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Let A be an abelian variety defined over a number field % of finite degree
over the rationals @. For a finite extension K of %, let Ax be the group of
points of A rational over K. As is well-known, the group Ag is finitely
generated [L]. For any finitely generated abelian group G, let rk(G) be the
rank of G. We put px(A)=rk(Ag), the Mordell-Weil rank of A with respect
to K. By the relative Mordell-Weil rank of A with respect to K/k, we shall
mean the difference px/(A)=px(A)—p(A4).

In this paper, we shall study this quantity when A is an elliptic quartic
curve and K/k is a quadratic extension. Among elliptic curves under consider-
ation, the curve E(x) for non-zero x< k defined by equations

Xi+eXi=X1,
X3—k X3=X}
has multiple interests. For example, we shall show that
prw i EE)=prwir(E(A)

whenever x, A are non-square elements of 2. Next, let #=Q, and let £ be a
square free natural number. Then we shall obtain the relations

px(E()=po(E(k)) when K=Q(+'rk) or QW —k),
px(E(R)=2po(E(k)) when K=Q(/—1).

In the Appendix, I have collected miscellaneous facts and comments on the
(absolute) Mordell-Weil rank pq(k) of E(x) where £ is a square free natural
number.

1. We begin with a single lemma on any abelian variety. Let .4 be an
abelian variety defined over a number field k. Assume that K/k is a finite
galois extension with the galois group G. We then consider the homomorphism
Trgin: Ax— A, defined by TK”’(X):EGXU’ the trace.

(1.1) LEMMA. pg,(A)=rk(Ker T k).
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Proor. Let m be the degree of K/k. Since mA,CIlm 7Ty, and A,/mA,
is finite, we have

pk(/l):rk(lm TK/k)f—:pK(‘ll)—rk(Ker TK/k) , g. €. d.

2. Let k be a number field. Denote by £* the set of non-zero elements of
k. For M, Nek* such that M+N, we shall denote by E(M, N) the set of
points in the projective space defined by the equations

X3+ MXi=X3,
@2.1) {

Xi+NXi=X2.

The set E(M, N) becomes an abelian variety of dimension 1. The addition
z=x-+v on A is described as follows. The homogeneous coordinates of the
sum of x=(x,, X1, Xs, X3) and y=(¥o, V1, Vs, Vs) IS 2=(2,, z1, 24, Z5) Where

( 2= x0Yi— MNxIyI=XoX1Y2Ys— X2X3Y0 1,
=XoX +x5X3 Ve V1= x3yi— x} ¥}
Z1 0X1)2)Vs 2X3Yo 1 1Yo 01,
7
\

2.2)
2= XX YoV T MX1X3Y1Y5=X1X2Y0 Vs XoXs V1Y,

23=X0XsY0Ys T NX1 X1 Y= X1 X3 Y0 Ye— Ko X215 -

This means that for any points x, ye E(M, N), at least one of the expressions
of z is available and they represent the same point when both are available.*
The zero element is 0=(1, 0, 1, 1) and the inverse of x is —x=(x,, — X1, X3, X3).
We call x trivial if x,=0. There are 4 trivial points: (1, 0, &1, +1). They
form a group isomorphic to Z/2ZXZ/2Z, where Z denotes the ring of integers.
Since M, Nek, E(M, N) is defined over k. Let K be a quadratic extension of
k. Assume that K=£k(0) with 8*>=mek. Let o be the conjugation of the field
extension K/k.

(2.3) PROPOSITION. There is a group isomorphism

E(mM, me)szer TK/k .

ProoF. First, consider the map ¢ : E(mM, mN)— E(M, N) defirned by ¢(x)
=(0"'xy, X1, 0 'x, 07'x3). Since ¢ is an isomorphism of varieties defined over
K sending the zero to the zero, by a well-known property of abelian varieties,
¢ becomes a group isomorphism. Let ¢, be the restriction of ¢ on E(mM, mN),.
We must now show that Im ¢,=Ker Tk/,,. Since 4 trivial points are contained

*)  When the universal domain is the field of complex numbers, E(M,N) is naturally
parametrized by Jacobi theta-functions 8;(z|v), 0=<i{<3, with suitable r determined by
M, N, and the relations are nothing but the addition theorems for these functions.
Cf. Formules (LVI,;), 1<i<5, Chapitre I, Tome II of [T-M].
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in both sides of the equality, we shall consider only non-trivial point y=
(¥, 1, 35, ¥s). We then have

veKer Tk, oy’'=—y
00 L y8, y9D=(3, —1, 2, ¥s)
=08, L y3, y)=(—=0, 1, =y, —3s)
e ve=z0, y,=2.0, vi=2z.0, 2z, 2, z:Ek
&y=¢(x) with x=0mz, 1, mz,, mz,)€ E(mM, mN),,

which completes the proof.

Combining (1.1) and (2.3), we get the following
(2.4) THEOREM. Let k be a finite algebraic number field, E(M, N) be the elliptic
curve defined by (2.1) with M, Ne k*, M#N, and k(~m) be a quadratic extension
of k, ms k. Then, we have

prevmy l E(M, N))=p(E(mM, mN)).

3. For a number s€k*, we put E(t)=FE(k, —«). Since all invariants of
E(x) depend only on x, we shall simply write px(x), px,:(x) instead of px(E(k)),
px(E(k)), respectively. In the multiplicative group k%, we write a~b when
ab-'e(k*)?. When k~24, there is, obviously, a group isomorphism E(x)= E(A)
defined over k. We also have a group isomorphism E(—k)= E(x) defined over
k. In terms of ranks, we have, for a finite extension K/k,

3.1 px(A)=pg(k) if A~k ink,
(3.2) px(—r)=px(x).

As a special case of (2.4), we have
(3.3) prwin i(B)=p (k) for A+1.

Since the right hand side of the equality in is symmetric in £ and 1, we
have the “reciprocity ”:

(3.4) P eB)=preverrk(A) for A#1, gotl.
(3.5) If —1+1in k, then prw-1,(K)=20(x).
In fact, by , we have pk(v'—l)/k(’f):pk(_ﬁ):pk</f>; d.e. d.

(3.6) If 271, —A+#1, then prwzy/4(K)=prw—24(K).

In fact, by (B.3), we have oy e(k)=p(Ax)=p(—2K)=prcv—15/4(),
g.e.cd
Now, if #, —k+1, then we have, by (3.6),

(3.7 pkw’b/k(ﬁ>::Pkt\/-~k>/tz(lf):pk(1)~
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Suppose, in particular, that 2=@ and that £ is a square free natural number.
As is well-known, we have pg(1)=0 (Fibonacci-Fermat). Therefore, (3.5) and

imply that
px(£)=2pq(k) when K=Q(~/—1),

{3.8)
ox(£)=pq(k) when K=Q+ k) or Qv —k).

Appendix.

(I)  The torsion subgroup.

In the Appendix, we consider the case k=@ only and collect some results
on the (absolute) Mordell-Weil rank pe(x) of the elliptic curve E(x), where «
being a square free natural number. We begin with the determination of the
torsion subgroup E,(x)q of E(r)q. We first remark that, in[2.2), since x,, yo#0
for k=Q, the first expression for the addition z=x-4y in the group FE(x)q is
always available. Each point of E(x)q can be represented by the coordinates
x=(%,, X3, X», X3) where all x,=Z and g.c.d. of x; is 1. We shall call such
coordinates primitive. The primitive coordinates of a point are uniquely deter-
mined up to 1. We denote by E,(k)q the set of trivial points, i.e. the points
with x,=0. It consists of 4 points (1, 0, =1, +1) and forms a group isomorphic
to Z/2ZXZ/2Z.

(I.1) THEOREM. E,(k)q=FEk)q- In other words, pe(k)>0 if E(k)q contains a
non-trivial point.

We need two lemmas: (1. 2), (I.3). (I.2) is needed to prove the first half of
(I.3). The proof of lemmas is left to readers as an exercise.

(L.2) LEMMA. If x=(x,, X1, X3, xs)E E(k)q 1s non-trivial, then all x;%0.
(I.3) LEMMA. If x=(x,, X1, X3, xs) 1S non-trivial and primitive, then 2x=
{(xi+Kx1, 2x0x1X%5x5, x3x3+rxixd, x3x3—rxixd) is also non-trivial and primitive.

Proor oF (I.1). It is enough to show that any non-trivial x is not a
torsion element. Assuming x=(x,, X, X, X;) primitive, put p(x)=|x,|. By
(I.3), 2x is non-trivial and primitive, and so we have p(x)=|x;|<p2x)=
2] xo]|x1]|x2] 1 x3]. In this way, we obtain an ascending sequence

1(0) < p2x)< p(22x) < p(28x) < -+

which shows that x is not a torsion element, g.e.d.

(Il To find £ with pe(x)>0.

In view of (1. 1), to get a number & with po(x)>0, it is enough to find a
non-trivial point of E(x)e. A practical method for this is to take a Pythagorean
pair {a, b}, i.e. natural numbers a, b such that a>b, (a, b)=1 and az£b (mod 2),
and call £ the square free number such that

L1 kct=abla?—b?), c=N.
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Then, x=(a®*+0b% 2¢, a®—b*+2ab, a®*—b*—2ab) is a non-trivial point of FE(k)q.
What is important is that conversely one can associate a Pythagorean pair
{a, b} to any non-trivial point x=(x,, x;, x,, x;)=E(k)e. Observe first that x,
is even but all x,, x, x; are odd and that (x;, x;)=1, i#j. Put X;=]x;|.
Next, put a=(1/2(X,+1/2(X,FX;))VE, b=(1/2(X,—1/2(X,F X,)))*/? according as
1/2(X,+X;) is even. One then verifies that {a, b} is a Pythagorean pair satis-
fying (II. 1) with ¢=(1/2)X,. We have therefore proved that

(II. 2) pok)>0=k~ab(a*—b* for a Pythagorean pair {a, b}.

(Il) To prove that pe(k)=0 for some «.

The criterion (II. 2), together with its proof, can be used to prove that
pq(k)=0 for a certain x. In fact, starting with a non-trivial primitive x of
E(k)q, if any, construct the Pythagorean pair as above. Then, we have
e((1/2)x;)?=ab(a®*—b%*. Now, among many distributions of factors of & as
factors of a, b, (a®—b%), if k|b is the only possibility, then we have a=yi,
b=ry}, a+b=y3 a—b=yj which implies that p(y)<p(x), i.e. the method of
infinite decent works. For example, the matter is trivial when £=1 and hence
00(1)=0 (Fibonacci-Fermat). Let x=2: 2c*=ab(a*—0?%). If 2|a, then a®*—0?=—1
(mod 4) cannot be square. On the other hand, 2/ (a?—b?) because a=b (mod 2),
and so 2|b is the only possibility, i.e. po(2)=0. Next, let £ be a prime p=3
(mod 8): pc*=ab(a®—b?. If pla, then we have a=px? b=y* and so px%+y*

=u? px’—y’=v2 The last equality implies that (lpl—>=+l which contradicts

p=3 (mod 8). Similarly p [ (a-+0b). Finally, if p|(a—0b), then we have a=x%,
b=7v* and so x%+y*=u? x®*—y?’=pv?% which implies that 2x*=wu? (mod p), i.e.

(%):1’ a contradiction, again. Hence p|b is the only possibility, i.e. po(p)=0

when p=3 (mod8), a prime. By a similar but a little more complicated argu-
ment, one can prove that pe(k)=0 if £=2¢, ¢ a prime=5 (mod 8); k=p:1p,, p: a
prime=3 (mod 8); k=2¢1q,, ¢; a prime=5 (mod 8).

(IV) An observation.

Among natural numbers less than 100 there are 61 square free numbers and
among the latter po(£)=0 for 25 values: £=1, 2, 3, 10, 11, 17, 19, 26, 33, 35, 42,
43, 51, 57, 58, 59, 66, 67, 73, 74, 82, 83, 89, 91, 97 and pqek)>0 for 36 values:
£=5, 6, 7, 13, 14, 15, 21, 22, 23, 29, 30, 31, 34, 37, 38, 39, 41, 46, 47, 53, 55, 61,
62, 65, 69, 70, 71, 77, 78, 79, 85, 86, 87, 93, 94, 95.%

Limiting ourselves to odd primes, we obtain the following table:

* | learned this list of numbers from p. 155. Not all of the list can be ex-
plained immediately by the methods or facts mentioned in (II), (II) : in fact, to use the
criterion (I[.2) for this purpose the ordinary 12-digit desk calculator is too small.
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p 3.5 7 11 13 17 1923 29 31 37 41 43 47
md8 3 57 3 5 1 3,7 5 7.5 1,3 7
pad) 10 A+ 10+ 0 0|4+ 4+ I+ 4 0+

53159 6167 7173179 83 8 97
5 31 1

5,3 5.3 7 1 7
4+ 0+ 0 + 0 4+ 0 0 0

! -

If p=3 (mod8), then po(p)=0 as we proved in (IlI). When p=1 (mod8),
both cases can happen: in fact, po(p)=0 for p=17, 73, 89, 97 but pe(41)>0
because 41c¢*=ab(a®*—b? for the Pythagorean pair {a, b} ={5% 4% and c=60.
On the other hand, one observes that pq(p)>0 for all p<100 such that p=5
or 7 (mod 8). It is natural to guess that this is true for all p=5 or 7 (mod 8).
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