Two local ergodic theorems on $L_{\scriptscriptstyle \infty}$

Dedicated to Professor Shisanji Hokari on his 70th birthday

By Ryotaro SATO

(Received April 28, 1978)

Introduction.

Let (X, \mathfrak{F}, μ) be a σ -finite measure space and let $L_p(X) = L_p(X, \mathfrak{F}, \mu)$, $1 \le p \le \infty$, be the usual Banach spaces of real or complex functions on (X, \mathfrak{F}, μ) . In this paper we first prove that if $(T_t : t > 0)$ is a strongly continuous one-parameter semigroup of linear contractions on $L_1(X)$ such that $\mu(A) > 0$ implies $\int_A |T_t f| d\mu > 0$ for some $f \in L_1(X)$ and t > 0, then the local ergodic theorem holds for the adjoint semigroup $(T_t^* : t > 0)$ acting on $L_\infty(X)$, i.e. for any $f \in L_\infty(X)$ there exists a scalar function $T_t^* f(x)$, measurable with respect to the product of the Lebesgue measurable subsets of $(0, \infty)$ and \mathfrak{F} , such that for each fixed t > 0, $T_t^* f(x)$ as a function of x belongs to the equivalence class of $T_t^* f$, and the following local ergodic limit

$$\lim_{b\to 0} \frac{1}{b} \int_0^b T_t^* f(x) dt$$

exists and is finite a.e. on X; in particular, $\lim_{t\to 0}\|T_tv-v\|_1=0$ for all $v\in L_1(X)$ if and only if

$$\lim_{b\to 0} \frac{1}{b} \int_0^b T_t^* f(x) dt = f(x)$$
 a. e.

for all $f \in L_{\infty}(X)$. This generalizes Krengel's local ergodic theorem [7] for semigroups of nonsingular point transformations on (X, \mathfrak{F}, μ) . For another related result we refer the reader to the author [13], in which positive semigroups on $L_1(X)$ are considered and a similar result is obtained, only assuming that the positive semigroup $(T_t: t>0)$ is strongly integrable over every finite interval. We next prove that if $(T_t: t>0)$ is a strongly continuous one-parameter semigroup of bounded linear operators on $L_p(X)$ for some fixed p, $1 \le p < \infty$, such that $(T_t: t>0)$ is also simultaneously a semigroup of linear contractions on $L_{\infty}(X)$ with $T_t^*L_1(X) \subset L_1(X)$ for all t>0, then under one of the following two conditions (I) and (II), the local ergodic theorem holds for $(T_t: t>0)$ on

416 R. Sato

 $L_{\infty}(X)$: (I) $\mu(A) > 0$ implies $\lim_{t \to 0} ||T_t 1_A||_{\infty} > 0$; (II) T_t on $L_p(X)$ converges strongly to a linear contraction T_0 on $L_p(X)$ as $t \to 0$.

Definitions and preliminaries.

Let (X, \mathfrak{F}, μ) be a σ -finite measure space and let $L_p(X) = L_p(X, \mathfrak{F}, \mu)$, $1 \le p \le \infty$, be the usual Banach spaces of real or complex functions on (X, \mathfrak{F}, μ) . All sets and functions introduced below are assumed to be measurable; all relations are assumed to hold modulo sets of measure zero. If A is a subset of X, then 1_A is the indicator function of A and $L_p(A)$ denotes the Banach space of all $L_p(X)$ -functions that vanish a.e. on X-A. If $f \in L_p(X)$, then supp f is defined to be the set of all $x \in X$ at which $f(x) \ne 0$. A linear operator T on $L_p(X)$ is called positive if $Tf \ge 0$ for all $f \ge 0$, and a contraction if $\|T\|_p \le 1$.

Let $(T_t:t>0)$ be a one-parameter semigroup of bounded linear operators on $L_p(X)$, i. e. $\|T_t\|_p < \infty$ and $T_tT_s = T_{t+s}$ for all t, s>0. $(T_t:t>0)$ is called strongly continuous (on $(0,\infty)$) if $\lim_{t\to s} \|T_tf - T_sf\|_p = 0$ for every $f \in L_p(X)$ and all s>0, and strongly integrable over every finite interval if for each $f \in L_p(X)$ the vector valued function $t \mapsto T_t f$ is Bochner integrable with respect to the Lebesgue measure on every finite interval.

It is well known (cf. [5, Chapter VIII]) that if $(T_t:t>0)$ is strongly integrable over every finite interval, then it is strongly continuous and so for any $f \in L_p(X)$ there exists a scalar function $T_t f(x)$, measurable with respect to the product of the Lebesgue measurable subsets of $(0,\infty)$ and \mathfrak{F} , such that for each fixed t>0, $T_t f(x)$ as a function of x belongs to the equivalence class of $T_t f$. Moreover, by Fubini's theorem, there exists a set $N(f) \subset X$ with $\mu(N(f)) = 0$, dependent on f but independent of f, such that if $f \in X$ then the function $f \in X$ is Lebesgue integrable on every finite interval $f \in X$ and the integral $f \in X$ as a function of $f \in X$, belongs to the equivalence class of $f \in X$ and $f \in X$.

We now assume that $1 \leq p < \infty$, and denote by $(T_t^*: t>0)$ the adjoint semigroup of a strongly continuous one-parameter semigroup $(T_t: t>0)$ on $L_p(X)$. Thus $(T_t^*: t>0)$ acts on $L_q(X)$, where 1/p+1/q=1, and $\langle T_t v, f \rangle = \langle v, T_t^* f \rangle$ for all $v \in L_p(X)$, $f \in L_q(X)$ and t>0, where we let $\langle v, f \rangle = \int v f d\mu$ for $v \in L_p(X)$ and $f \in L_q(X)$. In case $1 , <math>L_p(X)$ is a reflexive Banach space and hence the adjoint semigroup $(T_t^*: t>0)$ is also strongly continuous; furthermore T_t converges strongly to T_0 as $t\to 0$ if and only if T_t^* converges strongly to T_0 as $t\to 0$. In case p=1, this is not the case. But we then have the following proposition, originally due to Lin [9].

PROPOSITION. Let $(T_t:t>0)$ be a strongly continuous one-parameter semigroup of bounded linear operators on $L_1(X)$ such that $\sup_{0 < t < 1} \|T_t\|_1 < \infty$. Then for any $f \in L_{\infty}(X)$ there exists a scalar function $T_t^*f(x)$, measurable with respect to the product of the Lebesgue measurable subsets of $(0, \infty)$ and \mathfrak{F} , and a set $N(f) \subset X$ with $\mu(N(f)) = 0$, dependent on f but independent of f, such that if $f \in N(f)$ then the function $f \in N(f)$ is Lebesgue integrable on every finite interval $f \in N(f)$ and the integral $f \in N(f)$ dt, as a function of $f \in N(f)$ and satisfies

$$\langle v(x), \int_a^b T_t^* f(x) dt \rangle = \langle \int_a^b T_t v dt, f \rangle$$

for all $v \in L_1(X)$.

PROOF. A minor change of the argument given in [12, Lemma A] is sufficient for the proof of the proposition and we omit the details.

Theorems.

THEOREM 1. Let $(T_t:t>0)$ be a strongly continuous one-parameter semi-group of linear contractions on $L_1(X)$ such that $\mu(A)>0$ implies $\int_A |T_t f| d\mu>0$ for some $f \in L_1(X)$ and t>0. Then for any $f \in L_\infty(X)$ there exists a scalar function $T_t^*f(x)$, measurable with respect to the product of the Lebesgue measurable subsets of $(0,\infty)$ and \mathfrak{F} , such that for each fixed t>0, $T_t^*f(x)$ as a function of x belongs to the equivalence class of T_t^*f , and further the following local ergodic limit

$$\lim_{b\to 0} \frac{1}{b} \int_0^b T_t^* f(x) dt$$

exists and is finite a.e. on X.

In particular, we have $\lim_{t\to 0} \|T_t v - v\|_1 = 0$ for all $v \in L_1(X)$ if and only if

(2)
$$\lim_{b\to 0} \frac{1}{b} \int_0^b T_t^* f(x) dt = f(x) \quad a. e.$$

for all $f \in L_{\infty}(X)$.

REMARK. It is well known (cf. [8]) that $\lim_{t\to 0}\|T_tv-v\|_1=0$ for all $v\in L_1(X)$ if and only if

(3)
$$\lim_{b\to 0} \frac{1}{b} \int_0^b T_t v(x) dt = v(x) \quad \text{a. e.}$$

for all $v \in L_1(X)$.

PROOF. Let τ_t denote the linear modulus of T_t in the sense of Chacon and Krengel [3]. Therefore τ_t is a positive linear contraction on $L_1(X)$ such

418 R. Sato

that

$$\tau_t f = \sup \{ |T_t g| : g \in L_1(X) \text{ and } |g| \leq f \}$$

for all $0 \le f \in L_1(X)$. If $0 \le f \in L_1(X)$, define

$$S_t f = \sup \left\{ \tau_{t_1} \cdots \tau_{t_n} f : \sum_{i=1}^n t_i = t, t_i > 0, n \ge 1 \right\}.$$

Then, as observed by Kipnis [6] and the author [14], S_t can be extended to a positive linear contraction on $L_1(X)$, $S_tS_s=S_{t+s}$ for all t, s>0, and the semigroup $(S_t: t>0)$ is strongly continuous. Since $\mu(A)>0$ implies

$$\int_{A} S_{t} |f| d\mu \ge \int_{A} |T_{t}f| d\mu > 0$$

for some $f \in L_1(X)$ and t > 0 by hypothesis, an approximation argument shows that if $f_0 \in L_1(X)$, $f_0 > 0$ a.e. on X and

$$h = \int_0^\infty e^{-s} S_s f_0 ds \ (\in L_1(X)).$$

then h>0 a.e. on X, and for all t>0 we have

$$S_t h = \int_0^\infty e^{-s} S_{t+s} f_0 ds \leq e^t \int_0^\infty e^{-s} S_s f_0 ds = e^t h$$
.

Hence, if we let for all t>0

$$\begin{cases}
P_t f = (1/h)S_t(fh) \\
Q_t f = (1/h)T_t(fh)
\end{cases} (f \in L_1(X, \mathfrak{F}, hd\mu)),$$

then $(P_t: t>0)$ and $(Q_t: t>0)$ are strongly continuous one-parameter semigroups of linear contractions on $L_1(X, \mathcal{F}, hd\mu)$ such that

$$|Q_t f| \leq P_t |f|$$
 a. e.

for all $f \in L_1(X, \mathfrak{F}, hd\mu)$, and thus $\|Q_t\|_{\infty} \leq \|P_t\|_{\infty} \leq e^t$ for all t > 0. We now apply the Riesz convexity theorem and an approximation argument to observe that $(Q_t: t > 0)$ can be regarded as a strongly continuous one-parameter semigroup of bounded linear operators on $L_2(X, \mathfrak{F}, hd\mu)$. Then the adjoint semigroup $(Q_t^*: t > 0)$ on $L_2(X, \mathfrak{F}, hd\mu)$ is again strongly continuous. It is now easy to see that

$$Q_t^* = T_t^*$$
 on $L_{\infty}(X, \mathfrak{F}, hd\mu) = L_{\infty}(X, \mathfrak{F}, \mu)$

for all t>0, that Q_t^* is extended to a bounded linear operator on $L_1(X, \mathfrak{F}, hd\mu)$ with $\|Q_t^*\|_1 = \|Q_t\|_{\infty} \le e^t$, and that the semigroup $(Q_t^*: t>0)$ on $L_1(X, \mathfrak{F}, hd\mu)$ is strongly continuous. Therefore for any $f \in L_{\infty}(X, \mathfrak{F}, hd\mu)$ $(\subset L_1(X, \mathfrak{F}, hd\mu))$

there exists a scalar function $T_t^*f(x)$, measurable with respect to the product of the Lebesgue measurable subsets of $(0, \infty)$ and \mathfrak{F} , such that for each fixed t>0, $T_t^*f(x)$ as a function of x belongs to the equivalence class of $T_t^*f=Q_t^*f$.

Since $||e^{-t}Q_t^*||_1 \le 1$ and $||e^{-t}Q_t^*||_{\infty} \le ||T_t^*||_{\infty} \le 1$, we can now apply the local ergodic theorem in [11] and obtain that the limit

$$\lim_{b\to 0} \frac{1}{b} \int_0^b e^{-t} T_t^* f(x) dt$$

exists and is finite a.e. on X. This establishes the first half of the theorem, because $\lim_{t\to 0} e^{-t} = 1$.

To complete the proof, suppose $\lim_{t\to 0}\|T_tv-v\|_1=0$ for all $v\in L_1(X)$. Obviously this condition implies that

$$\sup \left\{ \int_{A} |T_{t}f| d\mu : f \in L_{1}(X) \text{ and } t > 0 \right\} > 0$$

for all $A \in \mathfrak{F}$ with $\mu(A) > 0$, and therefore

$$\lim_{b\to 0} \frac{1}{b} \int_0^b T_t^* f(x) dt$$

exists and is finite a.e. on X for all $f \in L_{\infty}(X)$. Given a function v in $L_1(X)$, we then have (cf. Proposition), by Lebesgue's dominated convergence theorem, that

$$\left\langle v(x), \lim_{b \to 0} \frac{1}{b} \int_{0}^{b} T_{t}^{*} f(x) dt \right\rangle = \lim_{b \to 0} \left\langle v(x), \frac{1}{b} \int_{0}^{b} T_{t}^{*} f(x) dt \right\rangle$$

$$= \lim_{b \to 0} \left\langle \frac{1}{b} \int_{0}^{b} T_{t} v dt, f \right\rangle$$

$$= \left\langle v, f \right\rangle.$$

This shows that $f(x) = \lim_{b \to 0} \frac{1}{b} \int_0^b T_t^* f(x) dt$ a. e. on X.

Conversely, if (2) holds for all $f \in L_{\infty}(X)$, then again we apply Lebesgue's dominated convergence theorem to obtain that

$$\lim_{b\to 0} \left\langle \frac{1}{b} \int_0^b T_t v \, dt, f \right\rangle = \langle v, f \rangle$$

for all $v \in L_1(X)$ and $f \in L_{\infty}(X)$. It now follows that $v = \text{weak-}\lim_{b \to 0} \frac{1}{b} \int_0^b T_t v \, dt$, and thus v is in the closed linear hull of the set $\{T_t v : t > 0\}$. Since $\|T_t\|_1 \le 1$ for all t > 0, this together with an easy approximation argument shows that

420 R. SAT&

 $\lim_{t\to 0} ||T_t v - v||_1 = 0$ for all $v \in L_1(X)$.

The proof is completed.

Before stating the next theorem we shall remark the following fact: Let T be a bounded linear operator on $L_p(X)$ for some fixed p, $1 \le p < \infty$, such that $||Tf||_{\infty} \le ||f||_{\infty}$ for all $f \in L_p(X) \cap L_{\infty}(X)$. Then there exists a (unique) linear contraction S on $L_1(X)$ such that $Tf = S^*f$ for all $f \in L_p(X) \cap L_{\infty}(X)$.

To see this, let q be such that 1/p+1/q=1. Then for any $f \in L_q(X) \cap L_1(X)$ we have

$$\int |T^*f| d\mu = \langle k, T^*f \rangle = \lim_{n} \langle k_n, T^*f \rangle$$

$$= \lim_{n} \langle Tk_n, f \rangle \leq \int |f| d\mu$$

where we let $k(x) = \operatorname{sgn} \overline{T^*f(x)}$ and $k_n(x) = k(x)1_{A_n}(x)$ with $\mu(A_n) < \infty$ for each $n \ge 1$, $A_1 \subset A_2 \subset \cdots$, and $\lim_n A_n = X$. Hence it follows that T^* can be extended to a linear contraction S on $L_1(X)$, and clearly we have

$$T=S^*$$
 on $L_p(X) \cap L_\infty(X)$.

Thus, in the sequel, we may assume that such an operator T is also simultaneously a linear contraction on $L_{\infty}(X)$ with $T^*L_1(X) \subset L_1(X)$; for any $f \in L_{\infty}(X)$ we may define Tf by

$$Tf(x) = \lim_{n} T(f1_{A_n})(x)$$
 a. e.

where $\mu(A_n) < \infty$ for each $n \ge 1$, $A_1 \subset A_2 \subset \cdots$, and $\lim_n A_n = X$.

THEOREM. 2. Let $(T_t:t>0)$ be a strongly continuous one-parameter semigroup of bounded linear operators on $L_p(X)$ for some fixed $p, 1 \le p < \infty$, such that $(T_t:t>0)$ is simultaneously a semigroup of linear contractions on $L_\infty(X)$ with $T_t^*L_1(X) \subset L_1(X)$ for all t>0. Assume either that $\mu(A)>0$ implies $\lim_{t\to 0} \|T_t 1_A\|_{\infty}>0$, or that T_t on $L_p(X)$ converges strongly to a linear contraction T_0 on $L_p(X)$ as $t\to 0$. Then for any $f\in L_\infty(X)$ there exists a scalar function $T_t f(x)$, measurable with respect to the product of the Lebesgue measurable subsets of $(0,\infty)$ and \mathfrak{F} , such that for each fixed t>0, $T_t f(x)$ as a function of x belongs to the equivalence class of $T_t f$, and the following local ergodic limit

$$\lim_{b \to 0} \frac{1}{b} \int_0^b T_t f(x) dt$$

exists and is finite a.e. on X.

REMARK. It is known (cf. [2], [10], [11]) that if $||T_t||_p \le 1$ and $||T_t||_\infty \le 1$ for all t > 0, then T_t on $L_p(X)$ converges strongly to a linear contraction T_0 on $L_p(X)$ as $t \to 0$, and furthermore for every $f \in L_p(X)$ we have

(5)
$$T_0 f(x) = \lim_{b \to 0} \frac{1}{b} \int_0^b T_t f(x) dt \quad \text{a. e.}$$

PROOF. We shall first prove that the semigroup $(T_t^*: t>0)$ on $L_1(X)$ is strongly continuous. To do this, by the Riesz convexity theorem we may assume that 1 . Let <math>q be such that 1/p + 1/q = 1. Let $f \in L_1(X) \cap L_{\infty}(X)$ and s>0 be given. Since we have

$$\lim_{t\to s+0} ||T_t^*f - T_s^*f||_q = 0,$$

any strictly decreasing sequence (s_n) of positive reals, with $\lim_n s_n = s$, has a subsequence (t_n) such that

$$\lim_{n} T_{t_n}^* f(x) = T_s^* f(x) \quad \text{a. e.}$$

Since $||T_{t_n}^*f||_1 = ||T_{t_n-s}^*(T_s^*f)||_1 \le ||T_s^*f||_1$, we then have, by Fatou's lemma, that

$$\lim_{n} \|T_{t_{n}}^{*}f\|_{1} = \|T_{s}^{*}f\|_{1}$$

and consequently that

$$\lim_{n} \|T_{t_{n}}^{*}f - T_{s}^{*}f\|_{1} = 0.$$

This shows that $\lim_{t\to s+0} \|T_t^*f - T_s^*f\|_1 = 0$, and hence we can apply a standard approximation argument to infer that the semigroup $(T_t^*: t>0)$ on $L_1(X)$ is strongly continuous.

Since the adjoint semigroup acting on $L_{\infty}(X)$ of the semigroup $(T_t^*: t>0)$ on $L_1(X)$ is identical with the original semigroup $(T_t: t>0)$ on $L_{\infty}(X)$, if we assume that $\mu(A)>0$ implies $\lim_{t\to 0}\|T_t1_A\|_{\infty}>0$, then the desired conclusion follows immediately from Theorem 1.

Next let us assume that T_t on $L_p(X)$ converges strongly to a linear contraction T_0 on $L_p(X)$ as $t \to 0$. (Again we may assume here that $1 .) Then <math>T_t^*$ on $L_q(X)$ converges strongly to T_0^* on $L_q(X)$ as $t \to 0$, and therefore the semigroup $(T_t^*: t \ge 0)$ on $L_q(X)$ is strongly continuous on $[0, \infty)$. So we observe, as above, that the semigroup $(T_t^*: t \ge 0)$ on $L_1(X)$ is again strongly continuous on $[0, \infty)$.

Since $T_0^{*2}=T_0^*$ and $||T_0^*||_1\leq 1$, we can choose a function f_0 in $L_1(X)$, with $T_0^*f_0=f_0$, so that supp $g\subset \operatorname{supp} f_0$ for all $g\in L_1(X)$ with $T_0^*g=g$ (cf. [1], [4]). Put

$$C = \sup f_0$$
 and $D = X - C$.

422 R. SATO

Since $||T_0^*||_q \le 1$, for any $f \in L_1(X) \cap L_q(X)$ with supp $f \subset D$ and any $\varepsilon > 0$ we have, as in [1], that

$$\begin{split} (1+\varepsilon)^q &\int |T_0^*f|^q d\mu = \int |T_0^*(T_0^*f+\varepsilon f)|^q d\mu \\ &\leq \int |T_0^*f+\varepsilon f|^q d\mu \\ &= \int |T_0^*f|^q d\mu + \varepsilon^q \int |f|^q d\mu \,, \end{split}$$

because supp T_0^*f is contained in C and hence disjoint from supp $f \subset D$. Thus, letting $\varepsilon \to 0$, we must conclude that $||T_0^*f||_q = 0$. Hence it follows that

$$T_0^*L_1(D) = \{0\}$$
 and $T_0^*L_1(C) \subset L_1(C)$,

so that $T_0L_\infty(D) = \{0\}$ and $T_0L_\infty(C) \subset L_\infty(C)$. Since $T_tT_0 = T_0T_t = T_t$ on $L_\infty(X)$ for all $t \ge 0$, it then follows that

$$T_t L_{\infty}(D) = \{0\}$$
 and $T_t L_{\infty}(C) \subset L_{\infty}(C)$ $(t \ge 0)$.

Therefore without loss of generality we may assume that X=C. Then for any $A \in \mathcal{F}$ with $\mu(A) > 0$ we have

$$\lim_{t\to 0} \int_{A} |T_{t}^{*}f_{0}| d\mu = \int_{A} |T_{0}^{*}f_{0}| d\mu = \int_{A} |f_{0}| d\mu > 0,$$

and thus Theorem 1 completes the proof.

References

- [1] T. Ando, Contractive projections in L_p spaces, Pacific J. Math., 17 (1966), 391-405.
- [2] J.R. Baxter and R.V. Chacon, A local ergodic theorem on L_p , Canad. J. Math., 26 (1974), 1206-1216.
- [3] R.V. Chacon and U. Krengel, Linear modulus of a linear operator, Proc. Amer. Math. Soc., 15 (1964), 553-559.
- [4] R.G. Douglas, Contractive projections on an L_1 space, Pacific J. Math., 15 (1965), 443-462.
- [5] N. Dunford and J.T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
- [6] C. Kipnis, Majoration des semi-groupes de contractions de L^1 et applications, Ann. Inst. H. Poincaré Sect. B (N.S.), 10 (1974), 369-384.
- [7] U. Krengel, A necessary and sufficient condition for the validity of the local ergodic theorem, Lecture Notes in Mathematics, No. 89, pp. 170-177, Springer, Berlin-Heidelberg-New York, 1969.
- [8] Y. Kubokawa, Ergodic theorems for contraction semi-groups, J. Math. Soc. Japan, 27 (1975), 184-193.

- [9] M. Lin, Semi-groups of Markov operators, Boll. Un. Mat. Ital., (4) 6 (1972), 20-44.
- [10] R. Sato, A note on a local ergodic theorem, Comment. Math. Univ. Carolinae, 16 (1975), 1-11.
- [11] R. Sato, On a local ergodic theorem, Studia Math., 58 (1976), 1-5.
- [12] R. Sato, Ergodic theorems for semigroups of positive operators, J. Math. Soc. Japan, 29 (1977), 591-606.
- [13] R. Sato, On local ergodic theorems for positive semigroups, Studia Math., 63 (1978), 45-55.
- [14] R. Sato, Contraction semigroups in Lebesgue space, Pacific J. Math., 78 (1978), 251-259.

Ryotaro SATO
Department of Mathematics
Faculty of Science
Okayama University
Okayama 700
Japan