorname{Ker} T_{K/k}),$$
 q. e. d.

2. Let k be a number field. Denote by k^{\times} the set of non-zero elements of k. For M, $N \in k^{\times}$ such that $M \neq N$, we shall denote by E(M, N) the set of points in the projective space defined by the equations

(2.1)
$$\begin{cases} X_0^2 + MX_1^2 = X_2^2, \\ X_0^2 + NX_1^2 = X_2^2. \end{cases}$$

The set E(M, N) becomes an abelian variety of dimension 1. The addition z=x+y on A is described as follows. The homogeneous coordinates of the sum of $x=(x_0, x_1, x_2, x_3)$ and $y=(y_0, y_1, y_2, y_3)$ is $z=(z_0, z_1, z_2, z_3)$ where

(2.2)
$$\begin{cases} z_0 = x_0^2 y_0^2 - MN x_1^2 y_1^2 = x_0 x_1 y_2 y_3 - x_2 x_3 y_0 y_1, \\ z_1 = x_0 x_1 y_2 y_3 + x_2 x_3 y_0 y_1 = x_1^2 y_0^2 - x_0^2 y_1^2, \\ z_2 = x_0 x_2 y_0 y_2 + M x_1 x_3 y_1 y_3 = x_1 x_2 y_0 y_3 - x_0 x_3 y_1 y_2, \\ z_3 = x_0 x_3 y_0 y_3 + N x_1 x_2 y_1 y_2 = x_1 x_3 y_0 y_2 - x_0 x_2 y_1 y_3. \end{cases}$$

This means that for any points $x, y \in E(M, N)$, at least one of the expressions of z is available and they represent the same point when both are available.* The zero element is 0=(1, 0, 1, 1) and the inverse of x is $-x=(x_0, -x_1, x_2, x_3)$. We call x trivial if $x_1=0$. There are 4 trivial points: $(1, 0, \pm 1, \pm 1)$. They form a group isomorphic to $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$, where \mathbb{Z} denotes the ring of integers. Since $M, N \in k$, E(M, N) is defined over k. Let K be a quadratic extension of k. Assume that $K=k(\theta)$ with $\theta^2=m\in k$. Let σ be the conjugation of the field extension K/k.

(2.3) Proposition. There is a group isomorphism

$$E(mM, mN)_k \approx \text{Ker } T_{K/k}$$
.

PROOF. First, consider the map $\varphi: E(mM, mN) \to E(M, N)$ defined by $\varphi(x) = (\theta^{-1}x_0, x_1, \theta^{-1}x_2, \theta^{-1}x_3)$. Since φ is an isomorphism of varieties defined over K sending the zero to the zero, by a well-known property of abelian varieties, φ becomes a group isomorphism. Let φ_k be the restriction of φ on $E(mM, mN)_k$. We must now show that $\operatorname{Im} \varphi_k = \operatorname{Ker} T_{K/k}$. Since 4 trivial points are contained

^{*)} When the universal domain is the field of complex numbers, E(M,N) is naturally parametrized by Jacobi theta-functions $\theta_i(\tau|v)$, $0 \le i \le 3$, with suitable τ determined by M, N, and the relations (2.2) are nothing but the addition theorems for these functions. Cf. Formules (LVI_i) , $1 \le i \le 5$, Chapitre III, Tome II of [T-M].

in both sides of the equality, we shall consider only non-trivial point $y = (y_0, 1, y_2, y_3)$. We then have

$$y \in \operatorname{Ker} T_{K/k} \Leftrightarrow y^{\sigma} = -y$$

$$\Leftrightarrow (y_0^{\sigma}, 1, y_2^{\sigma}, y_3^{\sigma}) = (y_0, -1, y_2, y_3)$$

$$\Leftrightarrow (y_0^{\sigma}, 1, y_2^{\sigma}, y_3^{\sigma}) = (-y_0, 1, -y_2, -y_3)$$

$$\Leftrightarrow y_0 = z_0 \theta, y_2 = z_2 \theta, y_3 = z_3 \theta, z_0, z_2, z_3 \in k$$

$$\Leftrightarrow y = \varphi_k(x) \quad \text{with } x = (mz_0, 1, mz_2, mz_3) \in E(mM, mN)_k,$$

which completes the proof.

Combining (1.1) and (2.3), we get the following

(2.4) Theorem. Let k be a finite algebraic number field, E(M, N) be the elliptic curve defined by (2.1) with $M, N \in k^*$, $M \neq N$, and $k(\sqrt{m})$ be a quadratic extension of $k, m \in k$. Then, we have

$$\rho_{k(\sqrt{m})/k}(E(M, N)) = \rho_{k}(E(mM, mN))$$
.

3. For a number $\kappa \in k^{\times}$, we put $E(\kappa) = E(\kappa, -\kappa)$. Since all invariants of $E(\kappa)$ depend only on κ , we shall simply write $\rho_K(\kappa)$, $\rho_{K/k}(\kappa)$ instead of $\rho_K(E(\kappa))$, $\rho_{K/k}(E(\kappa))$, respectively. In the multiplicative group k^{\times} , we write $a \sim b$ when $ab^{-1} \in (k^{\times})^2$. When $\kappa \sim \lambda$, there is, obviously, a group isomorphism $E(\kappa) \approx E(\lambda)$ defined over k. We also have a group isomorphism $E(-\kappa) \approx E(\kappa)$ defined over k. In terms of ranks, we have, for a finite extension K/k,

(3.1)
$$\rho_{\kappa}(\lambda) = \rho_{\kappa}(\kappa) \quad \text{if} \quad \lambda \sim \kappa \quad \text{in } k,$$

$$\rho_{K}(-\kappa) = \rho_{K}(\kappa).$$

As a special case of (2.4), we have

(3.3)
$$\rho_{k(\sqrt{\lambda})/k}(\kappa) = \rho_{k}(\lambda \kappa) \quad \text{for } \lambda \sim 1.$$

Since the right hand side of the equality in (3.3) is symmetric in κ and λ , we have the "reciprocity":

(3.4)
$$\rho_{k(\sqrt{\lambda})/k}(\kappa) = \rho_{k(\sqrt{\kappa})/k}(\lambda) \text{ for } \lambda \neq 1, \ \kappa \neq 1.$$

(3.5) If $-1 \not\sim 1$ in k, then $\rho_{k(\sqrt{-1})}(\kappa) = 2\rho_{k}(\kappa)$.

In fact, by (3.2), (3.3), we have $\rho_{k(\sqrt{-1})/k}(\kappa) = \rho_k(-\kappa) = \rho_k(\kappa)$, q. e. d.

(3.6) If $\lambda \not\sim 1$, $-\lambda \not\sim 1$, then $\rho_{k(\sqrt{\lambda})/k}(\kappa) = \rho_{k(\sqrt{-\lambda})/k}(\kappa)$.

In fact, by (3.2), (3.3), we have $\rho_k(\sqrt{\lambda})/k(\kappa) = \rho_k(\lambda \kappa) = \rho_k(-\lambda \kappa) = \rho_k(\sqrt{-\lambda})/k(\kappa)$, q. e. d

Now, if κ , $-\kappa \not\sim 1$, then we have, by (3.1), (3.3), (3.6),

$$(3.7) \qquad \rho_{k}(\sqrt{\kappa})/k(\kappa) = \rho_{k}(\sqrt{-\kappa})/k(\kappa) = \rho_{k}(1).$$

668 T. Ono

Suppose, in particular, that k=Q and that κ is a square free natural number. As is well-known, we have $\rho_Q(1)=0$ (Fibonacci-Fermat). Therefore, (3.5) and (3.7) imply that

(3.8)
$$\rho_K(\kappa) = 2\rho_{\mathbf{Q}}(\kappa) \quad \text{when } K = \mathbf{Q}(\sqrt{-1}),$$

$$\rho_K(\kappa) = \rho_{\mathbf{Q}}(\kappa) \quad \text{when } K = \mathbf{Q}(\sqrt{\kappa}) \quad \text{or } \mathbf{Q}(\sqrt{-\kappa}).$$

Appendix.

(I) The torsion subgroup.

In the Appendix, we consider the case k=Q only and collect some results on the (absolute) Mordell-Weil rank $\rho_{Q}(\kappa)$ of the elliptic curve $E(\kappa)$, where κ being a square free natural number. We begin with the determination of the torsion subgroup $E_{t}(\kappa)_{Q}$ of $E(\kappa)_{Q}$. We first remark that, in (2.2), since x_{0} , $y_{0}\neq 0$ for k=Q, the first expression for the addition z=x+y in the group $E(\kappa)_{Q}$ is always available. Each point of $E(\kappa)_{Q}$ can be represented by the coordinates $x=(x_{0}, x_{1}, x_{2}, x_{3})$ where all $x_{i}\in \mathbb{Z}$ and g.c.d. of x_{i} is 1. We shall call such coordinates primitive. The primitive coordinates of a point are uniquely determined up to ± 1 . We denote by $E_{0}(\kappa)_{Q}$ the set of trivial points, i.e. the points with $x_{1}=0$. It consists of 4 points (1, 0, ± 1 , ± 1) and forms a group isomorphic to $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$.

(I.1) THEOREM. $E_{\iota}(\kappa)_{\mathbf{Q}} = E_{\mathbf{0}}(\kappa)_{\mathbf{Q}}$. In other words, $\rho_{\mathbf{Q}}(\kappa) > 0$ if $E(\kappa)_{\mathbf{Q}}$ contains a non-trivial point.

We need two lemmas: (I.2), (I.3). (I.2) is needed to prove the first half of (I.3). The proof of lemmas is left to readers as an exercise.

- (I.2) LEMMA. If $x=(x_0, x_1, x_2, x_3) \in E(\kappa)_Q$ is non-trivial, then all $x_i \neq 0$.
- (I. 3) LEMMA. If $x=(x_0, x_1, x_2, x_3)$ is non-trivial and primitive, then $2x=(x_0^4+\kappa^2x_1^4, 2x_0x_1x_2x_3, x_0^2x_2^2+\kappa x_1^2x_3^2, x_0^2x_3^2-\kappa x_1^2x_2^2)$ is also non-trivial and primitive.

PROOF of (I.1). It is enough to show that any non-trivial x is not a torsion element. Assuming $x=(x_0, x_1, x_2, x_3)$ primitive, put $\mu(x)=|x_1|$. By (I.3), 2x is non-trivial and primitive, and so we have $\mu(x)=|x_1|<\mu(2x)=2|x_0||x_1||x_2||x_3|$. In this way, we obtain an ascending sequence

$$\mu(x) < \mu(2x) < \mu(2^2x) < \mu(2^3x) < \cdots$$

which shows that x is not a torsion element,

q. e. d.

(II) To find κ with $\rho_{\mathbf{Q}}(\kappa) > 0$.

In view of (I.1), to get a number κ with $\rho_{\mathbf{Q}}(\kappa) > 0$, it is enough to find a non-trivial point of $E(\kappa)_{\mathbf{Q}}$. A practical method for this is to take a Pythagorean pair $\{a, b\}$, i. e. natural numbers a, b such that a > b, (a, b) = 1 and $a \not\equiv b \pmod{2}$, and call κ the square free number such that

(II. 1)
$$\kappa c^2 = ab(a^2 - b^2), \quad c \in \mathbb{N}.$$

Then, $x=(a^2+b^2, 2c, a^2-b^2+2ab, a^2-b^2-2ab)$ is a non-trivial point of $E(\kappa)_{\mathbf{Q}}$. What is important is that conversely one can associate a Pythagorean pair $\{a,b\}$ to any non-trivial point $x=(x_0,x_1,x_2,x_3)\in E(\kappa)_{\mathbf{Q}}$. Observe first that x_1 is even but all x_0,x_2,x_3 are odd and that $(x_i,x_j)=1, i\neq j$. Put $X_i=|x_i|$. Next, put $a=(1/2(X_0+1/2(X_2\mp X_3)))^{1/2}, b=(1/2(X_0-1/2(X_2\mp X_3)))^{1/2}$ according as $1/2(X_2\pm X_3)$ is even. One then verifies that $\{a,b\}$ is a Pythagorean pair satisfying (II.1) with $c=(1/2)X_1$. We have therefore proved that

(II. 2) $\rho_{\mathbf{Q}}(\kappa) > 0 \Leftrightarrow \kappa \sim ab(a^2 - b^2)$ for a Pythagorean pair $\{a, b\}$.

(III) To prove that $\rho_{\mathbf{Q}}(\kappa)=0$ for some κ .

The criterion (II. 2), together with its proof, can be used to prove that $\rho_{\mathbf{Q}}(\kappa)=0$ for a certain κ . In fact, starting with a non-trivial primitive x of $E(\kappa)_{\mathbf{q}}$, if any, construct the Pythagorean pair as above. Then, we have $\kappa((1/2)x_1)^2 = ab(a^2-b^2)$. Now, among many distributions of factors of κ as factors of a, b, (a^2-b^2) , if $\kappa \mid b$ is the only possibility, then we have $a=y_0^2$, $b=\kappa y_1^2$, $a+b=y_2^2$, $a-b=y_3^2$, which implies that $\mu(y)<\mu(x)$, i.e. the method of infinite decent works. For example, the matter is trivial when $\kappa=1$ and hence $\rho_{\mathbf{Q}}(1)=0$ (Fibonacci-Fermat). Let $\kappa=2:2c^2=ab(a^2-b^2)$. If $2\mid a$, then $a^2-b^2\equiv -1$ (mod 4) cannot be square. On the other hand, $2 \nmid (a^2-b^2)$ because $a \not\equiv b \pmod{2}$, and so 2|b is the only possibility, i.e. $\rho_{\mathcal{Q}}(2)=0$. Next, let κ be a prime $p\equiv 3$ (mod 8): $pc^2=ab(a^2-b^2)$. If $p\mid a$, then we have $a=px^2$, $b=y^2$ and so px^2+y^2 $=u^2$, $px^2-y^2=v^2$. The last equality implies that $\left(\frac{-1}{p}\right)=+1$ which contradicts $p \equiv 3 \pmod{8}$. Similarly $p \nmid (a+b)$. Finally, if $p \mid (a-b)$, then we have $a=x^2$, $b=y^2$ and so $x^2+y^2=u^2$, $x^2-y^2=pv^2$, which implies that $2x^2\equiv u^2\pmod p$, i.e. $\left(\frac{2}{p}\right)=1$, a contradiction, again. Hence $p\mid b$ is the only possibility, i.e. $\rho_{\mathbf{Q}}(p)=0$ when $p\equiv 3\pmod 8$, a prime. By a similar but a little more complicated argument, one can prove that $\rho_{\mathbf{Q}}(\kappa)=0$ if $\kappa=2q$, q a prime $\equiv 5 \pmod{8}$; $\kappa=p_1p_2$, p_i a prime $\equiv 3 \pmod{8}$; $\kappa = 2q_1q_2$, q_i a prime $\equiv 5 \pmod{8}$.

(IV) An observation.

Among natural numbers less than 100 there are 61 square free numbers and among the latter $\rho_{\mathbf{Q}}(\kappa)=0$ for 25 values: $\kappa=1$, 2, 3, 10, 11, 17, 19, 26, 33, 35, 42, 43, 51, 57, 58, 59, 66, 67, 73, 74, 82, 83, 89, 91, 97 and $\rho_{\mathbf{Q}}(\kappa)>0$ for 36 values: $\kappa=5$, 6, 7, 13, 14, 15, 21, 22, 23, 29, 30, 31, 34, 37, 38, 39, 41, 46, 47, 53, 55, 61, 62, 65, 69, 70, 71, 77, 78, 79, 85, 86, 87, 93, 94, 95.*)

Limiting ourselves to odd primes, we obtain the following table:

^{*)} I learned this list of numbers from [B] p. 155. Not all of the list can be explained immediately by the methods or facts mentioned in (\mathbb{II}) , (\mathbb{II}) : in fact, to use the criterion $(\mathbb{II}.2)$ for this purpose the ordinary 12-digit desk calculator is too small.

Þ	3	5	7	11	13	17	19	23	29	31	37	41	43	47
mod 8	3	5	7	3	5	1	3	7	5	7	5	1	3	7
$ ho_{\it Q}(\it p)$	0	+	+	0	+	0	0	+	+	+	+		0	+

53		į		71	i			1	
5	3	5	3	7	1	7	3		1
+				+					0

If $p\equiv 3\pmod 8$, then $\rho_{\mathbf{Q}}(p)=0$ as we proved in (III). When $p\equiv 1\pmod 8$, both cases can happen: in fact, $\rho_{\mathbf{Q}}(p)=0$ for p=17, 73, 89, 97 but $\rho_{\mathbf{Q}}(41)>0$ because $41c^2=ab(a^2-b^2)$ for the Pythagorean pair $\{a,b\}=\{5^2,4^2\}$ and c=60. On the other hand, one observes that $\rho_{\mathbf{Q}}(p)>0$ for all p<100 such that $p\equiv 5$ or 7 (mod 8). It is natural to guess that this is true for all $p\equiv 5$ or 7 (mod 8).

References

- [L] S. Lang, Diophantine Geometry, Interscience Publishers, New York, 1962.
- [T-M] J. Tannery and J. Molk, Eléments de la Théorie des Fonctions Elliptiques, 4 vols., Paris, Gauthiers-Villars, 1896.
- [B] A. Beiler, Recreations in the Theory of Numbers, Dover Publications, New York 1966.

Takashi ONO
Department of Mathematics
The Johns Hopkins University
Baltimore, Maryland 21218
U.S.A.