Homogeneous Riemannian manifolds with a fixed isotropy representation

By Eduardo H. Cattani* and L. N. Mann

(Received Dec. 15, 1977)

1. Introduction.

In this paper we give a classification of simply-connected homogeneous Riemannian manifolds $M=G / H$ where H is isomorphic to a product of rotation groups and the linear isotropy representation of H is a direct sum of standard representations with a trivial representation. This situation arises naturally in the study of homogeneous Riemannian manifolds which admit a large group of isometries. In fact if $M=I_{0}(M) / H$, where

$$
\begin{equation*}
\operatorname{dim} I(M)>\frac{n^{2}}{4}+n, \quad n=\operatorname{dim} M \geqq 11 \tag{1.1}
\end{equation*}
$$

then it follows that $H \cong S O(k) \times K$, with $k>n / 2, K \cong S O(n-k)$ and the linear isotropy representation of H splits [5, Theorem 1.18].

Our results are quite simple to state if each of the rotation groups has order at least 3. In that case M is isometric to a product of a certain number of simply-connected manifolds of constant curvature together with a simplyconnected Lie group with a left-invariant metric. Theorem B). If H is isomorphic to a single rotation group, this appears to be consistent with some local results obtained by Kurita [8] a number of years ago. If some of the rotation groups in the decomposition of H have order 2, then the description of the corresponding manifolds becomes more complicated. This is done in Section 4, where, in particular, we obtain a generalization of Cartan's classification [3] of 3 -dimensional manifolds which admit a transitive group of motions of dimension 4.

In Section 5, we apply the above results to give an explicit description of those manifolds satisfying (1.1) and $n-3 \leqq k \leqq n$. This turns up some inaccuracies and extends some results in [7], while at the same time exhibiting the differences with the compact case studied by Lukesh. In [9] it is shown that if M is compact and satisfies (1.1), then it must split isometrically with one factor being a standard sphere $S^{k}, k>n / 2$. As we shall see in Section 5 , there

[^0]are uncountably many homogeneous metrics of strictly negative curvature on \boldsymbol{R}^{n} with non-isomorphic isometry groups all of dimension $1 / 2\left(n^{2}-3 n+6\right)$.

2. Algebraic preliminaries.

$M=G / H$ will denote a connected homogeneous n-dimensional Riemannian manifold. Throughout this paper we shall assume that G is connected and that the transitive action of G on M is effective. Let \mathfrak{g} and \mathfrak{h} denote the Lie algebras of G and H respectively. Since H is compact we can choose a complementary subspace \mathfrak{m} of \mathfrak{h} in \mathfrak{g} such that $[\mathfrak{q}, \mathfrak{m}] \subseteq \mathfrak{m}$. Moreover we can naturally identify \mathfrak{m} with the tangent space of M at the base point $z_{0}=\{H\} \in M$, and hence \mathfrak{m} carries an inner product \langle,$\rangle induced by the Riemannian structure$ of M. If we let

$$
\mathfrak{m}=\{X \in \mathfrak{m}:[\mathfrak{h}, X]=0\},
$$

then \mathfrak{m} splits as

$$
\begin{equation*}
\mathfrak{m}=\mathfrak{m}_{1}+\mathfrak{m} \tag{2.1}
\end{equation*}
$$

where \mathfrak{m}_{1} is the orthogonal complement of \mathfrak{m} and therefore is ad(\mathfrak{h})-invariant. '2.2) Proposition. Assume $H \cong S O(q), q \geqq 3$, and that the linear isotropy action of H on \mathfrak{m}_{1} is standard. Then

$$
\begin{align*}
& {\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right] \subseteq \mathfrak{h}} \tag{2.3}\\
& {\left[\mathfrak{m}, \mathfrak{m}_{1}\right] \subseteq \mathfrak{m}_{1} .} \tag{2.4}
\end{align*}
$$

Proof. We begin by showing that $\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right]_{\tilde{m}}=0$, where $\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right]_{\tilde{m}}$ denotes the projection of $\left[\mathfrak{m}_{1}, \mathfrak{n t}_{1}\right]$ on \mathfrak{n}, relative to the decomposition $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}_{1}+\mathfrak{n}$. Given E_{1}, E_{2}, orthonormal vectors in \mathfrak{m}_{1}, let $A \in H$ be so that $A\left(E_{1}\right)=-E_{1}$, $A\left(E_{2}\right)=E_{2}$, where $A\left(E_{i}\right)$ denotes $\operatorname{Ad}(A) E_{i}$. Then $\left[E_{1}, E_{2}\right]_{\tilde{\mathfrak{m}}}=A\left(\left[E_{1}, E_{2}\right]_{\tilde{\mathfrak{m}}}\right)=$ $\left[A E_{1}, A E_{2}\right]_{\tilde{m}}=-\left[E_{1}, E_{2}\right]_{\tilde{m}}$ which implies $\left[E_{1}, E_{2}\right]_{\tilde{m}}=0$ and hence $\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right]_{\tilde{n}}=0$.

In order to show that $\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right]_{v_{1}}=0$, we choose an orthonormal basis E_{1}, \cdots, E_{q} of \mathfrak{m}_{1} and let

$$
\left[E_{i}, E_{j}\right]_{n_{1}}=\sum_{k=1}^{q} C_{i j}^{b} E_{k} .
$$

It is then enough to show that $C_{i j}^{k}=0$ for each i, j, k. If $q \geqq 4$, let $l \neq i, j, k$ and $A \in H$ the element defined by

$$
\begin{gathered}
A\left(E_{i}\right)=-E_{i}, \quad A\left(E_{l}\right)=-E_{l} \quad \text { and } \\
A\left(E_{s}\right)=E_{s} \quad \text { for } \quad s \neq i, l .
\end{gathered}
$$

We then have

$$
\sum_{s=1}^{q} C_{i j}^{s} A\left(E_{s}\right)=A\left[E_{i}, E_{j}\right]_{m_{1}}=-\left[E_{i}, E_{j}\right]_{m_{1}}=-\sum_{s=1}^{q} C_{i j} E_{s}
$$

and comparing terms for $s=k$, this gives $C_{i j}^{k}=0$.
Suppose now that $q=3$. Let $E_{i}, 1 \leqq i \leqq 3$, be as before, and let $B \in H$ be defined by

$$
B\left(E_{1}\right)=-E_{1}, \quad B\left(E_{2}\right)=-E_{2}, \quad B\left(E_{3}\right)=E_{3} .
$$

Since $B\left(\left[E_{i}, E_{j}\right]_{\mathrm{m}_{1}}\right)=\left[B\left(E_{i}\right), B\left(E_{j}\right)\right]_{\mathrm{m}_{1}}$, it is straightforward to check that

$$
\left[E_{i}, E_{j}\right]_{n_{1}}=\gamma_{k} E_{k}, \quad i \neq j \neq k \neq i, \quad \gamma_{k} \in \boldsymbol{R} .
$$

On the other hand for an arbitrary $A \in H$, let

$$
A\left(E_{i}\right)=\sum_{j=1}^{3} a_{j i} E_{j} .
$$

We then have

$$
\gamma_{3} A\left(E_{3}\right)=A\left(\left[E_{1}, E_{2}\right]_{r_{1}}\right)=\left[\sum_{j=1}^{3} a_{j 1} E_{j}, \sum_{k=1}^{3} a_{k 2} E_{k}\right]_{\mathrm{m}_{r}}
$$

and comparing the coefficients of E_{3} we obtain

$$
\gamma_{3} a_{33}=\gamma_{3}\left(a_{11} a_{22}-a_{21} a_{12}\right)
$$

for every $A \in H$. It then follows that $\gamma_{3}=0$, and consequently $\left[E_{1}, E_{2}\right]_{r_{1}}=0$. This proves (2.3)

It remains to show $\left[\mathfrak{m}, \mathfrak{m}_{1}\right] \subseteq \mathfrak{m}_{1}$. Set

$$
\overline{\mathfrak{m}}_{1}=\left\{E \in \mathfrak{m}_{1}:[\tilde{\mathfrak{m}}, E]_{\mathfrak{m}}=0\right\} .
$$

Then $\overline{\mathfrak{m}}_{1}$ is an $\operatorname{Ad}(H)$-invariant subspace of \mathfrak{m}_{1} and thus either $\overline{\mathfrak{m}}_{1}=\mathfrak{m}_{1}$ or $\overline{\mathfrak{m}}_{1}=\{0\}$. On the other hand it is easy to check that if $E \in \mathfrak{n}_{1}, A \in H$ are such that $A(E) \neq E$, then $E-A(E) \in \overline{\mathfrak{m}}_{1}$. Hence $\overline{\mathfrak{m}}_{1}=\mathfrak{m}_{1}$ and therefore $\left[\tilde{\mathfrak{m}}, \mathfrak{n}_{1}\right]_{\tilde{\mathfrak{m}}}=0$.

For each $X \in \mathfrak{m}$, let $\overline{\mathfrak{m}}_{1}(X)$ be the $\operatorname{Ad}(H)$-invariant subspace of \mathfrak{m}_{1} defined by

$$
\overline{\mathfrak{m}}_{1}(X)=\left\{E \in \mathfrak{m}_{1}:[X, E]_{\mathfrak{h}}=0\right\} .
$$

If $\overline{\mathfrak{m}}_{1}(X)=\mathfrak{m}_{1}$ for all $X \in \tilde{\mathfrak{m}}$, then $\left[\tilde{\mathfrak{m}}, \mathfrak{m}_{1}\right]_{\mathfrak{n}}=0$ and (2.4) follows. Assume $\overline{\mathfrak{m}}_{1}(X)=0$ for some $X \in \tilde{\mathfrak{m}}$. This is clearly impossible if $q \geqq 4$ (or $q=2$) since $\left[X, \mathfrak{m}_{1}\right]_{\mathfrak{b}}$ would be a q-dimensional ideal of $\mathfrak{h} \cong s o(q)$. The case $q=3$ again requires a separate proof. Let $E_{i}, 1 \leqq i \leqq 3$, be as before and let $A_{i j}, 1 \leqq i \neq j \leqq 3$, be elements of $\mathfrak{h} \cong s o(3)$ defined by

$$
\begin{align*}
& {\left[A_{i j}, E_{i}\right]=-E_{j}, \quad\left[A_{i j}, E_{j}\right]=E_{i}} \\
& {\left[A_{i j}, E_{k}\right]=0, \quad k \neq i, j .} \tag{2.5}
\end{align*}
$$

Clearly $\left\{A_{i j}, 1 \leqq i<j \leqq 3\right\}$ is a basis of \mathfrak{h} and $A_{i j}=-A_{j i}$. One can readily check that

$$
\begin{equation*}
\left[A_{i j}, A_{j k}\right]=A_{i k} . \tag{2.6}
\end{equation*}
$$

Let

$$
\left[X, E_{i}\right]_{\mathfrak{h}}=\alpha_{i} A_{12}+\beta_{i} A_{13}+\gamma_{i} A_{23} .
$$

Since

$$
\begin{aligned}
& {\left[A_{23},\left[X, E_{1}\right]_{\mathfrak{y}}\right]=\left[A_{23},\left[X, E_{1}\right]\right]_{\mathfrak{y}}} \\
& =\left[\left[A_{23}, X\right], E_{1}\right]_{\mathfrak{y}}+\left[X,\left[A_{23}, E_{1}\right]\right]_{\mathfrak{y}}=0,
\end{aligned}
$$

using (2.5) and (2.6) we obtain

$$
0=\left[A_{23}, \alpha_{1} A_{12}+\beta_{1} A_{13}+\gamma_{1} A_{23}\right]=-\alpha_{1} A_{13}+\beta_{1} A_{12}
$$

which implies $\alpha_{1}=\beta_{1}=0$. Similarly one can show that $\alpha_{2}=\gamma_{2}=\beta_{3}=\gamma_{3}=0$ and $\alpha_{3}=-\beta_{2}=\gamma_{1}=\lambda$.

On the other hand, since by (2.3), $\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right] \subseteq \mathfrak{h}$ we get

$$
\begin{aligned}
0 & =\left[X,\left[E_{1}, E_{3}\right]\right]_{\mathrm{w}_{1}}=\left[\left[X, E_{1}\right], E_{3}\right]_{\mathrm{m}_{1}}+\left[E_{1},\left[X, E_{3}\right]\right]_{\mathrm{m}_{1}} \\
& =\left[\left[X, E_{1}\right]_{\mathrm{k}}, E_{3}\right]+\left[E_{1},\left[X, E_{3}\right]_{3}\right] \\
& =\left[\lambda A_{23}, E_{3}\right]+\left[E_{1}, \lambda A_{12}\right]=\lambda E_{2}+\lambda E_{2}=2 \lambda E_{2} .
\end{aligned}
$$

Hence $\lambda=0$ and $\left[\tilde{\mathfrak{m}}, \mathfrak{m}_{1}\right] \subseteq \mathfrak{m}_{1}$. This completes the proof of Proposition (2.2).
For each $X \in \tilde{\mathfrak{m}}$, the linear transformation

$$
\operatorname{ad}(X): \mathfrak{m}_{1} \rightarrow \mathfrak{m}_{1}
$$

commutes with the standard action of $H \cong S O(q)$ on \mathfrak{m}_{1}. Hence there exists a linear functional $\alpha \in \tilde{\mathfrak{m}}^{*}$, such that

$$
\begin{equation*}
[X, E]=\alpha(X) E, \quad X \in \tilde{\mathfrak{n}}, \quad E \in \mathfrak{m}_{1} . \tag{2.7}
\end{equation*}
$$

We set

$$
\begin{equation*}
\tilde{\mathfrak{m}}^{\prime}=\operatorname{ker} \alpha=\left\{X \in \tilde{\mathfrak{m}}:\left[X, \mathfrak{m}_{1}\right]=0\right\} \tag{2.8}
\end{equation*}
$$

Then, either $\tilde{\mathfrak{m}}=\tilde{\mathfrak{m}}^{\prime}$ or $\operatorname{dim} \tilde{\mathfrak{m}}^{\prime}=\operatorname{dim} \tilde{\mathfrak{m}}-1$.
(2.9) Proposition. $\check{\mathfrak{m}}$ is a subalgebra of \mathfrak{g} and $\tilde{\mathfrak{m}}^{\prime}$ is an ideal in \mathfrak{g}.

Proof. First of all we notice that $[\tilde{\mathfrak{m}}, \tilde{m}]_{\mathrm{m}_{1}}=0$ since $[\tilde{\mathfrak{m}}, \tilde{\mathfrak{m}}]_{\mathfrak{w}_{1}}$ would be a subspace of \mathfrak{m}_{1} where \mathfrak{h} acts trivially. Similarly we have

$$
\left[\mathfrak{h},[\tilde{\mathrm{m}}, \tilde{\mathrm{~m}}]_{\mathfrak{l}}\right]=0
$$

which implies [$\tilde{\mathfrak{m}}, \tilde{\mathfrak{m}}]_{\mathfrak{f}}=0$ since $\mathfrak{h} \cong s o(q)$ contains no non-trivial abelian ideals for $q \geqq 3$. This proves the first statement in (2.9).

Let $X_{1}, X_{2} \in \mathfrak{m}, E \in \mathfrak{m}_{1}$. Then

$$
\left[\left[X_{1}, X_{2}\right], E\right]=\left(\alpha\left(X_{1}\right) \alpha\left(X_{2}\right)-\alpha\left(X_{2}\right) \alpha\left(X_{1}\right)\right) E=0 .
$$

This implies $[\tilde{\mathfrak{m}}, \tilde{\mathfrak{m}}] \subseteq \tilde{\mathfrak{m}}^{\prime}$ and since $\left[\mathfrak{h}+\mathfrak{m}_{1}, \tilde{\mathfrak{m}}^{\prime}\right]=0$, the proposition follows.
(2.10) Corollary. If $\tilde{\mathfrak{m}}^{\prime}=\tilde{\mathfrak{m}}$ then the decomposition

$$
\mathfrak{g}=\left(\mathfrak{h}+\mathfrak{m}_{1}\right) \oplus \tilde{\mathfrak{m}}
$$

is a direct sum of ideals.
(2.11) LEMMA. If $\tilde{\mathfrak{m}}^{\prime} \neq \tilde{\mathfrak{m}}$, then \mathfrak{m}_{1} is an abelian ideal in g .

Proof. Using (2.2) it is enough to show that $\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right]_{\mathfrak{h}}=0$. Let $E_{1}, E_{2} \in \mathfrak{m}_{1}$ and choose $X \in \tilde{m}$ such that $\alpha(X)=1$. Then

$$
\begin{aligned}
0 & =\left[X,\left[E_{1}, E_{2}\right]_{\mathfrak{h}}\right]=\left[X,\left[E_{1}, E_{2}\right]\right]_{\mathfrak{h}} \\
& =\left[\alpha(X) E_{1}, E_{2}\right]+\left[E_{1}, \alpha(X) E_{2}\right]=2\left[E_{1}, E_{2}\right]
\end{aligned}
$$

and the result follows.
(2.12) PROPOSITION. If $\tilde{\mathfrak{m}}^{\prime} \neq \tilde{\mathfrak{m}}$, then $\mathfrak{m}=\mathfrak{m}_{1}+\tilde{\mathfrak{m}}$ is an ideal in \mathfrak{g}.

Proof. This is a consequence of Proposition (2.2) and the above lemma.

3. Global results.

Throughout this section M will denote a connected and simply-connected homogeneous Riemannian manifold $M=G / H$, with G a connected subgroup of $I(M)$ acting effectively on M. We assume further that

$$
H \cong H_{1} \times \cdots \times H_{k}
$$

and the linear isotropy representation of H splits. The Lie algebra g of G has therefore a decomposition

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{h}_{1}+\cdots+\mathfrak{h}_{k}+\mathfrak{m}_{1}+\cdots+\mathfrak{m}_{k}+\tilde{\mathfrak{m}} \tag{3.1}
\end{equation*}
$$

where \mathfrak{h}_{i} leaves \mathfrak{m}_{i} invariant and acts trivially on $\tilde{\mathfrak{m}}$ and $\mathfrak{m}_{j}, j \neq i$. It is clear that the decomposition $\mathfrak{m}=\mathfrak{m}_{1}+\cdots+\mathfrak{m}_{\boldsymbol{k}}+\mathfrak{m}$ is orthogonal relative to the inner product induced in \mathfrak{m} by the Riemannian structure of M.
(3.2) Lemma. Let $M=G /\left(H_{1} \times H_{2}\right)$ be as above, $\mathfrak{g}=\mathfrak{h}_{1}+\mathfrak{h}_{2}+\mathfrak{m}_{1}+\mathfrak{m}_{2}+\mathfrak{m}$ as in (3.1). If $\mathfrak{g}=\mathfrak{h}_{2}+\mathfrak{m}_{1}+\mathfrak{m}_{2}+\mathfrak{n}$ is an ideal of \mathfrak{g} and S denotes the corresponding analytic subgroup of G, then $M=S / H_{2}$.

Proof. The subgroup S acts as an effective group of isometries of M. Since $\mathfrak{Z} \cap\left(\mathfrak{h}_{1}+\mathfrak{K}_{2}\right)=\mathfrak{K}_{2}$, and S is normal in G, we have for any $z \in M$

$$
\begin{aligned}
\operatorname{dim} S_{z} & =\operatorname{dim}\left(S \cap G_{z_{0}}\right)=\operatorname{dim}\left(S \cap\left(H_{1} \times H_{2}\right)\right) \\
& =\operatorname{dim} \mathfrak{K}_{2}
\end{aligned}
$$

where $z_{0}=\{H\}$ is the base point in M. Hence for any $z \in M$, the orbit $S(z)$ has the same dimension as M and is therefore open in M, and consequently every orbit is also closed. Since M is assumed to be connected this proves (3.2).

In particular if $H_{2}=\{e\}, \mathfrak{Z}=\mathfrak{m}$ and we obtain the following standard result. (3.3) Lemma. Let $M=G / H$ be as above and assume that the Lie algebra g of
G admits a decomposition $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$, where \mathfrak{h} is the Lie algebra of H and \mathfrak{n} is an ideal of g . Then M is isometric to a Lie group with a left-invariant metric.

We shall also need the following:
(3.4) Lemma. Let $M=G /\left(H_{1} \times H_{2}\right)$ be a connected simply-connected, homogeneous Riemannian manifold. Assume further that the decomposition (3.1)

$$
\mathfrak{g}=\left(\mathfrak{h}_{1}+\mathfrak{m}_{1}\right) \oplus\left(\mathfrak{h}_{2}+\mathfrak{m}_{2}+\tilde{\mathfrak{n}}\right)=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}
$$

is a direct sum of ideals. Then there exists closed connected normal subgroups $G_{i}, i=1,2$ of G with Lie algebras $\mathfrak{g}_{i}, i=1,2$, such that M is isometric to the product $M_{1} \times M_{2}$ where M_{i} is the simply-connected homogeneous Riemannian manifold G_{i} / H_{i}.

Proof. Let \hat{G} denote the universal covering group of G, and $\hat{G}_{i}, i=1,2$, the analytical subgroups of \hat{G} with Lie algebras $g_{i}, i=1,2$, respectively. Then \hat{G}_{i} is a simply-connected closed normal subgroup of \hat{G}. Since $\mathfrak{h}_{i} \cong \mathfrak{g}_{i}$, let $\hat{H}_{i} \cong \hat{G}_{i}$ be the corresponding connected subgroup. Now \hat{G} acts as a transitive group of isometries (although possibly not effectively) on M. So

$$
\hat{M}=\hat{G} / G_{z_{0}}
$$

where $\hat{G}_{z_{0}}$ is the isotropy subgroup at the base point $z_{0} \in M$. It is clear however that

$$
\hat{G}_{z_{0}}=\hat{H}_{1} \times \hat{H}_{2}
$$

since they are connected subgroups with the same Lie algebra. Therefore M splits diffeomorphically as

$$
\begin{equation*}
M=\hat{G}_{1} / \hat{H}_{1} \times \hat{G}_{2} / \hat{H}_{2} . \tag{3.5}
\end{equation*}
$$

Let $\pi: \hat{G} \rightarrow G$ be the natural projection, $G_{i}=\pi\left(\hat{G}_{i}\right), H_{i}$ as before. The subgroup $N=\operatorname{Ker} \pi$ is normal in \hat{G} and is contained in $\hat{G}_{z_{0}}$. Moreover since N acts trivially on $M, N_{i}=\hat{G}_{i} \cap N$ acts trivially on $M_{i}=\hat{G}_{i} / \hat{H}_{i}$, hence

$$
M_{i}=\hat{G}_{i} / \hat{H}_{i}=\frac{\hat{G}_{i} /\left(\hat{G}_{i} \cap N\right)}{\hat{H}_{i} /\left(\hat{H}_{i} \cap N\right)}=G_{i} / H_{i}^{*} .
$$

But H_{i} and H_{i}^{*} are both connected and have the same Lie algebra \mathfrak{h}_{i}. Therefore $H_{i}^{*}=H_{i}$ and $M_{i}=G_{i} / H_{i}$.

It remains to show that (3.5) is an isometric splitting, or equivalently, that for any $z=\left(z_{1}, z_{2}\right) \in M$, the subspaces $T_{z_{1}}\left(M_{1}\right)$ and $T_{z_{2}}\left(M_{2}\right)$ are orthogonal with respect to the Riemannian inner product in $T_{2}(M)$. But this is clear at the base point $z_{0}=\left(z_{1}^{0}, z_{2}^{0}\right)$ since $T_{z_{1}^{0}}\left(M_{1}\right) \cong \mathfrak{m}_{1}$ and $T_{z_{2}^{0}}\left(M_{2}\right) \cong \mathfrak{m}_{2}+\tilde{\mathfrak{n}}$, and at any other point by homogeneity.

In what follows, ρ_{q} and θ_{k} will denote the standard and trivial representations of $S O(q)$ on \boldsymbol{R}^{q} and \boldsymbol{R}^{k} respectively.

Theorem A. Suppose $M=G / H$ is a connected simply-connected n-dimensional homogeneous Riemannian manifold. If H is isomorphic to $S O(q), 3 \leqq q \leqq n$, and the linear isotropy representation of H is $\rho_{q} \oplus \theta_{n-q}$, then either
(1) M is isometric to $M_{1}^{(q)} \times M_{2}^{(n-q)}$ where M_{1} is a q-dimensional simply-connected space of constant curvature and M_{2} is isometric to an ($n-q$)-dimensional simply-connected Lie group with a left-invariant metric. Furthermore $G \cong I_{0}\left(M_{1}\right)$ $\times M_{2}$, where $I_{0}\left(M_{1}\right)$ is the identity connected component of the full group of isometries of M_{1}, or
(2) M is isometric to a Lie group with a left-invariant metric and G is isomorphic to a semi-direct product of $S O(q)$ with M.

Proof. Let $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}_{1}+\mathfrak{m}$ be as in (2.1). If $\tilde{\mathfrak{m}}^{\prime}=\mathfrak{m}$, then by Corollary (2.10)

$$
\mathfrak{g}=\left(\mathfrak{h}+\mathfrak{m}_{1}\right) \oplus \tilde{\mathfrak{m}}
$$

is a direct sum of ideals. Applying lemma (3.4) we can conclude that M splits isometrically

$$
M=G_{1} / S O(q) \times G_{2} .
$$

But G_{1} acts effectively on the q-dimensional manifold M_{1} and $\operatorname{dim} G_{1}=\frac{1}{2} q(q+1)$, hence M_{1} has constant curvature. We thus obtain (1).

If $\tilde{\mathfrak{m}}^{\prime} \neq \mathfrak{\mathfrak { m }}$, then by (2.12) \mathfrak{m} is an ideal in \mathfrak{g}. Lemma (3.3) now applies to give (2).
(3.6) REmARK. In (2) of Theorem A, observe that by (2.11) \mathfrak{m}_{1} is an abelian ideal of \mathfrak{g}, and hence the Lie group M contains a simply-connected closed normal abelian subgroup of dimension q. It then follows that if M is compact we must have $\tilde{\mathfrak{n}}^{\prime}=\tilde{\mathfrak{m}}$ and thus case (1) in Theorem A. This is the case studied by Lukesh [9].

Also, since by (2.9) $\mathfrak{\mathfrak { n }}^{\prime}$ is an ideal in \mathfrak{g}, the corresponding analytic subgroup K of G is normal. Moreover K coincides with the identity connected component of the centralizer of $\mathfrak{h}+\mathfrak{m}_{1}$ in G, and is therefore closed. One can easily check that $K \cap H=\{e\}$, from which it follows, since K is normal, that K acts freely on M. Moreover the orbit space M / K with its induced metric can be seen to be a space of constant negative curvature [6, Theorem 3.3], hence diffeomorphic to Euclidean space. Since M is a principal fiber bundle over $M / K, M$ is diffeomorphic to the product of K with a Euclidean space.

Theorem B. Suppose $M=G / H$, is a connected simply-connected n-dimensional homogeneous Riemannian manifold. If H is isomorphic to a product $\operatorname{SO}\left(q_{1}\right) \times$ $S O\left(q_{2}\right) \times \cdots \times S O\left(q_{k}\right)$ where

$$
q_{i} \geqq 3 \quad \text { for all } i \text { and } \sum_{i=1}^{k} q_{i} \leqq n
$$

and if the linear isotropy representation of H splits as

$$
\rho_{q_{1}} \oplus \rho_{q_{2}} \oplus \cdots \oplus \rho_{q_{k}} \oplus \theta_{n-\Sigma q_{i}},
$$

then there exists some subset $q_{i_{1}}, \cdots, q_{i_{l}}$ of the q_{i} 's such that M is isometric to

$$
M_{1} \times M_{2} \times \cdots \times M_{l} \times M_{l+1}
$$

where $M_{j}, 1 \leqq j \leqq l$, is a $q_{i_{j}}$-dimensional simply-connected manifold of constant curvature and M_{l+1} is an ($n-\sum_{j=1}^{l} q_{i_{j}}$)-dimensional simply-connected Lie group with a left-invariant metric.

Proof. We decompose \mathfrak{g} according to (3.1) as

Let

$$
\begin{aligned}
& \mathfrak{g}=\mathfrak{h}_{1}+\cdots+\mathfrak{h}_{k}+\mathfrak{m}_{1}+\cdots+\mathfrak{m}_{k}+\mathfrak{m} . \\
& \mathfrak{g}=\mathfrak{h}_{2}+\cdots+\mathfrak{h}_{k}+\mathfrak{m}_{1}+\cdots+\mathfrak{m}_{k}+\mathfrak{\mathfrak { n }} \\
& \mathfrak{s}_{1}=\mathfrak{m}_{1} \\
& \tilde{\mathfrak{a}}=\mathfrak{h}_{2}+\cdots+\mathfrak{h}_{k}+\mathfrak{m}_{2}+\cdots+\mathfrak{m}_{k}+\mathfrak{m}
\end{aligned}
$$

and observe that $\left[h_{1}, \tilde{\tilde{2}}\right]=0$. Then

$$
g=\mathfrak{h}_{1}+\mathfrak{Z}_{1}+\tilde{\xi}
$$

and we set $\tilde{\mathfrak{a}}^{\prime}=\left\{X \in \tilde{\mathfrak{a}}:\left[X, \mathfrak{R}_{1}\right]=0\right\}$. If $\tilde{\mathfrak{j}}^{\prime}=\tilde{\mathfrak{a}}$, then $\mathfrak{g}=\left(\mathfrak{h}_{1}+\mathfrak{a}_{1}\right) \oplus \tilde{\mathfrak{a}}$ is by (2.10) a direct sum of ideals. It follows then from Lemma (3.4) that M is isometric to $M_{1} \times M^{*}$ where M_{1} is a q_{1}-dimensional simply-connected manifold of constant curvature and $M^{*}=G_{2} /\left(H_{2} \times \cdots \times H_{k}\right)$, where G_{2} is the analytic subgroup of G with Lie algebra $\tilde{\mathfrak{g}}$. We proceed inductively on M^{*} with respect to k.

If $\tilde{\mathfrak{\xi}} \neq \tilde{\mathfrak{Z}}$, then $\mathfrak{B}=\mathfrak{Z}_{1}+\widetilde{\mathfrak{Z}}$ is an ideal of g . Lemma (3.2) now implies that $M=S /\left(H_{2} \times \cdots \times H_{k}\right)$, where S is the analytic subgroup corresponding to Ω. Again an inductive process completes the proof.
(3.7) Remark. Using the results of Section 2, it is possible to give rather explicit descriptions of the Lie algebra \mathfrak{g} and the group G. Although in the general case this is not particularly enlightening, we will do it in Section 5 for some special cases.

We end this section with the following result, a local version of which is due to Wakakuwa [11, Theorem 2].

Theorem C. (Wakakuwa). Suppose $M=G / H$ is a connected simply-connected n-dimensional homogeneous Riemannian manifold. Assume that $H \cong H_{1} \times \cdots \times H_{k}$ and the linear isotropy representation of H is faithful and splits. Then M is isometric to a product

$$
M \cong M_{1} \times \cdots \times M_{k},
$$

where $M_{i}=G_{i} / H_{i}$ for G_{i} some connected normal subgroup of G.
Proof. We sketch a proof using the techniques of Section 2. Infinitesi-
mally we have

$$
\mathfrak{g}=\mathfrak{h}_{1}+\cdots+\mathfrak{h}_{k}+\mathfrak{m}_{1}+\cdots+\mathfrak{m}_{k} .
$$

It can be shown that $\mathfrak{g}_{i}=\mathfrak{h}_{i}+\mathfrak{m}_{i}$ is an ideal of \mathfrak{g} for $1 \leqq i \leqq k$, and therefore \mathfrak{g} splits as $g=g_{1} \oplus \cdots \oplus g_{k}$. The result now follows inductively from Lemma (3.4).

4. Rotation groups of order 2 .

In this section we will study Riemannian homogeneous spaces of the form G / H, where $H \cong S O(2)$ and the linear isotropy representation of H is equivalent to $\rho_{2} \oplus \theta_{n-2}$. In particular, in the case $\operatorname{dim} M=3$ we will recover Cartan's classification [3] of 3-dimensional manifolds admitting a transitive group of isometries of dimension 4. The general case where H is isomorphic to a product of rotation groups, some of which are of order 2, can be treated along the same lines as Theorem B of the preceding section. In Section 5 we shall study one such case in detail.

Keeping the notation of Section 2 we can write

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{h}+\mathfrak{m}_{1}+\tilde{m} \tag{4.1}
\end{equation*}
$$

where $[\mathfrak{h}, \tilde{\mathfrak{m}}]=0, \operatorname{dim} \mathfrak{m}_{1}=2, \mathfrak{h} \cong s o(2)$ acts on \mathfrak{m}_{1} in the natural way and \mathfrak{m}_{1} is orthogonal to \mathfrak{m} relative to the natural inner product in $\mathfrak{m}=\mathfrak{m}_{1}+\mathfrak{m}$. It is easy to check that (2.4) is still valid in this case, that is

$$
\begin{equation*}
\left[\tilde{\mathfrak{m}}, \mathfrak{m}_{1}\right] \subseteq \mathfrak{m}_{1} . \tag{4.2}
\end{equation*}
$$

Let now E_{1}, E_{2} be an orthonormal basis of \mathfrak{m}_{1} and H_{0} the element of \mathfrak{h} defined by

$$
\begin{equation*}
\left[H_{0}, E_{1}\right]=-E_{2}, \quad\left[H_{0}, E_{2}\right]=E_{1} . \tag{4.3}
\end{equation*}
$$

Given $X \in \tilde{\mathfrak{m}}$ we can write

$$
\left[X, E_{i}\right]=\sum_{j=1}^{2} a_{i j} E_{j}, \quad i=1,2
$$

Since $\left[H_{0},\left[X, E_{1}\right]\right]=-\left[X, E_{2}\right]$ we deduce that $a_{11}=a_{22}$ and $a_{12}=-a_{21}$. Hence there exist linear functionals $\alpha, \beta \in \tilde{m}^{*}$ such that

$$
\begin{aligned}
& {\left[X, E_{1}\right]=\alpha(X) E_{1}-\beta(X) E_{2}} \\
& {\left[X, E_{2}\right]=\beta(X) E_{1}+\alpha(X) E_{2}}
\end{aligned}
$$

Let X_{1}, \cdots, X_{n} be an orthonormal basis of \mathfrak{m} such that $\beta\left(X_{i}\right)=0$ for $1 \leqq i \leqq n-1$ and let $\beta\left(X_{n}\right)=b$. Then replacing $\tilde{\mathfrak{m}}$ by the subspace spanned by X_{1}, \cdots, X_{n-1}, $X_{n}-b H_{0}$, and making the corresponding change in $\mathfrak{n t}$, we can assume that

$$
\begin{equation*}
[X, E]=\alpha(X) E, \quad X \in \tilde{\mathfrak{m}}, \quad E \in \mathfrak{m}_{1} . \tag{4.4}
\end{equation*}
$$

(4.5) Lemma. $\tilde{\mathfrak{m}}$ is a subalgebra of \mathfrak{g} and $\tilde{\mathfrak{n}}^{\prime}=\operatorname{Ker} \alpha \subseteq \tilde{\mathfrak{m}}$ is an ideal in \mathfrak{g}.

Proof. As in (2.9) we have $[\tilde{m}, \tilde{\mathfrak{m}}]_{\mathrm{n}_{1}}=0$. On the other hand, let $X_{i} \in \tilde{\mathfrak{m}}$, $i=1,2$, and set

$$
\left[X_{1}, X_{2}\right]_{\mathfrak{n}}=a H_{0} .
$$

Then

$$
\begin{aligned}
0 & =\left[\left[X_{1}, X_{2}\right], E_{1}\right]=a\left[H_{0}, E_{1}\right]+\left[\left[X_{1}, X_{2}\right]_{\tilde{m}}, E_{1}\right] \\
& =-a E_{2}+\alpha\left(\left[X_{1}, X_{2}\right]_{\tilde{m}}\right) E_{1} .
\end{aligned}
$$

Hence $a=0$ and thus $[\tilde{\mathfrak{m}}, \tilde{\mathfrak{m}}] \subseteq \tilde{\mathfrak{m}}$. The second statement follows as in (2.9).
As in the proof of Proposition (2.2) one can show that

$$
\begin{equation*}
\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right]_{\mathfrak{m}_{1}}=0 . \tag{4.6}
\end{equation*}
$$

However, it is not true in general that $\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right]_{\tilde{m}}=0$. This is what distinguishes this case from the one discussed in Section 2.
(4.7) Theorem. Let $M=G / H$ be a connected simply-connected n-dimensional homogeneous Riemannian manifold. Assume $H \cong S O(2)$ and the linear isotropy representation of H is equivalent to $\rho_{2} \oplus \theta_{n-2}$. Then M is one of the following:
(1) M is isometric to a product $M=M_{1}^{(2)} \times M_{2}^{(n-2)}$ where M_{1} is a 2-dimensional simply-connected space of constant curvature and M_{2} is a simply-connected Lie group with a left-invariant metric. Moreover $G \cong I_{0}\left(M_{1}\right) \times M_{2}$.
(2) M is isometric to a simply-connected Lie group with a left-invariant metric and G is isomorphic to a semi-direct product of $S O(2)$ with M.
(3) M is a principal fiber bundle, with abelian structural group, over the product of a 2-dimensional space with non-zero constant curvature and a simplyconnected Lie group with a left-invariant metric.

Proof. We begin by considering the case $\tilde{\mathfrak{m}}^{\prime}=\tilde{\mathfrak{m}}$, that is $\left[\tilde{\mathfrak{m}}, \mathfrak{m}_{1}\right]=0$. Let $z(\mathrm{~g}), z(\tilde{\mathfrak{m}})$ denote the centers of g and $\tilde{\mathfrak{m}}$ respectively. Then

$$
\begin{equation*}
z(\mathfrak{g})=z(\tilde{\mathfrak{m}}) . \tag{4.8}
\end{equation*}
$$

In fact, let $Z \in_{\mathfrak{z}}(\mathrm{g})$. If we decompose Z according to (4.1) as $Z=Z_{\mathrm{h}}+Z_{\mathrm{m}_{1}}+Z_{\text {而 }}$, then since $Z_{\mathfrak{h}}$ acts trivially on \mathfrak{m}_{1} we must have $Z_{\mathfrak{h}}=0$. Similarly $Z_{\mathfrak{m}_{1}}$ defines a subspace of \mathfrak{m}_{1} where \mathfrak{h} acts trivially, hence $Z_{\mathfrak{m}_{1}}=0$ and $\mathfrak{z}(\mathfrak{g}) \cong \tilde{m}$. Since clearly $\mathfrak{z}(\tilde{\mathfrak{m}}) \cong z(\mathrm{~g})$ we obtain (4.8).

Let $E_{i}, i=1,2$, be an orthonormal basis of \mathfrak{m}_{1} and set

$$
\left[E_{1}, E_{2}\right]=\lambda H_{0}+\mu Z, \quad \mu \geqq 0,
$$

where $Z \in \tilde{\mathfrak{m}}$ is a unit vector. Notice that for $\mu \neq 0, Z \in \mathfrak{z}(\tilde{\mathfrak{m}})=\mathfrak{z}(\mathfrak{g})$. If $\mu=0$, then the decomposition

$$
\mathfrak{g}=\left(\mathfrak{h} \oplus \mathfrak{m}_{1}\right) \oplus \tilde{\mathfrak{m}}=\mathfrak{g}_{2} \oplus \tilde{\mathfrak{m}},
$$

where \mathfrak{g}_{λ} is the 3 -dimensional Lie algebra $\left\{H_{0}, E_{1}, E_{2}:\left[H_{0}, E_{1}\right]=-E_{2},\left[H_{0}, E_{2}\right]\right.$
$\left.=E_{1},\left[E_{1}, E_{2}\right]=\lambda H_{0}\right\}$, is a direct sum of ideals and, consequently, it follows from Lemma (3.4) that M splits isometrically as $M_{1}^{(2)} \times M_{2}^{(n-2)}$. Moreover M_{1} is a 2 -dimensional space of constant curvature, positive if $\lambda<0$, negative if $\lambda>0$ and zero if $\lambda=0$. This gives (1) in (4.7).

If $\mu \neq 0, \lambda=0$; then \mathfrak{m} is an ideal in \mathfrak{g} and applying Lemma (3.3) we obtain case (2).

Assume now that $\lambda \neq 0, \mu \neq 0$. Let $g_{1}=\mathfrak{g} / \hat{\gamma}(\mathfrak{g})$. Then g_{1} is a split Lie algebra :

$$
\begin{equation*}
\mathfrak{g}_{1} \cong g_{2} \oplus \mathfrak{R} . \tag{4.9}
\end{equation*}
$$

If C denotes the analytic subgroup of G whose Lie algebra is $\gamma(\mathrm{g})$, then C is closed and normal. Moreover C acts freely on M since $C \cap H=\{e\}$. Therefore

$$
C \rightarrow M \rightarrow M / C
$$

is a principal fiber bundle. The group G / C acts as an effective group of isometries on M / C, and the isotropy subgroup at any point is isomorphic to $S O(2)$. It follows then from (4.9) that M / C is as in (1) of (4.7). We thus obtain case (3).

Finally, suppose $\tilde{\mathfrak{m}}^{\prime} \neq \tilde{\mathfrak{m}}$. Let $X \in \tilde{\mathfrak{m}}$ be a unit vector such that $\alpha(X)=a>0$. As in (2.11) we have $\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right]_{\mathfrak{k}}=0$ and in fact $\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right] \subseteq \tilde{m}^{\prime}$. Therefore \mathfrak{m} is an ideal in g and using (3.3) we obtain case (2) again. Notice that $\tilde{\mathrm{m}}^{\prime}$ is an ideal in \mathfrak{m} and $\mathfrak{m} / \tilde{\mathfrak{m}}^{\prime}$ is isomorphic to the 3 -dimensional Lie algebra

$$
\begin{equation*}
\left\{X, E_{1}, E_{2}:\left[X, E_{i}\right]=a E_{i},\left[E_{1}, E_{2}\right]=0\right\} . \tag{4.10}
\end{equation*}
$$

(4.11) Example. Suppose $\operatorname{dim} M=3$, hence $\operatorname{dim} G=4$ and we are in the situation studied by E. Cartan in [3]. Case (1) Theorem (4.7) gives, of course, an isometric product of a 2-dimensional space of constant curvature and a line. In case (2) we have two possibilities depending upon whether $\tilde{\mathfrak{m}}^{\prime}=\tilde{\mathfrak{m}}$ or $\tilde{\mathfrak{m}}^{\prime} \neq \tilde{\mathfrak{m}}$. In the first situation M is isometric to the Heisenberg group (strictly upper triangular 3×3-matrices), endowed with a left-invariant metric, while in the second M is a solvable Lie group whose Lie algebra is described by (4.10). Moreover, with respect to any left-invariant metric M will have strictly negative curvature [4].

The most interesting case is that described in (3) of (4.7). If $\lambda>0$, then M is a principal fiber bundle over a space of constant negative curvature and hence it is diffeomorphic to Euclidean 3 -space. If $\lambda<0$, however, one can check that for $\mu^{2}=-\lambda, M$ has constant positive curvature and is, therefore, diffeomorphic to S^{3}. Since a change in the metric in the direction of Z allows us to change the value of μ arbitrarily we see that if $\lambda<0$ then M is diffeomorphic to S^{3} although not, in general, isometric.
(4.12) Remark. In the case $\operatorname{dim} M=4$, the results in this section complete the classification in [7], where the cases $\tilde{\mathfrak{m}}^{\prime}=\tilde{\mathfrak{m}}$ and $\mu=0$ are treated.

5. Some special cases.

In this section we apply the preceding results to give a classification of the n-dimensional connected, simply-connected homogeneous Riemannian manifolds $M=G / H$ where $H \cong S O(k) \times K, n-3 \leqq k \leqq n$ and such that the linear isotropy representation of H is standard. As is well-known, if $k=n$ then M is a space of constant curvature; while if $k=n-1$ then M is either an n-dimensional space of constant negative curvature or a product of an ($n-1$)dimensional space of constant curvature and a line [6].

If $k=n-2$ and $K=S O(2)$ it follows from Theorem C that M is isometrically equivalent to a product $M=M_{1}^{(n-2)} \times M_{2}^{(2)}$ of simply-connected spaces of constant curvature. The case $K=\{e\}$ has been studied by Kobayashi and Nagano in [7]; however their results turn out to be valid only under the additional assumption that M be naturally reductive. When this restriction is removed one obtains a one-parameter family of new examples. The case $H=S O(2)$ has been studied in Section 4 ; for $n-2 \geqq 3$ we have
(5.1) Theorem. Let $M=G / H$ be a simply-connected n-dimensional homogeneous Riemannian manifold and assume that $H \cong S O(n-2), n-2 \geqq 3$ and the linear isotropy representation of H is the standard one. Then M is one of the following:
(1) M is isometric to a product $M_{1}^{(n-2)} \times M_{2}^{(2)}$ where M_{1} is a simply-connected ($n-2$)-dimensional space of constant curvature and M_{2} is a simply-connected Lie group with a left-invariant metric. Moreover $G \cong I_{0}\left(M_{1}\right) \times M_{2}$.
(2) $M \cong M_{1}^{(n-1)} \times \boldsymbol{R}$, where M_{1} is a space of constant negative curvature and $G \cong G_{1} \times \boldsymbol{R}$, where the Lie algebra \mathfrak{g}_{1} of G_{1} is the one described by Kobayashi in [6, Theorem 3.3].
(3) M is isometric to a solvable Lie group $M(\lambda), \lambda \neq 0$, with a left-invariant metric. For $\lambda>0, M(\lambda)$ has strictly negative curvature, constant for $\lambda=1$. Moreover, $M(\lambda)$ is a principal fiber bundle, over an ($n-1$)-dimensional space of constant negative curvature.

Proof. Let g, \mathfrak{h} denote the Lie algebras of G and H, respectively. Let \mathfrak{m} be an $\operatorname{ad}(\mathfrak{h})$-invariant complement of \mathfrak{h} in \mathfrak{g}, and $\mathfrak{m}=\mathfrak{m}_{1}+\mathfrak{m}$ as in (2.1). By (2.4) we have $\left[\mathfrak{m}, \mathfrak{m}_{1}\right] \subseteq \mathfrak{m}_{1}$. If $\left[\tilde{\mathfrak{m}}, \mathfrak{m}_{1}\right]=0$ then Theorem A implies case (1).

Assume then that $\left[\tilde{m}, \mathfrak{m}_{1}\right] \neq 0$, and let $\alpha \in \mathfrak{m}^{*}$ be as in (2.7), Choose a unit vector $X \in \tilde{\mathfrak{m}}^{\prime}=\operatorname{Ker}(\alpha)$ and let $Y \in \tilde{\mathfrak{m}}$ be such that $\langle X, Y\rangle=0$ and $\alpha(Y)=1$. Up to scalar multiplication of the inner product \langle,$\rangle , we can assume that \|Y\|=1$. Notice that these choices determine a particular metric in each homothety class. By Proposition (2.9) we have that

$$
[Y, X]=\lambda X, \quad \lambda \in \boldsymbol{R} .
$$

If $\lambda=0$, then the decomposition

$$
\mathfrak{g}=\left(\mathfrak{h}+\mathfrak{m}_{1}+\boldsymbol{R} Y\right) \oplus \boldsymbol{R} X
$$

is a direct sum of ideals and applying Lemma (3.4) we obtain case (2).
If $\lambda \neq 0$, then \mathfrak{m} is a subalgebra of \mathfrak{g} and hence by Lemma (3.3) M is isometric to a Lie group $M(\lambda)$ with a left-invariant metric. The derived algebra $[\mathfrak{m}, \mathfrak{m}]=\mathfrak{m}_{1}+\boldsymbol{R} X$ is an abelian ideal of codimension 1 . Therefore \mathfrak{m} is solvable and, moreover, we can apply Theorem 1 in [4] to conclude that if $\lambda>0 M(\lambda)$ has negative sectional curvature. The last statement in (3) follows from Remark (3.6).
(5.2) Proposition. The sectional curvatures of $M(\lambda)$ satisfy:
(i) For $\lambda>0, \min \left(-1,-\lambda^{2}\right) \leqq K \leqq \max \left(-1,-\lambda^{2}\right)$
(ii) For $\lambda<0, \min \left(-1,-\lambda^{2}\right) \leqq K \leqq-\lambda$.

Proof. The Lie algebra $\mathfrak{m}(\lambda)$ decomposes as

$$
\mathfrak{m}(\lambda)=\mathfrak{m}_{1}+\boldsymbol{R} X+\boldsymbol{R} Y
$$

with $\alpha(Y)=1$ and $[Y, X]=\lambda X$. It is enough to consider 2-dimensional subspaces of $\mathfrak{m}(\lambda)$ of the form

$$
\mathfrak{p}=\operatorname{span}_{R}\left\{a Y+b Z_{1}, Z_{2}\right\}
$$

where $Z_{i} \in \mathfrak{m}_{1}+\boldsymbol{R} X, i=1,2$, are orthonormal and $a^{2}+b^{2}=1$. We then have [4]

$$
\begin{equation*}
K(\mathfrak{p})=-a^{2}\left\langle T^{2} Z_{2}, Z_{2}\right\rangle+b^{2}\left(\left\langle T Z_{1}, Z_{2}\right\rangle^{2}-\left\langle T Z_{1}, Z_{1}\right\rangle\left\langle T Z_{2}, Z_{2}\right\rangle\right) \tag{5.3}
\end{equation*}
$$

where $T=\operatorname{ad}(Y): \mathfrak{m}_{1}+\boldsymbol{R} X \rightarrow \mathfrak{m}_{1}+\boldsymbol{R} X$. If we now write

$$
Z_{i}=Z_{i}^{\prime}+z_{i} X, \quad Z_{i}^{\prime} \in \mathfrak{m}_{1}, \quad z_{i} \in \boldsymbol{R},
$$

then $T Z_{i}=Z_{i}+(\lambda-1) z_{i} X$ and (5.3) becomes

$$
\begin{aligned}
K(p)= & -a^{2}\left\langle Z_{2}+\left(\lambda^{2}-1\right) z_{2} X, Z_{2}\right\rangle^{2}+b^{2}\left(\left\langle Z_{1}+(\lambda-1) z_{1} X, Z_{2}\right\rangle^{2}\right. \\
& \left.\quad-\left\langle Z_{1}+(\lambda-1) z_{1} X, Z_{1}\right\rangle\left\langle Z_{2}+(\lambda-1) z_{2} X, Z_{2}\right\rangle\right) \\
= & -1-\left[\left(a^{2}\left(\lambda^{2}-1\right)+b^{2}(\lambda-1)\right) z_{2}^{2}+b^{2}(\lambda-1) z_{1}^{2}\right] .
\end{aligned}
$$

It is then clear that for $\lambda=1, K \equiv-1$. If $\lambda>1$ we have $K(p) \leqq-1$; on the other hand the expression between brackets attains its maximum for $z_{1}=0$, $z_{2}=1, a=1, b=0$ and thus $-\lambda^{2} \leqq K(\mathfrak{p}) \leqq-1$. Similarly, if $0<\lambda<1,-1 \leqq K(\mathfrak{p})$ and the maximum of $K(\mathfrak{p})$ is attained at the same point giving $-1 \leqq K(p) \leqq-\lambda^{2}$. This proves (i); an analogous argument shows (ii).
(5.4) Corollary. If $\lambda_{1} \neq \lambda_{2}$ then $M\left(\lambda_{1}\right)$ is not homothetic to $M\left(\lambda_{2}\right)$.

The spaces $M(\lambda), \lambda>0$, constitute therefore a "one-parameter" family of solvable Lie groups admitting a left-invariant metric of strictly negative
curvature. These spaces have been studied by Heintze [4] and by Azencott and Wilson [1], [2], who have given an infinitesimal characterization of the full isometry group of such a solvmanifold. In our case we have
(5.5) Theorem. Let $M(\lambda)=G / H, 0<\lambda \neq 1$, be as in (3) of Theorem (5.1). Then $G \cong I_{0}(M(\lambda))$.

Proof. If $\operatorname{dim} I_{0}(M(\lambda))>\operatorname{dim} G$, then the isotropy subgroup of $I_{0}(M(\lambda))$ at the origin $o=\{H\} \in M(\lambda)$ must be isomorphic to one of the following: $S O(n)$, $S O(n-1)$ or $S O(n-2) \times S O(2)$. Since for $\lambda \neq 1, M(\lambda)$ is not a space of constant curvature it is clear that the $S O(n)$-case cannot occur. In either of the remaining two cases $M(\lambda)$ would have a Euclidean factor which is impossible since $M(\lambda)$ has strictly negative curvature.

We shall next consider the case $H=S O(n-3) \times K$. If $K \cong S O(3)$ then Theorem C implies that $M \cong M_{1}^{(n-3)} \times M_{2}^{(3)}$, where M_{i} is a simply-connected space of constant curvature and $G \cong I_{0}\left(M_{1}\right) \times I_{0}\left(M_{2}\right)$. If $K=\{e\}$ and $n-3 \geqq 3$, then we may apply Theorem A to conclude that either M is isometric to a product $M \cong M_{1}^{(n-3)} \times M_{2}^{(3)}$, where M_{1} is an ($n-3$)-dimensional space of constant curvature and M_{2} is a 3 -dimensional simply-connected Lie group with a leftinvariant metric, (For a classification of these Lie groups together with their curvature properties, relative to a left-invariant metric, we refer to Milnor [10]), or M is itself isometric to a Lie group with a left-invariant metric. We recall how this latter case arises: Let

$$
\mathfrak{g}=\mathfrak{h}+\mathfrak{m}_{1}+\tilde{\mathfrak{m}}
$$

be as in (2.1), and assume $\tilde{\mathfrak{m}}^{\prime} \neq \mathfrak{\mathfrak { m }}$. By (2.11) we then have that \mathfrak{m}_{1} is an abelian ideal in \mathfrak{g}. As before let $Y \in \tilde{\mathfrak{m}}$, be a unit vector, orthogonal to $\tilde{\mathfrak{m}}^{\prime}$ and such that $\alpha(Y)=1$. The study of the Lie algebra \mathfrak{m} (and thus of \mathfrak{g}) now reduces to the study of the 3 -dimensional sub-algebra \mathfrak{m}. We consider the following cases:
(i) $[\tilde{\mathfrak{m}}, \tilde{\mathfrak{m}}]=0$. In particular the decomposition

$$
\mathfrak{g}=\left(\mathfrak{h}+\mathfrak{m}_{1}+\boldsymbol{R} Y\right) \oplus \tilde{\mathfrak{m}}^{\prime}
$$

is a direct sum of ideals and therefore M is isometric to a product $M \cong M_{1}^{(n-2)} \times \boldsymbol{R}^{2}$ where M_{1} is an ($n-2$)-dimensional space of constant negative curvature.
(ii) $[\check{\mathfrak{m}}, \tilde{\mathfrak{m}}]=\tilde{\mathfrak{m}}^{\prime}$, i.e. $\operatorname{dim}[\tilde{\mathfrak{m}}, \tilde{\mathfrak{m}}]=2$. We first prove
(5.6) Lemma. $\tilde{\mathfrak{m}}^{\prime}$ is an abelian ideal.

Proof. Let X_{1}, X_{2} be a basis of $\tilde{\mathfrak{m}}^{\prime}$ such that

$$
\left[X_{1}, X_{2}\right]=\lambda X_{2} .
$$

Let $\left[Y, X_{i}\right]=\sum_{j=1}^{2} a_{i j} X_{j}, i=1,2$. Then

$$
\lambda\left[Y, X_{2}\right]=\left[Y,\left[X_{1}, X_{2}\right]\right]=\left[\left[Y, X_{1}\right], X_{2}\right]+\left[X_{1},\left[Y, X_{2}\right]\right]
$$

and we have

$$
\lambda \sum_{j=1}^{2} a_{2 j} X_{j}=\lambda a_{11} X_{2}+\lambda a_{22} X_{2}
$$

which implies that if $\lambda \neq 0, a_{11}=a_{21}=0$. But this would mean [$\left.\tilde{\mathfrak{m}}, \tilde{\mathfrak{m}}\right] \subseteq \boldsymbol{R} X_{2}$, contradicting assumption (ii). Hence $\lambda=0$ and (5.6) is proved.

It is clear now that in this case the derived algebra $[\mathfrak{m}, \mathfrak{m}]=\mathfrak{m}_{1}+\tilde{\mathfrak{m}}^{\prime}$ is an abelian ideal of codimension 1 . We can therefore apply Theorem 1 in [4] to conclude
(5.7) Proposition. Let D (respectively S) denote the symmetric (respectively skew-symmetric) part of the linear transformation

$$
\operatorname{ad}(Y): \check{\mathfrak{m}}^{\prime} \rightarrow \tilde{\mathfrak{m}}^{\prime}
$$

Then M admits a left-invariant metric with strictly negative curvature if and only if
(a) D is positive definite
(b) $D^{2}-D S-S D$ is positive definite.

If in addition we assume that $\tilde{\mathfrak{m}}$ is unimodular (i.e. $\operatorname{tr}(\operatorname{ad} Y)=0$) then a straightforward argument shows that there exists a basis X_{1}, X_{2} of $\tilde{\mathfrak{m}}^{\prime}$ such that $\left[Y, X_{i}\right]=\mu X_{j}, i \neq j, \mu \neq 0$. Therefore $\tilde{\mathfrak{m}} \cong E(1,1)$, the Lie algebra of the group of rigid motions of Minkowski 2-space [10]. Moreover it follows from (5.7) that M does not admit a left-invariant metric with strictly negative curvature.

On the other hand if $\tilde{\mathfrak{m}}$ is not unimodular then $\operatorname{tr}(\operatorname{ad} Y)$ and $\operatorname{det}(\operatorname{ad} Y)$ are a complete set of isomorphism invariants for the Lie algebra \mathfrak{m} [10]. In this case the ideal $\tilde{\mathfrak{m}}^{\prime}$ may be characterized as the unimodular kernel of $\tilde{\mathfrak{m}}$.
(iii) $\operatorname{dim}[\tilde{\mathfrak{m}}, \tilde{\mathfrak{m}}]=1$. In this case $[\mathfrak{m}, \mathfrak{m}]$ is an abelian ideal of codimension 2 and [4, Proposition 2] implies that M does not admit a left-invariant metric with strictly negative curvature. Moreover, $\tilde{\mathfrak{m}}$ is not unimodular and the trace of $\operatorname{ad}(Y)$ acting on the unimodular kernel of \tilde{m} is a complete isomorphism invariant for \mathfrak{m}.

Now we consider the case $M=G / H, H \cong S O(n-3) \times S O(2), n-3 \geqq 3$. In this case $\operatorname{dim} \check{\mathfrak{m}}=1$ and g decomposes according to (3.1) as

$$
\begin{aligned}
& \mathfrak{g}=\mathfrak{h}_{1}+\mathfrak{h}_{2}+\mathfrak{m}_{1}+\mathfrak{m}_{2}+\tilde{\mathfrak{m}}, \\
& \mathfrak{h}_{1} \cong s o(n-3), \quad \mathfrak{h}_{2} \cong s o(2) .
\end{aligned}
$$

We set $\tilde{\mathfrak{n}}_{1}=\mathfrak{h}_{2}+\mathfrak{m}_{2}+\tilde{\mathfrak{m}}$. We have

$$
\left[\mathfrak{h}_{1}, \tilde{\mathfrak{n}}_{1}\right]=0, \quad\left[\tilde{\mathfrak{m}}_{1}, \mathfrak{m}_{1}\right] \cong \mathfrak{m}_{1} .
$$

Let $\tilde{m}_{1}^{\prime}=\left\{X \in \tilde{\mathfrak{n}}_{1}:\left[X, \mathfrak{m}_{1}\right]=0\right\}$. If $\tilde{\mathfrak{n}}_{1}=\tilde{\mathfrak{n}}_{1}^{\prime}$ then \mathfrak{q} is a split Lie algebra
$\mathrm{g}=\mathrm{g}_{1} \oplus \mathrm{~g}_{2}$ where

$$
\begin{aligned}
& \mathfrak{g}_{1}=\mathfrak{h}_{1}+\mathfrak{m}_{1} \\
& \mathfrak{g}_{2}=\mathfrak{h}_{2}+\mathfrak{m}_{2}+\tilde{\mathfrak{m}} .
\end{aligned}
$$

It then follows from (3.4) that
(5.8) M is isometric to a product

$$
M \cong M_{1}^{(n-3)} \times M_{2}^{(3)}
$$

where M_{1} is a simply-connected space of constant curvature and M_{2} is a 3-dimensional simply-connected manifold admitting a 4-dimensional transitive group of isometries. These spaces have been classified in (4.11).

Assume now $\tilde{\mathfrak{m}}_{1}^{\prime} \neq \tilde{\mathfrak{m}}_{1}$. Then $\operatorname{dim} \tilde{\mathfrak{m}}_{1}^{\prime}=3$. Moreover, $\mathfrak{h}_{2} \subseteq \tilde{m}_{1}^{\prime}$ and since $\tilde{\mathfrak{m}}_{1}^{\prime}$ is an ideal, $\mathfrak{m t}_{2}=\left[\mathfrak{h}_{2}, \mathfrak{m}_{2}\right] \subseteq \tilde{\mathfrak{m}}_{1}^{\prime}$. Hence

$$
\check{\mathfrak{m}}_{1}^{\prime}=\mathfrak{h}_{2}+\mathfrak{m}_{2}
$$

Let Y be a unit vector ${ }^{\circ}$ in $\tilde{\mathfrak{m}}$ such that ad $Y: \mathfrak{m}_{1} \rightarrow \mathfrak{m}_{1}$ is the identity map (again this is possible up to homothety). Furthermore, as in Section 4 we can also assume (changing \mathfrak{m}_{2} if necessary) that there exists $\lambda \in \boldsymbol{R}$ such that

$$
[Y, X]=\lambda X, \quad X \in \mathfrak{m}_{2}
$$

We have also shown in Section 4 that $\left[\mathfrak{m}_{2}, \mathfrak{m}_{2}\right] \subseteq \tilde{m}$. Therefore if E_{1}, E_{2} is a basis of \mathfrak{m}_{2} we have

$$
\left[E_{1}, E_{2}\right]=\alpha Y, \quad \alpha \in \boldsymbol{R} .
$$

But if $0 \neq Z \in \mathfrak{m}_{1}$, we get

$$
0=\left[\left[E_{1}, E_{2}\right], Z\right]=\alpha[Y, Z]=\alpha Z .
$$

Consequently $\left[\mathfrak{m}_{2}, \mathfrak{m}_{2}\right]=0$, the subalgebra \mathfrak{m} is solvable and the derived algebra $[\mathfrak{n}, \mathfrak{m}]=\mathfrak{m}_{1}+\mathfrak{m}_{2}$ is an abelian ideal of codimension 1 .

If $\lambda=0$ then g splits as $g=g_{1} \oplus g_{2}$, with

$$
\mathfrak{g}_{1}=\mathfrak{h}_{1}+\mathfrak{m}_{1}+\boldsymbol{R} Y, \quad \mathfrak{g}_{2}=\mathfrak{h}_{2}+\mathfrak{m}_{2}
$$

and therefore
(5.9) M is isometric to a product $M_{1}^{(n-2)} \times \boldsymbol{R}^{2}$, where M_{1} is a space of constant negative curvature. Moreover $G \cong G_{1} \times E(2)$, where G_{1} is the group described in [6, Theorem 3.3] and $E(2)$ is the group of motions of Euclidean 2-space.

For $\lambda \neq 0, M$ is isometric to a solvable Lie group $M(\lambda)$ with a left-invariant metric and it follows from [4, Theorem 1] that
(5.10) If $\lambda>0, M(\lambda)$ has strictly negative curvature; for $\lambda<0, M(\lambda)$ has both positive and negative sectional curvatures.

It is straightforward to check that (5.2), (5.4) and (5.5) carry over to this case without modifications.

Finally, we consider the case of a 5 -dimensional homogeneous Riemannian manifold $M=G / H$ where $H \cong S O(2) \times S O(2)$ and the linear isotropy representation of H is equivalent to $\rho_{2} \oplus \rho_{2} \oplus \theta_{1}$. As in (3.1) we can write

$$
\mathfrak{g}=\mathfrak{h}_{1}+\mathfrak{h}_{2}+\mathfrak{m}_{1}+\mathfrak{m}_{2}+\tilde{\mathfrak{m}} .
$$

Let $\tilde{\mathfrak{m}}_{1}=\mathfrak{h}_{2}+\mathfrak{m}_{2}+\tilde{\mathfrak{m}}, \tilde{\mathfrak{m}}_{2}=\mathfrak{h}_{1}+\mathfrak{m}_{1}+\tilde{\mathfrak{m}}$; then $\left[\mathfrak{h}_{i}, \tilde{\mathfrak{m}}_{i}\right]=0,\left[\tilde{\mathfrak{m}}_{i}, \mathfrak{m}_{i}\right] \subseteq \mathfrak{m}_{i}$ and $\left[\tilde{\mathfrak{m}}_{i}, \tilde{\mathfrak{m}}_{i}\right]$ $\cong \tilde{\mathfrak{m}}_{i}^{\prime}=\left\{X \in \check{\mathfrak{m}}_{i}:\left[X, \mathfrak{m}_{i}\right]=0\right\}$.

If $\check{\mathfrak{m}}_{1} \neq \check{\mathfrak{m}}_{1}^{\prime}$, then $\mathfrak{g}_{2}=\mathfrak{h}_{2}+\mathfrak{m}_{1}+\mathfrak{m}_{2}+\tilde{\mathfrak{m}}$ is a subalgebra of \mathfrak{g} and the corresponding analytic subgroup $G_{2} \cong G$ acts transitively on M with isotropy $H_{2} \cong S O(2)$. Hence this case reduces to the one studied in Section 4.

We can therefore assume that $\tilde{\mathfrak{m}}_{i}=\tilde{\mathfrak{m}}_{i}^{\prime}$ for $i=1,2$. In particular we have

$$
\begin{gathered}
{\left[\mathfrak{m}_{1}, \mathfrak{m}_{2}\right]=\left[\mathfrak{m}_{1}, \tilde{\mathfrak{m}}\right]=\left[\mathfrak{m}_{2}, \tilde{\mathfrak{m}}\right]=0,} \\
{\left[\mathfrak{m}_{i}, \mathfrak{m}_{i}\right] \subseteq \mathfrak{h}_{i}+\tilde{\mathfrak{m}} .}
\end{gathered}
$$

Thus $\tilde{\mathfrak{m}}$ is an ideal in \mathfrak{g} and the quotient $\mathfrak{g} / \tilde{\mathfrak{m}}$ is a split Lie algebra

$$
\mathfrak{g} / \tilde{\mathfrak{n}} \cong \mathfrak{g}_{1} \oplus \mathrm{~g}_{2}, \quad \mathrm{~g}_{i}=\mathfrak{h}_{i}+\mathfrak{m}_{i}+\tilde{\mathfrak{m}} / \tilde{\mathrm{m}} .
$$

Moreover, the one-parameter group exp $\check{\mathfrak{m}}$ acts freely on M and hence M is a principal fiber bundle over $M / \exp \tilde{\mathfrak{m}}$. It is easy to check that, relative to the induced metric, the space splits isometrically as $M_{1} \times M_{2}$ where $M_{i}, i=1,2$ is a simply-connected 2-dimensional space of constant curvature.

References

[1] Robert Azencott and Edward N. Wilson, Homogeneous manifolds with negative curvature, I, Trans, Amer. Math. Soc., 215 (1976), 323-362.
[2] Robert Azencott and Edward N. Wilson, Homogeneous manifolds with negative curvature, II, Mem, Amer. Math. Soc., 8, no. 178 (1976).
[3] E. Cartan, Leçons sur la Géométrie des Espaces de Riemann, Gauthier-Villars, Paris, 1963.
[4] Ernst Heintze, On homogeneous manifolds of negative curvature, Math. Ann., 211 (1974), 23-34.
[5] Wu-chung Hsiang and Wu-yi Hsiang, Differentiable actions of compact connected classical groups I, Amer. J. Math., 89 (1967), 705-786.
[6] S. Kobayashi, Transformation Groups in Differential Geometry, Springer-Verlag, 1972.
[7] S. Kobayashi and T. Nagano, Riemannian manifolds with abundant isometries, Differential Geometry in Honor of K. Yano, Kinokuniya, Tokyo, 1972, 195-220.
[8] Minoru Kurita, On the isometry of a homogeneous Riemann Space, Tensor, 3 (1954), 91-100.
[9] Gordon W. Lukesh, Compact homogeneous Riemannian manifolds, Geometriae Dedicata, 7 (1978), 131-137.
[10] J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math., 21 (1976), 293-329.
[11] H. Wakakuwa, On n-dimensional Riemannian spaces admitting some groups of motions of order less than $1 / 2 n(n-1)$, Tôhoku Math. J., 6 (1954), 121-134.

E. H. Cattani
Department of Mathematics
University of Massachusetts
Amherst, 01003
U.S.A.
L. N. Mann
Department of Mathematics
University of Massachusetts
Amherst, 01003
U.S.A.

[^0]: * Partially supported by NSF Grant MCS77-01735

