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1. Introduction.

In this paper we give a classification of simply-connected homogeneous

Riemannian manifolds $M=G/H$ where $H$ is isomorphic to a product of rotation
groups and the linear isotropy representation of $H$ is a direct sum of standard
representations with a trivial representation. This situation arises naturally
in the study of homogeneous Riemannian manifolds which admit a large group
of isometries. In fact if $M=I_{0}(M)/H$, where

(1.1) dim $I(M)>\frac{n^{2}}{4}+n$ , $n=\dim M\geqq 11$

then it follows that $H\cong SO(k)\times K$, with $k>n/2,$ $K\subseteqq SO(n-k)$ and the linear
isotropy representation of $H$ splits [5, Theorem 1.18].

Our results are quite simple to state if each of the rotation groups has
order at least 3. In that case $M$ is isometric to a product of a certain number
of simply-connected manifolds of constant curvature together with a simply-
connected Lie group with a left-invariant metric. (Theorem B). $lfH$ is
isomorphic to a single rotation group, this appears to be consistent with some
local results obtained by Kurita [8] a number of years ago. If some of the
rotation groups in the decomposition of $H$ have order 2, then the description
of the corresponding manifolds becomes more complicated. This is done in
Section 4, where, in particular, we obtain a generalization of Cartan’s classifi-
cation [3] of 3-dimensional manifolds which admit a transitive group of
motions of dimension 4.

In Section 5, we apply the above results to give an explicit description of
those manifolds satisfying (1.1) and $n-3\leqq k\leqq n$ . This turns up some inaccura-
cies and extends some results in [7], while at the same time exhibiting the
differences with the compact case studied by Lukesh. In [9] it is shown that
if $M$ is compact and satisfies (1.1), then it must split isometrically with one
factor being a standard sphere $S^{k},$ $k>n/2$ . As we shall see in Section 5, there
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are uncountably many homogeneous metrics of strictly negative curvature on
$R^{n}$ with non-isomorphic isometry groups all of dimension /12$(n^{2}-3n+6)$ .

2. Algebraic preliminaries.

$M=G/H$ will denote a connected homogeneous n-dimensional Riemannian
manifold. Throughout this paper we shall assume that $G$ is connected and
that the transitive action of $G$ on $M$ is effective. Let $\mathfrak{g}$ and $\mathfrak{h}$ denote the Lie
algebras of $G$ and $H$ respectively. Since $H$ is compact we can choose a com-
plementary subspace $\mathfrak{m}$ of $\mathfrak{h}$ in $\mathfrak{g}$ such that $[\mathfrak{h}, \mathfrak{m}]\subseteqq \mathfrak{m}$. Moreover we can
naturally identify $\mathfrak{m}$ with the tangent space of $M$ at the base point $z_{0}=\{H\}\in M$,
and hence $\mathfrak{m}$ carries an inner product $\langle, \rangle$ induced by the Riemannian structure
of $M$. If we let

$\hslash\uparrow=\{X\in \mathfrak{m}:[\mathfrak{h}, X]=0\}$ ,
then $\mathfrak{m}$ splits as

(2.1) $\mathfrak{m}=\mathfrak{m}_{1}+\iota 1\iota$

where $\mathfrak{m}_{1}$ is the orthogonal complement of $\tilde{\mathfrak{m}}$ and therefore is $ad(\mathfrak{h})$-invariant.
’2.2) PROPOSITION. Assume $H\cong SO(q),$ $q\geqq 3$, and that the linear isotropy action
of $H$ on $\mathfrak{m}_{1}$ is standard. Then

(2.3) $[\mathfrak{m}_{1}, \mathfrak{m}_{1}]\subseteqq \mathfrak{h}$

(2.4) [ft, $\mathfrak{m}_{1}$] $\subseteqq \mathfrak{m}_{1}$ .
PROOF. We begin by showing that $[\mathfrak{m}_{1}, \mathfrak{m}_{1}]_{\overline{\mathfrak{m}}}=0$, where $[\mathfrak{m}_{1}, \mathfrak{m}_{1}]ffi$ denotes

the projection of $[\mathfrak{m}_{1}, \mathfrak{m}_{1}]$ on $\tilde{\mathfrak{m}}$ , relative to the decomposition $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}_{1}+\tilde{\mathfrak{m}}$ .
Given $E_{1},$ $E_{2}$ , orthonormal vectors in $\mathfrak{m}_{1}$ , let $A\in H$ be so that $A(E_{1})=-E_{1}$ ,
$A(E_{2})=E_{2}$ , where $A(E_{i})$ denotes $Ad(A)E_{i}$ . Then $[E_{1}, E_{2}]ff\downarrow=A([E_{1}, E_{2}]_{\overline{m}})=$

$[AE_{1}, AE_{2}]_{\overline{\mathfrak{m}}}=-[E_{1}, E_{2}]_{\overline{\mathfrak{m}}}$ which implies $[E_{1}, E_{2}]_{\overline{\mathfrak{m}}}=0$ and hence $[\mathfrak{m}_{1}, \mathfrak{m}_{1}]_{(\hslash}=0$ .
In order to show that $[\mathfrak{m}_{1}, \mathfrak{m}_{1}]_{\mathfrak{n}_{1}}=0$, we choose an orthonormal basis

$E_{1},$ $\cdots$ , $E_{q}$ of $\mathfrak{m}_{1}$ and let

$[E_{i}, E_{j}]_{m_{1}}=\sum_{k=1}^{q}C_{ij}^{b}E_{k}$ .

It is then enough to show that $C_{ij}^{k}=0$ for each $i,$ $j,$ $k$ . If $q\geqq 4$, let $l\neq i,$ $j,$ $k$

and $A\in H$ the element defined by

$A(E_{i})=-E_{i}$ , $A(E_{l})=-E_{l}$ and

$A(E_{s})=E_{s}$ for $s\neq i,$ $l$ .
We then have

$\sum_{s=1}^{q}C_{ij}^{s}A(E_{s})=A[E_{i}, E_{j}]_{m_{1}}=-[E_{i}, E_{j}]_{\mathfrak{m}_{1}}=-\sum_{s=1}^{q}C_{ij}^{R}E_{s}$
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and comparing terms for $s=k$ , this gives $C_{ij}^{k}=0$ .
Suppose now that $q=3$ . Let $E_{i},$ $1\leqq i\leqq 3$, be as before, and let $B\in H$ be

defined by
$B(E_{1})=-E_{1}$ , $B(E_{2})=-E_{2}$ , $B(E_{3})=E_{3}$ .

Since $B([E_{i}, E_{j}]_{\mathfrak{m}_{1}})=[B(E_{i}), B(E_{j})]_{\mathfrak{m}_{1}}$ , it is straightforward to check that

$[E_{i}, E_{j}]_{\mathfrak{n}_{1}}=\gamma_{k}E_{k}$ , $i\neq j\neq k\neq i$ , $\gamma_{k}\in R$ .
On the other hand for an arbitrary $A\in H$, let

$A(E_{i})=\sum_{j=1}^{3}a_{ji}E_{j}$ .
We then have

$\gamma_{3}A(E_{3})=A([E_{1}, E_{2}]_{n_{1}})=[\sum_{j=1}^{l}a_{j1}E_{j},\sum_{k=1}^{3}a_{k2}E_{k}]_{m}$,

and comparing the coefficients of $E_{3}$ we obtain

$r_{3}a_{33}=r_{3}(a_{11}a_{22}-a_{21}a_{12})$

for every $A\in H$. It then follows that $\gamma_{3}=0$, and consequently $[E_{1}, E_{2}]_{r_{1}}=0$ .
This proves (2.3)

It remains to show $[\tilde{\mathfrak{m}}, \mathfrak{m}_{1}]\subseteqq \mathfrak{m}_{1}$ . Set

$\overline{\mathfrak{m}}_{1}=\{E\in \mathfrak{m}_{1} : [\hslash\iota, E]_{m}=0\}$ .

Then $\overline{\mathfrak{m}}_{1}$ is an $Ad(H)$-invariant subspace of $\mathfrak{m}_{1}$ and thus either $\overline{\mathfrak{m}}_{1}=\mathfrak{m}_{1}$ or
$\overline{\mathfrak{m}}_{1}=\{0\}$ . On the other hand it is easy to check that if $E\in \mathfrak{m}_{1},$ $A\in H$ are such
that $A(E)\neq E$, then $E-A(E)\in\overline{\mathfrak{m}}_{1}$ . Hence $\overline{\mathfrak{m}}_{1}=\mathfrak{m}_{1}$ and therefore $[\tilde{\mathfrak{m}}, \mathfrak{m}_{1}]_{\overline{\mathfrak{m}}}=0$ .

For each $X\in\tilde{\mathfrak{m}}$ , let $\overline{\mathfrak{m}}_{1}(X)$ be the $Ad(H)$-invariant subspace of $\mathfrak{m}_{1}$ defined by

$\overline{\mathfrak{m}}_{1}(X)=\{E\in \mathfrak{m}_{1} : [X, E]_{\mathfrak{h}}=0\}$ .

If $\overline{\mathfrak{m}}_{1}(X)=\mathfrak{m}_{1}$ for all $X\in\tilde{\mathfrak{m}}$ , then $[\tilde{\mathfrak{m}}, \mathfrak{m}_{1}]_{\mathfrak{h}}=0$ and (2.4) follows. Assume $\overline{\mathfrak{m}}_{1}(X)=0$

for some $X\in\tilde{\mathfrak{m}}$ . This is clearly impossible if $q\geqq 4$ (or $q=2$) since $[X, \mathfrak{m}_{1}]_{\mathfrak{h}}$

would be a q-dimensional ideal of $\mathfrak{h}\cong so(q)$ . The case $q=3$ again requires a
separate proof. Let $E_{i},$ $1\leqq i\leqq 3$ , be as before and let $A_{ij},$ $1\leqq i\neq j\leqq 3$ , be
elements of $\mathfrak{h}\cong so(3)$ defined by

$[A_{ij}, E_{i}]=-E_{j}$ , $[A_{ij}, E_{j}]=E_{i}$

(2.5)
$[A_{ij}, E_{k}]=0$ , $k\neq i,$ $j$ .

Clearly $\{A_{ij}, 1\leqq i<j\leqq 3\}$ is a basis of $\mathfrak{h}$ and $A_{ij}=-A_{ji}$ . One can readily
check that

(2.6) $[A_{ij}, A_{jk}]=A_{ik}$ .
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Let
$[X, E_{i}]_{\mathfrak{h}}=\alpha_{i}A_{12}+\beta_{i}A_{13}+\gamma_{i}A_{23}$ .

Since
$[A_{23}, [X, E_{1}]_{\mathfrak{h}}]=[A_{23}, [X, E_{1}]]_{\mathfrak{h}}$

$=[[A_{23}, X],$ $E_{1}]_{\mathfrak{h}}+[X, [A_{23}, E_{1}]]_{\mathfrak{h}}=0$ ,

using (2.5) and (2.6) we obtain

$0=[A_{23}, \alpha_{1}A_{12}+\beta_{1}A_{13}+\gamma_{1}A_{23}]=-\alpha_{1}A_{13}+\beta_{1}A_{12}$

which implies $\alpha_{1}=\beta_{1}=0$ . Similarly one can show that $\alpha_{2}=\gamma_{2}=\beta_{3}=\gamma_{3}=0$ and
$\alpha_{3}=-\beta_{2}=\gamma_{1}=\lambda$ .

On the other hand, since by (2.3), $[\mathfrak{m}_{1}, \mathfrak{m}_{1}]\subseteqq \mathfrak{h}$ we get

$0=[X, [E_{1}, E_{3}]]_{x_{1}}=[[X, E_{1}],$ $E_{3}]_{\mathfrak{m}_{1}}+[E_{1}, [X, E_{3}]]_{n_{1}}$

$=[[X, E_{1}]_{\mathfrak{h}},$ $E_{3}$] $+[E_{1}, [X, E_{3}]_{\mathfrak{h}}]$

$=[\lambda A_{23}, E_{3}]+[E_{1}, \lambda A_{12}]=\lambda E_{2}+\lambda E_{2}=2\lambda E_{2}$ .

Hence $\lambda=0$ and $[\tilde{\mathfrak{m}}, \mathfrak{m}_{1}]\subseteqq \mathfrak{m}_{1}$ . This completes the proof of Proposition (2.2).

For each $X\in\tilde{\mathfrak{m}}$ , the linear transformation

ad(X): $\mathfrak{m}_{1}\rightarrow \mathfrak{m}_{1}$

commutes with the standard action of $H\cong SO(q)$ on $\mathfrak{m}_{1}$ . Hence there exists
a linear functional $\alpha\in\tilde{\mathfrak{m}}^{*}$ , such that

(2.7) [X, $E$] $=\alpha(X)E$ , $X\in\tilde{\mathfrak{m}}$ , $E\in \mathfrak{m}_{1}$ .

We set

(2.8) $\tilde{\mathfrak{m}};=ker\alpha=$ { $X\in\tilde{\mathfrak{m}}$ : [X, $\mathfrak{m}_{1}]=0$}

Then, either $\tilde{\mathfrak{m}}=\tilde{\mathfrak{m}}^{\prime}$ or dim rk‘ $=\dim\tilde{\mathfrak{m}}-1$ .
(2.9) PROPOSITION. $\tilde{\mathfrak{m}}$ is a subalgebra of $\mathfrak{g}$ and $\tilde{\mathfrak{m}}^{\prime}$ is an ideal in $\mathfrak{g}$ .

PROOF. First of all we notice that $[\tilde{\mathfrak{m}}, \tilde{\mathfrak{m}}]_{\mathfrak{m}_{1}}=0$ since $[$ri, $\tilde{\mathfrak{m}}]_{\mathfrak{n}_{1}^{\tau}}$ would be
a subspace of $\mathfrak{m}_{1}$ where $\mathfrak{h}$ acts trivially. Similarly we have

$[\mathfrak{h}, [\tilde{\mathfrak{m}},\tilde{\mathfrak{m}}]_{\mathfrak{h}}]=0$

which implies $[\tilde{\mathfrak{m}},\tilde{\mathfrak{m}}]_{\mathfrak{h}}=0$ since $\mathfrak{h}\cong so(q)$ contains no non-trivial abelian ideals
for $q\geqq 3$ . This proves the first statement in (2.9).

Let $X_{1},$ $X_{2}\in\tilde{\mathfrak{m}},$ $E\in \mathfrak{m}_{1}$ . Then

$[[X_{1}, X_{2}],$ $E$] $=(\alpha(X_{1})\alpha(X_{2})-\alpha(X_{2})\alpha(X_{1}))E=0$ .

This implies [fu, $\tilde{\mathfrak{m}}$] $\subseteqq\tilde{\mathfrak{m}}^{\prime}$ and since $[\mathfrak{h}+\mathfrak{m}_{1},\tilde{\mathfrak{m}}^{\prime}]=0$, the proposition follows.
(2.10) COROLLARY. If $\tilde{\mathfrak{m}}^{\prime}=\tilde{\mathfrak{m}}$ then the decomposition
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$\mathfrak{g}=(\mathfrak{h}+\mathfrak{m}_{1})\oplus\tilde{\mathfrak{m}}$

is a direct sum of ideals.
(2.11) LEMMA. If $\hslash\iota^{\prime}\neq\iota f\iota$ , then $\mathfrak{m}_{1}$ is an abelian ideal in $\mathfrak{g}$ .

PROOF. Using (2.2) it is enough to show that $[\mathfrak{m}_{1}, \mathfrak{m}_{1}]_{\mathfrak{h}}=0$ . Let $E_{1},$ $E_{2}\in \mathfrak{m}_{1}$

and choose $X\in\tilde{\mathfrak{m}}$ such that $\alpha(X)=1$ . Then

$0=[X, [E_{1}, E_{2}]_{\mathfrak{h}}]=[X, [E_{1}, E_{2}]]_{\mathfrak{h}}$

$=[\alpha(X)E_{1}, E_{2}]+[E_{1}, \alpha(X)E_{2}]=2[E_{1}, E_{2}]$

and the result follows.
(2.12) PROPOSITION. If $ffi^{\prime}\neq ffi$ then $\mathfrak{m}=\mathfrak{m}_{1}+\hslash$ is an ideal in $\mathfrak{g}$ .

PROOF. This is a consequence of Proposition (2.2) and the above lemma.

3. Global results.

Throughout this section $M$ will denote a connected and simply-connected
homogeneous Riemannian manifold $M=G/H$, with $G$ a connected subgroup of
$I(M)$ acting effectively on $M$. We assume further that

$H\cong H_{1}\times\cdots\times H_{k}$

and the linear isotropy representation of $H$ splits. The Lie algebra $\mathfrak{g}$ of $G$

has therefore a decomposition

(3.1) $\mathfrak{g}=\mathfrak{h}_{1}+\cdots+\mathfrak{h}_{k}+\mathfrak{m}_{1}+\cdots+\mathfrak{m}_{k}+ffi$

where $\mathfrak{h}_{i}$ leaves $\mathfrak{m}_{i}$ invariant and acts trivially on $\tilde{\mathfrak{m}}$ and $\mathfrak{m}_{j},$ $j\neq i$ . It is clear
that the decomposition $\mathfrak{m}=\mathfrak{m}_{1}+\cdots+\mathfrak{m}_{k}+\tilde{\mathfrak{m}}$ is orthogonal relative to the inner
product induced in $\mathfrak{m}$ by the Riemannian structure of $M$.
(3.2) LEMMA. Let $M=G/(H_{1}\times H_{2})$ be as above, $\mathfrak{g}=\mathfrak{h}_{1}+\mathfrak{h}_{2}+\mathfrak{m}_{1}+\mathfrak{m}_{2}+\tilde{\mathfrak{m}}$ as in (3.1).

If $@=\mathfrak{h}_{2}+\mathfrak{m}_{1}+\mathfrak{m}_{2}+\mathfrak{m}$ is an ideal of $\mathfrak{g}$ and $S$ denotes the correspOnding analytic
subgroup of $G$ , then $M=S/H_{2}$ .

PROOF. The subgroup $S$ acts as an effective group of isometries of $M$.
Since $\mathfrak{s}\cap(\mathfrak{h}_{1}+\mathfrak{h}_{2})=\mathfrak{h}_{2}$ , and $S$ is normal in $G$ , we have for any $z\in M$

dim $S_{z}=\dim(S\cap G_{z_{0}})=\dim(S\cap(H_{1}\times H_{2}))$

$=\dim \mathfrak{h}_{2}$ ,

where $z_{0}=\{H\}$ is the base point in $M$. Hence for any $z\in M$, the orbit $S(z)$

has the same dimension as $M$ and is therefore open in $M$, and consequently
every orbit is also closed. Since $M$ is assumed to be connected this proves
(3.2).

In particular if $H_{2}=\{e\},$ $\mathfrak{s}=\mathfrak{m}$ and we obtain the following standard result.
(3.3) LEMMA. Let $M=G/H$ be as above and assume that the Lie algebra $\mathfrak{g}$ of
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$G$ admits a decomPosition $g=\mathfrak{h}+m$, where $\mathfrak{h}$ is the Lie algebra of $H$ and $\mathfrak{m}$ is an
ideal of $g$ . Then $M$ is isometric to a Lie group with a left-invariant metric.

We shall also need the following:
(3.4) LEMMA. Let $M=G/(H_{1}\times H_{2})$ be a connected simply-connected, homogeneous
Riemannian manifold. Assume further that the decomp0siti0n (3.1)

$\mathfrak{g}=(\mathfrak{h}_{1}+\mathfrak{m}_{1})\oplus(\mathfrak{h}_{2}+\mathfrak{n}b+\iota I\iota)=\mathfrak{g}_{1}\oplus \mathfrak{g}_{2}$

is a direct sum of ideals. Then there exists closed connected normal subgroups
$G_{i},$ $i=1,2$ of $G$ with Lie algebras $\mathfrak{g}_{i},$ $i=1,2$ , such that $M$ is isometric to the
product $M_{1}\times M_{2}$ where $M_{i}$ is the $simPly$-connected homogeneous Riemannian
manifold $G_{i}/H_{i}$ .

PROOF. Let $\hat{G}$ denote the universal covering group of $G$ , and $\hat{G}_{i},$ $i=1,2$ ,
the analytical subgroups of $\hat{G}$ with Lie algebras $\mathfrak{g}_{i}$ , $i=1,2$ , respectively.
Then $\hat{G}_{i}$ is a simply-connected closed normal subgroup of $\hat{G}$ . Since $\mathfrak{h}_{i}\subseteqq \mathfrak{g}_{i}$ ,

let $H_{i}\subseteqq\hat{G}_{i}$ be the corresponding connected subgroup. Now $\hat{G}$ acts as a transi-
tive group of isometries (although possibly not effectively) on $M$. So

$\hat{M}=\hat{G}/G_{z_{0}}$

where $\hat{G}_{z_{0}}$ is the isotropy subgroup at the base point $z_{0}\in M$. It is clear
however that

$\hat{G}_{z_{0}}=\hat{H}_{1}\times\hat{H}_{2}$

since they are connected subgroups with the same Lie algebra. Therefore $M$

splits diffeomorphically as

(3.5) $M=\hat{G}_{1}/\hat{H}_{1}\times\hat{G}_{2}/\hat{H}_{2}$ .
Let $\pi$ : $\hat{G}\rightarrow G$ be the natural projection, $G_{i}=\pi(\hat{G}_{i}),$ $H_{i}$ as before. The

subgroup $ N=Ker\pi$ is normal in $\hat{G}$ and is contained in $\hat{G}_{z_{0}}$ . Moreover since
$N$ acts trivially on $M,$ $N_{i}=\hat{G}_{i}\cap N$ acts trivially on $M_{\iota}=\hat{G}_{i}/\hat{H}_{i}$ , hence

$M_{i}=\hat{G}_{i}/\hat{H}_{i}=\frac{\hat{G}_{i}/(\hat{G}_{i}\cap N)}{\hat{H}_{i}/(\hat{H}_{i}\cap N)}=G_{i}/H_{i}^{*}$ .

But $H_{i}$ and $H_{i}^{*}$ are both connected and have the same Lie algebra $\mathfrak{h}_{i}$ . There-
fore $H_{i}^{*}=H_{i}$ and $M_{i}=G_{i}/H_{i}$ .

It remains to show that (3.5) is an isometric splitting, or equivalently,
that for any $z=(z_{1}, z_{2})\in M$, the subspaces $T_{z_{1}}(M_{1})$ and $T_{z_{2}}(M_{2})$ are orthogonal
with respect to the Riemannian inner product in $T_{z}(M)$ . But this is clear at
the base point $z_{0}=(z_{1}^{0}, z_{2}^{0})$ since $T_{z_{1}^{0}}(M_{1})\cong \mathfrak{m}_{1}$ and $T_{z_{2}^{0}}(M_{2})\cong \mathfrak{m}_{2}+\tilde{\mathfrak{m}}$ , and at any
other point by homogeneity.

In what follows, $\rho_{q}$ and $\theta_{k}$ will denote the standard and trivial represen-
tations of $SO(q)$ on $R^{q}$ and $R^{k}$ respectively.
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THEOREM A. SuppOse $M=G/H$ is a connected simply-connected n-dimensional
homogeneous Riemannian manifold. If $H$ is isomorphic to $SO(q),$ $3\leqq q\leqq n$ , and
the linear isotropy representatiOn of $H$ is $\rho_{q}\oplus\theta_{n-q}$ , then either

(1) $M$ is isometric to $M_{1}^{(q)}\times M_{2}^{(n-q)}$ where $M_{1}$ is a q-dimensional simply-con-
nected space of constant curvature and $M_{2}$ is isometric to an $(n-q)$-dimensional
$simPly$-connected Lie group with a left-invariant metric. Furthermore $G\cong I_{0}(M_{1})$

$\times M_{2}$ , where $I_{0}(M_{1})$ is the identity connected compOnent of the full group of
isometries of $M_{1}$ , or

(2) $M$ is isometric to a Lie group with a left-invariant metric and $G$ is
isomorphic to a semi-direct product of $SO(q)$ with $M$.

PROOF. Let $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}_{1}+\hslash\iota$ be as in (2.1). If ril’ $=\hslash\iota$ , then by Corollary (2.10)

$\mathfrak{g}=(\mathfrak{h}+\mathfrak{m}_{1})\oplus\uparrow ft$

is a direct sum of ideals. Applying lemma (3.4) we can conclude that $M$ splits
isometrically

$M=G_{1}/SO(q)\times G_{2}$ .

But $G_{1}$ acts effectively on the q-dimensional manifold $M_{1}$ and dim $G_{1}=\frac{1}{2}q(q+1)$ ,

hence $M_{1}$ has constant curvature. We thus obtain (1).

If $\tilde{\mathfrak{m}}^{\prime}\neq\tilde{\mathfrak{m}}$ , then by (2.12) $\mathfrak{m}$ is an ideal in $\mathfrak{g}$ . Lemma (3.3) now applies to
give (2).

(3.6) REMARK. In (2) of Theorem $A$ , observe that by (2.11) $\mathfrak{m}_{1}$ is an abelian
ideal of $\mathfrak{g}$ , and hence the Lie group $M$ contains a simply-connected closed
normal abelian subgroup of dimension $q$ . It then follows that if $M$ is compact
we must have ti $’=\tilde{\mathfrak{m}}$ and thus case (1) in Theorem A. This is the case
studied by Lukesh [9].

Also, since by (2.9) $\tilde{\mathfrak{m}}^{\prime}$ is an ideal in $\mathfrak{g}$ , the corresponding analytic sub-
group $K$ of $G$ is normal. Moreover $K$ coincides with the identity connected
component of the centralizer of $\mathfrak{h}+\mathfrak{m}_{J}$ in $G$ , and is therefore closed. One can
easily check that $K\cap H=\{e\}$ , from which it follows, since $K$ is normal, that
$K$ acts freely on $M$. Moreover the orbit space $M/K$ with its induced metric can
be seen to be a space of constant negative curvature [6, Theorem 3.3], hence
diffeomorphic to Euclidean space. Since $M$ is a principal fiber bundle over
$M/K,$ $M$ is diffeomorphic to the product of $K$ with a Euclidean space.

THEOREM B. SuppOse $M=G/H$, is a connected $simPly$-connected n-dimensional
homogeneous Riemannian manifold. If $H$ is isomorPhic to a product $ SO(q_{1})\times$

$SO(q_{2})\times\cdots\times SO(q_{k})$ where

$q_{i}\geqq 3$ for all $i$ and $\sum_{i=1}^{k}q_{i}\leqq n$

and if the linear isotroPy representation of $H$ splits as
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$\rho_{q_{1}}\oplus\rho_{q_{2}}\oplus\cdots\oplus\rho_{q_{k}}\oplus\theta_{n-\Sigma q_{i}}$ ,

then there exists some subset $q_{i_{1}},$
$\cdots$ , $q_{\iota_{l}}$ of the $q_{i}’ s$ such that $M$ is isometric to

$M_{1}\times M_{2}\times\cdots\times M_{l}\times M_{l+1}$

where $M_{j},$ $1\leqq j\leqq l$ , is a $q_{i_{j}}$-dimensional simply-connected manifold of constant

curvature and $M_{l+1}$ is an $(n-\sum_{j=1}^{l}q_{i_{j}})$-dimensional simply-connected Lie group with

a left-invariant metric.
PROOF. We decompose $\mathfrak{g}$ according to (3.1) as

$\mathfrak{g}=\mathfrak{h}_{1}+\cdots+\mathfrak{h}_{k}+\mathfrak{m}_{1}+\cdots+\mathfrak{m}_{k}+\hslash\iota$ .
Let $\mathfrak{s}=\mathfrak{h}_{2}+\cdots+\mathfrak{h}_{k}+\mathfrak{m}_{1}+\cdots+\mathfrak{m}_{k}+m$

$\mathfrak{s}_{1}=\mathfrak{m}_{1}$

$@=\mathfrak{h}_{2}+\cdots+\mathfrak{h}_{k}+\mathfrak{m}_{2}\neq\cdots+\mathfrak{m}_{k}+ffi\sim$

and observe that $[\mathfrak{h}_{1}, \sim \mathfrak{s}]=0$ . Then

$\mathfrak{g}=\mathfrak{h}_{1}+@_{1}+\mathfrak{s}$

and we set $\sim \mathfrak{s}^{\prime}=\{X\in \mathfrak{s};\sim[X, \mathfrak{s}_{1}]=0\}$ . If $\sim\sim s^{\prime}=e\wedge$ then $\mathfrak{g}=(\mathfrak{h}_{1}+\mathfrak{s}_{1})\oplus@\sim$ is by (2.10) a
direct sum of ideals. It follows then from Lemma (3.4) that $M$ is isometric
to $M_{1}\times M^{*}$ where $M_{1}$ is a $q_{1}$-dimensional simply-connected manifold of constant
curvature and $M^{*}=G_{2}/(H_{2}\times\cdots\times H_{k})$ , where $G_{2}$ is the analytic subgroup of $G$

with Lie algebra $\sim 8\sim$ . We proceed inductively on $M^{*}$ with respect to $k$ .
$ lf\sim \mathfrak{s}^{\prime}\neq@\sim$, then $\mathfrak{s}=\mathfrak{s}_{1}+\mathfrak{s}\sim$ is an ideal of $\mathfrak{g}$ . Lemma (3.2) now implies that

$M=S/(H_{2}\times\cdots\times H_{k})$ , where $S$ is the analytic subgroup corresponding to $\mathfrak{s}$ .
Again an inductive process completes the proof.
(3.7) REMARK. Using the results of Section 2, it is possible to give rather
explicit descriptions of the Lie algebra $\mathfrak{g}$ and the group $G$ . Although in the
general case this is not particularly enlightening, we will do it in Section 5
for some special cases.

We end this section with the following result, a local version of which
is due to Wakakuwa [11, Theorem 2].

PROOF. We sketch a proof using the techniques of Section 2. Infinitesi-

THEOREM C. (Wakakuwa). SuPpose $M=G/H$ is a connected simPly-connected
n-dimensional homogeneous Riemannian manifold. Assume that $H\cong H_{1}\times\cdots\times H_{k}$

and the linear isotroPy rePresentation of $H$ is faithful and sPlits. Then $M$ is
isometric to a product

$M\cong M_{1}\times\cdots\times M_{k}$ ,

where $M_{i}=G_{i}/H_{i}$ for $G_{i}$ some connected normal subgroup of $G$ .
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mally we have
$\mathfrak{g}=\mathfrak{h}_{1}+\cdots+\mathfrak{h}_{k}+\mathfrak{m}_{1}+\cdots+\mathfrak{m}_{k}$ .

It can be shown that $\mathfrak{g}_{i}=\mathfrak{h}_{i}+\mathfrak{m}_{i}$ is an ideal of $\mathfrak{g}$ for $1\leqq i\leqq k$ , and therefore $\mathfrak{g}$

splits as $\mathfrak{g}=\mathfrak{g}_{1}\oplus\cdots\oplus \mathfrak{g}_{k}$ . The result now follows inductively from Lemma (3.4).

4. Rotation groups of order 2.

In this section we will study Riemannian homogeneous spaces of the
form $G/H$, where $H\cong SO(2)$ and the linear isotropy representation of $H$ is
equivalent to $\rho_{2}\oplus\theta_{n-2}$ . In particular, in the case dim $M=3$ we will recover
Cartan’s classification [3] of 3-dimensional manifolds admitting a transitive
group of isometries of dimension 4. The general case where $H$ is isomorphic
to a product of rotation groups, some of which are of order 2, can be treated
along the same lines as Theorem $B$ of the preceding section. In Section 5
we shall study one such case in detail.

Keeping the notation of Section 2 we can write

(4.1) $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}_{1}+\tilde{\mathfrak{m}}$

where $[\mathfrak{h},\tilde{\mathfrak{m}}]=0$, dim $\mathfrak{m}_{1}=2,$ $\mathfrak{h}\cong so(2)$ acts on $\mathfrak{m}_{1}$ in the natural way and $\mathfrak{m}_{1}$ is
orthogonal to $\tilde{\mathfrak{m}}$ relative to the natural inner product in $\mathfrak{m}=\mathfrak{m}_{1}+\tilde{\mathfrak{m}}$ . It is easy
to check that (2.4) is still valid in this case, that is

(4.2) [rk, $\mathfrak{m}_{1}$] $\subseteqq \mathfrak{m}_{1}$ .
Let now $E_{1},$ $E_{2}$ be an orthonormal basis of $\mathfrak{m}_{1}$ and $H_{0}$ the element of $\mathfrak{h}$

defined by

(4.3) $[H_{0}, E_{1}]=-E_{2}$ , $[H_{0}, E_{2}]=E_{1}$ .

Given $X\in\tilde{\mathfrak{m}}$ we can write

[X, $E_{i}$] $=\sum_{j=1}^{2}a_{ij}E_{j}$ , $i=1,2$ .

Since $[H_{0}, [X, E_{1}]]=-[X, E_{2}]$ we deduce that $a_{11}=a_{22}$ and $a_{12}=-a_{21}$ . Hence
there exist linear functionals $\alpha,$ $\beta\in\tilde{\mathfrak{m}}^{*}$ such that

[X, $E_{1}$] $=\alpha(X)E_{1}-\beta(X)E_{2}$

[X, $E_{2}$] $=\beta(X)E_{1}+\alpha(X)E_{2}$ .

Let $X_{1},$ $\cdots$ , $X_{n}$ be an orthonormal basis of $\tilde{\mathfrak{m}}$ such that $\beta(X_{i})=0$ for $1\leqq i\leqq n-1$

and let $\beta(X_{n})=b$ . Then replacing $\tilde{\mathfrak{m}}$ by the subspace spanned by $X_{1},$ $\cdots$ , $X_{n-1}$ ,
$X_{n}-bH_{0}$ , and making the corresponding change in $\mathfrak{m}$, we can assume that

(4.4) [X, $E$] $=\alpha(X)E$ , $X\in\tilde{\mathfrak{m}}$ , $E\in \mathfrak{m}_{1}$ .
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(4.5) LEMMA. tit is a subalgebra of $\mathfrak{g}$ and $\hslash\iota^{\prime}=Ker\alpha\subseteqq\iota f\iota$ is an ideal in $\mathfrak{g}$ .
PROOF. As in (2.9) we have $[\tilde{\mathfrak{m}},\tilde{\mathfrak{m}}]_{\mathfrak{n}_{1}}=0$ . On the other hand, let $X_{i}\in\tilde{\mathfrak{m}}$ ,

$i=1,2$ , and set
$[X_{1}, X_{2}]_{\mathfrak{h}}=aH_{0}$ .

Then
$0=[[X_{1}, X_{2}],$ $E_{1}$] $=a[H_{0}, E_{1}]+[[X_{1}, X_{2}]_{\overline{\mathfrak{m}}},$ $E_{1}$]

$=-aE_{2}+\alpha([X_{1}, X_{2}]_{\overline{\mathfrak{m}}})E_{1}$ .

Hence $a=0$ and thus $[\tilde{\mathfrak{m}}, \tilde{\mathfrak{m}}]\subseteqq\tilde{\mathfrak{m}}$ . The second statement follows as in (2.9).

As in the proof of Proposition (2.2) one can show that

(4.6) $[\mathfrak{m}_{1}, \mathfrak{m}_{1}]|\mathfrak{n}_{1}=0$ .

However, it is not true in general that $[\mathfrak{m}_{1}, \mathfrak{m}_{1}]_{\overline{\mathfrak{m}}}=0$ . This is what distin-
guishes this case from the one discussed in Section 2.
(4.7) THEOREM. Let $M=G/H$ be a connected simply-cOnnected n-dimensional
homogeneous Riemannian manifold. Assume $H\cong SO(2)$ and the linear isotropy
representati0n of $H$ is equivalent to $\rho_{2}\oplus\theta_{n- 2}$ . Then $M$ is one of the following:

(1) $M$ is isometric to a pr0duct $M=M_{1}^{(2)}\times M_{2}^{(n-2)}$ where $M_{1}$ is a 2-dimensional
simply-cOnnected space of constant curvature and $M_{2}$ is a simply-cOnnected Lie
group with a left-invariant metric. Moreover $G\cong I_{0}(M_{1})\times M_{2}$ .

(2) $M$ is isometric to a simply-cOnnected Lie group with a left-invariant
metric and $G$ is isomorphic to a semi-direct pr0duct of $SO(2)$ with $M$.

(3) $M$ is a principal fiber bundle, with abelian structural group, over the
pr0duct of a 2-dimensional space with non-zero constant curvature and a simply-
connected Lie group with a left-invariant metric.

PROOF. We begin by considering the case $\tilde{\mathfrak{m}}^{\prime}=\tilde{\mathfrak{m}}$ , that is [rk, $\mathfrak{m}_{1}$] $=0$ . Let
$\mathfrak{z}(\mathfrak{g}),$ $\mathfrak{z}(\tilde{\mathfrak{m}})$ denote the centers of $\mathfrak{g}$ and $\tilde{\mathfrak{m}}$ respectively. Then

(4.8) $\mathfrak{z}(\mathfrak{g})=\mathfrak{z}(\tilde{\mathfrak{m}})$ .

In fact, let $z\in \mathfrak{z}(\mathfrak{g})$ . If we decompose $Z$ according to (4.1) as $Z=Z_{\mathfrak{h}}+Z_{\mathfrak{m}_{1}}+Z_{\overline{\mathfrak{m}}}$ ,

then since $Z_{\mathfrak{h}}$ acts trivially on $\mathfrak{m}_{1}$ we must have $Z_{\mathfrak{h}}=0$ . Similarly $Z_{m_{1}}$ defines
a subspace of $\mathfrak{m}_{1}$ where $\mathfrak{h}$ acts trivially, hence $Z_{\mathfrak{m}_{1}}=0$ and $\mathfrak{z}(\mathfrak{g})\subseteqq\tilde{\mathfrak{m}}$ . Since
clearly $\partial(\tilde{\mathfrak{m}})\subseteqq \mathfrak{z}(\mathfrak{g})$ we obtain (4.8).

Let $E_{i},$ $i=1,2$ , be an orthonormal basis of $\mathfrak{m}_{1}$ and set

$[E_{1}, E_{2}]=\lambda H_{0}+\mu Z$ , $\mu\geqq 0$ ,

where $Z\in\tilde{\mathfrak{m}}$ is a unit vector. Notice that for $\mu\neq 0,$ $z\in \mathfrak{z}(\tilde{\mathfrak{m}})=\mathfrak{z}(\mathfrak{g})$ . If $\mu=0$ ,
then the decomposition

$\mathfrak{g}=(\mathfrak{h}\oplus \mathfrak{m}_{1})\oplus tf1=\mathfrak{g}_{\lambda}\oplus ffl$

where $\mathfrak{g}_{\lambda}$ is the 3-dimensional Lie algebra { $H_{0},$ $E_{1},$ $E_{2}$ : $[H_{0}, E_{1}]=-E_{2},$ $[H_{0}, E_{2}]$
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$=E_{1},$ $[E_{1}, E_{2}]=\lambda H_{0}$}, is a direct sum of ideals and, consequently, it follows
from Lemma (3.4) that $M$ splits isometrically as $M_{1}^{(2)}\times M_{2}^{(n-2)}$ . Moreover $M_{1}$

is a 2-dimensional space of constant curvature, positive if $\lambda<0$, negative if
$\lambda>0$ and zero if $\lambda=0$ . This gives (1) in (4.7).

If $\mu\neq 0,$ $\lambda=0$ ; then $\mathfrak{m}$ is an ideal in $\mathfrak{g}$ and applying Lemma (3.3) we obtain
case (2).

Assume now that $\lambda\neq 0,$ $\mu\neq 0$ . Let $\mathfrak{g}_{1}=\mathfrak{g}/\mathfrak{z}(\mathfrak{g})$ . Then $\mathfrak{g}_{1}$ is a split Lie
algebra:

(4.9) $\mathfrak{g}_{1}\cong \mathfrak{g}_{\lambda}\oplus \mathfrak{L}$ .

If $C$ denotes the analytic subgroup of $G$ whose Lie algebra is $\mathfrak{z}(\mathfrak{g})$ , then $C$ is
closed and normal. Moreover $C$ acts freely on $M$ since $C\cap H=\{e\}$ . Therefore

$C\rightarrow M\rightarrow M/C$

is a principal fiber bundle. The group $G/C$ acts as an effective group of
isometries on $M/C$, and the isotropy subgroup at any point is isomorphic to
$SO(2)$ . It follows then from (4.9) that $M/C$ is as in (1) of (4.7). We thus
obtain case (3).

Finally, suppose $\tilde{\mathfrak{m}}^{\prime}\neq\tilde{\mathfrak{m}}$ . Let $X\in\tilde{\mathfrak{m}}$ be a unit vector such that $\alpha(X)=a>0$ .
As in (2.11) we have $[\mathfrak{m}_{1}, \mathfrak{m}_{1}]_{\mathfrak{h}}=0$ and in fact $[\mathfrak{m}_{1}, \mathfrak{m}_{1}]\subseteqq\tilde{\mathfrak{m}}^{\prime}$ . Therefore $\mathfrak{m}$ is an
ideal in $\mathfrak{g}$ and using (3.3) we obtain case (2) again. Notice that $\tilde{\mathfrak{m}}^{\prime}$ is an ideal
in $\mathfrak{m}$ and $\mathfrak{m}/\tilde{\mathfrak{m}}^{\prime}$ is isomorphic to the 3-dimensional Lie algebra

(4.10) {X, $E_{1},$ $E_{2}$ : $[X,$ $E_{i}]=aE_{i},$ $[E_{1},$ $E_{2}]=0$}.

(4.11) EXAMPLE. Suppose dim $M=3$ , hence dim $G=4$ and we are in the situ-
ation studied by E. Cartan in [3]. Case (1) Theorem (4.7) gives, of course, an
isometric product of a 2-dimensional space of constant curvature and a line.
In case (2) we have two possibilities depending upon whether $\tilde{\mathfrak{m}}^{\prime}=\tilde{\mathfrak{m}}$ or $\tilde{\mathfrak{m}}^{\prime}\neq\tilde{\mathfrak{m}}$ .
In the Prst situation $M$ is isometric to the Heisenberg group (strictly upper
triangular $3\times 3$-matrices), endowed with a left-invariant metric, while in the
second $M$ is a solvable Lie group whose Lie algebra is described by (4.10).
Moreover, with respect to any left-invariant metric $M$ will have strictly
negative curvature [4].

The most interesting case is that described in (3) of (4.7). If $\lambda>0$ , then
$M$ is a principal fiber bundle over a space of constant negative curvature and
hence it is diffeomorphic to Euclidean 3-space. If $\lambda<0$ , however, one can
check that for $\mu^{2}=-\lambda,$ $M$ has constant positive curvature and is, therefore,
diffeomorphic to $S^{3}$ . Since a change in the metric in the direction of $Z$

allows us to change the value of $\mu$ arbitrarily we see that if $\lambda<0$ then $M$ is
diffeomorphic to $S^{3}$ although not, in general, isometric.
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(4.12) REMARK. In the case dim $M=4$, the results in this section complete

the classification in [7], where the cases $\tilde{\mathfrak{m}}^{\prime}=\tilde{\mathfrak{m}}$ and $\mu=0$ are treated.

5. Some special cases.

In this section we apply the preceding results to give a classification of
the n-dimensional connected, simply-connected homogeneous Riemannian
manifolds $M=G/H$ where $H\cong SO(k)\times K,$ $n-3\leqq k\leqq n$ and such that the linear
isotropy representation of $H$ is standard. As is well-known, if $k=n$ then $M$

is a space of constant curvature; while if $k=n-1$ then $M$ is either an
n-dimensional space of constant negative curvature or a product of an $(n-1)-$

dimensional space of constant curvature and a line [6].

If $k=n-2$ and $K=SO(2)$ it follows from Theorem $C$ that $M$ is isometri-
cally equivalent to a product $M=M_{1}^{(n-2)}\times M_{2}^{(2)}$ of simply-connected spaces of
constant curvature. The case $K=\{e\}$ has been studied by Kobayashi and
Nagano in [7]; however their results turn out to be valid only under the
additional assumption that $M$ be naturally reductive. When this restriction is
removed one obtains a one-parameter family of new examples. The case
$H=SO(2)$ has been studied in Section 4; for $n-2\geqq 3$ we have
(5.1) THEOREM. Let $M=G/H$ be a simply-connected n-dimensional homogeneous
Riemannian manifold and assume that $H\cong SO(n-2),$ $n-2\geqq 3$ and the linear
isoiropy $rePresentation$ of $H$ is the standard one. Then $M$ is one of the follow-
ing:

(1) $M$ is isometric to a product $M_{1}^{(n-2)}\times M_{2}^{(2)}$ where $M_{1}$ is a simPly-connected
$(n-2)$-dimensional space of constant curvature and $M_{2}$ is a simply-cOnnected Lie
group with a left-invariant metric. Moreover $G\cong I_{0}(M_{1})\times M_{2}$ .

(2) $M\cong M_{1}^{(n-1)}\times R$, where $M_{1}$ is a space of constant negative curvature and
$G\cong G_{1}\times R$, where the Lie algebra $\mathfrak{g}_{1}$ of $G_{1}$ is the one described by Kobayashi in
[6, Theorem 3.3].

(3) $M$ is isometric to a solvable Lie group $M(\lambda),$ $\lambda\neq 0$, with a left-invariant
metric. For $\lambda>0,$ $M(\lambda)$ has strictly negative curvature, constant for $\lambda=1$ .
Moreover, $M(\lambda)$ is a Principal fiber bundle, over an $(n-1)$-dimensional $sPace$ of
constant negative curvature.

PROOF. Let $\mathfrak{g},$

$\mathfrak{h}$ denote the Lie algebras of $G$ and $H$, respectively. Let
$\mathfrak{m}$ be an $ad(\mathfrak{h})$-invariant complement of $\mathfrak{h}$ in $\mathfrak{g}$ , and $\mathfrak{m}=\mathfrak{m}_{1}+\tilde{\mathfrak{m}}$ as in (2.1). By
(2.4) we have [rk, $\mathfrak{m}_{1}$] $\subseteqq \mathfrak{m}_{1}$ . If $[\tilde{\mathfrak{m}}, \mathfrak{m}_{1}]=0$ then Theorem A implies case (1).

Assume then that [rk, $\mathfrak{m}_{1}$] $\neq 0$ , and let $\alpha\in\tilde{\mathfrak{m}}^{*}$ be as in (2.7). Choose a unit
vector $X\in\tilde{\mathfrak{m}}^{\prime}=Ker(\alpha)$ and let $Y\in\tilde{\mathfrak{m}}$ be such that \langle X, $ Y\rangle$ $=0$ and $\alpha(Y)=1$ . Up
to scalar multiplication of the inner product $\langle, \rangle$ , we can assume that $\Vert Y\Vert=1$ .
Notice that these choices determine a particular metric in each homothety
class. By Proposition (2.9) we have that
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$[Y, X]=\lambda X$ , $\lambda\in R$ .
If $\lambda=0$, then the decomposition

$\mathfrak{g}=(\mathfrak{h}+\mathfrak{m}_{1}+RY)\oplus RX$

is a direct sum of ideals and applying Lemma (3.4) we obtain case (2).

If $\lambda\neq 0$, then $\mathfrak{m}$ is a subalgebra of $\mathfrak{g}$ and hence by Lemma (3.3) $M$ is
isometric to a Lie group $M(\lambda)$ with a left-invariant metric. The derived
algebra $[\mathfrak{m}, \mathfrak{m}]=\mathfrak{m}_{1}+RX$ is an abelian ideal of codimension 1. Therefore $\mathfrak{m}$

is solvable and, moreover, we can apply Theorem 1 in [4] to conclude that
if $\lambda>0M(\lambda)$ has negative sectional curvature. The last statement in (3)

follows from Remark (3.6).
(5.2) PROPOSITION. The sectional curvatures of $M(\lambda)$ satisfy:

(i) For $\lambda>0,$ $\min(-1, -\lambda^{2})\leqq K\leqq\max(-1, -\lambda^{2})$

(ii) For $\lambda<0,$ $\min(-1, -\lambda^{2})\leqq K\leqq-\lambda$ .
PROOF. The Lie algebra $\mathfrak{m}(\lambda)$ decomposes as

$\mathfrak{m}(\lambda)=\mathfrak{m}_{1}+RX+RY$

with $\alpha(Y)=1$ and $[Y, X]=\lambda X$. It is enough to consider 2-dimensional sub-
spaces of $\mathfrak{m}(\lambda)$ of the form

$\mathfrak{p}=span_{R}$ {a $Y+bZ_{1},$ $Z_{2}$ }

where $Z_{i}\in \mathfrak{m}_{1}+RX,$ $i=1,2$ , are orthonormal and $a^{2}+b^{2}=1$ . We then have [4]

(5.3) $K(\mathfrak{p})=-a^{2}\langle T^{2}Z_{2}, Z_{2}\rangle+b^{2}(\langle TZ_{1}, Z_{2}\rangle^{2}-\langle TZ_{1}, Z_{1}\rangle\langle TZ_{2}, Z_{2}\rangle)$

where $T=ad(Y):\mathfrak{m}_{1}+RX\rightarrow \mathfrak{m}_{1}+RX$. If we now write

$Z_{i}=Z_{i}^{\prime}+z_{i}X$ , $Z_{i}^{\prime}\in \mathfrak{m}_{1}$ , $z_{i}\in R$ ,

then $TZ_{i}=Z_{i}+(\lambda-1)z_{i}X$ and (5.3) becomes

$K(p)=$ $a^{2}\langle Z_{2}+(\lambda^{2}-1)z_{2}X, Z_{2}\rangle^{2}+b^{2}(\langle Z_{1}+(\lambda 1)z_{1}X, Z_{2}\rangle^{2}$

$-\langle Z_{1}+(\lambda-1)z_{1}X, Z_{1}\rangle\langle Z_{2}+(\lambda-1)z_{2}X, Z_{2}\rangle)$

$=-1-[(a^{2}(\lambda^{2}-1)+b^{2}(\lambda-1))z_{2}^{2}+b^{2}(\lambda-1)z_{1}^{2}]$ .
It is then clear that for $\lambda=1,$ $K\equiv-1$ . If $\lambda>1$ we have $K(\mathfrak{p})\leqq-1$ ; on the

other hand the expression between brackets attains its maximum for $z_{1}=0$,
$z_{2}=1,$ $a=1,$ $b=0$ and thus $-\lambda^{2}\leqq K(\mathfrak{p})\leqq-1$ . Similarly, if $0<\lambda<1,$ $-1\leqq K(\mathfrak{p})$ and
the maximum of $K(\mathfrak{p})$ is attained at the same point giving $-1\leqq K(\mathfrak{p})\leqq-\lambda^{2}$ .
This proves (i); an analogous argument shows (ii).
(5.4) COROLLARY. If $\lambda_{1}\neq\lambda_{2}$ then $M(\lambda_{1})$ is not homothetic to $M(\lambda_{2})$ .

The spaces $M(\lambda),$ $\lambda>0$ , constitute therefore a “ one-parameter “ family of
solvable Lie groups admitting a left-invariant metric of strictly negative
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curvature. These spaces have been studied by Heintze [4] and by Azencott
and Wilson [1], [2], who have given an infinitesimal characterization of the
full isometry group of such a solvmanifold. In our case we have
(5.5) THEOREM. Let $M(\lambda)=G/H,$ $0<\lambda\neq 1$ , be as in (3) of Theorem (5.1). Then
$G\cong I_{0}(M(\lambda))$ .

PROOF. If dim $I_{0}(M(\lambda))>\dim G$ , then the isotropy subgroup of $I_{0}(M(\lambda))$ at
the origin $0=\{H\}\in M(\lambda)$ must be isomorphic to one of the following: $SO(n)$ ,
$SO(n-1)$ or $SO(n-2)\times SO(2)$ . Since for $\lambda\neq 1,$ $M(\lambda)$ is not a space of constant
curvature it is clear that the $SO(n)$-case cannot occur. In either of the
remaining two cases $M(\lambda)$ would have a Euclidean factor which is impossible
since $M(\lambda)$ has strictly negative curvature.

We shall next consider the case $H=SO(n-3)\times K$. If $K\cong SO(3)$ then
Theorem $C$ implies that $M\cong M_{1}^{(n-3)}\times M_{2}^{(3)}$ , where $M_{i}$ is a simply-connected
space of constant curvature and $G\cong I_{0}(M_{1})\times I_{0}(M_{2})$ . If $K=\{e\}$ and $n-3\geqq 3$ ,
then we may aPply Theorem A to conclude that either $M$ is isometric to a
product $M\cong M_{1}^{(n-3)}\times M_{2}^{(3)}$ , where $M_{1}$ is an $(n-3)$-dimensional space of constant
curvature and $M_{2}$ is a 3-dimensional simply-connected Lie group with a left-
invariant metric, (For a classification of these Lie groups together with their
curvature properties, relative to a left-invariant metric, we refer to Milnor
[10]), or $M$ is itself isometric to a Lie group with a left-invariant metric.
We recall how this latter case arises: Let

$\mathfrak{g}=\mathfrak{h}+\mathfrak{m}_{1}+6\tau$

be as in (2.1), and assume $\tilde{\mathfrak{m}}^{\prime}\neq\tilde{\mathfrak{m}}$ . By (2.11) we then have that $\mathfrak{m}_{1}$ is an
abelian ideal in $\mathfrak{g}$ . As before let $Y\in\tilde{\mathfrak{m}}$ , be a unit vector, orthogonal to ti ’

and such that $\alpha(Y)=1$ . The study of the Lie algebra $\mathfrak{m}$ (and thus of $\mathfrak{g}$ ) now
reduces to the study of the 3-dimensional sub-algebra $\tilde{\mathfrak{m}}$ . We consider the
following cases:

(i) [rk, $\tilde{\mathfrak{m}}$] $=0$ . In particular the decomposition

$\mathfrak{g}=(\mathfrak{h}+\mathfrak{m}_{1}+RY)\oplus\tilde{\mathfrak{m}}^{\prime}$

is a direct sum of ideals and therefore $M$ is isometric to a product
$M\cong M_{1}^{(n-2)}\times R^{2}$ where $M_{1}$ is an $(n-2)$-dimensional space of constant negative
curvature.

(ii) $[\tilde{\mathfrak{m}}, \tilde{\mathfrak{m}}]=\tilde{\mathfrak{m}}^{\prime}$ , $i$ . $e$ . $\dim[\tilde{\mathfrak{m}}, \tilde{\mathfrak{m}}]=2$ . We first prove
(5.6) LEMMA. $\tilde{\mathfrak{m}}^{\prime}$ is an abelian ideal.

PROOF. Let $X_{1},$ $X_{2}$ be a basis of $\tilde{\mathfrak{m}}^{\prime}$ such that

$[X_{1}, X_{2}]=\lambda X_{2}$ .

Let $[Y, X_{i}]=\sum_{j=1}^{2}a_{ij}X_{j},$ $i=1,2$ . Then
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$\lambda[Y, X_{2}]=[Y, [X_{1}, X_{2}]]=[[Y, X_{1}],$ $X_{2}$] $+[X_{1}, [Y, X_{2}]]$

and we have

$\lambda\sum_{j=1}^{2}a_{2j}X_{j}=\lambda a_{11}X_{2}+\lambda a_{22}X_{2}$

which implies that if $\lambda\neq 0,$ $a_{11}=a_{21}=0$ . But this would mean [rk, $\tilde{\mathfrak{m}}$] $\subseteqq RX_{2}$ ,
contradicting assumption (ii). Hence $\lambda=0$ and (5.6) is proved.

It is clear now that in this case the derived algebra $[\mathfrak{m}, \mathfrak{m}]=\mathfrak{m}_{1}+\tilde{\mathfrak{m}}^{\prime}$ is an
abelian ideal of codimension 1. We can therefore apply Theorem 1 in [4] to
conclude
(5.7) PROPOSITION. Let $D$ (respectivelv $S$) denote the symmetric (respectively

skew-symmetric) part of the linear transformation
$ad(Y):\tilde{\mathfrak{m}}^{\prime}\rightarrow\tilde{\mathfrak{m}}^{\prime}$ .

Then $M$ admits a left-invariant metric with strictly negative curvature if and
only if

(a) $D$ is positive definite
(b) $D^{2}-DS-SD$ is positive definite.
If in addition we assume that rk is unimodular $(i. e. tr(adY)=0)$ then a

straightforward argument shows that there exists a basis $X_{1},$ $X_{2}$ of $\tilde{\mathfrak{m}}^{\prime}$ such
that $[Y, X_{i}]=\mu X_{j},$ $i\neq j,$ $\mu\neq 0$ . Therefore $\tilde{\mathfrak{m}}\cong E(1,1)$ , the Lie algebra of the
group of rigid motions of Minkowski 2-space [10]. Moreover it follows from
(5.7) that $M$ does not admit a left-invariant metric with strictly negative
curvature.

On the other hand if $\tilde{\mathfrak{m}}$ is not unimodular then tr(ad $Y$ ) and det(ad $Y$ )

are a complete set of isomorphism invariants for the Lie algebra $m[10]$ . In
this case the ideal $\tilde{\mathfrak{m}}^{\prime}$ may be characterized as the unimodular kernel of $\tilde{\mathfrak{m}}$ .

(iii) $\dim[\tilde{\mathfrak{m}}, \tilde{\mathfrak{m}}]=1$ . In this case $[\mathfrak{m}, \mathfrak{m}]$ is an abelian ideal of codimension
2 and [4, Proposition 2] implies that $M$ does not admit a left-invariant metric
with strictly negative curvature. Moreover, rk is not unimodular and the
trace of $ad(Y)$ acting on the unimodular kernel of $\tilde{\mathfrak{m}}$ is a complete isomorphism
invariant for $\mathfrak{m}$ .

Now we consider the case $M=G/H,$ $H\cong SO(n-3)\times SO(2),$ $n-3\geqq 3$ . In this
case dim $\tilde{\mathfrak{m}}=1$ and $\mathfrak{g}$ decomposes according to (3.1) as

$\mathfrak{g}=\mathfrak{h}_{1}+\mathfrak{h}_{2}+\mathfrak{m}_{1}+\mathfrak{m}_{2}+\iota \mathfrak{k}\iota$ ,

$\mathfrak{h}_{1}\cong so(n-3)$ , $\mathfrak{h}_{2}\cong so(2)$ .
We set $\tilde{\mathfrak{n}}\iota_{1}=\mathfrak{h}_{2}\dashv- \mathfrak{m}_{2}+\tilde{\mathfrak{m}}$ . We have

$[\mathfrak{h}_{1}, m_{1}]=0$ , $[m_{1}, \mathfrak{m}_{1}]\subseteqq \mathfrak{n}\iota_{1}$ .
Let $\tilde{\mathfrak{m}}_{1}^{f}=\{X\in\uparrow t1_{1}\sim \lceil X, (|\downarrow[]-0\}$ . If $\hslash t_{1}=\uparrow ft_{1}^{\prime}$ then $\mathfrak{t}1$ is a split Lie algebra
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$\mathfrak{g}=g_{1}\oplus \mathfrak{g}_{2}$ where
$g_{1}=\mathfrak{h}_{1}+\mathfrak{m}_{1}$

$\mathfrak{g}_{2}=\mathfrak{h}_{2}+\mathfrak{m}_{2}+\tilde{\mathfrak{m}}$ .

It then follows from (3.4) that
(5.8) $M$ is isometric to a product

$M\cong M_{1}^{(n-3)}\times M_{2}^{(3)}$

where $M_{1}$ is a simply-cOnnected space of constant curvature and $M_{2}$ is a
3-dimensional simply-cOnnected mamfold admitting a 4-dimensional transitive
group of isometries. These spaces have been classified in (4.11).

Assume now $\tilde{\mathfrak{m}}_{1}^{\prime}\neq\tilde{\mathfrak{m}}_{1}$ . Then dim $\tilde{\mathfrak{m}}_{1}^{\prime}=3$ . Moreover, $\mathfrak{h}_{2}\subseteqq\tilde{\mathfrak{m}}_{1}^{\prime}$ and since $\tilde{\mathfrak{m}}_{1}^{\prime}$ is
an ideal, $\mathfrak{m}_{2}=[\mathfrak{h}_{2}, \mathfrak{m}_{2}]\subseteqq\tilde{\mathfrak{m}}_{1}^{\prime}$ . Hence

$\iota f\iota_{1}^{\prime}=\mathfrak{h}_{2}+\mathfrak{m}_{2}$ .
Let $Y$ be a unit vector in $\tilde{\mathfrak{m}}$ such that ad $Y:\mathfrak{m}_{1}\rightarrow \mathfrak{m}_{1}$ is the identity map
(again this is possible up to homothety). Furthermore, as in Section 4 we can
also assume (changing $\mathfrak{m}_{2}$ if necessary) that there exists $\lambda\in R$ such that

$[Y, X]=\lambda X$ , $X\in \mathfrak{m}_{2}$ .

We have also shown in Section 4 that $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]\subseteqq\tilde{\mathfrak{m}}$ . Therefore if $E_{1},$ $E_{2}$ is a
basis of $\mathfrak{m}_{2}$ we have

$[E_{1}, E_{2}]=\alpha Y$ , $\alpha\in R$ .
But if $0\neq Z\in \mathfrak{m}_{1}$ , we get

$0=[[E_{1}, E_{2}],$ $Z$] $=\alpha[Y, Z]=\alpha Z$ .
Consequently $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]=0$, the subalgebra $\mathfrak{m}$ is solvable and the derived algebra
$[\mathfrak{m}, \mathfrak{m}]=\mathfrak{m}_{1}+\mathfrak{m}_{2}$ is an abelian ideal of codimension 1.

If $\lambda=0$ then $\mathfrak{g}$ splits as $\mathfrak{g}=\mathfrak{g}_{1}\oplus \mathfrak{g}_{2}$ , with

$\mathfrak{g}_{1}=\mathfrak{h}_{1}+\mathfrak{m}_{1}+RY$ , $\mathfrak{g}_{2}=\mathfrak{h}_{2}+\mathfrak{m}_{2}$

and therefore

It is straightforward to check that (5.2), (5.4) and (5.5) carry over to this
case without modiPcations.

(5.9) $M$ is isometric to a pr0duct $M_{1}^{(n-2)}\times R^{2}$ , where $M_{1}$ is a space of constant
negative curvature. Moreover $G\cong G_{1}\times E(2)$ , where $G_{1}$ is the group described in
[6, Theorem 3.3] and $E(2)$ is the group of motions of Euclidean 2-space.

For $\lambda\neq 0,$ $M$ is isometric to a solvable Lie group $M(\lambda)$ with a left-invariant
metric and it follows from [4, Theorem 1] that
(5.10) If $\lambda>0,$ $M(\lambda)$ has strictly negative curvature; for $\lambda<0,$ $M(\lambda)$ has both
positive and negative sectional curvatures.
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Finally, we consider the case of a 5-dimensional homogeneous Riemannian
manifold $M=G/H$ where $H\cong SO(2)\times SO(2)$ and the linear isotropy representa-
tion of $H$ is equivalent to $\rho_{2}\oplus\rho_{2}\oplus\theta_{1}$ . As in (3.1) we can write

$\mathfrak{g}=\mathfrak{h}_{1}+\mathfrak{h}_{2}+\mathfrak{m}_{1}+\mathfrak{m}_{2}+\iota I\iota$ .
Let $\tilde{\mathfrak{m}}_{1}=\mathfrak{h}_{2}+\mathfrak{m}_{2}+\tilde{\mathfrak{m}}$ , ri $2=\mathfrak{h}_{1}+\mathfrak{m}_{1}+\tilde{\mathfrak{m}}$ ; then [ $\mathfrak{h}_{i}$ , ti $i$] $=0,$ $[\tilde{\mathfrak{m}}_{i}, \mathfrak{m}_{i}]\subseteqq \mathfrak{m}_{i}$ and $[\tilde{\mathfrak{m}}_{i},\tilde{\mathfrak{m}}_{i}]$

$\subseteqq\tilde{\mathfrak{m}}_{i}^{\prime}=\{X\in\tilde{\mathfrak{m}}_{i} : [X, \mathfrak{m}_{i}]=0\}$ .
If $\tilde{\mathfrak{m}}_{1}\neq\tilde{\mathfrak{m}}_{1}^{f}$ , then $\mathfrak{g}_{2}=\mathfrak{h}_{2}+\mathfrak{m}_{1}+\mathfrak{m}_{2}+\tilde{\mathfrak{m}}$ isasubalgebra ofgandthe corresponding

analytic subgroup $G_{2}\subseteqq G$ acts transitively on $M$ with isotropy $H_{2}\cong SO(2)$ .
Hence this case reduces to the one studied in Section 4.

We can therefore assume that $\tilde{\mathfrak{m}}_{i}=\tilde{\mathfrak{m}}_{i}^{\prime}$ for $i=1,2$ . In particular we have

$[\mathfrak{m}_{1},$ $M=[\mathfrak{m}_{1}, ffi]=[ttb, \uparrow f\iota]=0$ ,

$[m_{i}, \mathfrak{m}_{i}]\subseteqq \mathfrak{h}_{i}+\iota I\iota$ .

Thus $\tilde{\mathfrak{m}}$ is an ideal in $\mathfrak{g}$ and the quotient $\mathfrak{g}/\tilde{\mathfrak{m}}$ is a split Lie algebra

$\mathfrak{g}/\theta t\cong \mathfrak{g}_{1}\oplus \mathfrak{g}_{2}$ , $\mathfrak{g}_{i}=\mathfrak{h}_{i}+\mathfrak{m}_{i}+\tilde{\mathfrak{m}}/\tilde{\mathfrak{m}}$ .
Moreover, the one-parameter group exp $\tilde{\mathfrak{m}}$ acts freely on $M$ and hence $M$ is a
principal fiber bundle over $M/\exp\tilde{\mathfrak{m}}$ . It is easy to check that, relative to the
induced metric, the space splits isometrically as $M_{1}\times M_{2}$ where $M_{i},$ $i=1,2$ is
a simply-connected 2-dimensional space of constant curvature.
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