Homogeneous Riemannian manifolds with a fixed isotropy representation

By Eduardo H. CATTANI* and L. N. MANN

(Received Dec. 15, 1977)

1. Introduction.

In this paper we give a classification of simply-connected homogeneous Riemannian manifolds M=G/H where H is isomorphic to a product of rotation groups and the linear isotropy representation of H is a direct sum of standard representations with a trivial representation. This situation arises naturally in the study of homogeneous Riemannian manifolds which admit a large group of isometries. In fact if $M=I_0(M)/H$, where

(1.1)
$$\dim I(M) > \frac{n^2}{4} + n$$
, $n = \dim M \ge 11$

then it follows that $H \cong SO(k) \times K$, with k > n/2, $K \subseteq SO(n-k)$ and the linear isotropy representation of H splits [5, Theorem 1.18].

Our results are quite simple to state if each of the rotation groups has order at least 3. In that case M is isometric to a product of a certain number of simply-connected manifolds of constant curvature together with a simplyconnected Lie group with a left-invariant metric. (Theorem B). If H is isomorphic to a single rotation group, this appears to be consistent with some local results obtained by Kurita [8] a number of years ago. If some of the rotation groups in the decomposition of H have order 2, then the description of the corresponding manifolds becomes more complicated. This is done in Section 4, where, in particular, we obtain a generalization of Cartan's classification [3] of 3-dimensional manifolds which admit a transitive group of motions of dimension 4.

In Section 5, we apply the above results to give an explicit description of those manifolds satisfying (1.1) and $n-3 \le k \le n$. This turns up some inaccuracies and extends some results in [7], while at the same time exhibiting the differences with the compact case studied by Lukesh. In [9] it is shown that if M is compact and satisfies (1.1), then it must split isometrically with one factor being a standard sphere S^k , k > n/2. As we shall see in Section 5, there

^{*} Partially supported by NSF Grant MCS77-01735

are uncountably many homogeneous metrics of strictly negative curvature on \mathbb{R}^n with non-isomorphic isometry groups all of dimension $\frac{1}{2}(n^2-3n+6)$.

2. Algebraic preliminaries.

M=G/H will denote a connected homogeneous *n*-dimensional Riemannian manifold. Throughout this paper we shall assume that G is connected and that the transitive action of G on M is effective. Let g and h denote the Lie algebras of G and H respectively. Since H is compact we can choose a complementary subspace m of h in g such that $[h, m] \subseteq m$. Moreover we can naturally identify m with the tangent space of M at the base point $z_0 = \{H\} \in M$, and hence m carries an inner product \langle , \rangle induced by the Riemannian structure of M. If we let

$$\tilde{\mathfrak{m}} = \{X \in \mathfrak{m} : [\mathfrak{h}, X] = 0\},\$$

then m splits as

$$\mathfrak{m}=\mathfrak{m}_1+\mathfrak{m}$$

where \mathfrak{m}_1 is the orthogonal complement of \mathfrak{m} and therefore is $\operatorname{ad}(\mathfrak{h})$ -invariant. (2.2) PROPOSITION. Assume $H \cong SO(q)$, $q \ge 3$, and that the linear isotropy action of H on \mathfrak{m}_1 is standard. Then

$$[\mathfrak{m}_1, \mathfrak{m}_1] \subseteq \mathfrak{h}$$

$$[\tilde{\mathfrak{m}}, \mathfrak{m}_1] \subseteq \mathfrak{m}_1.$$

PROOF. We begin by showing that $[\mathfrak{m}_1, \mathfrak{m}_1]_{\tilde{\mathfrak{m}}} = 0$, where $[\mathfrak{m}_1, \mathfrak{m}_1]_{\tilde{\mathfrak{m}}}$ denotes the projection of $[\mathfrak{m}_1, \mathfrak{m}_1]$ on $\tilde{\mathfrak{m}}$, relative to the decomposition $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}_1+\mathfrak{m}$. Given E_1 , E_2 , orthonormal vectors in \mathfrak{m}_1 , let $A \in H$ be so that $A(E_1)=-E_1$, $A(E_2)=E_2$, where $A(E_i)$ denotes $\operatorname{Ad}(A)E_i$. Then $[E_1, E_2]_{\tilde{\mathfrak{m}}}=A([E_1, E_2]_{\tilde{\mathfrak{m}}})=$ $[AE_1, AE_2]_{\tilde{\mathfrak{m}}}=-[E_1, E_2]_{\tilde{\mathfrak{m}}}$ which implies $[E_1, E_2]_{\tilde{\mathfrak{m}}}=0$ and hence $[\mathfrak{m}_1, \mathfrak{m}_1]_{\tilde{\mathfrak{m}}}=0$.

In order to show that $[\mathfrak{m}_1, \mathfrak{m}_1]_{\mathfrak{m}_1}=0$, we choose an orthonormal basis E_1, \cdots, E_q of \mathfrak{m}_1 and let

$$[E_i, E_j]_{\mathfrak{m}_1} = \sum_{k=1}^q C_{ij}^{\flat} E_k.$$

It is then enough to show that $C_{ij}^k=0$ for each *i*, *j*, *k*. If $q \ge 4$, let $l \ne i$, *j*, *k* and $A \in H$ the element defined by

$$A(E_i) = -E_i$$
, $A(E_l) = -E_l$ and
 $A(E_s) = E_s$ for $s \neq i, l$.

We then have

$$\sum_{s=1}^{q} C_{ij}^{s} A(E_{s}) = A[E_{i}, E_{j}]_{m_{1}} = -[E_{i}, E_{j}]_{m_{1}} = -\sum_{s=1}^{q} C_{ij}^{s} E_{s}$$

and comparing terms for s=k, this gives $C_{ij}^{k}=0$.

Suppose now that q=3. Let E_i , $1 \le i \le 3$, be as before, and let $B \in H$ be defined by

$$B(E_1) = -E_1$$
, $B(E_2) = -E_2$, $B(E_3) = E_3$.

Since $B([E_i, E_j]_{m_1}) = [B(E_i), B(E_j)]_{m_1}$, it is straightforward to check that

 $[E_i, E_j]_{\pi_1} = \gamma_k E_k, \quad i \neq j \neq k \neq i, \quad \gamma_k \in \mathbf{R}.$

On the other hand for an arbitrary $A \in H$, let

$$A(E_i) = \sum_{j=1}^{s} a_{ji} E_j.$$

We then have

$$\gamma_{3}A(E_{3}) = A([E_{1}, E_{2}]_{n_{1}}) = [\sum_{j=1}^{3} a_{j1}E_{j}, \sum_{k=1}^{3} a_{k2}E_{k}]_{m_{1}}$$

and comparing the coefficients of E_3 we obtain

$$\gamma_{3}a_{33} = \gamma_{3}(a_{11}a_{22} - a_{21}a_{12})$$

for every $A \in H$. It then follows that $\gamma_3 = 0$, and consequently $[E_1, E_2]_{r_1} = 0$. This proves (2.3)

It remains to show $[\mathfrak{\tilde{m}}, \mathfrak{m}_{i}] \subseteq \mathfrak{m}_{i}$. Set

$$\overline{\mathfrak{m}}_1 = \{E \in \mathfrak{m}_1 : [\mathfrak{m}, E]_{\mathfrak{m}} = 0\}.$$

Then $\overline{\mathfrak{m}}_1$ is an Ad(*H*)-invariant subspace of \mathfrak{m}_1 and thus either $\overline{\mathfrak{m}}_1 = \mathfrak{m}_1$ or $\overline{\mathfrak{m}}_1 = \{0\}$. On the other hand it is easy to check that if $E \in \mathfrak{m}_1$, $A \in H$ are such that $A(E) \neq E$, then $E - A(E) \in \overline{\mathfrak{m}}_1$. Hence $\overline{\mathfrak{m}}_1 = \mathfrak{m}_1$ and therefore $[\mathfrak{m}, \mathfrak{m}_1]_{\mathfrak{m}} = 0$.

For each $X \in \tilde{\mathfrak{m}}$, let $\overline{\mathfrak{m}}_1(X)$ be the $\operatorname{Ad}(H)$ -invariant subspace of \mathfrak{m}_1 defined by

$$\overline{\mathfrak{m}}_{1}(X) = \{E \in \mathfrak{m}_{1} : [X, E]_{\mathfrak{h}} = 0\}.$$

If $\overline{\mathfrak{m}}_{1}(X) = \mathfrak{m}_{1}$ for all $X \in \mathfrak{m}$, then $[\mathfrak{m}, \mathfrak{m}_{1}]_{\mathfrak{h}} = 0$ and (2.4) follows. Assume $\overline{\mathfrak{m}}_{1}(X) = 0$ for some $X \in \mathfrak{m}$. This is clearly impossible if $q \ge 4$ (or q=2) since $[X, \mathfrak{m}_{1}]_{\mathfrak{h}}$ would be a q-dimensional ideal of $\mathfrak{h} \cong so(q)$. The case q=3 again requires a separate proof. Let E_{i} , $1 \le i \le 3$, be as before and let A_{ij} , $1 \le i \ne j \le 3$, be elements of $\mathfrak{h} \cong so(3)$ defined by

(2.5)
$$\begin{bmatrix} A_{ij}, E_i \end{bmatrix} = -E_j, \quad \begin{bmatrix} A_{ij}, E_j \end{bmatrix} = E_i \\ \begin{bmatrix} A_{ij}, E_k \end{bmatrix} = 0, \quad k \neq i, j.$$

Clearly $\{A_{ij}, 1 \le i < j \le 3\}$ is a basis of \mathfrak{h} and $A_{ij} = -A_{ji}$. One can readily check that

$$[A_{ij}, A_{jk}] = A_{ik}.$$

Let

Since

$$[X, E_{i}]_{\mathfrak{h}} = \alpha_{i}A_{12} + \beta_{i}A_{13} + \gamma_{i}A_{23}.$$
$$[A_{23}, [X, E_{1}]_{\mathfrak{h}}] = [A_{23}, [X, E_{1}]]_{\mathfrak{h}}$$

=[[
$$A_{23}$$
, X], E_1]_b+[X, [A_{23} , E_1]]_b=0,

using (2.5) and (2.6) we obtain

$$0 = [A_{23}, \alpha_1 A_{12} + \beta_1 A_{13} + \gamma_1 A_{23}] = -\alpha_1 A_{13} + \beta_1 A_{12}$$

which implies $\alpha_1 = \beta_1 = 0$. Similarly one can show that $\alpha_2 = \gamma_2 = \beta_3 = \gamma_3 = 0$ and $\alpha_3 = -\beta_2 = \gamma_1 = \lambda$.

On the other hand, since by (2.3), $[\mathfrak{m}_1, \mathfrak{m}_1] \subseteq \mathfrak{h}$ we get

$$0 = [X, [E_1, E_3]]_{\pi_1} = [[X, E_1], E_3]_{\pi_1} + [E_1, [X, E_3]]_{\pi_1}$$
$$= [[X, E_1]_{\mathfrak{h}}, E_3] + [E_1, [X, E_3]_{\mathfrak{h}}]$$
$$= [\lambda A_{23}, E_3] + [E_1, \lambda A_{12}] = \lambda E_2 + \lambda E_2 = 2\lambda E_2.$$

Hence $\lambda = 0$ and $[\tilde{\mathfrak{m}}, \mathfrak{m}_1] \subseteq \mathfrak{m}_1$. This completes the proof of Proposition (2.2).

For each $X \in \tilde{\mathfrak{m}}$, the linear transformation

$$\operatorname{ad}(X): \mathfrak{m}_1 \to \mathfrak{m}_1$$

commutes with the standard action of $H \cong SO(q)$ on \mathfrak{m}_1 . Hence there exists a linear functional $\alpha \in \mathfrak{m}^*$, such that

$$[X, E] = \alpha(X)E, \quad X \in \tilde{\mathfrak{m}}, \quad E \in \mathfrak{m}_1.$$

We set

(2.8)
$$\tilde{\mathfrak{m}}' = \ker \alpha = \{X \in \tilde{\mathfrak{m}} : [X, \mathfrak{m}_1] = 0\}$$

Then, either $\tilde{\mathfrak{m}} = \tilde{\mathfrak{m}}'$ or dim $\tilde{\mathfrak{m}}' = \dim \tilde{\mathfrak{m}} - 1$.

(2.9) PROPOSITION. $\tilde{\mathfrak{m}}$ is a subalgebra of \mathfrak{g} and $\tilde{\mathfrak{m}}'$ is an ideal in \mathfrak{g} .

PROOF. First of all we notice that $[\mathfrak{m}, \mathfrak{m}]_{\mathfrak{m}_1}=0$ since $[\mathfrak{m}, \mathfrak{m}]_{\mathfrak{m}_1}$ would be a subspace of \mathfrak{m}_1 where \mathfrak{h} acts trivially. Similarly we have

 $[\mathfrak{h}, [\mathfrak{m}, \mathfrak{m}]_{\mathfrak{h}}]=0$

which implies $[\tilde{\mathfrak{m}}, \tilde{\mathfrak{m}}]_{\mathfrak{h}}=0$ since $\mathfrak{h}\cong so(q)$ contains no non-trivial abelian ideals for $q \ge 3$. This proves the first statement in (2.9).

Let X_1 , $X_2 \in \tilde{\mathfrak{m}}$, $E \in \mathfrak{m}_1$. Then

$$[[X_1, X_2], E] = (\alpha(X_1)\alpha(X_2) - \alpha(X_2)\alpha(X_1))E = 0.$$

This implies $[\tilde{\mathfrak{m}}, \tilde{\mathfrak{m}}] \subseteq \tilde{\mathfrak{m}}'$ and since $[\mathfrak{h}+\mathfrak{m}_1, \tilde{\mathfrak{m}}']=0$, the proposition follows. (2.10) COROLLARY. If $\tilde{\mathfrak{m}}'=\tilde{\mathfrak{m}}$ then the decomposition

$$\mathfrak{g}=(\mathfrak{h}+\mathfrak{m}_1)\oplus\mathfrak{\tilde{m}}$$

is a direct sum of ideals.

(2.11) LEMMA. If $\tilde{\mathfrak{m}}' \neq \tilde{\mathfrak{m}}$, then \mathfrak{m}_1 is an abelian ideal in \mathfrak{g} .

PROOF. Using (2.2) it is enough to show that $[\mathfrak{m}_1, \mathfrak{m}_1]_{\mathfrak{h}}=0$. Let $E_1, E_2 \in \mathfrak{m}_1$ and choose $X \in \mathfrak{m}$ such that $\alpha(X)=1$. Then

$$0 = [X, [E_1, E_2]_{\mathfrak{h}}] = [X, [E_1, E_2]]_{\mathfrak{h}}$$
$$= [\alpha(X)E_1, E_2] + [E_1, \alpha(X)E_2] = 2[E_1, E_2]$$

and the result follows.

(2.12) PROPOSITION. If $\tilde{\mathfrak{m}}' \neq \tilde{\mathfrak{m}}$, then $\mathfrak{m}=\mathfrak{m}_1+\tilde{\mathfrak{m}}$ is an ideal in g.

PROOF. This is a consequence of Proposition (2.2) and the above lemma.

3. Global results.

Throughout this section M will denote a connected and simply-connected homogeneous Riemannian manifold M=G/H, with G a connected subgroup of I(M) acting effectively on M. We assume further that

$$H \cong H_1 \times \cdots \times H_k$$

and the linear isotropy representation of H splits. The Lie algebra \mathfrak{g} of G has therefore a decomposition

(3.1)
$$\mathfrak{g} = \mathfrak{h}_1 + \dots + \mathfrak{h}_k + \mathfrak{m}_1 + \dots + \mathfrak{m}_k + \mathfrak{m}_k$$

where \mathfrak{h}_i leaves \mathfrak{m}_i invariant and acts trivially on \mathfrak{m} and \mathfrak{m}_j , $j \neq i$. It is clear that the decomposition $\mathfrak{m}=\mathfrak{m}_1+\cdots+\mathfrak{m}_k+\mathfrak{m}$ is orthogonal relative to the inner product induced in \mathfrak{m} by the Riemannian structure of M.

(3.2) LEMMA. Let $M=G/(H_1 \times H_2)$ be as above, $\mathfrak{g}=\mathfrak{h}_1+\mathfrak{h}_2+\mathfrak{m}_1+\mathfrak{m}_2+\mathfrak{m}$ as in (3.1). If $\mathfrak{s}=\mathfrak{h}_2+\mathfrak{m}_1+\mathfrak{m}_2+\mathfrak{m}$ is an ideal of \mathfrak{g} and S denotes the corresponding analytic subgroup of G, then $M=S/H_2$.

PROOF. The subgroup S acts as an effective group of isometries of M. Since $\mathfrak{S}_{\cap}(\mathfrak{h}_1+\mathfrak{h}_2)=\mathfrak{h}_2$, and S is normal in G, we have for any $z \in M$

$$\dim S_z = \dim(S \cap G_{z_0}) = \dim(S \cap (H_1 \times H_2))$$
$$= \dim \mathfrak{h}_z,$$

where $z_0 = \{H\}$ is the base point in M. Hence for any $z \in M$, the orbit S(z) has the same dimension as M and is therefore open in M, and consequently every orbit is also closed. Since M is assumed to be connected this proves (3.2).

In particular if $H_2 = \{e\}$, $\mathfrak{S} = \mathfrak{m}$ and we obtain the following standard result. (3.3) LEMMA. Let M = G/H be as above and assume that the Lie algebra \mathfrak{g} of G admits a decomposition $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$, where \mathfrak{h} is the Lie algebra of H and \mathfrak{m} is an ideal of \mathfrak{g} . Then M is isometric to a Lie group with a left-invariant metric. We shall also need the following:

(3.4) LEMMA. Let $M=G/(H_1 \times H_2)$ be a connected simply-connected, homogeneous Riemannian manifold. Assume further that the decomposition (3.1)

 $\mathfrak{g} = (\mathfrak{h}_1 + \mathfrak{m}_1) \oplus (\mathfrak{h}_2 + \mathfrak{m}_2 + \tilde{\mathfrak{m}}) = \mathfrak{g}_1 \oplus \mathfrak{g}_2$

is a direct sum of ideals. Then there exists closed connected normal subgroups G_i , i=1, 2 of G with Lie algebras \mathfrak{g}_i , i=1, 2, such that M is isometric to the product $M_1 \times M_2$ where M_i is the simply-connected homogeneous Riemannian manifold G_i/H_i .

PROOF. Let \hat{G} denote the universal covering group of G, and \hat{G}_i , i=1, 2, the analytical subgroups of \hat{G} with Lie algebras \mathfrak{g}_i , i=1, 2, respectively. Then \hat{G}_i is a simply-connected closed normal subgroup of \hat{G} . Since $\mathfrak{h}_i \subseteq \mathfrak{g}_i$, let $\hat{H}_i \subseteq \hat{G}_i$ be the corresponding connected subgroup. Now \hat{G} acts as a transitive group of isometries (although possibly not effectively) on M. So

$$\hat{M} = \hat{G}/G_{z_0}$$

where \hat{G}_{z_0} is the isotropy subgroup at the base point $z_0 \in M$. It is clear however that

$$\hat{G}_{z_0} = \hat{H}_1 \times \hat{H}_2$$

since they are connected subgroups with the same Lie algebra. Therefore M splits diffeomorphically as

(3.5)
$$M = \hat{G}_1 / \hat{H}_1 \times \hat{G}_2 / \hat{H}_2$$

Let $\pi: \hat{G} \to G$ be the natural projection, $G_i = \pi(\hat{G}_i)$, H_i as before. The subgroup $N = \text{Ker } \pi$ is normal in \hat{G} and is contained in \hat{G}_{z_0} . Moreover since N acts trivially on M, $N_i = \hat{G}_i \cap N$ acts trivially on $M_i = \hat{G}_i / \hat{H}_i$, hence

$$M_{i} = \hat{G}_{i} / \hat{H}_{i} = \frac{\hat{G}_{i} / (\hat{G}_{i} \cap N)}{\hat{H}_{i} / (\hat{H}_{i} \cap N)} = G_{i} / H_{i}^{*}.$$

But H_i and H_i^* are both connected and have the same Lie algebra \mathfrak{h}_i . Therefore $H_i^* = H_i$ and $M_i = G_i/H_i$.

It remains to show that (3.5) is an isometric splitting, or equivalently, that for any $z=(z_1, z_2) \in M$, the subspaces $T_{z_1}(M_1)$ and $T_{z_2}(M_2)$ are orthogonal with respect to the Riemannian inner product in $T_z(M)$. But this is clear at the base point $z_0=(z_1^0, z_2^0)$ since $T_{z_1^0}(M_1)\cong\mathfrak{m}_1$ and $T_{z_2^0}(M_2)\cong\mathfrak{m}_2+\mathfrak{m}$, and at any other point by homogeneity.

In what follows, ρ_q and θ_k will denote the standard and trivial representations of SO(q) on \mathbf{R}^q and \mathbf{R}^k respectively.

 $\mathbf{540}$

THEOREM A. Suppose M=G/H is a connected simply-connected n-dimensional homogeneous Riemannian manifold. If H is isomorphic to SO(q), $3 \le q \le n$, and the linear isotropy representation of H is $\rho_q \oplus \theta_{n-q}$, then either

(1) M is isometric to $M_1^{(q)} \times M_2^{(n-q)}$ where M_1 is a q-dimensional simply-connected space of constant curvature and M_2 is isometric to an (n-q)-dimensional simply-connected Lie group with a left-invariant metric. Furthermore $G \cong I_0(M_1) \times M_2$, where $I_0(M_1)$ is the identity connected component of the full group of isometries of M_1 , or

(2) M is isometric to a Lie group with a left-invariant metric and G is isomorphic to a semi-direct product of SO(q) with M.

PROOF. Let $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}_1+\mathfrak{m}$ be as in (2.1). If $\mathfrak{m}'=\mathfrak{m}$, then by Corollary (2.10)

$$\mathfrak{g} = (\mathfrak{h} + \mathfrak{m}_1) \oplus \mathfrak{m}$$

is a direct sum of ideals. Applying lemma (3.4) we can conclude that M splits isometrically

$$M = G_1 / SO(q) \times G_2$$
.

But G_1 acts effectively on the q-dimensional manifold M_1 and dim $G_1 = \frac{1}{2}q(q+1)$, hence M_1 has constant curvature. We thus obtain (1).

If $\tilde{\mathfrak{m}}' \neq \tilde{\mathfrak{m}}$, then by (2.12) \mathfrak{m} is an ideal in g. Lemma (3.3) now applies to give (2).

(3.6) REMARK. In (2) of Theorem A, observe that by (2.11) \mathfrak{m}_1 is an abelian ideal of \mathfrak{g} , and hence the Lie group M contains a simply-connected closed normal abelian subgroup of dimension q. It then follows that if M is compact we must have $\mathfrak{m}'=\mathfrak{m}$ and thus case (1) in Theorem A. This is the case studied by Lukesh [9].

Also, since by (2.9) \mathfrak{m}' is an ideal in g, the corresponding analytic subgroup K of G is normal. Moreover K coincides with the identity connected component of the centralizer of $\mathfrak{h}+\mathfrak{m}_1$ in G, and is therefore closed. One can easily check that $K \cap H = \{e\}$, from which it follows, since K is normal, that K acts freely on M. Moreover the orbit space M/K with its induced metric can be seen to be a space of constant negative curvature [6, Theorem 3.3], hence diffeomorphic to Euclidean space. Since M is a principal fiber bundle over M/K, M is diffeomorphic to the product of K with a Euclidean space.

THEOREM B. Suppose M=G/H, is a connected simply-connected n-dimensional homogeneous Riemannian manifold. If H is isomorphic to a product $SO(q_1) \times$ $SO(q_2) \times \cdots \times SO(q_k)$ where

$$q_i \geq 3$$
 for all i and $\sum_{i=1}^k q_i \leq n$

and if the linear isotropy representation of H splits as

 $ho_{q_1} \oplus
ho_{q_2} \oplus \cdots \oplus
ho_{q_k} \oplus heta_{n-\Sigma q_i}$,

then there exists some subset q_{i_1}, \dots, q_{i_l} of the q_i 's such that M is isometric to

 $M_1 \times M_2 \times \cdots \times M_l \times M_{l+1}$

where M_j , $1 \leq j \leq l$, is a q_{i_j} -dimensional simply-connected manifold of constant curvature and M_{l+1} is an $(n - \sum_{j=1}^{l} q_{i_j})$ -dimensional simply-connected Lie group with a left-invariant metric.

PROOF. We decompose g according to (3.1) as

$$g = \mathfrak{h}_1 + \dots + \mathfrak{h}_k + \mathfrak{m}_1 + \dots + \mathfrak{m}_k + \mathfrak{m} .$$

$$\mathfrak{s} = \mathfrak{h}_2 + \dots + \mathfrak{h}_k + \mathfrak{m}_1 + \dots + \mathfrak{m}_k + \mathfrak{m}$$

$$\mathfrak{s}_1 = \mathfrak{m}_1$$

$$\widetilde{\mathfrak{s}} = \mathfrak{h}_2 + \dots + \mathfrak{h}_k + \mathfrak{m}_2 + \dots + \mathfrak{m}_k + \mathfrak{m}$$

and observe that $[\mathfrak{h}_1, \tilde{\mathfrak{s}}]=0$. Then

$$\mathfrak{g} = \mathfrak{h}_1 + \mathfrak{s}_1 + \mathfrak{s}_1$$

and we set $\tilde{\mathfrak{g}}' = \{X \in \tilde{\mathfrak{g}} : [X, \mathfrak{g}_1] = 0\}$. If $\tilde{\mathfrak{g}}' = \tilde{\mathfrak{g}}$, then $\mathfrak{g} = (\mathfrak{h}_1 + \mathfrak{g}_1) \oplus \tilde{\mathfrak{g}}$ is by (2.10) a direct sum of ideals. It follows then from Lemma (3.4) that M is isometric to $M_1 \times M^*$ where M_1 is a q_1 -dimensional simply-connected manifold of constant curvature and $M^* = G_2/(H_2 \times \cdots \times H_k)$, where G_2 is the analytic subgroup of G with Lie algebra $\tilde{\mathfrak{g}}$. We proceed inductively on M^* with respect to k.

If $\tilde{\mathfrak{s}}' \neq \tilde{\mathfrak{s}}$, then $\mathfrak{s} = \mathfrak{s}_1 + \tilde{\mathfrak{s}}$ is an ideal of g. Lemma (3.2) now implies that $M = S/(H_2 \times \cdots \times H_k)$, where S is the analytic subgroup corresponding to \mathfrak{s} . Again an inductive process completes the proof.

(3.7) REMARK. Using the results of Section 2, it is possible to give rather explicit descriptions of the Lie algebra \mathfrak{g} and the group G. Although in the general case this is not particularly enlightening, we will do it in Section 5 for some special cases.

We end this section with the following result, a local version of which is due to Wakakuwa [11, Theorem 2].

THEOREM C. (Wakakuwa). Suppose M = G/H is a connected simply-connected n-dimensional homogeneous Riemannian manifold. Assume that $H \cong H_1 \times \cdots \times H_k$ and the linear isotropy representation of H is faithful and splits. Then M is isometric to a product

$$M \cong M_1 \times \cdots \times M_k$$
 ,

where $M_i = G_i/H_i$ for G_i some connected normal subgroup of G.

PROOF. We sketch a proof using the techniques of Section 2. Infinitesi-

542

Let

mally we have

$$\mathfrak{g}=\mathfrak{h}_1+\cdots+\mathfrak{h}_k+\mathfrak{m}_1+\cdots+\mathfrak{m}_k.$$

It can be shown that $g_i = h_i + m_i$ is an ideal of g for $1 \le i \le k$, and therefore g splits as $g = g_1 \oplus \cdots \oplus g_k$. The result now follows inductively from Lemma (3.4).

4. Rotation groups of order 2.

In this section we will study Riemannian homogeneous spaces of the form G/H, where $H \cong SO(2)$ and the linear isotropy representation of H is equivalent to $\rho_2 \oplus \theta_{n-2}$. In particular, in the case dim M=3 we will recover Cartan's classification [3] of 3-dimensional manifolds admitting a transitive group of isometries of dimension 4. The general case where H is isomorphic to a product of rotation groups, some of which are of order 2, can be treated along the same lines as Theorem B of the preceding section. In Section 5 we shall study one such case in detail.

Keeping the notation of Section 2 we can write

$$\mathfrak{g}=\mathfrak{h}+\mathfrak{m}_1+\mathfrak{\tilde{m}}$$

where $[\mathfrak{h}, \mathfrak{m}]=0$, dim $\mathfrak{m}_1=2$, $\mathfrak{h}\cong so(2)$ acts on \mathfrak{m}_1 in the natural way and \mathfrak{m}_1 is orthogonal to \mathfrak{m} relative to the natural inner product in $\mathfrak{m}=\mathfrak{m}_1+\mathfrak{m}$. It is easy to check that (2.4) is still valid in this case, that is

$$[\tilde{\mathfrak{m}}, \mathfrak{m}_1] \subseteq \mathfrak{m}_1.$$

Let now E_1 , E_2 be an orthonormal basis of \mathfrak{m}_1 and H_0 the element of \mathfrak{h} defined by

$$[H_0, E_1] = -E_2, \quad [H_0, E_2] = E_1.$$

Given $X \in \mathfrak{m}$ we can write

$$[X, E_i] = \sum_{j=1}^2 a_{ij} E_j, \quad i=1, 2.$$

Since $[H_0, [X, E_1]] = -[X, E_2]$ we deduce that $a_{11} = a_{22}$ and $a_{12} = -a_{21}$. Hence there exist linear functionals α , $\beta \in \tilde{m}^*$ such that

$$[X, E_1] = \alpha(X)E_1 - \beta(X)E_2$$

$$[X, E_2] = \beta(X)E_1 + \alpha(X)E_2.$$

Let X_1, \dots, X_n be an orthonormal basis of \mathfrak{M} such that $\beta(X_i)=0$ for $1 \leq i \leq n-1$ and let $\beta(X_n)=b$. Then replacing \mathfrak{M} by the subspace spanned by X_1, \dots, X_{n-1} , X_n-bH_0 , and making the corresponding change in \mathfrak{M} , we can assume that

$$[X, E] = \alpha(X)E, \quad X \in \tilde{\mathfrak{m}}, \quad E \in \mathfrak{m}_1.$$

(4.5) LEMMA. $\mathfrak{\tilde{m}}$ is a subalgebra of \mathfrak{g} and $\mathfrak{\tilde{m}}' = \operatorname{Ker} \alpha \subseteq \mathfrak{\tilde{m}}$ is an ideal in \mathfrak{g} .

PROOF. As in (2.9) we have $[\tilde{\mathfrak{m}}, \tilde{\mathfrak{m}}]_{z_1}=0$. On the other hand, let $X_i \in \tilde{\mathfrak{m}}$, i=1, 2, and set

$$[X_1, X_2]_{\mathfrak{h}} = aH_0.$$

Then

$$0 = [[X_1, X_2], E_1] = a[H_0, E_1] + [[X_1, X_2]_{\tilde{\mathfrak{m}}}, E_1]$$

$$= -aE_2 + \alpha([X_1, X_2]_{\tilde{\mathfrak{m}}})E_1.$$

Hence a=0 and thus $[\mathfrak{\tilde{m}}, \mathfrak{\tilde{m}}] \subseteq \mathfrak{\tilde{m}}$. The second statement follows as in (2.9). As in the proof of Proposition (2.2) one can show that

$$[\mathfrak{m}_1, \mathfrak{m}_1]_{\mathfrak{m}_1} = 0.$$

However, it is not true in general that $[m_1, m_1]_{\hat{m}}=0$. This is what distinguishes this case from the one discussed in Section 2.

(4.7) THEOREM. Let M=G/H be a connected simply-connected n-dimensional homogeneous Riemannian manifold. Assume $H \cong SO(2)$ and the linear isotropy representation of H is equivalent to $\rho_2 \oplus \theta_{n-2}$. Then M is one of the following:

(1) M is isometric to a product $M = M_1^{(2)} \times M_2^{(n-2)}$ where M_1 is a 2-dimensional simply-connected space of constant curvature and M_2 is a simply-connected Lie group with a left-invariant metric. Moreover $G \cong I_0(M_1) \times M_2$.

(2) M is isometric to a simply-connected Lie group with a left-invariant metric and G is isomorphic to a semi-direct product of SO(2) with M.

(3) M is a principal fiber bundle, with abelian structural group, over the product of a 2-dimensional space with non-zero constant curvature and a simply-connected Lie group with a left-invariant metric.

PROOF. We begin by considering the case $\tilde{\mathfrak{m}}'=\tilde{\mathfrak{m}}$, that is $[\tilde{\mathfrak{m}}, \mathfrak{m}_1]=0$. Let $\mathfrak{z}(\mathfrak{g}), \mathfrak{z}(\tilde{\mathfrak{m}})$ denote the centers of \mathfrak{g} and $\tilde{\mathfrak{m}}$ respectively. Then

$$\mathfrak{g}(\mathfrak{g}) = \mathfrak{g}(\mathfrak{\tilde{m}}).$$

In fact, let $Z \in_{\mathfrak{d}}(\mathfrak{g})$. If we decompose Z according to (4.1) as $Z=Z_{\mathfrak{h}}+Z_{\mathfrak{m}_1}+Z_{\mathfrak{m}}$, then since $Z_{\mathfrak{h}}$ acts trivially on \mathfrak{m}_1 we must have $Z_{\mathfrak{h}}=0$. Similarly $Z_{\mathfrak{m}_1}$ defines a subspace of \mathfrak{m}_1 where \mathfrak{h} acts trivially, hence $Z_{\mathfrak{m}_1}=0$ and $\mathfrak{g}(\mathfrak{g})\subseteq \mathfrak{m}$. Since clearly $\mathfrak{g}(\mathfrak{m})\subseteq \mathfrak{g}(\mathfrak{g})$ we obtain (4.8).

Let E_i , i=1, 2, be an orthonormal basis of \mathfrak{m}_1 and set

$$[E_1, E_2] = \lambda H_0 + \mu Z, \qquad \mu \ge 0,$$

where $Z \in \tilde{\mathfrak{m}}$ is a unit vector. Notice that for $\mu \neq 0$, $Z \in \mathfrak{z}(\tilde{\mathfrak{m}}) = \mathfrak{z}(\mathfrak{g})$. If $\mu = 0$, then the decomposition

$$\mathfrak{g}=(\mathfrak{h}\oplus\mathfrak{m}_1)\oplus\mathfrak{m}=\mathfrak{g}_{\lambda}\oplus\mathfrak{m}$$
,

where g_{λ} is the 3-dimensional Lie algebra $\{H_0, E_1, E_2: [H_0, E_1] = -E_2, [H_0, E_2]$

 $=E_1$, $[E_1, E_2]=\lambda H_0$ }, is a direct sum of ideals and, consequently, it follows from Lemma (3.4) that M splits isometrically as $M_1^{(2)} \times M_2^{(n-2)}$. Moreover M_1 is a 2-dimensional space of constant curvature, positive if $\lambda < 0$, negative if $\lambda > 0$ and zero if $\lambda = 0$. This gives (1) in (4.7).

If $\mu \neq 0$, $\lambda = 0$; then m is an ideal in g and applying Lemma (3.3) we obtain case (2).

Assume now that $\lambda \neq 0$, $\mu \neq 0$. Let $\mathfrak{g}_1 = \mathfrak{g}/\mathfrak{z}(\mathfrak{g})$. Then \mathfrak{g}_1 is a split Lie algebra:

$$\mathfrak{g}_1 \cong \mathfrak{g}_{\lambda} \oplus \mathfrak{L} \,.$$

If C denotes the analytic subgroup of G whose Lie algebra is $\mathfrak{z}(\mathfrak{g})$, then C is closed and normal. Moreover C acts freely on M since $C \cap H = \{e\}$. Therefore

$$C \rightarrow M \rightarrow M/C$$

is a principal fiber bundle. The group G/C acts as an effective group of isometries on M/C, and the isotropy subgroup at any point is isomorphic to SO(2). It follows then from (4.9) that M/C is as in (1) of (4.7). We thus obtain case (3).

Finally, suppose $\tilde{\mathfrak{m}}' \neq \tilde{\mathfrak{m}}$. Let $X \in \tilde{\mathfrak{m}}$ be a unit vector such that $\alpha(X) = a > 0$. As in (2.11) we have $[\mathfrak{m}_1, \mathfrak{m}_1]_{\mathfrak{h}} = 0$ and in fact $[\mathfrak{m}_1, \mathfrak{m}_1] \subseteq \tilde{\mathfrak{m}}'$. Therefore \mathfrak{m} is an ideal in \mathfrak{g} and using (3.3) we obtain case (2) again. Notice that $\tilde{\mathfrak{m}}'$ is an ideal in \mathfrak{m} and $\mathfrak{m}/\tilde{\mathfrak{m}}'$ is isomorphic to the 3-dimensional Lie algebra

(4.10)
$$\{X, E_1, E_2: [X, E_i] = aE_i, [E_1, E_2] = 0\}.$$

(4.11) EXAMPLE. Suppose dim M=3, hence dim G=4 and we are in the situation studied by E. Cartan in [3]. Case (1) Theorem (4.7) gives, of course, an isometric product of a 2-dimensional space of constant curvature and a line. In case (2) we have two possibilities depending upon whether $\tilde{\mathfrak{m}}'=\tilde{\mathfrak{m}}$ or $\tilde{\mathfrak{m}}'\neq\tilde{\mathfrak{m}}$. In the first situation M is isometric to the Heisenberg group (strictly upper triangular 3×3 -matrices), endowed with a left-invariant metric, while in the second M is a solvable Lie group whose Lie algebra is described by (4.10). Moreover, with respect to any left-invariant metric M will have strictly negative curvature [4].

The most interesting case is that described in (3) of (4.7). If $\lambda > 0$, then M is a principal fiber bundle over a space of constant negative curvature and hence it is diffeomorphic to Euclidean 3-space. If $\lambda < 0$, however, one can check that for $\mu^2 = -\lambda$, M has constant positive curvature and is, therefore, diffeomorphic to S^3 . Since a change in the metric in the direction of Z allows us to change the value of μ arbitrarily we see that if $\lambda < 0$ then M is diffeomorphic to S^3 although not, in general, isometric.

(4.12) REMARK. In the case dim M=4, the results in this section complete the classification in [7], where the cases $\tilde{\mathfrak{m}}'=\tilde{\mathfrak{m}}$ and $\mu=0$ are treated.

5. Some special cases.

In this section we apply the preceding results to give a classification of the *n*-dimensional connected, simply-connected homogeneous Riemannian manifolds M=G/H where $H\cong SO(k)\times K$, $n-3\leq k\leq n$ and such that the linear isotropy representation of *H* is standard. As is well-known, if k=n then *M* is a space of constant curvature; while if k=n-1 then *M* is either an *n*-dimensional space of constant negative curvature or a product of an (n-1)dimensional space of constant curvature and a line [6].

If k=n-2 and K=SO(2) it follows from Theorem C that M is isometrically equivalent to a product $M=M_1^{(n-2)}\times M_2^{(2)}$ of simply-connected spaces of constant curvature. The case $K=\{e\}$ has been studied by Kobayashi and Nagano in [7]; however their results turn out to be valid only under the additional assumption that M be *naturally reductive*. When this restriction is removed one obtains a one-parameter family of new examples. The case H=SO(2) has been studied in Section 4; for $n-2\geq 3$ we have

(5.1) THEOREM. Let M=G/H be a simply-connected n-dimensional homogeneous Riemannian manifold and assume that $H\cong SO(n-2)$, $n-2\ge 3$ and the linear isotropy representation of H is the standard one. Then M is one of the following:

(1) M is isometric to a product $M_1^{(n-2)} \times M_2^{(2)}$ where M_1 is a simply-connected (n-2)-dimensional space of constant curvature and M_2 is a simply-connected Lie group with a left-invariant metric. Moreover $G \cong I_0(M_1) \times M_2$.

(2) $M \cong M_1^{(n-1)} \times \mathbf{R}$, where M_1 is a space of constant negative curvature and $G \cong G_1 \times \mathbf{R}$, where the Lie algebra \mathfrak{g}_1 of G_1 is the one described by Kobayashi in [6, Theorem 3.3].

(3) *M* is isometric to a solvable Lie group $M(\lambda)$, $\lambda \neq 0$, with a left-invariant metric. For $\lambda > 0$, $M(\lambda)$ has strictly negative curvature, constant for $\lambda = 1$. Moreover, $M(\lambda)$ is a principal fiber bundle, over an (n-1)-dimensional space of constant negative curvature.

PROOF. Let g, h denote the Lie algebras of G and H, respectively. Let m be an ad(h)-invariant complement of h in g, and $m=m_1+\tilde{m}$ as in (2.1). By (2.4) we have $[\tilde{m}, m_1] \subseteq m_1$. If $[\tilde{m}, m_1]=0$ then Theorem A implies case (1).

Assume then that $[\tilde{\mathfrak{m}}, \mathfrak{m}_1] \neq 0$, and let $\alpha \in \tilde{\mathfrak{m}}^*$ be as in (2.7). Choose a unit vector $X \in \tilde{\mathfrak{m}}' = \operatorname{Ker}(\alpha)$ and let $Y \in \tilde{\mathfrak{m}}$ be such that $\langle X, Y \rangle = 0$ and $\alpha(Y) = 1$. Up to scalar multiplication of the inner product \langle , \rangle , we can assume that ||Y|| = 1. Notice that these choices determine a particular metric in each homothety class. By Proposition (2.9) we have that

 $[Y, X] = \lambda X, \qquad \lambda \in \mathbf{R}.$

If $\lambda = 0$, then the decomposition

 $\mathfrak{g} = (\mathfrak{h} + \mathfrak{m}_1 + \mathbf{R}Y) \oplus \mathbf{R}X$

is a direct sum of ideals and applying Lemma (3.4) we obtain case (2).

If $\lambda \neq 0$, then m is a subalgebra of g and hence by Lemma (3.3) M is isometric to a Lie group $M(\lambda)$ with a left-invariant metric. The derived algebra $[m, m] = m_1 + RX$ is an abelian ideal of codimension 1. Therefore m is solvable and, moreover, we can apply Theorem 1 in [4] to conclude that if $\lambda > 0$ $M(\lambda)$ has negative sectional curvature. The last statement in (3) follows from Remark (3.6).

(5.2) **PROPOSITION.** The sectional curvatures of $M(\lambda)$ satisfy:

(i) For $\lambda > 0$, min $(-1, -\lambda^2) \leq K \leq \max(-1, -\lambda^2)$

(ii) For $\lambda < 0$, min $(-1, -\lambda^2) \leq K \leq -\lambda$.

PROOF. The Lie algebra $\mathfrak{m}(\lambda)$ decomposes as

$$\mathfrak{m}(\lambda) = \mathfrak{m}_1 + \mathbf{R}X + \mathbf{R}Y$$

with $\alpha(Y)=1$ and $[Y, X]=\lambda X$. It is enough to consider 2-dimensional subspaces of $\mathfrak{m}(\lambda)$ of the form

$$\mathfrak{p}=\operatorname{span}_{R}\{aY+bZ_{1}, Z_{2}\}$$

where $Z_i \in \mathfrak{m}_1 + \mathbb{R}X$, i=1, 2, are orthonormal and $a^2 + b^2 = 1$. We then have [4]

(5.3)
$$K(\mathfrak{p}) = -a^2 \langle T^2 Z_2, Z_2 \rangle + b^2 (\langle TZ_1, Z_2 \rangle^2 - \langle TZ_1, Z_1 \rangle \langle TZ_2, Z_2 \rangle)$$

where $T = ad(Y): \mathfrak{m}_1 + \mathbb{R}X \rightarrow \mathfrak{m}_1 + \mathbb{R}X$. If we now write

 $Z_i{=}Z_i'{+}z_iX$, $Z_i'{\in}\,\mathfrak{m}_1$, $z_i{\in}\,m{R}$,

then $TZ_i = Z_i + (\lambda - 1)z_iX$ and (5.3) becomes

$$\begin{split} K(\mathfrak{p}) &= -a^2 \langle Z_2 + (\lambda^2 - 1) z_2 X, \ Z_2 \rangle^2 + b^2 (\langle Z_1 + (\lambda - 1) z_1 X, \ Z_2 \rangle^2 \\ &- \langle Z_1 + (\lambda - 1) z_1 X, \ Z_1 \rangle \langle Z_2 + (\lambda - 1) z_2 X, \ Z_2 \rangle) \\ &= -1 - \left[(a^2 (\lambda^2 - 1) + b^2 (\lambda - 1)) z_2^2 + b^2 (\lambda - 1) z_1^2 \right]. \end{split}$$

It is then clear that for $\lambda=1$, $K\equiv-1$. If $\lambda>1$ we have $K(\mathfrak{p})\leq-1$; on the other hand the expression between brackets attains its maximum for $z_1=0$, $z_2=1$, a=1, b=0 and thus $-\lambda^2\leq K(\mathfrak{p})\leq-1$. Similarly, if $0<\lambda<1$, $-1\leq K(\mathfrak{p})$ and the maximum of $K(\mathfrak{p})$ is attained at the same point giving $-1\leq K(\mathfrak{p})\leq-\lambda^2$. This proves (i); an analogous argument shows (ii).

(5.4) COROLLARY. If $\lambda_1 \neq \lambda_2$ then $M(\lambda_1)$ is not homothetic to $M(\lambda_2)$.

The spaces $M(\lambda)$, $\lambda > 0$, constitute therefore a "one-parameter" family of solvable Lie groups admitting a left-invariant metric of strictly negative

curvature. These spaces have been studied by Heintze [4] and by Azencott and Wilson [1], [2], who have given an infinitesimal characterization of the full isometry group of such a solvmanifold. In our case we have

(5.5) THEOREM. Let $M(\lambda) = G/H$, $0 < \lambda \neq 1$, be as in (3) of Theorem (5.1). Then $G \cong I_0(M(\lambda))$.

PROOF. If dim $I_0(M(\lambda)) > \dim G$, then the isotropy subgroup of $I_0(M(\lambda))$ at the origin $o = \{H\} \in M(\lambda)$ must be isomorphic to one of the following: SO(n), SO(n-1) or $SO(n-2) \times SO(2)$. Since for $\lambda \neq 1$, $M(\lambda)$ is not a space of constant curvature it is clear that the SO(n)-case cannot occur. In either of the remaining two cases $M(\lambda)$ would have a Euclidean factor which is impossible since $M(\lambda)$ has strictly negative curvature.

We shall next consider the case $H=SO(n-3)\times K$. If $K\cong SO(3)$ then Theorem C implies that $M\cong M_1^{(n-3)}\times M_2^{(3)}$, where M_i is a simply-connected space of constant curvature and $G\cong I_0(M_1)\times I_0(M_2)$. If $K=\{e\}$ and $n-3\geq 3$, then we may apply Theorem A to conclude that either M is isometric to a product $M\cong M_1^{(n-3)}\times M_2^{(3)}$, where M_1 is an (n-3)-dimensional space of constant curvature and M_2 is a 3-dimensional simply-connected Lie group with a leftinvariant metric, (For a classification of these Lie groups together with their curvature properties, relative to a left-invariant metric, we refer to Milnor [10]), or M is itself isometric to a Lie group with a left-invariant metric. We recall how this latter case arises: Let

$\mathfrak{g}=\mathfrak{h}+\mathfrak{m}_1+\mathfrak{m}$

be as in (2.1), and assume $\tilde{\mathfrak{m}}' \neq \tilde{\mathfrak{m}}$. By (2.11) we then have that \mathfrak{m}_1 is an abelian ideal in g. As before let $Y \in \tilde{\mathfrak{m}}$, be a unit vector, orthogonal to $\tilde{\mathfrak{m}}'$ and such that $\alpha(Y)=1$. The study of the Lie algebra \mathfrak{m} (and thus of g) now reduces to the study of the 3-dimensional sub-algebra $\tilde{\mathfrak{m}}$. We consider the following cases:

(i) $[\tilde{\mathfrak{m}}, \tilde{\mathfrak{m}}]=0$. In particular the decomposition

$$\mathfrak{g} = (\mathfrak{h} + \mathfrak{m}_1 + \mathbf{R}Y) \oplus \tilde{\mathfrak{m}}'$$

is a direct sum of ideals and therefore M is isometric to a product $M \cong M_1^{(n-2)} \times \mathbf{R}^2$ where M_1 is an (n-2)-dimensional space of constant negative curvature.

(ii) [𝔅, 𝔅]=𝔅', i.e. dim[𝔅, 𝔅]=2. We first prove
(5.6) LEMMA. 𝔅' is an abelian ideal.

PROOF. Let X_1 , X_2 be a basis of \mathfrak{m}' such that

$$[X_1, X_2] = \lambda X_2.$$

Let $[Y, X_i] = \sum_{j=1}^{2} a_{ij}X_j$, i=1, 2. Then

$$\lambda[Y, X_2] = [Y, [X_1, X_2]] = [[Y, X_1], X_2] + [X_1, [Y, X_2]]$$

and we have

$$\lambda \sum_{j=1}^{2} a_{2j} X_j = \lambda a_{11} X_2 + \lambda a_{22} X_2$$

which implies that if $\lambda \neq 0$, $a_{11}=a_{21}=0$. But this would mean $[\tilde{\mathfrak{m}}, \tilde{\mathfrak{m}}] \subseteq \mathbb{R}X_2$, contradicting assumption (ii). Hence $\lambda=0$ and (5.6) is proved.

It is clear now that in this case the derived algebra $[m, m] = m_1 + \tilde{m}'$ is an abelian ideal of codimension 1. We can therefore apply Theorem 1 in [4] to conclude

(5.7) **PROPOSITION.** Let D (respectively S) denote the symmetric (respectively skew-symmetric) part of the linear transformation

$$\operatorname{ad}(Y): \mathfrak{\tilde{m}}' \to \mathfrak{\tilde{m}}'$$

Then M admits a left-invariant metric with strictly negative curvature if and only if

(a) D is positive definite

(b) $D^2-DS-SD$ is positive definite.

If in addition we assume that $\tilde{\mathfrak{m}}$ is unimodular (i.e. $\operatorname{tr}(\operatorname{ad} Y)=0$) then a straightforward argument shows that there exists a basis X_1 , X_2 of $\tilde{\mathfrak{m}}'$ such that $[Y, X_i]=\mu X_j$, $i\neq j$, $\mu\neq 0$. Therefore $\tilde{\mathfrak{m}}\cong E(1, 1)$, the Lie algebra of the group of rigid motions of Minkowski 2-space [10]. Moreover it follows from (5.7) that M does not admit a left-invariant metric with strictly negative curvature.

On the other hand if $\tilde{\mathfrak{m}}$ is not unimodular then tr(ad Y) and det(ad Y) are a complete set of isomorphism invariants for the Lie algebra \mathfrak{m} [10]. In this case the ideal $\tilde{\mathfrak{m}}'$ may be characterized as the unimodular kernel of $\tilde{\mathfrak{m}}$.

(iii) dim $[\mathfrak{\tilde{m}}, \mathfrak{\tilde{m}}]=1$. In this case $[\mathfrak{m}, \mathfrak{m}]$ is an abelian ideal of codimension 2 and [4, Proposition 2] implies that M does not admit a left-invariant metric with strictly negative curvature. Moreover, $\mathfrak{\tilde{m}}$ is not unimodular and the trace of $\operatorname{ad}(Y)$ acting on the unimodular kernel of $\mathfrak{\tilde{m}}$ is a complete isomorphism invariant for \mathfrak{m} .

Now we consider the case M=G/H, $H\cong SO(n-3)\times SO(2)$, $n-3\geq 3$. In this case dim $\mathfrak{m}=1$ and g decomposes according to (3.1) as

$$\mathfrak{g} = \mathfrak{h}_1 + \mathfrak{h}_2 + \mathfrak{m}_1 + \mathfrak{m}_2 + \mathfrak{\tilde{m}} ,$$

$$\mathfrak{h}_1 \cong so(n-3) , \quad \mathfrak{h}_2 \cong so(2) .$$

We set $\tilde{\mathfrak{m}}_1 = \mathfrak{h}_2 + \mathfrak{m}_2 + \tilde{\mathfrak{m}}$. We have

$$[\mathfrak{h}_1, \mathfrak{m}_1] = 0$$
, $[\mathfrak{m}_1, \mathfrak{m}_1] \subseteq \mathfrak{m}_1$.

Let $\tilde{\mathfrak{m}}_1 = \{X \in \mathfrak{m}_1 : [X, \mathfrak{m}_1] = 0\}$. If $\tilde{\mathfrak{m}}_1 = \mathfrak{m}_1'$ then \mathfrak{g} is a split Lie algebra

 $\mathfrak{g}=\mathfrak{g}_1\oplus\mathfrak{g}_2$ where

$$\mathfrak{g}_1 = \mathfrak{h}_1 + \mathfrak{m}_1$$

 $\mathfrak{g}_2 = \mathfrak{h}_2 + \mathfrak{m}_2 + \mathfrak{m}$.

It then follows from (3.4) that (5.8) *M* is isometric to a product

$$M \cong M_1^{(n-3)} \times M_2^{(3)}$$

where M_1 is a simply-connected space of constant curvature and M_2 is a 3-dimensional simply-connected manifold admitting a 4-dimensional transitive group of isometries. These spaces have been classified in (4.11).

Assume now $\tilde{\mathfrak{m}}_1' \neq \tilde{\mathfrak{m}}_1$. Then dim $\tilde{\mathfrak{m}}_1'=3$. Moreover, $\mathfrak{h}_2 \subseteq \tilde{\mathfrak{m}}_1'$ and since $\tilde{\mathfrak{m}}_1'$ is an ideal, $\mathfrak{m}_2=[\mathfrak{h}_2, \mathfrak{m}_2]\subseteq \tilde{\mathfrak{m}}_1'$. Hence

$$\mathfrak{m}_1' = \mathfrak{h}_2 + \mathfrak{m}_2$$
.

Let Y be a unit vector in \tilde{m} such that ad $Y: m_1 \to m_1$ is the identity map (again this is possible up to homothety). Furthermore, as in Section 4 we can also assume (changing m_2 if necessary) that there exists $\lambda \in \mathbf{R}$ such that

$$[Y, X] = \lambda X, \qquad X \in \mathfrak{m}_2.$$

We have also shown in Section 4 that $[\mathfrak{m}_2, \mathfrak{m}_2] \subseteq \tilde{\mathfrak{m}}$. Therefore if E_1 , E_2 is a basis of \mathfrak{m}_2 we have

$$[E_1, E_2] = \alpha Y, \qquad \alpha \in \mathbf{R}.$$

But if $0 \neq Z \in \mathfrak{m}_1$, we get

$$0 = [[E_1, E_2], Z] = \alpha [Y, Z] = \alpha Z.$$

Consequently $[m_2, m_2]=0$, the subalgebra m is solvable and the derived algebra $[m, m]=m_1+m_2$ is an abelian ideal of codimension 1.

If $\lambda = 0$ then g splits as $g = g_1 \oplus g_2$, with

$$\mathfrak{g}_1 = \mathfrak{h}_1 + \mathfrak{m}_1 + \mathbf{R}Y$$
, $\mathfrak{g}_2 = \mathfrak{h}_2 + \mathfrak{m}_2$

and therefore

(5.9) *M* is isometric to a product $M_1^{(n-2)} \times \mathbf{R}^2$, where M_1 is a space of constant negative curvature. Moreover $G \cong G_1 \times E(2)$, where G_1 is the group described in [6, Theorem 3.3] and E(2) is the group of motions of Euclidean 2-space.

For $\lambda \neq 0$, M is isometric to a solvable Lie group $M(\lambda)$ with a left-invariant metric and it follows from [4, Theorem 1] that (5.10) If $\lambda > 0$, $M(\lambda)$ has strictly negative curvature; for $\lambda < 0$, $M(\lambda)$ has both

positive and negative sectional curvatures. It is straightforward to check that (5.2), (5.4) and (5.5) carry over to this case without modifications.

Finally, we consider the case of a 5-dimensional homogeneous Riemannian manifold M=G/H where $H\cong SO(2)\times SO(2)$ and the linear isotropy representation of H is equivalent to $\rho_2\oplus\rho_2\oplus\theta_1$. As in (3.1) we can write

$$\mathfrak{g} = \mathfrak{h}_1 + \mathfrak{h}_2 + \mathfrak{m}_1 + \mathfrak{m}_2 + \mathfrak{m}$$
.

Let $\tilde{\mathfrak{m}}_1 = \mathfrak{h}_2 + \mathfrak{m}_2 + \tilde{\mathfrak{m}}$, $\tilde{\mathfrak{m}}_2 = \mathfrak{h}_1 + \mathfrak{m}_1 + \tilde{\mathfrak{m}}$; then $[\mathfrak{h}_i, \tilde{\mathfrak{m}}_i] = 0$, $[\tilde{\mathfrak{m}}_i, \mathfrak{m}_i] \subseteq \mathfrak{m}_i$ and $[\tilde{\mathfrak{m}}_i, \tilde{\mathfrak{m}}_i] \subseteq \tilde{\mathfrak{m}}_i' = \{X \in \tilde{\mathfrak{m}}_i : [X, \mathfrak{m}_i] = 0\}$.

If $\tilde{\mathfrak{m}}_1 \neq \tilde{\mathfrak{m}}'_1$, then $\mathfrak{g}_2 = \mathfrak{h}_2 + \mathfrak{m}_1 + \mathfrak{m}_2 + \tilde{\mathfrak{m}}$ is a subalgebra of \mathfrak{g} and the corresponding analytic subgroup $G_2 \subseteq G$ acts transitively on M with isotropy $H_2 \cong SO(2)$. Hence this case reduces to the one studied in Section 4.

We can therefore assume that $\tilde{\mathfrak{m}}_i = \tilde{\mathfrak{m}}'_i$ for i=1, 2. In particular we have

$$[\mathfrak{m}_1, \mathfrak{m}_2] = [\mathfrak{m}_1, \tilde{\mathfrak{m}}] = [\mathfrak{m}_2, \tilde{\mathfrak{m}}] = 0,$$
$$[\mathfrak{m}_i, \mathfrak{m}_i] \subseteq \mathfrak{h}_i + \tilde{\mathfrak{m}}.$$

Thus $\tilde{\mathfrak{m}}$ is an ideal in \mathfrak{g} and the quotient $\mathfrak{g}/\tilde{\mathfrak{m}}$ is a split Lie algebra

$$\mathfrak{g}/\mathfrak{\widetilde{m}}\cong\mathfrak{g}_1\oplus\mathfrak{g}_2$$
, $\mathfrak{g}_i=\mathfrak{h}_i+\mathfrak{m}_i+\mathfrak{\widetilde{m}}/\mathfrak{\widetilde{m}}$.

Moreover, the one-parameter group exp \tilde{m} acts freely on M and hence M is a principal fiber bundle over $M/\exp \tilde{m}$. It is easy to check that, relative to the induced metric, the space splits isometrically as $M_1 \times M_2$ where M_i , i=1, 2 is a simply-connected 2-dimensional space of constant curvature.

References

- Robert Azencott and Edward N. Wilson, Homogeneous manifolds with negative curvature, I, Trans, Amer. Math. Soc., 215 (1976), 323-362.
- [2] Robert Azencott and Edward N. Wilson, Homogeneous manifolds with negative curvature, II, Mem, Amer. Math. Soc., 8, no. 178 (1976).
- [3] E. Cartan, Leçons sur la Géométrie des Espaces de Riemann, Gauthier-Villars, Paris, 1963.
- [4] Ernst Heintze, On homogeneous manifolds of negative curvature, Math. Ann., 211 (1974), 23-34.
- [5] Wu-chung Hsiang and Wu-yi Hsiang, Differentiable actions of compact connected classical groups I, Amer. J. Math., 89 (1967), 705-786.
- [6] S. Kobayashi, Transformation Groups in Differential Geometry, Springer-Verlag, 1972.
- [7] S. Kobayashi and T. Nagano, Riemannian manifolds with abundant isometries, Differential Geometry in Honor of K. Yano, Kinokuniya, Tokyo, 1972, 195-220.
- [8] Minoru Kurita, On the isometry of a homogeneous Riemann Space, Tensor, 3 (1954), 91-100.
- [9] Gordon W. Lukesh, Compact homogeneous Riemannian manifolds, Geometriae Dedicata, 7 (1978), 131-137.
- [10] J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math.,
 21 (1976), 293-329.

[11] H. Wakakuwa, On *n*-dimensional Riemannian spaces admitting some groups of motions of order less than $\frac{1}{2}n(n-1)$, Tôhoku Math. J., 6 (1954), 121-134.

E. H. CATTANI

Department of Mathematics University of Massachusetts Amherst, 01003 U.S.A. L.N. MANN

Department of Mathematics University of Massachusetts Amherst, 01003 U.S.A.