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Let A be a weak-*Dirichlet algebra of L=(m) and let H*(m) denote the
weak-*closure of A in L*(m). Let B be a weak-*closed subalgebra of L*(m)

which contains A and let Iz={f=B; ngdm:O g B} and let E2 be a con-

ditional expectation for BN\B. When B=H>(m), I5 is a maximal ideal and
E2 is multiplicative on B. When B-+H>, it is not known whether E? is always
multiplicative on B. It is easy to show that if E2 is multiplicative on B, Ip
is a quasi-maximal ideal of B §4). It is known ([3]) that when
E2 is multiplicative on B, if M is a left continuous invariant subspace for B
of L*(m), then M=XgzqB for some unimodular ¢ and some characteristic
function Xz in B. We show in this paper that the weak converse is valid,
i.e., if any left continuous invariant subspace for B of L“(m) has the form
XzqB, then Ip is a quasi-maximal ideal of B. Secondly we show that if I is
the weak-*closed linear span of functions in H%(m), vanishing on sets of
positive measure, then it is a primary ideal of H*(m). When B=H>(m), there
exist quasi-primary ideals of B (Definition 1, §3). Thirdly we give the
necessary and sufficient conditions for a minimum weak-*closed subalgebra of
L*=(m) that contains H=(m) properly. And we show that there exists at least
one function in H*(m) that is not a weak-*limit of functions, vanishing on
sets of positive measure if and only if there exists a minimum weak-*closed
subalgebra of L~(m) that contains H>(m) properly.

1. Preliminaries.

Recall that by definition a weak-*Dirichlet algebra, is an algebra of
essentially bounded measurable functions on a probability measure space
(X, A, m) such that (i) the constant functions lie in A; (ii) A+A4 is weak-
*dense in L™= L*(m) (the bar denotes conjugation); (iii) for all f and g in

A, Sngdm:SdemSngm. The abstract Hardy space H?=H?(m), 1< p=oo,

*) Work supported by Kakenhi 234004.
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associated with A are defined as follows. For 1<p<co, H? is the L?(=L?(m))-
closure of A, while H* is defined to be the weak-*closure of A. For 1< p=<co,

let HP={feHP SX Fdm=0}.

A weak-*closed subalgebra B of L=, containing A, is called a superalgebra
(of A). A weak-*closed ideal of B is called an ideal simply. Let B,={feB;

Sdem:O} and let Iz the largest weak-*closed ideal of B which is contained

in B, Then Iy={fcB: Sngdm:0 geB = {fe L Sngdmzo g=BY.

For any subset MS L* and 1=<p<oco, denote by [M], the norm closed
linear span of M in L? and by [M]. the weak-*closed linear span of M.
For any measurable subset E of X, the function Xz is the characteristic
function of E. For any f in L%, denote by E(f) the support set of f.

Suppose @ is the o-algebra of measurable subsets E of X for which the
characteristic functions Xy lie in a superalgebra B. Then & is the g-subalgebra
of A. Let E2 denote the conditional expectation for 4. Then E%(fE%(g))
=FE%(f)E%(g) for all f and g in L* and so B. When E%(fg)=E2%(f)E%(g)
for all f and g in B, we say that E? is multiplicative on B. When B=H"
or L=, it is clear that E¢9 is multiplicative on B. In many examples which
we know, E? is multiplicative on every superalgebra B which contains a
weak-*Dirichlet algebra A. We don’t know that there exists a superalgebra
B on which E? is not multiplicative. We call the measure m is quasi-

multiplicative on B if Sszdmzo for each fin B such that SEfdm:O for all

Xz in B. in shows that m is quasi-multiplicative on B if and
only if E2 is multiplicative on B. Suppose Jp={f=B; E2(f)=0 a.e.}, then
I3S 935S B,. If E2 is multiplicative on B, then Iz=JY5. If m is multiplicative
on B, then Iz=J9z=B,.

Recall that by definition [4], we say that the characteristic function Xz
is minimal for a superalgebra B in case any characteristic function Xz in B
which satisfies the strict inequality Xz5Xz51 on a set of positive measure
must be zero a.e. Note that we do not assume that Xz lies in B. Suppose
I(B) is a weak-*closed linear span of functions g in Iz with Xz, being
minimal for B. Then I(B) is a ideal of B and I(B)SIz;. When B=H",
I=I(B) is a weak-*closed linear span of functions g in H*, vanishing on sets
of positive measure.

For 1= p=oo, a closed subspace M of L? (weak-*closed for p=co) is called
invariant if feM and g A imply that fgeM. Let M and N be invariant
subspaces of L? such that BMEM, BNSEN and MCSN. If XzMSX:N for all
Xg in B with XM+ {0}, then we write M<gN. If Mg>[I;M], then M is



Weak-*Dirichlet algebras 679

called left continuous for B [3]. If M=Xgq[B], for some unimodular ¢ and
some Xz B, then M is called a Beurling subspace.

THEOREM 1. ([3]) If E? is multiplicative on B, then every left continuous
wmvariant subspace for B is a Beurling subspace.

PROOF. Since m is quas1 -multiplicative on B because E? is multxphcatlve
on B, [Theorem 2 in [3] implies this theorem.

LEMMA 1. Suppose every left continuous invariant svbspace for a super-
algebra B is a Beurling subspace. Then I(B) is a weak-*closed linear span of
Junctions g in B with Xg¢,, being minimal for B. And if f€[Bl, and Xgfe& g,
for every Age B with Xgf#0, then Xz < B.

ProoF. By the definition of I(B), it is sufficient to prove that if fe&lzis
non-zero, then Xz, is not minimal for B. If f& 5 is non-zero, set M,=[ fB].,
then M, contains a nontrivial left continuous invariant subspace. By the
hypothesis, M, contains a non-trivial Beurling subspace and hence Xz, is not
minimal for B.

- If fe[B], and XgzfE 5], for every Az B with Xzf+#0, then M, is a left
continuous invariant subspace and hence M, is a Beurling subspace. Thus
XE(f)EB.

2. The ideals of a superalgebra of A.

For a superalgebra B, we define B, to be the intersection of all super-
algebras {B,} such that BS B, and Xg,B<psXg,B., Xz, being the essential
function of B (cf. [4]). Then H%, is the intersection of all superalgebras
{B.} which contains H* properly.

THEOREM 2. [(B)=Ip_. .

Proor. For felp with Xz, being minimal for B, set D=[Xgz)Bl.
+(1—Xgs5) L™ Then Xz, B<gXg,D for the essential function Xz, of B. For if
XrE B with Xp<Xg, and XpB=XzD, then Xr=<Xgz,. It contradicts to Xzcs, being
minimal for B by Lemma 3 in [4]. By Lemma 5 in [4], f belongs to I,. By
the definition of B.;,, D2B,, and so IpSIp . Thus felp . and hence
I(B)sIs,, .

To prove that Ip_ SI(B), it is sufficient to show that Iz SI(B) for a
superalgebra B, with Xz B<gXg,B.. For Bmin:QBa for such B, and hence

Ip_. is a weak-*closed linear span of \UIlp, by and Lemma 4 in [4].
a

To prove that Iz, SI(B), set f={m(E); Xglz,SI1(B) and Xz< B.}. Then there
exists Xg, in B, such that S=wm(E,) and Xz I, S1(B). 1—Xg B, and 1—2g,
=Xg, Suppose 1—%z #0. When 1—Xz & B, there exists Xz, € B, such that
Xp,=<1—Xg, and Xz, is minimal for B. Hence Xg,/5,SI(B). This contradicts
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to the assumption on Xz. When 1—Xg €B, since Xg,B<plg,Ba., (1—Xg,)B
S(—Xg,)B, and so there exists Xz, &B, such that Xg,<1—Xz and g, is
minimal for B by Lemma 8 in [4]. This contradicts to the assumption on
Xg, again. Thus 1—Xz=0 a.e. and hence I5,SI(B).

3. The quasi-primary ideal [;.

It is well-known that Hy is a primary ideal of H*. If a superalgebra B
is different from H>, then [z is not a primary ideal of B. For Xz(1—Xg)
€l Xg&Elg and 1—Xz&El where Xz B and 0<m(E)=<1.

DErFINITION 1. Let J, and J, be ideals of a superalgebra B with J,2/,
and let B={geL>; g/,=/J,}. We say that J, is a quasi-primary ideal of J,
when J, has the following property; Suppose f, g€/, and fg&€/,. If Agfe/,
for every Xz B with Xzf+#0, then Xz, €B and AgHgE /e

LEMMA 2. The necessary and sufficient condition for that [, is a quasi-
primary ideal of J, is that J, has the following property. If f, g€, and fg< /s,
then f=Xg,f+(1—Xg)f and g=Xg,g+(1—Xg,)g where Xz, and Xg, satisfy the
properties (1)~(4).

(1) A—Xg)f<e]. and (1—Xg,)g< /s,

(2) Xg-Ag f& ], for every AgE B with Xg-Xg, f#0 and Xg-Xg,gkJ. for every
1€ B with Xg-Xg,g#0,

3) Xg, fXg,g=0 a.e,

4) Xz, Xe,€B and Xg,<Xgr> X, <Xgco>-

Proor. Suppose f, g€/, and fg=/,. Suppose [, is a quasi-primary ideal.
There exists Xz B such that Xz-Xzf& /], for every Xz B with Xg-Xpf+0 and
(1—Xpfe],. Since fg],, Xrfg<s].. Since J, is a quasi-maximal ideal of J,,
Xe,=Xr-Xgcrr € B. Similarly there exists Xz, B with the properties (1), (2) and
(4) for g. Since fg€/,, X5, /- X5,8<J.. By the quasi-primarity of [, Xz, -Xg,g
€/, and so Xz, 'Xg,g=0 a.e. This shows that Xz f-Xz,g=0 a.e. and so (3) is
valid.

Suppose Xz, and Xg, satisfy the properties (1)~(4). If Xzf& ], for every
Xg€ B with Xgf+0, then Xg =Xz, €B. Since g, f-Xg,g=0 a.e., Xz Xp,g=0
a.e. Since Xg(1—Xg,)8E )2 XecHgE Jo

When B=H", if J, is a quasi-primary ideal, then J, is a primary ideal.

THEOREM 3. Suppose every left continuous invariant subspace for B is a
Beurling subspace. Then Ig is a quasi-primary ideal of B.

PrOOF. Since [Bl,=[Bl.N\[B1.®[Is], for u, ve[Bl,N[Bl, and f,, go
e[lsls, f[=u+f, and g=v+g, Since B+I, is weak-*dense in L™ by
2 in and fgelg, it follows that uv=0 a.e. By Lemma I, Xz =B and
Ay EB. Since Xg-Xpw,fE Iz for every Xz= B with Xg-Xgw, f#0, by Lemma
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1, Xg,=Xgw> " Xerr€B. Similarly Xg,=Xgw X €B. Then Xg, and Xg, satisfy
the properties (1)~(4) in Thus Iz is a quasi-primary ideal of B.

If E2 is multiplicative on B, then every left continuous invariant subspace
for B is a Beurling subspace by [Theorem 1 and hence I is a quasi-primary
ideal of B by {0} is a quasi-primary ideal of L*.

4. The quasi-maximal ideal /5.

It is well-known that Hy is a maximal ideal of H*. If a superalgebra B
is different from H®, then Iy is not a maximal ideal of B. For BZXzB
+(1—Xg)Ip=2Ip where Xz B and 0<m(E)<1, and XzB+(1—Xz)lp is an ideal
of B.

DErFINITION 2. Let J be an ideal of a superalgebra B. We say that J is
a quasi-maximal ideal of B when any ideal /' of B with /2] has the form

J'=xgB+(1—-Xg)]

for some Xz< B.

When B=H=, if | is a quasi-maximal ideal, then J is a maximal one.

If E2 is multiplicative on B, then [z is a quasi-maximal ideal of B. For
since E? is multiplicative on B, Iz=J5 If J is a ideal of B with J215,
J=E%()-+I5 and E%(J) is an ideal of E4(B)=B~NB. Since BNB is a com-
mutative von Neumann algebra of operators on L? which is contained in L=,
E%(J)=XgBNB for some Xz=BNB. In particular, by that B=B~\B~+I5, it
follows that J=XzB+(1—2Xg)I3.

THEOREM 4. Suppose every left continuous invariant subspace for B is a
Beurling subspace. Then Iz is a quasi-maximal ideal of B.

PROOF. Let J be an ideal of B with /=275 Then there exists Xz, in B
such that J=Xg, J+(1—Xg ) and Xz, J5 X5, I 5 when Xz J# {0}. We may assume
Xe, J#1{0}. Since Xg Ip2[IsXg, /], g, J is left continuous and by the hypo-
thesis, Xg,/=¥g,gB for some unimodular ¢ and some non-zero Xz, < B.

We shall show that Xz,q?B2Xg,l5. If f€Xg,I5, since Xg,gB2Xg, 5, f=Xg,qh
for some heB. Xg,q-h€lp. Since Xg,qB 5> Xg,l 5, X5 X5,qk g, I for any XzE B
with Xg-Xg,#0. By I is a quasi-primary ideal of B and so Xgzh
€lp. Since Xg,qB2Xg,l5, this shows f€Xg,q°B.

We shall show that Xg,geB and so Xz J=Xgz,B. Set J,= FleEzq"B, then

Jo2Xg,Ip. For we can show that Xg,g"B2XgI[p for n=3 similarly as in n=2.
There exists Xz, €B such that J,=Xg,Jo+(1—Xg)Xg, [z and g Jo 5>-Xg, XE,lp
when g, Jo# {0}, If Xg,-Xg,g< B, since qXg,Jo=Xz, /o, there exists a non-zero
XE4GEB such that XE4‘XE3fogXE3]o and XE4§XE3'XE2- By Lemma 1|, XE4j0gI(B)
cIp and so XgIsS15 By in [3], Xz,€B. This contradictions that
Xg,& B and so Xg-Xg,g¢ B. Since §J,=], and so (1—Xg)Xg,dls<1s by Lemma
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2 in , (1""’XE3)XEqu B. Thus XEzq:an’ngq“l‘(l_ZEs)XEqu B.
It is clear that {0} is a quasi-maximal ideal of L.

5. The primary ideal.

If H* is a maximal superalgebra of A, then [=/(H*)={0} is a primary
ideal of H* [1]. In this section, we shall show that in general [ is a primary
ideal of H=.

THEOREM 5. I(B) is a quasi-primary ideal of Ip.

Proor. We shall show that if f€[Iz]:"\[Buminls then Xg,,€B. We may
assume Xgzcs#1. Suppose Xgcs, is minimal for B. There exists an outer
function A in H® such that hfelg. Since gy is minimal for B, hfel(B).
By Theorem 2, hfels_. and so f€[/s_, J,. While f belongs to [J5]eN\[ Buminle
by in [4], it follows that f=0 a.e. and Xz¢,(=0 a.e.)e B. Suppose
Xzcs> is not minimal for B. Set a=sup{m(E); X=Xz, and Xz< B}, then there
exists Xz, & B such that Xz, =<Xg¢s, and m(E;)=a. Set g=(1—Xg,)f, then g&[lz],
A[Bminle and Xg¢g is minimal for B. By what was just proved, Xzc,,=0 a.e.
and so g =%Xg,.

Now we shall show that Ip_, is a quasi-primary ideal of /5. Then by
I(B) is a quasi-primary ideal of 5. Suppose f, g€l and fgelp_ .
Since [151:=[L51eN Bumin s, Do fr 10, vE LsJeN Brminds and fo, go [, I
f=u-+f, and g=v+g, Since Bmin"l"ijin is weak-*dense in L* by
in and fgelp_ , it follows that uv=0 a.e. By the first proof of this
theorem, Zzc; and Xgw) belong to B. By the definition of I(B), Xz, =Xz Xecs
and ¥p,=Xgw Xz belong to B. Then Xz, and Xz, satisfy the properties (1)~
(4) in Lemma 2.

COROLLARY 1. [ is a primary ideal of HF.

PROOF. Apply with B=H®",

THEOREM 6. Suppose every left continuous invariant subspace for B is a
Beurling subspace. Then I(B) is a quasi-primary ideal of B.

ProoF. If I(B)=1Ig, implies this theorem. Suppose I(B)#Ig,
f, gB and fgeI(B). Then by [Lemma 2, [Theorem 3 and there
exist Xp;€B and X, €B (i=1, 2, 3) with the following properties: (1) Xz,/,
Xe,g€1(B). (2) Xg-Ar,f&Ip for every Xg€ B with Xz-Xr, f#0 and XX, gk Ip
for every Xg€B with Xg-Xe,g+#0, and Xp f-X6,2=0 a.e. and Xe=Xgery, Xo,=
e ) Xp,f, Xo,g€1p, and Ap-Xr,fE1(B) for every Xz B with XeXp, f#0
and Xg-2¢,g€¢ I(B) for every g€ B with Xg-Xe,g#0, and Xp,f-Xs,g=0 a.e. and
Xr,ZXgcrrs X6, <Xpcey. 4) Xp,+Xp,+Xp,=1 and %g,+%s,+%;,=1. To prove this
theorem, it is sufficient to show that Xz, f X g=0 a.e. and Xr S %6,8=0 a.e.
Since fg€l(B), Xr,f-X6,g@+Xr,f-Xe,g€1(B). Since Xp,-Xs,=0 a.e., Xp S Xe,g
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€I(B) and Xp,f Xs,g€1(B).

We shall show that Xz, f-Xg,g=0a.e. Suppose Xp,f-X,g#0. If A&y, then
Xp fh-Xg,g€1(B). Since Xp, fh, Xg,g<Ip and I(B) is a quasi-primary ideal of
I and Xg-Xg,g€ I(B) for every Xg€ B with Xg-Xg,2+#0, it follows that Xg, Xr,fh
€I(B). Thus X, Xr, fIgCI(B). By Xey Xp, f BuinlgCI(B) and so
Xoy Xp,f BninT”B. Since we may assume [(B)#[p and s0 Bni,=2B, Bpn=
(1=Xp)B+Xp,Bumin for some non-zero 4r,&B and 2p,Buin s> Xe,B. If Ap, e,
Xr, /=0 a.e, since Xz, /- Xs,g#0, then (1—Xp X, Xr, f#0. Since (I=Xr)lp
=1—=Ap)(B)=1—Ap ), A—Xr )X, X, fEIp. This contradicts to the assump-
tion on Xr, and so Xp,-Xg, Xp, f#0. Let Xp be the-largest characteristic func-
tion in B, such that Xp =Xr,X¢,'Xp, and Xp;-¥p,-Xe, Xr, f€I(B). Since
Xey Xp,f BuinS B, (1—Xp)Xp, Xg,"Xr,fEB. By the assumption on Xz, and g,
(1’“XF5)XF4'XG2'XF1f¢O and (1_XF5)XF4‘X02‘XF1fEE I(B). By Lemma 1|, (1—XF5)XF4
“Xg,*Xr, is not minimal for B. Since Xp,Bunix 5>7Xr,B, there exist Xp,€ B,,;, such
that 05%p, <(1—Xpy)2r, X, ¥r, and X, is minimal for B. By Lemma 1|, Xr,-Xs,
“Xe,-Xr, f€I(B). This contradicts to the assumption on Xp,. Thus Xp f-%,g
=0a.e. Similarly Xr,f-Xs,g=0a.e. Set Xz =Xp,+Ar, and Xg,=X,+Xs,. Then
Xz, and Xz, satisfy the properties in and hence I(B) is a quasi-
primary ideal of B.

COROLLARY 2. [ is a primary ideal of H™.

PROOF. Apply with B=H", using [Theorem 1.

6. The minimum superalgebra of A which contains H*™ properly.

If H3i.#H™, then HZ;, is the minimum superalgebra which contains H®
properly. Under a condition that Hg;,#H* in [4, Corollary 3], we gave two
necessary and sufficient conditions for a minimum superalgebra. In this
section, we shall omit the condition such that H3;,#H™ and we shall gave a
new necessary and sufficient condition.

THEOREM 7. Let B and D be superalgebras of A such that BSD. Then
the following are equivalent.

) If f s in Ig and Xges ts mimimal for B, then f lies in Ip.

(2) If f and g are in Ig, if both Xgcsry and Xgy are minimal for B, and if
fg=0 a.e., then either f or g lies in Ip.

(38) Ip is a quasi-primary ideal of I.

(4) DS By

(5) Each superalgebra C such that BSC has the form

where (1—Xg,)C2(1—Xg)D and Xg, is in B.
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ProoF. (3)=>>(2) is trivial. (2)> (1) is known in [4, Theorem 4]. (1)>(4).
Since I,21(B), by and in Bnin2D. (4)=>(5). Since
BCEC, there exists Xz, €B such that C=XzB+(1—Xz)C and (1—2g,)C z>~(1—
Xg)B. By the definition of B, (1—Xg)C2(1—Xg)Bmi, and hence (1—Xz)C
2(1—Xg)D. (5)=>@3). Let Xz, be an essential function of B and let K be a
superalgebra such that Xz, B<pXz K, then K2D by (5). Hence Bni=2D.
Since D=Xg,B+(1—2Xg,)Bmin» Ip=Xg,I5+(1—2Ag,)5_, by in [4]. By
and it follows that I, is a quasi-primary ideal of Ij.

COROLLARY 3. Let D be a superalgebra which contains H™ properly. Then
the following are equivalent.

(1) If f in H™ vanishes on a set of positive measure, then f lies in Ip.

(2) If f and g in H” and fg=0 a.e., then f lies in I, or g lies in Ip.

() I, is a primary ideal of H™.

(4) D=Hz;.

PROOF. Apply with B=H>.

Set HZino=Hoin and let Houn pri=(H i 1)min for =0, 1, ---. Define HZ,, to
be the superalgebra generated by H* and Xg¢s for all f&e H™.

COROLLARY 4. Suppose L”:[IQOH;‘;M,,,]W If B is any superalgebra of A,
then B=H> or B

ij Fp mmk+<1 ZXFk)L

for X € Hpinee In particular, if L>= UHmm w then Hy oy —=Hay.

PROOF. Let Xg, be the essential function of Hmln # Since L°°—[UHmm #Joos
it follows that Xz, Haum < Xe,Heinsss for k=0,1,2, «. If B H"then B2 HZun 0.
By B=Xp,Hino+(1—2Ap,)B where XFOEHmm,O and (1—-Xz)B2(1—
Xr)Hmini. Set B'=Xp,Hmin1+(1—2%p,)B, then B’2Hg;,;. Again applying
[Theorem 7} B’=X¢HZ:, 1--(1—Xs) B’ where g€ HZyn 1 and (1—Xg) B’ 2(1—Xe) Hin o
Set Xp,=X¢—2Ar, then B=Xp Hpino+2r Hain+1—Xr,—Xp,)B where %p & Hpipy
and (1—Xp,—Xp,)B2(1—Xp,—2r,)Heins Thus B has the form

B= i Xy Hoin p+(1— ika)B
k=0 k=0
where (l_éka)B;(l_gx”)Hgm,n for n=0, 1, 2, ---. Since L”—[EH min. k Joos

(1= Sr) B=(1— S L™

7. The existence of the minimum superalgebra of A.

Corollary 3| in §6 shows the necessary and sufficient conditions for a
superalgebra B to be a minimum superalgebra which contains H* properly, but
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it dose not show the existence of the minimum superalgebra. We shall show
the existence theorem.

THEOREM 8, Let B be a superalgebra of A. There exists at least one
Sfunction in Iz that is not a weak-*limit of functions g in Ig with Xg being
minimal for B if and only if B=By,.

Proor. By it is trivial.

COROLLARY 5. There exists at least one function in HY that is not a weak-
*[imit of functions, vanishing on sets of positive measure if and only if there
exists a minimum superalgebra that contains H® properly, i.e. H*#=HZ;,.

PROOF. Apply with B=H*>.
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