Quasi-maximal ideals and quasi-primary ideals of weak-*Dirichlet algebras

By Takahiko NAKAZI*)

(Received Feb. 1, 1978)

Let A be a weak-*Dirichlet algebra of $L^{\infty}(m)$ and let $H^{\infty}(m)$ denote the weak-*closure of A in $L^{\infty}(m)$. Let B be a weak-*closed subalgebra of $L^{\infty}(m)$ which contains A and let $I_B = \{ f \in B ; \int fg dm = 0 \ g \in B \}$ and let E^g be a conditional expectation for $B \cap \overline{B}$. When $B = H^{\infty}(m)$, I_B is a maximal ideal and $E^{\mathfrak{g}}$ is multiplicative on B. When $B \neq H^{\infty}$, it is not known whether $E^{\mathfrak{g}}$ is always multiplicative on B. It is easy to show that if E^{g} is multiplicative on B, I_{B} is a quasi-maximal ideal of B (Definition 2, § 4). It is known ([3]) that when E^{g} is multiplicative on B, if M is a left continuous invariant subspace for B of $L^{\infty}(m)$, then $M=\chi_{E}qB$ for some unimodular q and some characteristic function χ_E in B. We show in this paper that the weak converse is valid, i.e., if any left continuous invariant subspace for B of $L^{\infty}(m)$ has the form $\chi_{E}qB$, then I_{B} is a quasi-maximal ideal of B. Secondly we show that if I is the weak-*closed linear span of functions in $H^{\infty}(m)$, vanishing on sets of positive measure, then it is a primary ideal of $H^{\infty}(m)$. When $B \neq H^{\infty}(m)$, there exist quasi-primary ideals of B (Definition 1, § 3). Thirdly we give the necessary and sufficient conditions for a minimum weak-*closed subalgebra of $L^{\infty}(m)$ that contains $H^{\infty}(m)$ properly. And we show that there exists at least one function in $H^{\infty}(m)$ that is not a weak-*limit of functions, vanishing on sets of positive measure if and only if there exists a minimum weak-*closed subalgebra of $L^{\infty}(m)$ that contains $H^{\infty}(m)$ properly.

1. Preliminaries.

Recall that by definition [5] a weak-*Dirichlet algebra, is an algebra of essentially bounded measurable functions on a probability measure space (X, \mathcal{A}, m) such that (i) the constant functions lie in A; (ii) $A + \overline{A}$ is weak-*dense in $L^{\infty} = L^{\infty}(m)$ (the bar denotes conjugation); (iii) for all f and g in A, $\int_{X} fgdm = \int_{X} fdm \int_{X} gdm$. The abstract Hardy space $H^{p} = H^{p}(m)$, $1 \leq p \leq \infty$,

^{*)} Work supported by Kakenhi 234004.

associated with A are defined as follows. For $1 \le p < \infty$, H^p is the $L^p(=L^p(m))$ -closure of A, while H^∞ is defined to be the weak-*closure of A. For $1 \le p \le \infty$, let $H^p_0 = \{f \in H^p : \int_Y f dm = 0\}$.

A weak-*closed subalgebra B of L^{∞} , containing A, is called a superalgebra (of A). A weak-*closed ideal of B is called an ideal simply. Let $B_0 = \{f \in B; \int_X f dm = 0\}$ and let I_B the largest weak-*closed ideal of B which is contained

in
$$B_0$$
. Then $I_B = \{ f \in B ; \int_{\mathbf{r}} fg \, dm = 0 \ g \in B \} = \{ f \in L^{\infty} ; \int_{\mathbf{r}} fg \, dm = 0 \ g \in B \}.$

For any subset $M \subseteq L^{\infty}$ and $1 \le p < \infty$, denote by $[M]_p$ the norm closed linear span of M in L^p and by $[M]_{\infty}$ the weak-*closed linear span of M. For any measurable subset E of X, the function χ_E is the characteristic function of E. For any f in L^1 , denote by E(f) the support set of f.

Suppose \mathcal{B} is the σ -algebra of measurable subsets E of X for which the characteristic functions χ_E lie in a superalgebra B. Then \mathcal{B} is the σ -subalgebra of A. Let $E^{\mathcal{B}}$ denote the conditional expectation for \mathcal{B} . Then $E^{\mathcal{B}}(fE^{\mathcal{B}}(g)) = E^{\mathcal{B}}(f)E^{\mathcal{B}}(g)$ for all f and g in L^{∞} and so B. When $E^{\mathcal{B}}(fg)=E^{\mathcal{B}}(f)E^{\mathcal{B}}(g)$ for all f and g in B, we say that $E^{\mathcal{B}}$ is multiplicative on B. When $B=H^{\infty}$ or L^{∞} , it is clear that $E^{\mathcal{B}}$ is multiplicative on B. In many examples which we know, $E^{\mathcal{B}}$ is multiplicative on every superalgebra B which contains a weak-*Dirichlet algebra A. We don't know that there exists a superalgebra B on which $E^{\mathcal{B}}$ is not multiplicative. We call the measure m is quasimultiplicative on B if $\int_X f^2 dm = 0$ for each f in B such that $\int_E f dm = 0$ for all χ_E in B. Theorem A in [3] shows that m is quasi-multiplicative on B if and only if $E^{\mathcal{B}}$ is multiplicative on B. Suppose $\mathcal{B}_B = \{f \in B; E^{\mathcal{B}}(f) = 0 \text{ a. e.}\}$, then $I_B \subseteq \mathcal{B}_B \subseteq B_0$. If $E^{\mathcal{B}}$ is multiplicative on B, then $I_B = \mathcal{B}_B$. If m is multiplicative on B, then $I_B = \mathcal{B}_B = B_0$.

Recall that by definition [4], we say that the characteristic function χ_E is minimal for a superalgebra B in case any characteristic function χ_F in B which satisfies the strict inequality $\chi_F \leq \chi_E \leq 1$ on a set of positive measure must be zero a.e. Note that we do not assume that χ_E lies in B. Suppose I(B) is a weak-*closed linear span of functions g in I_B with $\chi_{E(g)}$ being minimal for B. Then I(B) is a ideal of B and $I(B) \subseteq I_B$. When $B = H^{\infty}$, I = I(B) is a weak-*closed linear span of functions g in H^{∞} , vanishing on sets of positive measure.

For $1 \le p \le \infty$, a closed subspace M of L^p (weak-*closed for $p = \infty$) is called invariant if $f \in M$ and $g \in A$ imply that $fg \in M$. Let M and N be invariant subspaces of L^p such that $BM \subseteq M$, $BN \subseteq N$ and $M \subseteq N$. If $\chi_E M \subseteq \chi_E N$ for all χ_E in B with $\chi_E M \ne \{0\}$, then we write M < N. If $M = \sum [I_B M]_p$, then M is

called left continuous for B [3]. If $M=\chi_E q[B]_p$ for some unimodular q and some $\chi_E \in B$, then M is called a Beurling subspace.

THEOREM 1. ([3]) If $E^{\mathfrak{g}}$ is multiplicative on B, then every left continuous invariant subspace for B is a Beurling subspace.

PROOF. Since m is quasi-multiplicative on B because $E^{\mathcal{B}}$ is multiplicative on B, Theorem 2 in [3] implies this theorem.

LEMMA 1. Suppose every left continuous invariant subspace for a superalgebra B is a Beurling subspace. Then I(B) is a weak-*closed linear span of functions g in B with $\chi_{E(g)}$ being minimal for B. And if $f \in [B]_2$ and $\chi_E f \in [I_B]_2$ for every $\chi_E \in B$ with $\chi_E f \neq 0$, then $\chi_{E(f)} \in B$.

PROOF. By the definition of I(B), it is sufficient to prove that if $f \in I_B$ is non-zero, then $\chi_{E(f)}$ is not minimal for B. If $f \in I_B$ is non-zero, set $M_f = [fB]_{\infty}$, then M_f contains a nontrivial left continuous invariant subspace. By the hypothesis, M_f contains a non-trivial Beurling subspace and hence $\chi_{E(f)}$ is not minimal for B.

If $f \in [B]_2$ and $\chi_E f \in [I_B]_2$ for every $\chi_E \in B$ with $\chi_E f \neq 0$, then M_f is a left continuous invariant subspace and hence M_f is a Beurling subspace. Thus $\chi_{E(f)} \in B$.

2. The ideals of a superalgebra of A.

For a superalgebra B, we define B_{\min} to be the intersection of all superalgebras $\{B_{\alpha}\}$ such that $B \subseteq B_{\alpha}$ and $\chi_{E_0} B \prec_B \chi_{E_0} B_{\alpha}$, χ_{E_0} being the essential function of B (cf. [4]). Then H_{\min}^{∞} is the intersection of all superalgebras $\{B_{\alpha}\}$ which contains H^{∞} properly.

THEOREM 2. $I(B)=I_{B_{\min}}$.

PROOF. For $f \in I_B$ with $\chi_{E(f)}$ being minimal for B, set $D = [\chi_{E(f)}B]_{\infty} + (1-\chi_{E(f)})L^{\infty}$. Then $\chi_{E_0}B <_B\chi_{E_0}D$ for the essential function χ_{E_0} of B. For if $\chi_F \in B$ with $\chi_F \leq \chi_{E_0}$ and $\chi_F B = \chi_F D$, then $\chi_F \leq \chi_{E(f)}$. It contradicts to $\chi_{E(f)}$ being minimal for B by Lemma 3 in [4]. By Lemma 5 in [4], f belongs to I_D . By the definition of B_{\min} , $D \supseteq B_{\min}$ and so $I_D \subseteq I_{B_{\min}}$. Thus $f \in I_{B_{\min}}$ and hence $I(B) \subseteq I_{B_{\min}}$.

To prove that $I_{B_{\min}} \subseteq I(B)$, it is sufficient to show that $I_{B_{\alpha}} \subseteq I(B)$ for a superalgebra B_{α} with $\chi_{E_0}B \prec_B \chi_{E_0}B_{\alpha}$. For $B_{\min} = \bigcap_{\alpha} B_{\alpha}$ for such B_{α} and hence $I_{B_{\min}}$ is a weak-*closed linear span of $\bigcup_{\alpha} I_{B_{\alpha}}$ by Lemma 1 and Lemma 4 in [4]. To prove that $I_{B_{\alpha}} \subseteq I(B)$, set $\beta = \{m(E) \; ; \; \chi_E I_{B_{\alpha}} \subseteq I(B) \text{ and } \chi_E \in B_{\alpha} \}$. Then there exists χ_{E_1} in B_{α} such that $\beta = m(E_1)$ and $\chi_{E_1}I_{B_{\alpha}} \subseteq I(B)$. $1 - \chi_{E_1} \in B_{\alpha}$ and $1 - \chi_{E_1} \subseteq \chi_{E_0}$. Suppose $1 - \chi_{E_1} \neq 0$. When $1 - \chi_{E_1} \notin B$, there exists $\chi_{E_2} \in B_{\alpha}$ such that $\chi_{E_2} \subseteq I - \chi_{E_1}$ and χ_{E_2} is minimal for B. Hence $\chi_{E_2}I_{B_{\alpha}} \subseteq I(B)$. This contradicts

to the assumption on χ_{E_1} . When $1-\chi_{E_1} \in B$, since $\chi_{E_0}B \prec_B \chi_{E_0}B_\alpha$, $(1-\chi_{E_1})B \cong (1-\chi_{E_1})B_\alpha$ and so there exists $\chi_{E_3} \in B_\alpha$ such that $\chi_{E_3} \leq 1-\chi_{E_1}$ and χ_{E_3} is minimal for B by Lemma 8 in [4]. This contradicts to the assumption on χ_{E_1} again. Thus $1-\chi_{E_1}=0$ a.e. and hence $I_{B_\alpha} \subseteq I(B)$.

3. The quasi-primary ideal I_B .

It is well-known that H_0^{∞} is a primary ideal of H^{∞} . If a superalgebra B is different from H^{∞} , then I_B is not a primary ideal of B. For $\chi_E(1-\chi_E)$ $\in I_B$, $\chi_E \notin I_B$ and $1-\chi_E \notin I_B$ where $\chi_E \in B$ and $0 \le m(E) \le 1$.

DEFINITION 1. Let J_1 and J_2 be ideals of a superalgebra B with $J_1 \supseteq J_2$ and let $B = \{g \in L^{\infty}; gJ_1 \subseteq J_1\}$. We say that J_2 is a quasi-primary ideal of J_1 when J_2 has the following property; Suppose f, $g \in J_1$ and $fg \in J_2$. If $\chi_E f \notin J_2$ for every $\chi_E \in B$ with $\chi_E f \neq 0$, then $\chi_{E(f)} \in B$ and $\chi_{E(f)} g \in J_2$.

LEMMA 2. The necessary and sufficient condition for that J_2 is a quasiprimary ideal of J_1 is that J_2 has the following property. If f, $g \in J_1$ and $fg \in J_2$, then $f = \chi_{E_1} f + (1 - \chi_{E_1}) f$ and $g = \chi_{E_2} g + (1 - \chi_{E_2}) g$ where χ_{E_1} and χ_{E_2} satisfy the properties (1)~(4).

- (1) $(1-\chi_{E_1})f \in J_2$ and $(1-\chi_{E_2})g \in J_2$,
- (2) $\chi_E \cdot \chi_{E_1} f \in J_2$ for every $\chi_E \in B$ with $\chi_E \cdot \chi_{E_1} f \neq 0$ and $\chi_E \cdot \chi_{E_2} g \in J_2$ for every $\chi_E \in B$ with $\chi_E \cdot \chi_{E_2} g \neq 0$,
 - (3) $\chi_{E_1} f \cdot \chi_{E_2} g = 0$ a. e.,
 - (4) χ_{E_1} , $\chi_{E_2} \in B$ and $\chi_{E_1} \leq \chi_{E(f)}$, $\chi_{E_2} \leq \chi_{E(g)}$.

PROOF. Suppose f, $g \in J_1$ and $fg \in J_2$. Suppose J_2 is a quasi-primary ideal. There exists $\chi_F \in B$ such that $\chi_E \cdot \chi_F f \notin J_2$ for every $\chi_E \in B$ with $\chi_E \cdot \chi_F f \neq 0$ and $(1-\chi_F)f \in J_2$. Since $fg \in J_2$, $\chi_F fg \in J_2$. Since J_2 is a quasi-maximal ideal of J_1 , $\chi_{E_1} = \chi_F \cdot \chi_{E(f)} \in B$. Similarly there exists $\chi_{E_2} \in B$ with the properties (1), (2) and (4) for g. Since $fg \in J_2$, $\chi_{E_1} f \cdot \chi_{E_2} g \in J_2$. By the quasi-primarity of J_2 , $\chi_{E_1} \cdot \chi_{E_2} g \in J_2$ and so $\chi_{E_1} \cdot \chi_{E_2} g = 0$ a. e. This shows that $\chi_{E_1} f \cdot \chi_{E_2} g = 0$ a. e. and so (3) is valid.

Suppose χ_{E_1} and χ_{E_2} satisfy the properties $(1)\sim(4)$. If $\chi_E f \notin J_2$ for every $\chi_E \in B$ with $\chi_E f \neq 0$, then $\chi_{E_1} = \chi_{E(f)} \in B$. Since $\chi_{E_1} f \cdot \chi_{E_2} g = 0$ a. e., $\chi_{E(f)} \cdot \chi_{E_2} g = 0$ a. e. Since $\chi_{E(f)} (1-\chi_{E_2}) g \in J_2$, $\chi_{E(f)} g \in J_2$.

When $B=H^{\infty}$, if J_2 is a quasi-primary ideal, then J_2 is a primary ideal.

Theorem 3. Suppose every left continuous invariant subspace for B is a Beurling subspace. Then I_B is a quasi-primary ideal of B.

PROOF. Since $[B]_2=[B]_2 \cap [\bar{B}]_2 \oplus [I_B]_2$, for $u, v \in [B]_2 \cap [\bar{B}]_2$ and $f_0, g_0 \in [I_B]_2$, $f=u+f_0$ and $g=v+g_0$. Since $B+\bar{I}_B$ is weak-*dense in L^{∞} by Lemma 2 in [3] and $fg \in I_B$, it follows that uv=0 a.e. By Lemma 1, $\chi_{E(u)} \in B$ and $\chi_{B(v)} \in B$. Since $\chi_{E(u)} f \notin I_B$ for every $\chi_{E} \in B$ with $\chi_{E} \cdot \chi_{E(u)} f \neq 0$, by Lemma

1, $\chi_{E_1} = \chi_{E(u)} \cdot \chi_{E(f)} \in B$. Similarly $\chi_{E_2} = \chi_{E(v)} \cdot \chi_{E(g)} \in B$. Then χ_{E_1} and χ_{E_2} satisfy the properties (1) \sim (4) in Lemma 2. Thus I_B is a quasi-primary ideal of B.

If $E^{\mathfrak{B}}$ is multiplicative on B, then every left continuous invariant subspace for B is a Beurling subspace by Theorem 1 and hence I_B is a quasi-primary ideal of B by Theorem 3. $\{0\}$ is a quasi-primary ideal of L^{∞} .

4. The quasi-maximal ideal I_B .

It is well-known that H_0^{∞} is a maximal ideal of H^{∞} . If a superalgebra B is different from H^{∞} , then I_B is not a maximal ideal of B. For $B \supseteq \chi_E B + (1-\chi_E)I_B \supseteq I_B$ where $\chi_E \in B$ and $0 \leq m(E) \leq 1$, and $\chi_E B + (1-\chi_E)I_B$ is an ideal of B.

DEFINITION 2. Let J be an ideal of a superalgebra B. We say that J is a quasi-maximal ideal of B when any ideal J' of B with $J'\supseteq J$ has the form

$$J' = \chi_E B + (1 - \chi_E) J$$

for some $\chi_E \in B$.

When $B=H^{\infty}$, if J is a quasi-maximal ideal, then J is a maximal one.

If $E^{\mathfrak{B}}$ is multiplicative on B, then I_B is a quasi-maximal ideal of B. For since $E^{\mathfrak{B}}$ is multiplicative on B, $I_B=\mathcal{J}_B$. If J is a ideal of B with $J\supseteq I_B$, $J=E^{\mathfrak{B}}(J)+I_B$ and $E^{\mathfrak{B}}(J)$ is an ideal of $E^{\mathfrak{B}}(B)=B\cap \bar{B}$. Since $B\cap \bar{B}$ is a commutative von Neumann algebra of operators on L^2 which is contained in L^{∞} , $E^{\mathfrak{B}}(J)=\chi_E B\cap \bar{B}$ for some $\chi_E\in B\cap \bar{B}$. In particular, by that $B=B\cap \bar{B}+I_B$, it follows that $J=\chi_E B+(1-\chi_E)I_B$.

Theorem 4. Suppose every left continuous invariant subspace for B is a Beurling subspace. Then I_B is a quasi-maximal ideal of B.

PROOF. Let J be an ideal of B with $J \supseteq I_B$. Then there exists χ_{E_1} in B such that $J = \chi_{E_1} J + (1 - \chi_{E_1}) I_B$ and $\chi_{E_1} J_B > \chi_{E_1} I_B$ when $\chi_{E_1} J \neq \{0\}$. We may assume $\chi_{E_1} J \neq \{0\}$. Since $\chi_{E_1} I_B \supseteq [I_B \chi_{E_1} J]_{\infty}$, $\chi_{E_1} J$ is left continuous and by the hypothesis, $\chi_{E_1} J = \chi_{E_2} q B$ for some unimodular q and some non-zero $\chi_{E_2} \in B$.

We shall show that $\chi_{E_2}q^2B\supseteq\chi_{E_2}I_B$. If $f\in\chi_{E_2}I_B$, since $\chi_{E_2}qB\supseteq\chi_{E_2}I_B$, $f=\chi_{E_2}qh$ for some $h\in B$. $\chi_{E_2}q\cdot h\in I_B$. Since $\chi_{E_2}qB \nearrow \chi_{E_2}I_B$, $\chi_{E}\cdot\chi_{E_2}q\in\chi_{E_2}I_B$ for any $\chi_{E}\in B$ with $\chi_{E}\cdot\chi_{E_2}\neq 0$. By Theorem 3, I_B is a quasi-primary ideal of B and so $\chi_{E_2}h\in I_B$. Since $\chi_{E_2}qB\supseteq\chi_{E_2}I_B$, this shows $f\in\chi_{E_2}q^2B$.

We shall show that $\chi_{E_2}\bar{q}\in B$ and so $\chi_{E_1}J=\chi_{E_2}B$. Set $J_0=\bigcap_{n=1}^n\chi_{E_2}q^nB$, then $J_0\supseteq\chi_{E_2}I_B$. For we can show that $\chi_{E_2}q^nB\supseteq\chi_{E_2}I_B$ for $n\ge 3$ similarly as in n=2. There exists $\chi_{E_3}\in B$ such that $J_0=\chi_{E_3}J_0+(1-\chi_{E_3})\chi_{E_2}I_B$ and $\chi_{E_3}J_0\geqslant \chi_{E_3}\cdot\chi_{E_2}I_B$ when $\chi_{E_3}J_0\ne \{0\}$. If $\chi_{E_3}\cdot\chi_{E_2}\bar{q}\in B$, since $\bar{q}\chi_{E_3}J_0=\chi_{E_3}J_0$, there exists a non-zero $\chi_{E_4}\in B$ such that $\chi_{E_4}\cdot\chi_{E_3}J_0\subseteq\chi_{E_3}J_0$ and $\chi_{E_4}\leqq\chi_{E_3}\cdot\chi_{E_2}$. By Lemma 1, $\chi_{E_4}J_0\subseteq I(B)\subseteq I_B$ and so $\chi_{E_4}I_B\subseteq I_B$. By Lemma 2 in [3], $\chi_{E_4}\in B$. This contradictions that $\chi_{E_4}\in B$ and so $\chi_{E_4}\chi_{E_2}\bar{q}\in B$. Since $\bar{q}J_0=J_0$ and so $\chi_{E_3}\chi_{E_2}\bar{q}I_B\subseteq I_B$ by Lemma

2 in [3], $(1-\chi_{E_3})\chi_{E_2}\bar{q} \in B$. Thus $\chi_{E_2}\bar{q} = \chi_{E_3} \cdot \chi_{E_2}\bar{q} + (1-\chi_{E_3})\chi_{E_2}\bar{q} \in B$. It is clear that $\{0\}$ is a quasi-maximal ideal of L^{∞} .

5. The primary ideal.

If H^{∞} is a maximal superalgebra of A, then $I=I(H^{\infty})=\{0\}$ is a primary ideal of H^{∞} [1]. In this section, we shall show that in general I is a primary ideal of H^{∞} .

THEOREM 5. I(B) is a quasi-primary ideal of I_B .

PROOF. We shall show that if $f \in [I_B]_2 \cap [\bar{B}_{\min}]_2$, then $\chi_{E(f)} \in B$. We may assume $\chi_{E(f)} \neq 1$. Suppose $\chi_{E(f)}$ is minimal for B. There exists an outer function h in H^{∞} such that $hf \in I_B$. Since $\chi_{E(hf)}$ is minimal for B, $hf \in I(B)$. By Theorem 2, $hf \in I_{B_{\min}}$ and so $f \in [I_{B_{\min}}]_2$. While f belongs to $[I_B]_2 \cap [\bar{B}_{\min}]_2$, by Lemma 1 in [4], it follows that f = 0 a.e. and $\chi_{E(f)} (= 0$ a.e.) $\in B$. Suppose $\chi_{E(f)}$ is not minimal for B. Set $\alpha = \sup\{m(E); \chi_E \leq \chi_{E(f)} \text{ and } \chi_E \in B\}$, then there exists $\chi_{E_3} \in B$ such that $\chi_{E_3} \leq \chi_{E(f)}$ and $m(E_3) = \alpha$. Set $g = (1 - \chi_{E_3})f$, then $g \in [I_B]_2 \cap [\bar{B}_{\min}]_2$, and $\chi_{E(g)}$ is minimal for B. By what was just proved, $\chi_{E(g)} = 0$ a.e. and so $\chi_{E(f)} = \chi_{E_3}$.

Now we shall show that $I_{B_{\min}}$ is a quasi-primary ideal of I_B . Then by Theorem 2, I(B) is a quasi-primary ideal of I_B . Suppose f, $g \in I_B$ and $fg \in I_{B_{\min}}$. Since $[I_B]_2 = [I_B]_2 \cap [\bar{B}_{\min}]_2 \oplus [I_{B_{\min}}]_2$, for $u, v \in [I_B]_2 \cap [\bar{B}_{\min}]_2$ and $f_0, g_0 \in [I_{B_{\min}}]_2$, $f = u + f_0$ and $g = v + g_0$. Since $B_{\min} + \bar{I}_{B_{\min}}$ is weak-*dense in L^{∞} by Lemma 2 in [3] and $fg \in I_{B_{\min}}$, it follows that uv = 0 a.e. By the first proof of this theorem, $\chi_{E(u)}$ and $\chi_{E(v)}$ belong to B. By the definition of I(B), $\chi_{E_1} = \chi_{E(u)} \cdot \chi_{E(f)}$ and $\chi_{E_2} = \chi_{E(v)} \cdot \chi_{E(g)}$ belong to B. Then χ_{E_1} and χ_{E_2} satisfy the properties (1) \sim (4) in Lemma 2.

COROLLARY 1. I is a primary ideal of H_0^{∞} .

PROOF. Apply Theorem 5 with $B=H^{\infty}$.

Theorem 6. Suppose every left continuous invariant subspace for B is a Beurling subspace. Then I(B) is a quasi-primary ideal of B.

PROOF. If $I(B) = I_B$, Theorem 3 implies this theorem. Suppose $I(B) \neq I_B$, $f, g \in B$ and $fg \in I(B)$. Then by Lemma 2, Theorem 3 and Theorem 5, there exist $\chi_{F_i} \in B$ and $\chi_{G_i} \in B$ (i=1,2,3) with the following properties: (1) $\chi_{F_3} f$, $\chi_{G_3} g \in I(B)$. (2) $\chi_E \cdot \chi_{F_1} f \notin I_B$ for every $\chi_E \in B$ with $\chi_E \cdot \chi_{F_1} f \neq 0$ and $\chi_E \cdot \chi_{G_1} g \notin I_B$ for every $\chi_E \in B$ with $\chi_E \cdot \chi_{G_1} g \neq 0$, and $\chi_{F_1} f \cdot \chi_{G_1} g = 0$ a. e. and $\chi_{F_1} \leq \chi_{E(f)}$, $\chi_{G_1} \leq \chi_{E(g)}$. (3) $\chi_{F_2} f$, $\chi_{G_2} g \in I_B$, and $\chi_E \cdot \chi_{F_2} f \notin I(B)$ for every $\chi_E \in B$ with $\chi_E \cdot \chi_{G_2} g \neq 0$, and $\chi_{F_2} f \cdot \chi_{G_2} g = 0$ a. e. and $\chi_{F_2} \leq \chi_{E(g)}$. (4) $\chi_{F_1} + \chi_{F_2} + \chi_{F_3} = 1$ and $\chi_{G_1} + \chi_{G_2} + \chi_{G_3} = 1$. To prove this theorem, it is sufficient to show that $\chi_{F_2} f \cdot \chi_{G_1} g = 0$ a. e. and $\chi_{F_1} f \cdot \chi_{G_2} g = 0$ a. e. Since $\chi_{F_1} f \cdot \chi_{G_2} g + \chi_{F_2} f \cdot \chi_{G_1} g \in I(B)$. Since $\chi_{F_1} \cdot \chi_{G_1} = 0$ a.e., $\chi_{F_1} f \cdot \chi_{G_2} g = 0$ a.e., $\chi_{F_1} f \cdot \chi_{G_2} g = 0$ a.e., $\chi_{F_1} f \cdot \chi_{G_2} g = 0$ a.e.

 $\in I(B)$ and $\chi_{F_2} f \cdot \chi_{G_1} g \in I(B)$.

We shall show that $\chi_{F_1} f \cdot \chi_{G_2} g = 0$ a.e. Suppose $\chi_{F_1} f \cdot \chi_{G_2} g \neq 0$. If $h \in I_B$, then $\chi_{F_1}fh\cdot\chi_{G_2}g\in I(B)$. Since $\chi_{F_1}fh$, $\chi_{G_2}g\in I_B$ and I(B) is a quasi-primary ideal of I_B and $\chi_E \cdot \chi_{G_2} g \in I(B)$ for every $\chi_E \in B$ with $\chi_E \cdot \chi_{G_2} g \neq 0$, it follows that $\chi_{G_2} \cdot \chi_{F_1} f h$ $\in I(B)$. Thus $\chi_{G_2} \cdot \chi_{F_1} f I_B \subset I(B)$. By Theorem 2, $\chi_{G_2} \cdot \chi_{F_1} f B_{\min} I_B \subset I(B)$ and so $\chi_{G_2} \cdot \chi_{F_1} f B_{\min} \subset B$. Since we may assume $I(B) \neq I_B$ and so $B_{\min} \supseteq B$, $B_{\min} = B$ $(1-\chi_{F_4})B+\chi_{F_4}B_{\min}$ for some non-zero $\chi_{F_4}\in B$ and $\chi_{F_4}B_{\min}B>\chi_{F_4}B$. If $\chi_{F_4}\cdot\chi_{G_2}$ $\cdot \chi_{F_1} f = 0$ a.e., since $\chi_{F_1} f \cdot \chi_{G_2} g \neq 0$, then $(1 - \chi_{F_4}) \chi_{G_2} \cdot \chi_{F_1} f \neq 0$. Since $(1 - \chi_{F_4}) I_{B_{\min}}$ $= (1-\chi_{F_4})I(B) = (1-\chi_{F_4})I_B, \ (1-\chi_{F_4})\chi_{G_2} \cdot \chi_{F_1} f \in I_B. \quad \text{This contradicts to the assump-}$ tion on χ_{F_1} and so $\chi_{F_4} \cdot \chi_{G_2} \cdot \chi_{F_1} f \neq 0$. Let χ_{F_5} be the largest characteristic function in B_{\min} such that $\chi_{F_5} \leq \chi_{F_4} \cdot \chi_{G_2} \cdot \chi_{F_1}$ and $\chi_{F_5} \cdot \chi_{F_4} \cdot \chi_{G_2} \cdot \chi_{F_1} f \in I(B)$. $\chi_{G_2} \cdot \chi_{F_1} f B_{\min} \subseteq B$, $(1 - \chi_{F_5}) \chi_{F_4} \cdot \chi_{G_2} \cdot \chi_{F_1} f \in B$. By the assumption on χ_{F_1} and χ_{F_5} , $(1-\chi_{F_5})\chi_{F_4}\cdot\chi_{G_2}\cdot\chi_{F_1}f\neq 0$ and $(1-\chi_{F_5})\chi_{F_4}\cdot\chi_{G_2}\cdot\chi_{F_1}f\in I(B)$. By Lemma 1, $(1-\chi_{F_5})\chi_{F_4}\cdot\chi_{G_2}\cdot\chi_{F_1}f\in I(B)$. $\cdot \chi_{G_2} \cdot \chi_{F_1}$ is not minimal for B. Since $\chi_{F_4} B_{\min B} > \chi_{F_4} B$, there exist $\chi_{F_6} \in B_{\min}$ such that $0 \le \chi_{F_6} < (1 - \chi_{F_5}) \chi_{F_4} \cdot \chi_{G_2} \cdot \chi_{F_1}$ and χ_{F_6} is minimal for B. By Lemma 1, $\chi_{F_6} \cdot \chi_{F_4}$ $\cdot \chi_{G_2} \cdot \chi_{F_1} f \in I(B)$. This contradicts to the assumption on χ_{F_5} . Thus $\chi_{F_1} f \cdot \chi_{G_2} g$ =0 a. e. Similarly $\chi_{F_2} f \cdot \chi_{G_1} g = 0$ a. e. Set $\chi_{E_1} = \chi_{F_1} + \chi_{F_2}$ and $\chi_{E_2} = \chi_{G_1} + \chi_{G_2}$. Then χ_{E_1} and χ_{E_2} satisfy the properties in Lemma 2 and hence I(B) is a quasiprimary ideal of B.

COROLLARY 2. I is a primary ideal of H^{∞} .

PROOF. Apply Theorem 6 with $B=H^{\infty}$, using Theorem 1.

6. The minimum superalgebra of A which contains H^{∞} properly.

If $H_{\min}^{\infty} \neq H^{\infty}$, then H_{\min}^{∞} is the minimum superalgebra which contains H^{∞} properly. Under a condition that $H_{\min}^{\infty} \neq H^{\infty}$ in [4, Corollary 3], we gave two necessary and sufficient conditions for a minimum superalgebra. In this section, we shall omit the condition such that $H_{\min}^{\infty} \neq H^{\infty}$ and we shall gave a new necessary and sufficient condition.

THEOREM 7. Let B and D be superalgebras of A such that $B \subseteq D$. Then the following are equivalent.

- (1) If f is in I_B and $\chi_{E(f)}$ is minimal for B, then f lies in I_D .
- (2) If f and g are in I_B , if both $\chi_{E(f)}$ and $\chi_{E(g)}$ are minimal for B, and if fg=0 a.e., then either f or g lies in I_D .
 - (3) I_D is a quasi-primary ideal of I_B .
 - (4) $D \subseteq B_{\min}$.
 - (5) Each superalgebra C such that $B \subseteq C$ has the form

$$C = \chi_{E_1} B + (1 - \chi_{E_1}) C$$

where $(1-\chi_{E_1})C \supseteq (1-\chi_{E_1})D$ and χ_{E_1} is in B.

PROOF. (3) \Rightarrow (2) is trivial. (2) \Rightarrow (1) is known in [4, Theorem 4]. (1) \Rightarrow (4). Since $I_D \supseteq I(B)$, by Theorem 2 and Lemma 2 in [3], $B_{\min} \supseteq D$. (4) \Rightarrow (5). Since $B \subseteq C$, there exists $\chi_{E_1} \in B$ such that $C = \chi_{E_1} B + (1 - \chi_{E_1}) C$ and $(1 - \chi_{E_1}) C \supseteq (1 - \chi_{E_1}) B$. By the definition of B_{\min} , $(1 - \chi_{E_1}) C \supseteq (1 - \chi_{E_1}) B_{\min}$ and hence $(1 - \chi_{E_1}) C \supseteq (1 - \chi_{E_1}) D$. (5) \Rightarrow (3). Let χ_{E_0} be an essential function of B and let K be a superalgebra such that $\chi_{E_0} B \prec_B \chi_{E_0} K$, then $K \supseteq D$ by (5). Hence $B_{\min} \supseteq D$. Since $D = \chi_{E_2} B + (1 - \chi_{E_2}) B_{\min}$, $I_D = \chi_{E_2} I_B + (1 - \chi_{E_2}) I_{B_{\min}}$ by Lemma 1 in [4]. By Theorem 2 and Theorem 5, it follows that I_D is a quasi-primary ideal of I_B .

COROLLARY 3. Let D be a superalgebra which contains H^{∞} properly. Then the following are equivalent.

- (1) If f in H^{∞} vanishes on a set of positive measure, then f lies in I_{D} .
- (2) If f and g in H^{∞} and fg=0 a.e., then f lies in I_D or g lies in I_D .
- (3) I_D is a primary ideal of H^{∞} .
- (4) $D=H_{\min}^{\infty}$

PROOF. Apply Theorem 7 with $B=H^{\infty}$.

Set $H_{\min,0}^{\infty}=H_{\min}^{\infty}$ and let $H_{\min,k+1}^{\infty}=(H_{\min,k}^{\infty})_{\min}$ for $k=0, 1, \cdots$. Define H_{\max}^{∞} to be the superalgebra generated by H^{∞} and $\chi_{E(f)}$ for all $f \in H^{\infty}$.

COROLLARY 4. Suppose $L^{\infty} = [\bigcup_{k=0}^{\infty} H_{\min,k}^{\infty}]_{\infty}$. If B is any superalgebra of A, then $B = H^{\infty}$ or

$$B = \sum_{k=0}^{\infty} \chi_{F_k} H_{\min,k}^{\infty} + (1 - \sum_{k=0}^{\infty} \chi_{F_k}) L^{\infty}$$

for $\chi_{F_k} \in H_{\min,k}^{\infty}$. In particular, if $L^{\infty} = \bigcup_{k=0}^{n} H_{\min,k}^{\infty}$, then $H_{\min,n-1}^{\infty} = H_{\max}^{\infty}$.

PROOF. Let χ_{E_k} be the essential function of $H_{\min,k}^{\infty}$, since $L^{\infty} = \lceil \bigcup_{k=0}^{\infty} H_{\min,k}^{\infty} \rceil_{\infty}$, it follows that $\chi_{E_k} H_{\min,k}^{\infty} \prec \chi_{E_k} H_{\min,k+1}^{\infty}$ for $k=0,1,2,\cdots$. If $B \neq H^{\infty}$ then $B \supseteq H_{\min,0}^{\infty}$. By Theorem 7, $B = \chi_{F_0} H_{\min,0}^{\infty} + (1-\chi_{F_0})B$ where $\chi_{F_0} \in H_{\min,0}^{\infty}$ and $(1-\chi_{F_0})B \supseteq (1-\chi_{F_0})H_{\min,1}^{\infty}$. Set $B' = \chi_{F_0} H_{\min,1}^{\infty} + (1-\chi_{F_0})B$, then $B' \supseteq H_{\min,1}^{\infty}$. Again applying Theorem 7, $B' = \chi_{G} H_{\min,1}^{\infty} + (1-\chi_{G})B'$ where $\chi_{G} \in H_{\min,1}^{\infty}$ and $(1-\chi_{G})B' \supseteq (1-\chi_{G})H_{\min,2}^{\infty}$. Set $\chi_{F_1} = \chi_{G} - \chi_{F_0}$, then $M = \chi_{F_0} H_{\min,0}^{\infty} + \chi_{F_1} H_{\min,1}^{\infty} + (1-\chi_{F_0} - \chi_{F_1})B$ where $\chi_{F_1} \in H_{\min,1}^{\infty}$ and $(1-\chi_{F_0} - \chi_{F_1})B \supseteq (1-\chi_{F_0} - \chi_{F_1})H_{\min,2}^{\infty}$. Thus M = 1 has the form

$$B = \sum_{k=0}^{\infty} \chi_{F_k} H_{\min, k}^{\infty} + (1 - \sum_{k=0}^{\infty} \chi_{F_k}) B$$

where $(1-\sum\limits_{k=0}^{\infty}\chi_{F_k})B \supseteq (1-\sum\limits_{k=0}^{\infty}\chi_{F_k})H_{\min,n}^{\infty}$ for $n=0,1,2,\cdots$. Since $L^{\infty}=[\sum\limits_{k=0}^{\infty}H_{\min,k}^{\infty}]_{\infty}$, $(1-\sum\limits_{k=0}^{\infty}\chi_{F_k})B=(1-\sum\limits_{k=0}^{\infty}\chi_{F_k})L^{\infty}$.

7. The existence of the minimum superalgebra of A.

Corollary 3 in §6 shows the necessary and sufficient conditions for a superalgebra B to be a minimum superalgebra which contains H^{∞} properly, but

it dose not show the existence of the minimum superalgebra. We shall show the existence theorem.

THEOREM 8. Let B be a superalgebra of A. There exists at least one function in I_B that is not a weak-*limit of functions g in I_B with $\chi_{E(g)}$ being minimal for B if and only if $B=B_{\min}$.

PROOF. By Theorem 2, it is trivial.

COROLLARY 5. There exists at least one function in H_0^{∞} that is not a weak-*limit of functions, vanishing on sets of positive measure if and only if there exists a minimum superalgebra that contains H^{∞} properly, i.e. $H^{\infty} \neq H_{\min}^{\infty}$.

PROOF. Apply Theorem 8 with $B=H^{\infty}$.

References

- [1] P.S. Muhly, Maximal weak-*Dirichlet algebras, Proc. Amer. Math. Soc., 36 (1972), 515-518.
- [2] T. Nakazi, Nonmaximal weak-*Dirichlet algebras, Hokkaido Math. J., 5(1976), 88-96.
- [3] T. Nakazi, Invariant subspaces of weak-*Dirichlet algebras, Pacific J. Math., 69 (1977), 151-167.
- [4] T. Nakazi, Superalgebras of weak-*Dirichlet algebras, Pacific J. Math., 68(1977), 197-207.
- [5] T.P. Srinivansan and Ju-Kwei Wang, Weak-*Dirichlet algebras, Proc. Internat. Sympos. on Function Algebras (Tulane Univ., 1965), Scott-Foresman, Chicago, III., 1966, 216-249.

Takahiko NAKAZI

Research Institute of Applied Electricity Hokkaido University Sapporo 060 Japan