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\S 1. Introduction.

Let $M$ be a complex manifold and $TM$ (resp. $T^{*}M$) be the holomorphic
tangent (resp. cotangent) bundle of $M$. Let $S^{m}TM$ (resp. $S^{m}T^{*}M$) be the m-th
symmetric tensor power of $TM$ (resp. $T^{*}M$). Thus $\Gamma(S^{m}TM)$ (resp. $\Gamma(S^{m}T^{*}M)$)

denotes the space of holomorphic contravariant (resp. covariant) symmetric
tensor fields of degree $m$ .

The purpose of this paper is to answer affirmatively the following question
raised by F. Sakai1). If $M$ is a K\"ahler K3 surface, are $\Gamma(S^{m}TM)$ and
$\Gamma(S^{m}T^{*}M)$ trivial ? (For Kummer surfaces and quartic surfaces, the answer
has been known to Sakai). We shall show that if $M$ is a compact, simply
connected K\"ahler manifold with vanishing first Chern class, then

$\Gamma(S^{m}TM)=\Gamma(S^{m}T^{*}M)=0$ for $m>0$ .

Several related results, some applicable to manifolds of general tyPe,

will be proved on the way. The main ingredients of the proof consist of
(i) Bochner’s method of proving vanishing theorems, (ii) Berger’s classifi-
cation of irreducible holonomy groups, (iii) representations of $SU(n)$ and
$Sp(n)$ , and (iv) Yau’s solution of the Calabi conjecture. Using (i), (ii) and
(iii) we obtain differential geometric results in which assumptions are stated
in terms of the Ricci tensor. Applying (iv) we can restate the results in
terms of the first Chern class.

\S 2. Ricci tensor and holomorphic symmetric tensor fields.

By the well known method of Bochner we prove the following

$*)$ Guggenheim Fellow, partially supported by SFB in Bonn and NSF Grant MCS
76-01692.

1) The question was raised and answered aboard Motorship “Carmen Silva” on the
Rhine during the 19th ”Arbeitstagung”, 1978.
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THEOREM 1. Let $M$ be an n-dimensional compact Kahler manifold with
positive(resp. negative) semi-definite Ricci tensor. Let $\xi\in\Gamma(S^{m}T^{*}M)$ (resp.
$\Gamma(S^{m}TM))$ . Then

(a) $\nabla\xi=0,$ $i$ . $e.,$ $\xi$ is parallel,
(b) if $\xi_{k_{1}\cdots k_{m}}$ (resp. $\xi^{k_{1}\cdot\cdot k_{m}}$ ) are the components of $\xi$ with resPect a local

coordinate system of $M$, then

$Q(\xi, \xi):=\Sigma R_{j}^{k}\xi_{kk_{2}\cdots k_{m}}\xi^{jk_{2}\cdots k_{m}}=0$

$(resP\cdot :=\sum R_{f}^{k}\xi^{jk_{2}\cdots k_{m}}\xi_{kk_{2}\cdots k_{m}}=0)$ .

PROOF. We consider only the case $\xi\in\Gamma(S^{m}T^{*}M)$ since the proof for the
case $\xi\in\Gamma(S^{m}TM)$ is similar. Let

(1) $\xi=\Sigma\xi_{k_{1}\cdots k_{m}}dz^{k_{1}}\otimes\cdots\otimes dz^{k_{m}}$

and

(2) $f=\Vert\xi\Vert^{2}=\Sigma\xi_{k_{1}\cdots k_{m}}\xi^{k_{1}\cdots k_{m}}$ .

We calculate the Laplacian

(3) $\Delta f=\sum g^{p\overline{q}}\nabla_{\overline{q}}\nabla_{p}f$ .

Since $\nabla_{p}$ (resp. $\nabla_{\overline{q}}$ ) annihilates anti-holomorphic (resp. holomorphic) tensor
fields, we obtain

(4) $\nabla_{p}f=\sum\nabla_{p}\xi_{k_{1}\cdots k_{m}}\xi^{k_{1}\cdots k_{m}}$

(5) $\nabla_{\overline{q}}\nabla_{p}f=\Sigma(\nabla_{p}\xi_{k_{1}\cdots k_{m}}\nabla_{\overline{q}}\xi^{k_{1}\cdots k_{m}}+\nabla_{\overline{q}}\nabla_{p}\xi_{k_{1}\cdots k_{m}}\xi^{k_{1}\cdots k_{m}})$ .

But from the definition of the curvature we obtain

(6) $\nabla_{\overline{q}}\nabla_{p}\xi_{k_{1}\cdots k_{m}}=\nabla_{p}\nabla_{\overline{q}}\xi_{k_{1}\cdots k_{m}}+\Sigma R_{k_{1}p\overline{q}}^{j}\xi_{J^{k_{2}\cdots k}m}+\cdots$

$+\Sigma R_{km^{p\overline{q}}}^{j}\xi_{k_{1}\cdots k_{m-1}j}$ .
Since $\nabla_{\overline{q}}\xi_{k_{1}\cdots k_{m}}=0$ and since $\xi$ is symmetric, we obtain from (5) and (6) the
following identity:

(7) $\Delta f=\Vert\nabla\xi\Vert^{2}+m\cdot Q(\xi, \xi)$ .
Since both terms on the right are non-negative, we obtain $\Delta f\geqq 0$ . On a
compact manifold, this is possible only when $\Delta f=0$, that is,

(8) $\nabla\xi=0$ and $Q(\xi, \xi)=0$ .
COROLLARY 2. Let $M$ be as in Theorem 1. If the Ricci tensor is Positive

(resp. negative) definite, then
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$\Gamma(S^{m}T^{*}M)=0$ (resp. $I(S^{m}TM)=0$).

But we are more interested in the case where the Ricci tensor is semi-
definite. To obtain sharper results in this case, we study the holonomy
group of $M$.

\S 3. Holonomy groups.

Let $M$ be an n-dimensional riemannian manifold. We denote the linear
holonomy group of $M$ by $\Psi$ and the restricted linear holonomy group of $M$

by $\Psi^{0}$ . Then $\Psi^{0}$ is the identity component of $\Psi$ and is a closed subgroup of
$SO(n)$ . The holonomy classification theorem of Berger [2] states:

THEOREM 3. If $M$ is irreducible, $i$ . $e.$ , if $\Psi^{0}$ is irreducible, then either (a)
$M$ is locally symmetric ( $i$ . $e.$ , the curvatu $re$ is parallel) or (b) $\Psi^{0}$ is a closed
subgroup of $SO(n)$ which acts transitively on $S^{n-1}$ . Explicitly, $\Psi$ is one of the
following 9 groups:

(i) $SO(n)$ , (ii) $U(k),$ $n=2k$ , (iii) $SU(k),$ $n=2k$ , (iv) $Sp(k)\times Sp(1),$ $n=4k$ ,
(v) $Sp(k)\times U(1),$ $n=4k$ , (vi) $Sp(k),$ $n=4k$ , (vii) $G_{2},7\iota=7$, (viii) Spin (7), $n=8$ ,
(ix) Spin (9), $n=16$ .

COROLLARY 4. If $M$ is a Kahler manifold of complex dimension $n$ and if
$\Psi^{0}$ is irreducible, then either (a) $M$ is locally symmetric or (b) $\Psi^{0}$ is one of the
following 4 groups:

(i) $U(n)$ , (ii) $SU(n)$ , (iii) $SP(k)\times U(1)$ , (iv) $sp(k),$ $(n=2k)$ .
This corollary follows from the fact that, among the groups listed in

Theorem 3, only the groups listed in Corollary 4 leave a non-trivial 2-form
(the Kahler form) invariant, see Berger [2].

We quote the following classical result (see Weyl [4]).

THEOREM 5. Let $G$ be one of the four groups listed in Corollary 4. It is
a linear group acting on $V=C^{n}$ . For each positive integer $m$ , the natural
representation of $G$ on the symmetric tensor product space $S^{m}V$ is irreducible.

We only need the fact that there is no nonzero element in $S^{m}V$ which
remains invariant under the action of G.

\S 4. Sharpening of Theorem 1.

Making use of the results in \S 3, we shall now strengthen the result of
\S 2.

Let $M$ be a simply connected, complete K\"ahler manifold. Let

(9) $M=M_{0}\times M_{1}\times\cdots\times M_{r}$ , (biholomorphic and isometric)

be the de Rham decomposition of $M$, where $M_{0}$ is biholomorphically isometric
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to the complex Euclidean space and $M_{1},$ $\cdots$ , $M_{r}$ are K\"ahler manifolds whose
holonomy groups are irreducible. (The Euclidean factor $M_{0}$ may reduce to a
singIe point). By Corollary 4, each $M_{i},$ $(i=1, \cdots , r)$ , is either an irreducible
hermitian symmetric space or has one of the four groups listed in Corollary
4 as its holonomy group.

Assume that the Ricci tensor of $M$ is positive semi-definite. Let
$\xi\in\Gamma(S^{m}T^{*}M)$ . Assume $\nabla\xi=0$ and $Q(\xi, \xi)=0$ . (According to Theorem 1, this
assumption is automatically satisfied if $M$ is compact). We claim that $\xi$

comes from $M_{0},$ $i$ . $e.$ , it belongs to $\Gamma(S^{m}T^{*}M_{0})$ under a natural identification

$S^{m}T^{*}M=\sum(S^{m_{0}}T^{*}M_{0})\otimes(S^{m_{1}}T^{*}M_{1})\otimes\cdots\otimes(S^{m_{r}}T^{*}M_{r})$ ,

where the summation is taken over all partitions $m=m_{0}+m_{1}+\cdots+m_{r}$ . Our
assertion follows from the following two facts.

(i) If $M_{i}$ is irreducible symmetric (with positive semi-definite Ricci
tensor), then its Ricci tensor is positive definite and there is no nonzero
holomorphic section $\xi\in\Gamma(S^{m_{i}}T^{*}M_{i})$ satisfying $Q(\xi, \xi)=0$ .

(ii) If the holonomy group of $M_{i}$ is one of the four groups listed in
Corollary 4, then there is no nonzero holomorphic section $\xi\in\Gamma(S^{m_{i}}T^{*}M)$

satisfying $\nabla\xi=0,$ $i$ . $e.$ , invariant by the holonomy. Hence,
THEOREM 6. Let $M$ be a compact Kahler manifold with positive(resp.

negative) semi-definite Ricci tensor. Let $n_{0}$ be the dimension of the Euclidean
factor $M_{0}$ in the de Rham decomposition $M_{0}\times M_{1}\times\cdots\times M_{r}$ of the universal
covering space $\tilde{M}$ of M. Then

dim $\Gamma(S^{m}T^{*}M)\leqq(m+n_{0}-1m)$ , (resp. dim $\Gamma(S^{m}TM)\leqq(m+n_{0}-1m)$).

In particular, if $M_{0}$ is trivial, then

$\Gamma(S^{m}T^{*}M)=0$ (resp. $\Gamma(S^{m}TM)=0$).

\S 5. Theorem 6 in algebraic geometric terms.

We shall restate Theorem 6 using the first Chern class in place of the
Ricci tensor.

Let $M$ be a compact K\"ahler manifold. Yau [5] has shown that every
closed $(1, 1)$-form representing the first Chern cIass $c_{1}(M)$ is the Ricci form
of some K\"ahler metric. (For the case $c_{1}(M)<0$ , consult also Aubin [1]). We
say that $c_{1}(M)$ is $>0$ (resp. $\geqq 0,$ $<0,$ $\leqq 0,$ $=0$) if there is a representative
closed $(1, 1)$-form which is $>0$ (resp. $\geqq 0,$ $<0,$ $\leqq 0,$ $=0$). This is equivalent to
saying that there is a K\"ahler metric whose Ricci tensor is $>0$ (resp. $\geqq 0$ ,
$<0,$ $\leqq 0,$ $=0$).
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Now we can restate Theorem 6 as follows:
THEOREM 7. Let $M$ be a compact Kahler manifold with $c_{1}(M)\geqq 0$ (resp.

$c_{1}(M)\leqq 0)$ . Let $\tilde{M}$ be the universal covering space of $M$ and $k$ the largest
integer such that $\tilde{M}$ is biholomorphic to $C^{k}\times N$ , where $N$ is a complex manifold.
Then

dim $\Gamma(S^{m}T^{*}M)\leqq\left(\begin{array}{ll}m+k & -1\\m & \end{array}\right)$ , (resp. dim $\Gamma(S^{m}TM)\leqq\left(\begin{array}{l}m+k-1\\m\end{array}\right)$ ).

COROLLARY 8. If $M$ is a compact, simply connected Kahler manifold with
$c_{1}(M)=0$ , then $\Gamma(S^{m}TM)=\Gamma(S^{m}T^{*}M)=0$ .

In particular, if $M$ is a K\"ahler K3-surface, then $\Gamma(S^{m}TM)=\Gamma(S^{m}T^{*}M)=0$ .
The following result follows from Corollary 2.
COROLLARY 9. If $M$ is a compact Kahler manifold with $c_{1}(M)>0$ (resp.

$c_{1}(M)<0)$ , then $\Gamma(S^{m}T^{*}M)=0$ (resp. $\Gamma(S^{m}TM)=0$).
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