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Introduction.

Let % be a commutative ring of prime characteristic p. Let A be a k-
algebra, and let L be a restricted Lie algebra (p-Lie algebra) over k. We
assume A and L are finitely generated projective k-modules. The first aim of
thisTarticle is to establish a categorical correspondence among the following
three kinds of objects;

I) Pairs of an extension of affine k-group schemes

1 7 G &e(L) 1
and an admissible homomorphism
p: G—>Aut(4),

where g4 and Aut (A) denote the k-group functors which send each commuta-
tive k-algebra T to

T —the group of units in T®Q A,
T—the group of T-algebra automorphisms of TX A,

respectively, and &(L) denotes the finite k-group scheme associated with L
[2, p. 277]. By p admissible we mean that

gxg'=p(g)x), VgeGT), VxepT),
xyx'=p(x)(y), VxepXdT), VyeTQA,

for each commutative k-algebra 7.
II) Exact sequences of restricted Lie algebras

0 A X L 0

such that for each x< X,
ad (x)=[x, —]: A— A

is a k-algebra derivation.
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III) Triples (S, 8, u) where S is a k-algebra,
0:S—SQUIL)

is a right comodule structure and a k-algebra map with UPA(L) the universal
restricted enveloping Hopf algebra of L, and

u: A—S

is a k-algebra map such that f(u(a))=u(a)®1, Vacs A. The triple must satisfy
1) the map

0: SRsS—>SQUPAL), #xQ@»=(xR1)(y)
is an isomorphism, 2) there is an isomorphism
f: S=AQU™YL)

which is a left A-module and a right U'(L)-comodule isomorphism.

The correspondence I« Il follows almost directly from [6], if we
note that all extensions of &(L) by p4 are H-extensions [2, p. 189], since p# is
smooth and &(L) is infinitesimal.

Next, assume A is commutative. If (G, p) is an object of I, then the
homomorphism p factors through G—&(L). Similarly, if X is an object of
II, then the restricted Lie map

ad: X——Der, (A)

where Der, (A) denotes the restricted Lie algebra of all k-algebra derivations
of A, factors through X— L. If (S, 8, u) is an object of I, there is a unique
structure of a left U™Y(L)-comodule algebra on A such that

XGZZ(X(D'G)JC(O), VXES, VGEA,
()

where 0(.76'): {V‘;) X (o) ® X,

On the other hand, there is a 1-1 correspondence among homomorphisms of
group functors
a: &(L)—> Aut (4),
restricted Lie maps
a: L—>Der, (4),

and measuring homomorphisms
o’ UP(L)—>End, (4).

In each case of the above, we say (G, p) is @-admissible (resp. X is a-admis-
sible, resp. (S, 8, u) is a’-admissible), if the object determines & (resp. «, resp. a’).
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We can prove that the correspondence we establish induces a correspondence
among a-admissible objects, a-admissible objects, and a’-admissible objects.
Thirdly, we fix a. Let

Extz (&(L), p*) (resp. Ext, (L, A), resp. Br.(U™XL), A/k))

denote the set of isomorphism classes of all @&-admissible (resp. a-admissible,
resp. a’-admissible) objects of I (resp. II, resp. ). We define the structure
of a commutative group on each set, and prove that our correspondence induces
an isomorphism of groups

Extz (€(L), pt)=Ext, (L, A)=Br.(UPXL), A/k).

The addition on Ext;(&(L), p*) is given by Baer sum. The addition on
Ext, (L, A) is given similarly.
Finally, assume «’ gives a canonical isomorphism

ABU™(L)=End, (A).

We shall prove in a forthcoming paper that Br, (U"¥L), A/k) is isomorphic
to the Chase-Rosenberg modified Brauer group

Br(A/k)
in this case. It follows that

Ext, (L, A)=Br(A/k).

Interestingly enough, Yuan has established an isomorphism which seems
to have a close relation to the above. He lets g be Der, (A) and assumes that
Alg]=End, (A). (This condition is weaker than A#U'I(L)=End,(4)). He
proves that

E(Der, (4), A)y=Br (A/k)

where the left hand side denotes Hochschild’s group of regular restricted Lie
algebra extensions. I am not so interested in the concept of ‘regular restricted
Lie algebra’. It is rather complicated, and I do not think it is useful. But it
is interesting to note that it follows that

Ext, (L, A)= E[Der, (A4), A)

in case A$U™Y(L)=End, (A). Maybe, this will follow directly from Der, (A)
=~ A# L. The analysis of this matter is left open.
Throughout the paper we fix a commutative ring %, and denote &, by .
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§1. Preliminaries.

1.1. Finite group schemes.

Let k2 be a commutative ring, and let M, be the category of commutative
k-algebras. A k-group functor is a functor of M, into the category of groups.
We follow the notation of for group functors. k-Group schemes are called
k-groups for short. If R is a commutative Hopf k-algebra, Sp R denotes the
associated affine A-group. If G is an affine k-group, O(G) denotes its affine
Hopf algebra.

We follow the notation of or for Hopf algebras. A finite Hopf k-
algebra means a Hopf k-algebra which is a finitely generated projective k-
module. If A is a finite Hopf k-algebra, then A*=Hom, (A4, k) is likewise [1,
p. 95]. It is called the dual of A. Clearly A= A** as finite Hopf algebras,
and A is commutative if and only if A* is cocommutative. '

For a Hopf k-algebra H, let

G H)={geH|d(g)=g®g, «(g)=1}

which is a subgroup of units. If TeM,, TQH is Hopf T-algebra. The k-
group functor T—G(T QH) is denoted by Sp*H.

Let R be a commutative finite Hopf k-algebra, and let H=R* be the dual.
There is a canonical isomorphism of group functors

Sp R=Sp*H .
Indeed, if TeM,, the canonical isomorphism
Hom, (R, T)=Hom; (TQR, Th=TQH
induces a group isomorphism
MR, T)=Gn(TQH).

1.1.1. DEFINITION. A finite k-group is an affine k-group G such that the
Hopf algebra O(G) is finite. The dual of O(G) is denoted by O*(G). Thus

G=Sp 0(G)=Sp*O0*G).

The functors G— O*(G) and H—Sp*H give rise to an equivalence between
finite k-groups and cocommutative finite Hopf k-algebras.
A sequence of k-group functors
i p
1 Gl G2 Gs 1

is an H-extension (of G, by G, [2, I, §3, 2.1] if pi=1 and there is a mor-
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phism of k-functors s: G,—G, such that ps=Id and G,XG;=G, by (x, y)
—1(x)s(y). If this is the case, for each TeM,,

1—G(T)—>G(T)—> G(T) —1

is an exact sequence of groups. The converse is true if G, is affine. To define
general extensions, the reader should know the fppf topology [2, I, §1].
Fortunately, all extensions which appear in this paper are H-extensions.

The following are easy examples of non H-extensions.

incl. F
0 2k >y Ay 0 [2, I, §6, 5.3]

F-Id
0—>(Z/DpZ), g oy 0 [2, I, §6, 54]

where % is a field of characteristic >0, and «, denotes the additive k-group
which associates with each T in M, the additive group of T, ,a, the subgroup

scheme defined by
20 x(T)={x in T|x?=0}

(Z/pZ), the constant k-group associated with Z/pZ, and F the Frobenius map.
Let H; be finite cocommutative Hopf k-algebras. A sequence of Hopf
algebras

f g
H,—>H,—> H,
represents an H-extension of finite k-groups

Sp*f Sp*g
Sp*H,

if and only if g(f(x))=e(x)l,Vx=H, and there is a k-coalgebra map h: H,— H,
such that gh=Id and H,QH,=H, by xQ y—f(x)h(y). This follows immediately
from the definition.
1.1.2. PROPOSITION. Let
i p
1 G, G, G, 1
be an H-extension of finite k-groups, and let H;=O0*G;), f=0*(), g=0*(p).
There is a canonical isomorphism ‘ '

§: H,Qu H,=H,QH,

given by
1@y (le 1y @8(yw) .

(We are using the sigma notation
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A(J’): % Y@ Vw).

PROOF. Let h: H;— H, be a coalgebra section to g. We can take h so
that A(1)=1. Since f and & induce H,QH,~H, we have

C: H,QH,=H,Qu,H,, u®@v—u@h(v).

The composite &€ is uQv— 2 uh(vay)Quwy. This has the inverse uQuv
)

— (Z} uSth(v)Q vy, where S denotes the antipode of H,. Hence £ is bijective.

Q.E.D.
This proposition is valid for (general) extensions of finite k-groups. But
the fact will not be used.

Let A be a k-algebra. We define a k-group functor Aut(A) by Aut (4A)T)
=Autr_g (TQ®A). It is affine algebraic, if A is a finitely generated projective
k-module [2, I, §1, 2.6].

Let H be a Hopf k-algebra. We say that a k-linear map

p: H—End, (4)

is a measuring homomorphism if i) p is a homomorphism of k-algebras (hence
A is a left H-module), and ii)

x(ab)= (% (xwa)(xwb),

x1l=¢e(x)

VxeH,Va, be A. The pair (4, p) is called a left H-module algebra [3, §7.2].
Each measuring homomorphism p induces a homomorphism of k-group
functors

p: Sp*H—Aut (4)

as follows: For each TeM,, TR A is a left T® H-module T-algebra. Hence
the group Gr(TQ@H) acts on the left on T® A as T-algebra automorphisms.
Let p: Gr(T®A)— Autr.ag(TQA) be the corresponding homomorphism of
groups.

1.1.3. PROPOSITION. Let H be a cocommutative finite Hopf k-algebra, and
let A be a k-algebra. Each homomorphism of k-group functors Sp*H— Aut (A)

is of the form @ with a uniquely determined measuring homomorphism p: H
-—+Endk (A)

PrROOF. Let R=H* The morphism
f:Sp R—Aut(4)
corresponds to an element
f’EAutT_a;g (R ®A)
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by Yoneda’s lemma. We view f’ as a k-algebra map
f'r A-RQA=Hom, (H, A).

Define a linear map
f”: H—End,; (A)

by f"(x)a)=f"(a)(x), VxH, Vas A. Then f” is a measuring homomorphism if
and only if f is a homomorphism of group functors. Q.E.D.
1.2. p-Lie algebras.
Let £ be a commutative ring of prime characteristic p. See [2, U, §7,
n°3] for the definition of p-Lie algebras. The p-map of a p-Lie algebra is
denoted by x— xt?l,

With each k-group scheme G, a p-Lie k-algebra Lie (G) is associated as
follows: Let k[w]=k[X]/(X? with w the image of X, let ¢: k[w]—k be the
k-algebra map defined by ¢(w)=0, and let

Lie (G)=Ker (G(g): G(kLa])— G(k)).
For each x€Lie(G), we write
x=l+xrw.

Lie (G) is an abelian group with addition determined by

I+(x+y)o=0+x0)(1+ yw)
with inverse
1+H(—x)o=1+xw)™*
and with zero
14+-0w=1.

Lie (G) is a k-module with scalar multiplication
1+Ax)o=1+x(Aw), Vxelie (G), Viek,

where 1+ x(Aw) means G(u;)(x) with the k-algebra map u;: k[w]— k[w] deter-
mined by u;(w)=Aw. Lie(G) is a Lie algebra over %k with bracket product
determined by

14+Lx, ylow,=1+x0)1+ yw)(1+x0) A+ yw,)™ in G(klo:, w.])

where k[w,, w.]J=kF[X, Y1/(X? Y?* with w, the image of X and w, the image
of Y. Finally the p-map is defined as follows: Let k[w,, -, w,]1=k[ X, -+, X,]
/(X2 -+, X2) with w; the image of X, and let

o=w;+ ' t+wp, T=W; " Wyp .

For each x=Lie(G), we have
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(14 xw) - QA+ xwp)eGklo, r])TCG(kloy, -, wp]).

Let s: k[o, z]—k[z] be defined by s(¢)=0, s(x)==. There is a unique
xPleLie (G) with
G (14xwy) - 1+ xw,)=14xPx .

With these operations, Lie(G) is a p-Lie k-algebra [2, I, §7, 3.4]. Also,
G—Lie (G) is a functor from the category of k-group schemes into the cate-
gory of p-Lie k-algebras.

To calculate the Lie (G) for a given G, it is enough to find a p-Lie algebra

L and a bijection
L=Ker (G(q): G(kLw])— G(k))

x—14+xw
which satisfies the above identities.

1.2.1. ExaMPLES. a) Let V be a finitely generated projective k-module.
Then
GLV): T—>GL(TQRYV)

is an affine algebraic k-group [2, I, §1, 24]. If f€End, (V), then 1+w®f:
Rlol@V=k[w]®V. The map

End, (V)=GL(V)(klw]), [f—lteo®f
gives an isomorphism of p-Lie algebras

End, (V)=Lie (GL(V))
[2, I, §4, 4.12].
b) Let A be a k-algebra which is a finitely generated projective k-module.
Then
pt: T (the group of units in T® A)

is an-affine algebraic k-group [2, I, § 1, 2.3]. If x A, then 14+0® x <= p*(k[w]).
The map
A—-pt(klo]), x1—1+0®x

gives an isomorphism of p-Lie algebras
A=Lie (u*).

¢) With the assurhption of b), let Der, (A) be the p-Lie algebra of all k-
algebra derivations of A. Aut(A) is a closed subgroup scheme of GL(A).
The isomorphism of a) induces

Der, (A)=Lie (Aut (A4)).
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The following is obvious.
1.2.2. PROPOSITION. Let

l Gl G2 G3 l
be an H-extension of k-group schemes. Then

is an exact sequence of p-Lie algebras.

For each p-Lie k-algebra L, let U™(L) be the restricted universal envelop-
ing k-algebra of L [2, I, §7, 3.6]. It has the structure of a cocommutative
Hopf k-algebra determined by

Ax)=xQ1+1Qx, Vxe L.
We put
E(L)y=Sp*UtP(L).

If L is a finitely generated projective k-module, then U L) is a finitely
generated projective k-module [2, II, §7, 3.7], hence &(L) is a finite k-group.
For each xe L, we have 1+0Q xE G 4roi(RLo]QU™(L)). The map

L—&e(L)klw]), x—ltoQx
gives an isomorphism of p-Lie algebras [2, II, §7, 3.9]

L=Lie(e(L)).
1.2.3. THEOREM. Let

0 L, L, L, 0

be an exact sequence of p-Lie k-algebras which are finitely generated projective
k-modules. Then the induced sequence

1——&(L) —> &(Ls) —> E(Ly) —>1

1s an H-extension.
We shall prove the theorem in the Appendix.
The finite groups &(L) have the following universal mapping property : Let
L be a p-Lie k-algebra which is a finitely generated projective k-module, and
let G be a k-group scheme. There is a bijection between homomorphisms of
group schemes
f:ell)—G

and homomorphisms of p-Lie algebras

¢: L—>Lie(G)
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determined by f—¢=Lie(f) [2, I, §7, 3.5].

1.24. COROLLARY. Let L, and L, be p-Lie algebras which are finitely
generated projective k-modules. There is a bijective correspondence between
1isomorphism classes of H-extensions of finite k-groups

1 &(Ly) G (L) 1
and isomorphism classes of extensions of p-Lie algebras

0 L, X L, 0

given by G—Lie (G) and X— &(X).

This has been proved in [2, I, §6, 8.5] in case k£ is a field and L, is
abelian.

PrROOF. We have only to show that G—Lie (G) and X—&(X) are inverses
of each other. If G is an H-extension of &(L,) by &(L,), then Lie(G) is a
finitely generated projective k-module. Hence there is a canonical homomor-
phism of finite k-groups

&(Lie (G))—> G,

which corresponds to Id : Lie (G)—Lie (G). It is isomorphic by the commutative
diagram

1—>&(L) — G —> &Ly)—>1

1—&(L)—>&(Lie (G))—>&(Ly) —>1.

On the other hand we have X=Lie(&(X)) as extensions of p-Lie algebras.
Q.E.D.
1.25. ExampLES. Let L be a p-Lie algebra and let A be a k-algebra.
Assume L and A are finitely generated projective k-modules.
a) Let ¢: L— A bea p-Lie map. Extend it to a k-algebra map ¢’ : UP(L)
— A. Since &(L) is a subgroup functor of yUEp 1ol ¢’ induces a homomorphism
of k-group schemes

51 e Loy
We have Lie (¢”)=¢.
b) Let ¢: L—Der,(A) be a p-Lie map. Extend it to a k-algebra map
¢’ UPL)—End, (A4). It is a measuring homomorphism. Hence it determines
a homomorphism of k-group schemes (1.1.3)

g : e(L)— Aut (A)

We have Lie (§)=¢.
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1.2.6. NOTATION. Let A be a k-algebra which is a finitely generated pro-
jective k-module. We let
x: UPA)— A

denote the k-algebra map such that | A=Id, and

II: e(A)y—> p*

denote the homomorphism such that Lie (II)=Id. II is determined by = as in
a) of (1.2.5).

A submodule I of a p-Lie algebra L is an ideal if [L, I1CI and x'Plel
for each x=I. Then L/I is a p-Lie algebra.

Let L, and L, be p-Lie algebras. We make L, L, into a p-Lie algebra
by

[(xy, x2), (1, ¥2)1=x1, ¥.1, [x2, 321),

(%1, x2)"P=(xfP3, x5P9)
Y(xy, x3), (31, y)€ L, B L,. If L is a p-Lie algebra, the set of p-Lie maps
L—L DL,

is identified with the set of couples (g., g.) where g;: L— L; are p-Lie maps.
On the other hand, the set of p-Lie maps

LQL,—>L

is identified with the set of couples (fi, f.) where f;: L;— L are p-Lie maps
such that [f,(L,), f«(L2)]1=0.
There is a canonical isomorphism of Hopf algebras

UL, L)=UP(L)QU™(L,).
Hence we have
E(L, P L)=e(L)XE(L,).

1.27. LEMMA. If a and b are in a k-algebra,
-1 .
Zoa’bap‘l":ad (a)?~%(b)

where ad (a)(x)=[a, x]J=ax—xa.
This follows by (*) of [2, p. 275].
1.28. DEFINITION. Let L be a p-Lie k-algebra. A k-linear map d: L— L
is a p-derivation if
dlx, y1=[d(x), y1+[x, d(»)],

d(x"")=ad (x)"~(d(x))
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for each x, v L.

Let Der,(L) denote the set of all k-linear p-derivations of the p-Lie
algebra L.

If L is a finitely generated projective k-module, the lemma (1.2.7) admits
us to identify Der, (L) with the submodule of d<Der, (U™Y(L)) such that
d(L)c L. In particular, it is a p-Lie algebra. Also, it is easy to check

Der, (L)=Lie (Aut (€(L))).

But this will not be used later.
Let L and X be p-Lie algebras, and let

a: X—Der, (L)

be a p-lLie map. Let LX, X=L@X. This is a Lie algebra with bracket
product

la, x), (b, »]=(a, b]+a(x)(b)—a(y)(a), [x, ¥])

Ya, be L, Vx, y=X. Hence s,(u, v) is defined for each 0<r<p and u, ve LX X
[2, o, §7, 31]. LX,X is a p-Lie algebra with p-map

p-1
(a, OP=(aP+ 3 s,(a, 1), 117

Vae L, Vx=X. This is called the semi-direct product of L with X.

1.29. PROPOSITION. Let L and X be p-Lie algebras which are finitely
generated projective k-modules. Let a: X—Der,(L) be a p-Lie map. Since
Der, (L)CDer, (U™(L)), a can be extended to a k-algebra map

a': UP(X)—End, (U™(L)).

This is associated with an action of &(X) on &(L) as automorphisms of group
schemes. Let &(L)X,&(X) denote the semidirect product with respect to this

action. Then we have
E(L X X)=e(L)yxe(X).

PrOOF. We start with the canonical split exact sequence of p-Lie algebras

i q
0—> L—> LX, X2 X—>0
j

where i(a)=(a, 0), j(x)=(0, x), ¢(a, x)=x. This induces a split exact sequence
of finite k-groups
l—el)—&e(Lx X)——&e(X)—>1.

&(Lx,X) acts on &(L) by inner automorphisms. Hence &(X) acts on &(L) as
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automorphisms through &(j): &(X)—&(L X,X). With respect to this action we

have obviously
E(Lx X)=e(L)X e(X).

Now, the above extension arises from the following split exact sequence of
Hopf algebras

1 q
UtA(L)—> UYL X, X) = UP(X) .
J

The inner action of &(LX;X) on &(L) corresponds to the following adjoint

action
UL X X)Q U L) —> UPI(L)

g h— (ZD gwhS(gw)

where S denotes the antipode. If we restrict this action on U X)QUPIL),
we get a’. Hence the action of £(X) on &(L) arises from «’. Q.E.D.

Conversely, any semi-direct product of k-group schemes has a semi-direct
product of p-Lie algebras. Let G, and G, be k-group schemes. Assume G,
acts on G, as automorphisms of group schemes. Then we can make a semi-
direct product G,X;G;. Apply the functor Lie (—) to the canonical split exact
sequence

1—Gy,—> G, X G, T2 G,—>1.

Then we obtain
0——Lie (Gy)—>Lie (G, X;G,) > Lie (G))—>0.

Hence Lie (G, X ;G)=Lie (G,)PLie (G,). It is easy to see that [Lie (G,), Lie (G,)]
CLie (G, and that
ad: Lie (G,)—>End, (Lie (G,))

ad (x)(a)=[x, a]
induces a p-Lie map
ad: Lie (G,)—> Der, (Lie (G,)).

With respect to this map, we have

Lie (G, X ;Gy)=Lie (Gy) X Lie (G,).

1.3. Smooth groups and infinitesimal groups.

Let % be a commutative ring. A locally algebraic k-scheme X is k-smooth
if for each TeM, and each nilpotent ideal I of T, the projection T—T/I
induces a surjection
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X(T)— X(T/I)

[2, 1, 8§84, 4.6]. The following follows immediately from the definition.

1.3.1. PROPOSITION. If A is a k-algebra which is a finitely generated pro-
jective k-module, then p* is a k-smooth affine algebraic k-group.

If H is a Hopf k-algebra, we put

Ht=Ker(¢s: H—> k).

1.3.2. DEFINITION. A finite k-group G is infinitesimal if O(G)* is nilpotent
(cf. [2, I, §4, 7.17).

If & is of prime characteristic p and L is a p-Lie algebra which is a finitely
generated projective k-module, then &(L) is infinitesimal. (For the proof,
localize £ and use the Poincare-Birkhoff-Witt theorem).

1.3.3. PROPOSITION. Any extension (in the sense of the fppf topology) of
an infinitesimal k-group by a smooth k-group scheme is an H-extension.

PROOF. Let

1—G; G, G, 1

be an exact sequence of k-group schemes, where G, is infinitesimal and G, is
smooth., Consider the diagram

Sp(0(G)/OG )= es > G
rd

cano e

7

s
7

SP0(G) ~ g,

where ¢,=Sp k, and 7 denotes the unit map. Since the projection G,— G, is
a smooth map, we can apply [2, I, §4, 45]. Hence there is a morphism of
k-schemes denoted by the broken arrow making the diagram commute. This
shows that the extension is an H-extension. Q.E.D.
1.3.4. COROLLARY. Let k be of prime characteristic p, let L be a p-Lie
algebra, and let A be a k-algebra. Assume L and A are finitely generated pro-
jective k-modules. Then each extension of &(L) by p* is an H-extension.
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1.4, Split type comodule algebras.

In this section, Let A be a k-algebra which is a finitely generated projective
k-module, and let R be a finite commutative Hopf k-algebra with dual H=R*.

Let

1 7% G SpR—>1
be an H-extension of finite k-groups. A homomorphism
p: G—>Aut(4)

is called admissible if 1) p(g)(x)=gxg ', Vg G(T), VxepX(T), 2) p(x)(y)=xyx7",
VyeT®A, VxepX(T), for each TeM,. In this case, we also say that the
extension G acts on A admissibly. By the theorem (3.12) of [5], there is a
categorical correspondence between H-extensions G of Sp R by p* which act
on A admissibly and the following objects (C, 4, ¢): C is a left A- and a right
R A-bimodule over the same k-module.

4: C—CRL
e: C— A

are A-bimodule maps which satisfy the coalgebra condition. The R-action on
C satisfies

Her)= 3 4N Orew)
e(cr)=e(c)e(r)
for each ceC, r€ R. Finally we have
1: CQR=CQRLL, cQr—A)1Q7),
C=R®A (as right R A-modules).

(The last condition corresponds to the fact that the extension is an H-extension).
We shall not use this concept in the following, but use the following dual
concept. For each finitely generated projective right A-module M, let

DT(M):Hom-A (M’ A)

which is a finitely generated projective left A-module. The functor D, gives
a duality from finitely generated projective right A-modules onto finitely gen-
erated projective left A-modules.
As is well-known [1, p. 56] we can identify R-modules with H-comodules.
Thus, under the duality D,, the above concept (C, 4, ¢) corresponds to the
following concept (S, #, u): S is a k-algebra and a right H-comodule with
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structure map
0: S—SQH

which is a k-algebra map. Let
SE={x=S|0(x)=xRQ1}

which is a subalgebra. u: A—S¥ is a k-algebra map. We view S as an A-
bimodule by multiplication through #. We have

0: SRS=SRH, xQy—(xQ1I(y),

and there is an isomorphism
f:S=AQRQH

which is a left A-module and a right H-comodule isomorphism.
The objects (S, 6, u) as above are called right H-comodule A/k-algebras of
split type.
Let S be a split type H-comodule A/k-algebra. For each T&M,, TRXS is
a split type T & H-comodule (T ® A)/T-algebra. For each g=G (H)=(Sp*H)(k),
let
S;={xeS0(x)=xQg} .

If 6€G(TRH)=(Sp*H)(T) with TEM,, let
TO,S=(T®Ss,
which is a T® A-bimodule. For each ¢, = (Sp*H)T), we have
(TO,S)QreaTO:8)=TO,:S
by multiplication and u induces
T®A=TO,S

with unit 1€(Sp*H)(T). Hence an element of T0,S is a unit of T®S if and
only if it is a left (equivalently right) T & A-basis for TO,S.

We define a k-group functor Egz. For each TeM,, Eg(T) is the set of
pairs (x, o) where 6=(Sp*H)T) and x=T,S which is a unit of T®S. This
is a group with multiplication (x, ¢)(y, 7)=(xv, o7), and Eg: T—EsT) is a
k-group functor. There is an H-extension

i p
1 ut Eg Sp*H 1

where i(a)=(u(a), 1) and p(x, o)=0. Es acts on A admissibly as follows. If
(x, 0)eEg(T), x is a left TQ® A-basis for T,S. Hence there is a unique
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ox. o)a)eT®A for each a=T® A such that
xa=p(x, o)a)x .

Then p: Es— Aut(A) is an admissible homomorphism.

The correspondence S— E¢ gives a categorical correspondence from split
type H-comodule A/k-algebras onto H-extensions of Sp*H by p* which act or
A admissibly. This follows by dualizing the theorem (3.12) of [56]. In case %
is a field, we have proved this result in without assuming that A and H
are finitely generated.

14.1. LEMMA. Let

1 G, G, G, 1

be an H-extension of finite k-groups, and let H;=0%(G;). Then H, is a split
type right Hs-comodule H,/k-algebra.
PROOF. Let

f g
H — H,—> H,

be the induced Hopf algebra maps. Put

4
0: H,—> H,QH,

H,QH, .

We claim that (H,, 6, f) is a split type right H;-comodule H,/k-algebra. Indeed
the map of (1.1.2)

& HQu H,=H,QH,
is the same as 6, and if h: H;—H, is a coalgebra section to g, then the iso-
morphism
HQH;=H,, xQy—> f(x)h(y)

is a left H,-module map and a right H,-comodule map.

1.42. LEMMA. Let S be a split type right H-comodule A/k-algebra. Let |
be an ideal of A such that

JS=SJ=J.

Then S/J is a split type right H-comodule (A/])/k-algebra (with the quotient
structure).
The proof is easy, hence omitted.

§2. The non-commutative case.

Throughout the rest of the paper, let 2 be a commutative ring of prime
characteristic p, let L be a p-Lie k-algebra, and let A be a k-algebra. We
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assume L and A are finitely generated projective k-modules.

In this section we consider the case A is not necessarily commutative.

We define three groupoids (categories where all morphisms are isomorphisms)
I, M, and M and prove that they are equivalent with one another.

Ob(I) consists of all pairs of an H-extension of finite k-groups

1—> pyt—> G —> (L) —>1

together with an admissible homomorphism
p: G—> Aut(4).

Let (Gy, p1), (G, p2)€O0b(). A morphism: (G;, p,)—(G,, p2) is a homomorphism
f: G,—G, making the diagrams

l——>/lA—-——>G1 ~ &(L) - 1
1 > pt > G, e(L) 1
G,

01
f\
Gz/Pzr

commute. The morphism f is necessarily isomorphic. Hence the category I is
a groupoid.
Ob(Il) consists of all extensions of p-Lie algebras

Aut(A)

0 A X L 0

such that for each x€ X, ad(x): A—A, a—[x, a] is a k-algebra derivation. We
denote the p-Lie map x—ad (x) by

ad: X — Der,(4).

Let X;, X,=O0b(Il). A morphism: X;— X, is a homomorphism of p-Lie algebras
g: X,— X, making the diagram
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commute. The map g is also necessarily isomorphic, hence the category 1 is
a groupoid.

Ob(lI) consists of all split type UPY(L)-comodule A/k-algebras. Let S;, S,
€O0b(ll). A morphism: S,—S, is a k-algebra map A4 : S,—S, which is a UP¥(L)-
comodule map and an A-bimodule map. We claim that the category II is a
groupoid. Indeed, the comodule structure maps 6;:S;—S,QU™I(L) induce iso-

morphisms (cf. [6, p. 1464])
791- 0 Si®aSi=S,QUYL), xQy — 0:;(x)(yR1).

Since 6, is right S,-linear, applying ? ®s,S: we get a commutative diagram

;
SiR4S: = S,QUPYL)
e, |
A
Se®aS, = 82®UEPJ(L)

which proves that % is an isomorphism, since S, (=2 AQU'™Y(L)) is a left A-

progenerator.
We shall define equivalences of groupoids
I
(2.2) 2.1)
2.4)
(2.5)
I = > I
(2.3)
and the following natural isomorphisms
(2.1)-(2.3)=(24),
(2.2)-(2.1)=(2.5),
(2.2)-(24)=(Id of 1I), (24)°(2.2)=(d of 1),
(2.3)°(25)=(d of M), (2.5)°(2.3)=(d of ).
2.1. Mm-L

If S€O0p(Il), then Eg=0b(l), together with the canonical action on A. This
induces a functor M—I. It follows from the theory of [5][6] that this is an
equivalence.

2.2. I-1I.

Let 1-p*—G—&(L)—1 be an H-extension which acts admissibly on A.
Apply the functor Lie(—). Since A=Lie(y*) and L=Lie(&(L)), we have an



496 M. TAKEUCHI

extension of p-Lie algebras
0—> A—>Lie(G) —> L — 0.
We claim that this is an object of 1. Since the homomorphism
p: G—> Aut (4)
induces a p-Lie homomorphism
Lie (p) : Lie (G) —> Der,(4),

we have only to prove that Lie (p)=ad.
Let x=Lie(G) and a=A. We have

p(l+ox)(a)=a+wo Lie (p)(x)(a)
in R[w]Q®A, by definition. On the other hand, in G(k[w;, w.]), we have
I+ ww.lx, al=1+wx)1+.a)1—wx)(1—w.a)
={p(+wx)(1+wa)} (1 —w.a)
= {1+w.a+,0, Lie (0)(x)(a)} (1—w,a)
=140, Lie (p)(x)a) .

Hence [x, a]=Lie (p)(x)(a).

The correspondence G—Lie (G) gives rise to a functor I—-1 in an obvious
way.

2.3. I—II.

Let XeOb(1l). The p-Lie algebra map

ad: X — Der,(A)
induces a measuring homomorphism
ad’: U™(X) — End.(4),

through which we view A as a left U'¥X)-module algebra. On the other
hand, Ut A) is a normal sub-Hopf algebra of U3(X), correspondingly to the
fact that €(A) is a normal subgroup functor of &(X). This means that UP¥(A)
is stable under the following adjoint action

U X)YQUPA) —> U™ A)
xRy '—*g)) X yS(xew)
where S denotes the antipode of UM(X). We also view U(A) as a left

UP)(X)-module by this action.
2.3.1. LEMMA. The map n: UPA)—A (1.2.6) is left UPA(X)-linear.
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Indeed, the map = is left X-linear, by definition.
Since the p-Lie extension

0 A X L 0

induces an H-extension (1.2.3)
1—&8(A) — &X)—&(L)— 1,

it follows by (1.4.1), that U™ X) has the structure of a split type right Ut®(L)-
comodule Ut?Y(A)/k-algebra.
Let J=Ker(z). Since [X, J]C/J, we have
JUPX)=UX)]=] .
Hence
B(X)=U"XX)/]

has the quotient structure of a split type right U3(L)-comodule A/k-algebra,
by (1.4.2). Thus B(X) is an object of II.

If g: X,—X, is a morphism of II, the induced algebra map g’: U(X,)—
UtPY( X,) is a map of right U™ L)-comodule U?¥ A)/k-algebras. Hence it induces
a map of T g”: B(X,)—B(X,). Thus X—B(X) is a functor I —II.

24. OT—-L

Let 0—A—X—L—0 be an object of II. This induces an H-extension

1— 8A) — &(X) — &(L)—> 1.
The adjoint action of UI(X) on UrPI(A) (2.3) induces the inner action
e(X)xe(A) — &(A4), (x, a)—> xax™*

as follows: For each TeM,, TQUPYA)is a left TQRU™YX)-module (with the
adjoint action). Hence the group G (TQU™(X))=&(X)(T) acts on TQRQUI(A).
The group turns out to act as 7-Hopf algebra automorphisms. Hence
Gr(TQU™AX)) acts on Gp(TQRUP(A)) as group automorphisms. The inner
action of €(X)T) on &€(A)T) is this.
Let
Ad: &(X)— Aut(A)

be the homomorphism corresponding to
Lie (Ad)=ad: X —— Der,(A4).
We know (1.2.5) how to construct Ad from the measuring homomorphism
ad’: U X) —> End,(A).
We let &(X) act on p* by
EX) X pt —> pt, (x, g —> Ad(x)(g).
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The following lemma follows immediately from (2.3.1).

24.1. LEMMA. The homomorphism II : &(A)—p* (1.2.6) commutes with the
&(X)-actions.

24.2. LEMMA. For each x€&(A)XT) and a=TQA with TeM,, we have
Ad (xX)a)=II(x)all(x)™".
PROOF. We compare the following two homomorphisms

17 inn
&E(A) —> pt — Aut (A)

&(A) Aut (4)

where inn denotes the inner action inn (g)(a)=gag™, Vg p (T), VacTRA. To
see that they coincide, we have only to apply the functor Lie(—). Then we
get
Id Lie(inn)
A

Der .(A)
ad
A Der,(A).
Since Lie (inn)=ad, the claim follows. Q.E.D.
Let
pAx8(X)

be the semidirect product of p* with &(X) with respect to the action of &(X)
on p4. Thus the product is given by

(a, x)b, y)=(a Ad (x)(]), xy), Ya, bepX(T), Vx, ye&(X)(T),
for each TeM,. There is a homomorphism

p: X &(X) —> Aut (A)
given by
pla, x)b)=a Ad (x)(b)a™*,

Y(a, x)e(pu*x(X)(T), VbeTQRA, YT M,. We define a morphism
D: (A) — p*x&(X)
D(2)=1(z™Y), 2), Vze(A(T), VT M,.
2.4.3. LEMMA. @ is a homomorphism of k-group functors,
(a, x)P(2)a, x)'=0(xzxY),
for each (a, x)e(pA X £(X)NT), z€&(ANT) with T€M,, the composite

o o
E(A) — pA X &(X) —> Aut (A)
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is trivial, and Im (@) is a normal subgroup functor of p*X,&(X).
This follows directly from (2.4.1) and (2.4.2).

Since &(A) and p*X,&(X) are k-group sheaves with respect to the fppf
topology, we can form a quotient k-group sheaf [2, II, §3, 3.1]

BX)=(p" X (X)) Im (D).
The homomorphism p induces a homomorphism
p: B(X)—> Aut(4).

Consider the canonical exact sequence

J q
l— p* — pAX (X)) — &X) —> 1
where j(a)=(a, 1), ¢(a, x)=x. Since
Im (j)NIm (@)=e,
and &(A)=Im (¢@), it follows that ; and ¢ induce an exact sequence (in the
sense of the fppf topology)
J q
l— pt— B3(X)—> &(L) —> 1.
There is a corﬁmutative diagram
1— €(A) — &(X) —> &(L) —> 1
lm e |
J q
11— p* — (X)) — &(L)—> 1

where © is the composite of &(X)—p4Xx,&(X), x—(1, x) with the projection
pAx8(X)—3(X). The homomorphisms j and @ commute with the action on A
(p* acting on A by inner automorphisms).

244. LEMMA. (B(X), p) is an object of 1.

ProOF. By (1.34), ®8(X) is an H-extension of &(L) by p* If (¢, x)e
(A% :&(X))(T) and be p*(T), we have

(a, x)(b, D(a, x)*=(a Ad (x)(b)x71, 1)

=(p(a, x)(b), 1)

in (u*x&(X))(T). Hence p is admissible. Q.E.D.
The correspondence X—®(X) defines a functor H—I. If g: X,—X, is a
morphism in I,
(1, (@) : p*XE(X) — p* X &(Xy)

is a homomorphism which induces a morphism @(X;)—®(X,) in L
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25, II—1I.

Let S be a split type U(L)-comodule A/k-algebra. Let a be the kernel
of the unit map k—A. (We are not assuming A is a faithful k-algebra). Thus
k/aC A, hence R/aQLCAQRQU™IL), since U L)/ L is a projective k-module.
Put

o(S)={xeS | 0(x)— xRl k/aQL}

which is a p-Lie subalgebra of S. alL is an ideal of L, hence L/aL is a p-Lie
k-algebra.
25.1. LEMMA. There is an exact sequence of p-Lie algebras

U 7
0— A— o(S)—> L/aL —> 0

where u denotes the map induced from the structure map u: A—S, and 7 is given
by 7(x)=0(x)—xQ@1l=(k/a)QL.
PROOF. Since
u: A= {xeS | 0(x)=xR1}

we have only to prove that 7 is surjective. Let
h: AQU™YL)=S

be an isomorphism of left A-modules and right U')(L)-comodules. We can
assume A(1®1)=1. Then A(k/aQL)Cw(S), and h:k/a@QL—w(S) is a section

to 7. Q.E.D.
Let
28) — (L)
L
o(S) L/aL

be the fibre product of p-Lie algebras. Thus, £2(S) is the p-Lie subalgebra of
o(S)PL consisting of all (x, /) with 7(x)=I[ (the class of /). Then we have an
extension of p-Lie algebras

0—>A—u—>.Q(S)——>L—>O
where @#(a)=(u(a), 0). Since
Ux, D), (w(a), 0)]=([x, u(a)], 0)
for each (x, D=02(S) and a= A, and
Cx, ?7: u(A) —> u(A)

is a k-algebra derivation for each x<=w(S), it follows that £2(S) is an object of II.
The correspondence S—2(S) is obviously a functor M—1If.
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2.6. Natural isomorphisms
We define the isomorphisms of functors above (2.1). This will prove that
each functor is an equivalence.
2.6.1. (2.1)-(2.3)=(2.4).
Let XeOb(Il). Let
q: UP(X) — B(X)

72 UPIX) —> U™(L)

be the canonical projections. Since ¢ is a U™YL)-comodule map, if o€
G(TRUPX)), with TeM,, and 6=URr)(0)=G(TRU (L)), then

(IR e)e(T 07 BX)NpP*(T).
If we put Y(o)=(UQq)(0), 0)€ Epxy(T),
V. &X)—> Epwx
is a homomorphism of k-group functors, and we have a commutative diagram
1 e(A) e(x) e(l) 1
n v
Y
1 17 Epx &(L) I,

where the first row is induced from 0—A—X—L—0. We claim that ¥ com-
mutes with the action on A. Indeed, if =G (TQRU™(X)) and ac TQRU™(A),
we have

ca=oc(a)o in TQUMWI(X)

where o(a) means the adjoint action of U'I(X) on U'(A). Applying IRq, we
get

(IRq)(o)IQn)(a)={UXn)(e(a))IXq)0o)
where

(IQm)(o(a))=0(IQm)(a)

by (2.3.1). Since m is surjective, this means that ¥ commutes with the action
on A.
It follows that the morphism

I': "X &(X) —> Epxy, I(a, x)=a¥(x)

is a homomorphism of k-group sheaves, which commutes with the operation on
A. Since I'@=1, I" induces a homomorphism

I B(X) —> Epx

which also commutes with the operation on A, and we have a commutative
diagram of extensions
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1—> pt—> (X)) —> &(L) —> 1

|

1—‘—>[,6A——>EB(X)—“>8(L)—>1.

It is easy to prove that I’ is natural with respect to XeOb(Il). Thus I’ gives
rise to an isomorphism of functors

(2.1)-(2.3)=(2.4) .
26.2. (22)-24)=(d of 1), (24)-(2.2)=(Id of I).
Let XeOb(Il). We have a commutative diagram
11— ¢A) —eX)—&(L)—>1
o e |
11— p* — B(X)—>&(L) — 1.
Since Lie (/I)=1Id: A— A, it follows that

Lie (@) : X — Lie (8(X))

is a morphism of II.
Let GeOb(I). Lie(G) is a finitely generated projective k-module, since

Lie (G)e0b (). Let
F: elLie(G) — G

be the homomorphism corresponding to
Lie (Z)=Id : Lie (G) —> Lie (G).

It is easy to see that Z commutes with the operation on A. (&(Lie (G)) acts on
A, since Lie (G)=Ob(II)). Moreover, we have a commutative diagram

1 — &(A) — &Lie (G)) — &(L) — 1

lr s

l— p* — G —> &(L) —>1.

Just as (2.6.1), this induces an isomorphism in I
B(Lie (G)) - ==, G.

The above are functorial, and we have the required isomorphisms of functors.

2.6.3. (25).(2.3)=(d of 1), (2.3)-(2.5)=(Id of ).

Let XeOb(Il). The projection ¢: U™ X)—B(X) induces a p-Lie map
q: X—w(B(X)) which makes the following diagram commute.

00— A—> X — I —>0

| b e

0— A—> o(B(X)) —> L/aL —> 0.
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Hence there is an isomorphism of II
X=Q2(B(X)).

Let S=Ob (). The projection £2(S)—w(S) composed with the inclusion
w(S)SS is extended to a k-algebra map UPXQ(S))—S which is seen to be a

map of II.
The above maps, which are functorial, give the required natural isomor-
phisms.

264. (2.2)-2.1)=(25).
Let S=Ob(Il), and let (x, )e2(S). Thus xS and /=L which satisfy

0(x)=xR14+1R! in SQUPIL).
Let k[wl=Fk[X]/(X?. Then we have

1+ o@x & (ko]0 meaS)N g (RLw]) .
The map
(x, )— 14+0®x, 2(S) —> Lie (Ey)

is a p-Lie map which makes the following diagram commute.

0 — A — 26 — L — 0

] | L
0 —> Lie (u*) —> Lie (Es) —> Lie (&(L)) — 0.

Since this is natural in S, we have the required isomorphism.

§3. The commutative case.

Let k, L, and A be as in §2. We assume A is commutative, throughout

the section.
3.1. PROPOSITION. (a) Let (G, p)eOb(1). The homomorphism

p: G—> Aut(A)

factors through the projection G—&(L).
(b) Let XOb(Il). The p-Lie map

ad: X — Der,(A)

factors through the projection X—L.
(¢) Let SOb(lll). There is a unique structure of a left ULPY(L)-module
algebra on A such that

xa:(Z (xawy-a)xw, VXES, VagA,
z)

where O0(x)= % X &@x -
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PROOF. (a) and (b) are obvious, since p|p* and ad|A are trivial (c) Let
H=UwYL) and R=H* We can view S as aleft AQR- and right A-bimodule.
Since S is a rank 1 free left AQR-module and A is commutative, we have

A@R = EndA®R_(S)

by left multiplication. Hence there is a unique k-linear map 7: A—AQR such
that

xa=7(a)x, VxS, YacA.
We define a left H-operation on A by the condition that

g-asz) {g, ey, VgEH, YagA,

where r(a):(Z awRaq. Then
a)
Z(Xm'a)x(o): 2 {Xw, Q)X
(z) (x, a)
=((,2L‘ awQaw)x=xa,
J

for each x=S, a= A. Conversely, each such operation determines a linear map
v as above, since

ARR=Hom,(H, A).

To prove that this makes A into a left H-module algebra, it is enough to show
that 7 is a k-algebra map and the structure of a right R-comodule. It is clear
that y is an algebra map. To prove that 7 is the structure of a right R-como-
dule, consider the canonical isomorphism

0: SRS=SRH
0_(95@)’): (Z,w xy(o)@)’(n

which is A-bilinear and semicolinear over the coalgebra isomorphism

HQH=HQH, g®h— 3 gha@ha .

This means that §-! is semilinear over the dual algebra isomorphism
RRR=RPR, u@v+—> g_,‘) UHQuUnv .
For zh=SX®H and a= A, we have
(zQh)a=za@h
=7(a)z2Qh=(r(a)Q1)(=z&Xh) .

hence, in S&,S, we have
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07 (e@h)a= % (aw@Maw)i ™ (zQh).
On the other hand, for x®yeS®,S and a< A, we have
(x@y)a=xQr(a)y= 2 xaw®awy
=2 (1a)®ew)(*x&y) .

Comparing the two identities, we conclude that

(%a(o)(g)d(a(l)): (Z”T(a(o))@)a(,), YecA.
Letting x A in xa=y(a)x, we have
(% elam)aw=a, YasA.
Hence A is a right R-comodule. Q.E.D.
Throughout the rest of the paper, we fix a p-Lie map

a: L —> Der,(A).
Let
a’: U L) — End.(A)

be the corresponding measuring homomorphism. We view A as a left UPI(L)-
module algebra through a’. Let

a: &(L)—> Aut (A4)
be the homomorphism of k-group schemes such that

Lie ()=«
We fix these notations.
'3.2. DEFINITION. (a) An object (G, p) of I is a-admissible if

cano @
p: G—>&(L)—> Aut (4).

(b) An object X of II is a-admissible if

cano «
ad: X — L — Der,(A4).

(¢) An object S of Wl is a’-admissible if

sar—(Z) (5(1)‘a>8(0), VSES, VGEA,
s

where u-a=a’'(u)(a), YuesUPIL).
3.3. THEOREM. The equivalences of §2 induce equivalences among the fol-
lowing subcategories:
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The a&-admissible objects of |1,
The a-admissible objects of 1I,
The o -admissible objects of 1.

Proor. We have only to prove that the equivalences of (2.1), (2.2), and (2.3)
preserve the admissible objects.

(2.1) If SeOb(ll) is a’-admissible, we have
xa=o(a)x, Vx=TOsS, VacsTRA,
Yoc&(LXT), VT eM,,
where o(a)=da(o)a). Hence, for (x, o) Eg(T), we have
xa=c(a)x .

This proves that Eg is a-admissible.
(2.2) If (G, p)e0b() is a-admissible, then

cano a
Lie (p) : Lie (G) —> L — Der,(A)

since a=Lie (&). Hence Lie (G) is a-admissible.
(2.3) follows from a series of the following lemmas.
3.3.1. LEMMA. Let

H, — H,— H,

be a sequence of finite cocommutative Hopf k-algebras which represents an H-
extension of finite k-groups. Assume H, is commutative. The adjoint action

H,QH, —> H,, xQa (Em XaS(x )
factors through Hy,—H,, and we have

xa= (Z)) f(n(d)X(g), V}CEIIQ, Ya Ef[l

where we denote by x—X the projection Hy—H,, and we use the induced action
of Hy, on H,.
PROOF. Let

1 G, G, G, 1

be the corresponding H-extension. Then we have

y0=3(b)y, Yy Gy(T), Yo G(T)

for each TeM,. If is enough to translate this into the language of cocommuta-
tive Hopf algebras.

3.3.2. LEMMA. Let
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be an exact sequence of p-Lie algebras which are finitely generated projective
k-modules. Assume L, is abelian. The adjoint action

ad: L, —> Der,(L,), ad (x)=[x, —]

factors through L,—L, If we extend the induced p-Lie map L,—Der,(L,)C
Der  (U™(L,)) to a measuring homomorphism

U L,) —> End,(U™Y(L)))

then the action of U L,) on U™ L,) is associated in the sense of (3.3.1) with
the H-extension of finite cocommutative Hopf algebras

UL,) —> UPYLy) —> UPALy).

This is almost obvious.

We prove that the functor of (2.3) preserves admissible objects. Let Xe&
Ob(Il) be a-admissible. Extend

L —f{—> Der ,(A)C Der ,(A)CDer (U™ A))
to a measuring homomorphism
‘U L) —> End (U(A4)).
With respect to this action, we have

*) xa= z; Tw(a)xw, YxeUPAX), Yac U™ A)
«r

where x—X denotes the projection UPI(X)—U™(L). Since this action is induced
by the adjoint action of UtPI(X) on U A), it follows from (2.3.1) that

r: UP(A)— A

is left U™I(L)-linear, where we let U'®(L) act on A by «’. Applying the pro-

jection ¢: UY(X)—B(X) to the formula (*), we conclude immediately that B(X)
is a’-admissible. Q.E.D.

3.4. DEFINITION. Let

Exta(e(L), p*) (resp. Ext, (L, A), resp. Br,. (U®¥L), A/k))

be the set of isomorphism classes of @-admissible objects in I (resp. a-admissible
objects in II, resp. a’-admissible objects in II).

We shall make these into abelian groups and prove that they are isomorphic
with one another.

3.5. The Baer sum.
35.1. Extg(e(L), p%).
The homomorphism & : &(L)—Aut (A) induces an action
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E(L)X pt —> p, (x, a) — @(x)(a)

and &-admissible objects of I are the same as H-extensions

1 7% G e(L)y—>1

such that the inner action of G on p* induces the above action of &(L) on u*.
Hence the isomorphism classes Extz(€(L), ¢*) form an abelian group by Baer
sum [2, T, §6, 191 which is isomorphic to the Hochschild cohomology
Xe(l), p* [2, m, §6, 2.1]. The unit is supplied by the semidirect product

pAxe(L).

3.5.2. Ext. (L, A).

Let X;, i=1, 2, be «a-admissible objects in II. We can make an exact
sequence of p-Lie algebras

0— ADA — X\ DX, —> LOL — 0.

The diagonal map
0: L— LBL, 6()=, D

is a p-Lie map. Let X;X X, by the inverse image of 6(L) in X.®X. Then
we have an exact sequence of p-Lie algebras

0 ADA XiX Xo—> L —>0
which is admissible with respect to the action
LX(ADA) — ADA,
[-(a, b)=(a, Ib).

The addition (a, b)—a+b, AGBA—Ais a p-Lie map which is left L-linear. Hence
the kernel N is an ideal such that [ X, X, X,, NJCN. This means that N is an
ideal of X;X;X,. Hence we have an exact sequence of p-Lie algebras

0—>A— (XX X;)/N— L —(

which is «-admissible. Denoting by [ ] the isomorphism class, we define an
addition on Ext,(L, A) by

[X]+LX ]=0(X1 X . X)/NT.

It is easy to prove directly that this makes Ext,(L, A) into an abelian group,
but unnecessary, since we shall prove later that Ext, (L, A)=Exts(e(L), pu.
With respect to a, we can make the semidirect product AX L of p-Lie
algebras, and we have the canonical extension (1.2.9)
i q
0—> A— AX,L— L —0
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which is admissible. We shall prove later that this is the unit.

3.5.3. Brn,.(U™(L), A/k).

Let S;, i=1, 2, be a’-admissible objects in I, and let H=U"IL). S.QS.
has the structure of a split type right HQH-comodule (AR A)/k-algebra, where
each structure of comodule, bimodule, and algebra is the tensor product. It is
admissible with respect to the module algebra structure

(HOH)Q(ARQA) — AR A
(g@h)NaQb)=ga@hb.
Let S;04S, denote the inverse image of S:®S.Q4(H) by the comodule structure
f: Si®S; —> SIQS:QHKRH .

It has the structure of a split type right H-comodule (A A)/k-algebra, which
is admissible with respect to the action

HRARA) — AQA
g-(a@b):%gma@gmb.
Let M be the kernel of the product a®b—ab, ARQA—A. It is an ideal of
AR A stable by H. Hence
($10#SIM=M(S,0 zS)=M

is an ideal of S,04S,. Just as we have constructed B(X) for X<Ob(lil), we

can make
(S:0xS)/M

into a split type H-comodule A/k-algebra, which is a’-admissible. Define an
addition on Br..(H, A/k) by

[S:1+[S:1=[(S:0xS2)/M].
There is another equivalent construction of (S,0 HSZ)/M. Let
M=M(S,®S,).

Then (SI®SZ)/A? is a left A- and a right AQA-bimodule. It is also an HQH-
comodule satisfying

2(a@b)=33(2(1y(a)z(z (b)) z 0
for each ZE<51®82)/]§[, a@®be AR A, where
0(2)=22Q2(1yQzl5) .

Let S;*S, be the inverse image of
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{(S:®8.)/ My QA(H)
by the comodule structure
0: ($:RS2)/M —> {(S:QS,)/ M} QHRH.

We can prove that S,*S, is a subalgebra of S;x,S, [4] containing A. It is
an «a’-admissible split type H-comodule A/k-algebra. The projection

Si®S, —> ($:Q85)/M

induces S;0xS,— S;*S, which factors through the projection S;04S,—
(5,04,S,)/M. The resulting map

(S:0xS)/M —> S, % S,

is a morphism in I, hence is isomorphic.

We do not prove that Br, (H, A/k) is in fact an abelian group either. It
will be shown that the unit is supplied by the smash product A#H [3, §7.2]
where the comodule structure is given by

a #g):(%‘: atg@gew .

3.6. THEOREM. The equivalences of § 2 induce isomorphisms of abelian groups
Extg(&(L), p)=Ext,(L, A)=Br, (UPX(L), A/k).

The proof divides into two parts.

36.1. I-1.

Let (G;, p1), i=1, 2, be @-admissible objects in I, and let X;=Lie (G;). The
p-Lie extension
0 ADA XPX, — LPL —>0

is induced from
1— piXpt— G, XG,—> &(L)X&(L) —> 1

by applying the functor Lie (—). Since the functor Lie (—) preserves fibre pro-
ducts, the Lie (—) of the extension

1 — p*Xp? —> G X o1yGs —> &(L) —> 1
is
00— APA — X\ X X, —> L —>1.
Let X: p*Xp*—p* be (a, b)—ab. Then
Lie(2): ADA— A, (u, v)—— utv.

Apply the functor Lie (—) to the diagram
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1— pu*Xp* — G X e,Gy —> (L) —> 1

= |

1 — ﬂA —_—> G1+Gz I 8(L> —>1
where the bottom row denotes the Baer sum. We get

0—>A@A e X1><LX2*‘9L—>O
i addition l H

This yields Lie (G,+G,)=(X, X X,)/N in 1II.

36.2. M-I

Let S;, i=1, 2, be «’-admissible objects in . As we have seen in (3.5.3),
S:1®S; is a split type U L)YQU™(L)-comodule (AX A)/k-algebra. Hence Eg s,
is an H-extension of &(L)x&(L) by p*®4. If o, re&(L)XT) with TeM,, the
canonical isomorphism

T®S:QS,=(TQRSHQr(T&S.)

induces
T, o(S:RS)=(TO,S)Q(TO.S,).

which is T®QAQA-bilinear. If (x, o) Es/(T), (y, T)EE%(T),/ let xxy be the
element of T4, (S:®S,) which corresponds to x®ry. Then (xxy, (o, ))<=
Es.gs,(T). There is a commutative diagram of extensions

1 — p*Xp*—> Eg XEgs,—> &(L)XE(L) —>1

ln |

1— /,ZA®A I fz,glqg,s2 —— 8(L)><€<L) —>1

where %(a, b) = a®1b, {(x, 0), (3, ©) = (x*y, (0, ), Va, b€ pXT), Y(x, o)
€Es(T), V(y, t)eEs,(T), YT €M,. Taking pullback along the diagonal &(L)
—&(L)Yx&(L), we obtain a commutative diagram

1— #AX/,!A — E51X5(L)E52 e 8([1) —>1

ln e |

l— p*® —  FEgps, —>&L)—>1
where S;0S5,=S:05S, with H=U'"I(L). Also, there is a commutative diagram

11— [,CA®A —_—> ES1DS2 - E(L) —>1

s o]

11— p* — Espspm—> (L) —>1

where ¢ is induced by the product a®b—ab, AQA—A, and ¢ by the projection



512 M. TAKEUCHI

Sﬂ:‘Sg"_’(S]DSg)/M. Since ¢n=2 with the notation of (3.6.1), we conclude that
E (5,085 is isomorphic to the Baer sum of Es, and Es, by composing the
last two diagrams. Q.E.D.

3.7. REMARK. We verify the description of the units in (3.5). The Lie (—)
of the canonical extension

1l — pt — ptx,&(L) —> &(L) —> 1
is
00— A— AX,L — L —90
by the paragraph following (1.2.9). Hence AX L is the unit of Ext,(L, A).
Next, to prove that
Ejsn=p*x(L)

where H=U'(L), it is enough to prove that the projection E :xz—&(L) has a
section which is a homomorphism of k-group functors. Indeed, we can identify

TRAEH)=(TRA) 4(TRH).
If oG (TQH), this gives
TO At H)=(TQRA) 8T .

The map ¢—(1Q1) #r0 gives the required section.

Appendix. The proof of (1.2.3).

We prove the theorem (1.2.3). Let 2 be a commutative ring of prime
characteristic p.
For each Hopf algebra H, let

H+=Ker(e: H— k).

A.l. LEMMA. If L is a p-Lie algebra which is a finitely generated projec-
tive k-module, then the canonical map L—UWIL)* 1is injective, and U™ (L)*/L
1s finitely generated projective as a k-module.

This can be proved by localizing £ and using the PBW theorem, just as
[2, O, §7, 3.71 (cf. [7, p. 434, Lemma 9]).

For each k-module V, let StP3(V) be U™ V) where V is given the trivial
p-Lie structure (i.e., [V, V]=V™®1=0). Thus S V) is the quotient of the
symmetric algebra S(V) by the ideal generated by v?, veV.

Let V*=Hom,(V, k).

A.2. PROPOSITION. Let L be a p-Lie k-algebra which is a finitely generated
projective k-module, and let

f:UP(L)— L
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be a k-linear map such that f|L=Id and f(1)=0. The dual map
F¥o L* —> U L)*
induces an isomorphism of k-algebras
SEPY(L*) = UtP(L)* .

PROOF. Since ¢f*=0 and xP=0 for each x=U™I(L)** it follows that f*
induces an algebra map
SIPL¥) —> Uy LY*

To prove that this is isomorphic, we can localize % and assume that L is k-free.
By the PBW theorem,

UP Ly*=k[X,, -, Xal/(XP, -+, XD)
as algebras and f*(L*) has a basis
b, X

where X;—X; is a polynomial of degree >1 without constant term, for each
1<i<n. Using the canonical graduation on E[Xi, -, X,1/(X?, ---, X2), we
can easily prove that X;— X} defines an automorphism of it. Hence the homo-
morphism StPYL*)—U(L¥*) is isomorphic. Q.E.D.

A3. LEMMA. Let r: L,—L, be a surjective homomorphism of p-Lie alge-
bras which are finitely generated projective k-modules. If f:UWY(L,)—L, is a

k-linear map such that f|L,=Id and f(1)=0, then there is a k-linear map
F: U™ (L,)—L, such that F|L,=Id, F(1)=0, and

4

U[P](Ll) U[ZJ](Lz)
L
L1 Lg

commutes, where v’ denotes the homomorphism induced by .
PROOF. Let V be a submodule of L, such that L,=V&Ker (»). Since

UL y)=LDKer (f),
we have
U L)=VDr' -(Ker (f)).
Since
UP(L)*/ Li=r""(Ker (f))*/Ker (r)

is finitely generated projective, there is a submodule W of »~'(Ker (f))* such
that
r'“{(Ker (f))*=Ker (n®W,
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hence
U (L) =L,PW.

We have only to define F by F|L,=Id, F|W=0, and F(1)=0. Q.E.D.

AA4. PROPOSITION. Let v: L,—L, be a surjective homomorphism of p-Lie
algebras which are finitely generated projective k-modules. Then the induced
Hopf algebra map

T/ . U[p](Ll) —_—> U[p]<L2)

has a coalgebra section.
PrOOF. Let f: UYL, —L, be a k-linear map such that f(1)=0, f| L.,=Id.
Lift f to F as in (A.3). We have a commutative diagram
r'*
Uty L) <— UTPY(L,)*
WF* . U
SPLE) <— SPYLY).

Since a k-linear retract for r*: L¥— L¥ induces a k-algebra retract for »* : SPPI(L¥)

—SPPILF), the k-algebra map »’* has a retract. This means that ' has a co-
algebra section. Q.E.D.

Note that each coalgebra map UL, —U™L,) sends L, into L,, if L; are
finitely generated projective p-Lie algebras.
Ab. LEMMA. Let L, and L, be finitely generated projective p-Lie algebras.
A coalgebra map
¢: U™(L,) — U™PI(L,)

s an isomorphism if c¢: L,=L,.

PrROOF. We can assume c¢(1)=1. Also, we can assume L,=L,=1I and c|L
=Id. Let

frUP(L)— L

be a k-linear map such that f(1)=0, f]| L=Id. Then fc also satisfies the same
condition. Thus

SteY( %)

(fc)*g '\_f*

c*

U L)* = UtpI(L)*

which proves that ¢* is an isomorphism. Q.E.D.
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A.6. PROPOSITION. Let

”
0 L, L, L, 0

be an exact sequence of p-Lie algebras which are finitely generated projective k-
modules. Let s: U Ly)—UYL,) be a section to v’ :UYYL,)—U"YL,). Then

§: UPAL)QUWPIL)=U™I(L,)
§(xQy)=x5(y) .
PrOOF. s(L;)C L, and s: L,—L, is a section to . If we identify

UL, DL)=UPAL)QU™(L,),
then &| L.6BL, gives
Li®DLs=L,, (x, y)r—> x+s(y).

Hence £ is an isomorphism by (A.5). Q.E.D.
The last proposition proves (1.2.3).
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