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\S 1. Introduction.

D. Sullivan showed in [1] and [2] that the rational homotopy type of a
simply connected simplicial complex can be algebraically described by its
minimal model which is constructed from the Q-polynomial forms on it. If
the minimal model of a simplicial complex $K$ is isomorphic to the one obtained
from its cohomology ring, the rational homotopy type of $K$ is called a formal
consequence of the cohomology ring. Complexes, having such a rational
homotopy type, enjoy interesting homotopy properties ([2]). The purpose of
this paper is to characterize such complexes by the existence of a certain kind
of self maps. Since a finite CW-complex has the same homotopy type as a
polyhedron we work in the category of simply connected finite CW-complexes.
Our main result is

THEOREM. Let $K$ be a simply connected finite CW-complex. Then the fol-
lowing three conditions on $K$ are equivalent.
(1) The rational homotopy type of $K$ is a formal consequence of the cohomology
ring.
(2) For any integer $r$, there exists a multiple $s$ of $r$ and a map $f:K\rightarrow K$ such
that $f^{*}=s^{*}Id:H^{*}(K;Z)\rightarrow H^{*}(K;Z)$ .
(3) There exists a rational number $t(t\neq 0, \pm 1)$ and a map $F:K_{(0)}\rightarrow K_{(0)}$ such
that $F^{*}=t^{*}Id:H^{*}(K_{(0)} ; Z)\rightarrow H^{*}(K_{(0)} ; Z)$ , where $K_{(0)}$ denotes the localization of
$K$ at zero and the homomorphism $s^{*}Id$ denotes the homomorphism $s^{i}Id$ for each
degree $i$ .

From this Theorem, we can deduce
COROLLARY 1. If the rational homotopy type of $K$ is a formal consequence

of the cohomology ring then $K$ is O-universal.
COROLLARY 2. Let $K$ be a simply connected finite CW-complex. Then there

exists a simply connected finite CW-complex $\tilde{K}$ satisfying the following conditions:
(1) $H^{*}(K;Q)=H^{*}(\tilde{K};Q)$ as a ring,
(2) $\tilde{K}$ is O-universal.

This paper is organized as follows:
In \S 2 we give a brief account of minimal models and recall two Sullivan’s
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theorems which shall be quoted in the later. In \S 3 we prepare some lemmas
and in \S 4 the proofs of Theorem and Corollaries are given.

After writing this paper I received a letter from Professor D. Sullivan
which contained many helpful suggestions and I knew that the equivalence
(1) $\in\Rightarrow(3)$ was proved in [6]. I would like to take this opportunity to thank
him and also Professor S. Sasao for his helpful advice.

\S 2. Minimal models.

Throughout this paper a D. G. A. means a differential graded commutative
algebra $A^{*}$ over $Q$ with $H^{0}(A^{*})=Q,$ $H^{1}(A^{*})=0$ . Let $A^{*}$ be a D. G. A. Then
there exists a D. G. A. $m(A^{*})$ , unique up to isomorphism, satisfying the fol-
lowing conditions (Theorem l.l(a) of [1])
(i) $m(A^{*})$ is free ( $i$ . $e$ . relations in the algebra are only associativity, and
graded commutativity).
(ii) $d(m(A^{*}))$ is decomposable, where $d$ is the differential operator.
(iii) There is a D. G. A. map $\rho$ : $m(A^{*})\rightarrow A^{*}$ which induces an isomorphism on
the cohomology ring.

The D. G. A. $m(A^{*})$ is called the minimal model of $A^{*}$ .
For a simply connected finite complex $K$, the D. G. A. $A^{*}(K)$ is constructed

from Q-polynomial forms on $K$ and its minimal model is called the minimal
model of $K$ which we denote by $m^{*}(K)$ . Let $m^{*}(K)(n)$ denotes the subalgebra
of $m^{*}(K)$ generated by elements of $degree\leqq n$ . Then $m^{*}(K)$ is constructed
from $m^{*}(K)(n)$ inductively as follows ([2]). Suppose that the homomorphism

$(\rho|m^{*}(K)(n-1))^{*}:$ $H^{i}(m^{*}(K)(n-1))\rightarrow H^{i}(A(K)^{*})$

is isomorphism for $i\leqq n-1$ and monomorphism for $i=n$ . Then we can choose
generators $\alpha_{l}^{n}$ so that $\rho(\alpha_{l}^{n})$ forms basis for the cokernel of

$(\rho|m^{*}(K)(n-1))$ : $H^{n}(m^{*}(K)(n-1))\rightarrow H^{n}(A^{*}(K))$

and $\{\beta_{m}^{n}\}$ so that $d\beta_{m}^{n}$ forms a basis for the kernel of

$(\rho|m^{*}(K)(n-1))^{*}:$ $H^{n+1}(m^{*}(K)(n-1))\rightarrow H^{n+1}(A^{*}(K))$ .
Let $m^{*}(K)(n)=m^{*}(K)(n-1)\{\alpha_{l}^{n}, \beta_{m}^{n}\}$ . Then $(\rho|m^{*}(K)(n))^{*}$ is isomorphism for
$i\leqq n$ and monomorphism for $i=n+1$ . Here $m^{*}(K)(n-1)\{\alpha_{l}^{n}, \beta_{m}^{n}\}$ denotes the
polynomial algebra if $n$ is even and exterior algebra if $n$ is odd which are
generated by $\alpha_{l}^{n}$ and $\beta_{m}^{n}$ over $m^{*}(K)(n-1)$ .

The $rationa1_{-}^{Y}homotopy$ type of $K$ is called a formal consequence of the
cohomology ring if $m^{*}(K)$ is isomorphic to the minimal model of $H^{*}(K;Q)$

with $d=0$ . We abbreviate $K$ is a formal consequence of the cohomology
ring” to $K$ is a $f$ . $c$ . .
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Let $V_{i}$ and $C_{i}$ be subspaces spanned by $\{\alpha_{l}^{i} ; \beta_{m}^{i}\}$ and $\{\alpha^{i}i\}$ respectively.
Then Sullivan showed the following theorems.

THEOREM $S_{1}$ (Theorem (4.1) of [1]). $K$ is a $f$. $c$ . if and only if there is in
each $V_{i}$ a complementary subspace $N_{i}$ to $C_{i}(V_{i}=C_{i}\oplus N_{i})$ such that any closed
form in $I(\oplus N_{i})$ is exact, where $I(\oplus N_{i})$ denotes the ideal generated by $N_{i}$ .

THEOREM $S_{2}$ (Theorem (1.2) of [1]). Let $A^{*},$ $B^{*}$ be D. G. A. and $m^{*}()$ be
a minimal model $ofa$ D. G. A. and letg: $m^{*}()\rightarrow A^{*},$ $\varphi:B^{*}\rightarrow A^{*}$ be D. G. A. maps
and supp0se that $\varphi$ induces isomorphism on cohomology. Then there exists a
D. G. A. map $\tilde{g}$ : $m^{*}()\rightarrow B^{*}$ , unique up to homotopy, such that $\varphi^{\circ}\tilde{g}=g$ .

Especially, we have
COROLLARY $S_{2}$ . Let $A^{*},$ $B^{*}$ be D. G. A. and $\varphi:A^{*}\rightarrow B^{*}be$ any D. G. A. map.

Then there exists a D. G. A. map $\phi$ : $m^{*}(A^{*})\rightarrow m^{*}(B^{*})$ uniquely up to homotopy
such that the following diagram commutes.

$ m(B^{*})m(A^{*})\downarrow\hat{\varphi}\rightarrow\rightarrow\rho_{B}\rho_{A}B^{*}A^{*}\downarrow\varphi$

where $\rho_{A}$ and $\rho_{B}$ are D. G. A. maps which induces isomorphisms on the cohomo-
logy.

\S 3. Some lemmas.

In this section we use the same notation as in \S 2.
LEMMA 3.1. Let $K$ be a $f$. $c$ . Then any skeleton of $K$ is also a $f$. $c$ .
PROOF. Since $K$ is a $f$ . $c.$ , there exists a family $N_{i}$ of subspaces satisfying

the conditions in Theorem $S_{1}$ . Let $K^{n}$ be the n-skeleton of $K$. Then there is
a D. G. A. map

$T_{n}$ : $m^{*}(K)\rightarrow m^{*}(K^{n})$

such that $m^{*}(K)(n-1)$ is mapped isomorphically to $m^{*}(K^{n})(n-1)$ . Let $\overline{N}_{i}=$

$T_{n}(N_{i})$ for $i\leqq n-1$ , and $N_{n}$ be an arbitrary complement to $C_{n}$ , and $\overline{N}_{i}=V_{i}$ for
$i>n$ . Let $d\alpha=0(\alpha\in I(\oplus\overline{N}_{i}))$ . If deg $\alpha>n$ it is trivial that $\alpha$ is exact. If
deg $\alpha\leqq n$ then we have

$\alpha\in I(\bigoplus_{i=2}^{n-2}\overline{N}_{i})=T_{n}(I(\bigoplus_{i=2}^{n-2}N_{i}))$

since there is no element in degree one. Hence $\alpha$ is exact and the proof is
completed by Theorem $S_{1}$ . $q$ . $e$ . $d$ .

LEMMA 3.2. Let $K$ be an $n+1$ dimensional comPlex. SuppOse that $K^{n}$ is a
$f$. $c.$ , and that $\overline{N}_{i}$ is a comPlementary subspace to the subspace generated by the
closed forms in $V_{i}$ such that any closed forms in $I(\oplus\overline{N}_{i})$ is exact. Then $K$ is a
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$f$. $c$ . if and only if any closed form in $T_{n}^{-1}(I(\oplus\overline{N}_{i}))$ is exact in $m^{*}(K)$ .
PROOF. Let $K$ be a $f$ . $c.$ , and let $N_{i}$ be a family satisfying the conditions

in Theorem $S_{1}$ . Then we have

$T_{n}^{-1}(I(\oplus\overline{N}_{i}))=I(\oplus N_{i})$ .
Hence any closed element in $T_{n}^{-1}(I(\oplus\overline{N}_{i}))$ is exact. Conversely assume that
any closed element in $T_{n}^{-1}(I(\oplus\overline{N}_{i}))$ is exact. Now let $N_{i}=T_{n}^{-1}(N_{i})$ for $i\leqq n-1$

and let $N_{i}$ be any complementary subspace to the subspace spanned by the
closed elements in $V_{i}$ for $i\geqq n$ . Let $\beta(\in I(\oplus N_{i}))$ be any closed element. If
deg $\beta>n+1$ it is trivial that $\beta$ is exact. If deg $\beta=i\leqq n+1$ , we have

$\beta\in I(\bigoplus_{i=2}^{n-1}N_{i})=T_{n}^{-1}(I(\bigoplus_{i=2}^{n-1}\overline{N}_{i}))$

since there is no element in degree one. Thus $\beta$ is exact. $q$ . $e$ . $d$ .
Now we fix algebra generators $\{\alpha_{l}^{n}, \beta_{m}^{n} ; n\geqq 2,1\leqq l\leqq P1\leqq m\leqq q\}$ of $m^{*}(K)$

as in (2.1) such that $d$ is injective on the subspace $C_{n}$ for each $n$ .
LEMMA 3.3. Suppose that there exist a rational number $t(t\neq 0, \pm 1)$ and a

D. G. A. map $F:m^{*}(K)\rightarrow m^{*}(K)$ such that the induced homomorphism is $F^{*}=t^{*}Id$

on cohomology. Then we have a direct sum decomp0siti0n

$m^{i}(K)=\bigoplus_{k\geqq 0}W_{k}^{i}$ , $I(\oplus N_{n})^{i}=\bigoplus_{k\geqq 1}W_{k}^{i}$ $(i=0,1, 2, )$

such that $F(a)$ is cohomologous to $t^{i+k}a$ for $a\in W_{k}^{i}$ , where $I(\oplus N_{n})^{i}$ denotes
elements of degree $i$ in $I(\oplus N_{n})$ .

PROOF. Since $m^{*}(K)=\bigcup_{n}m^{*}(K)(n)$ we use the induction on $n$ . Suppose

that we have a direct sum decomposition in each degree $i$

$(*)$ $m^{i}(K)(n)=\bigoplus_{k\geqq 0}W_{k,n}^{i}$ , $I(\bigoplus_{m=2}^{i}N_{m})^{i}=\bigoplus_{k\geqq 1}W_{k,n}^{i}$

such that $F(\alpha)$ is cohomologous to $ t^{i+k}\alpha$ for $\alpha\in W_{k.n}^{i}$ . Let $V_{0}^{n+1}$ be a subspace
of $m^{n+1}(K)(n+1)$ spanned by $\{\alpha_{l}^{n+1}\}$ . Then we have

$m^{n+1}(K)(n+1)=V_{0}^{n+1}\oplus N_{n+1}\bigoplus_{k\geqq 0}W_{k,n}^{n+1}=V_{0}^{n+1}\oplus W_{0}^{n+1}\oplus I(\bigoplus_{m=2}^{i}N_{m})^{n+1}$ .

Let $V_{k}^{n+1}=$ {$x\in N_{n+1}|dx\in W_{k-1,n}^{n+2}$ for $k\geqq 1$ } and $\gamma\in N_{n+1}$ be an element. Since
$d\gamma\in m^{n+2}(K)(n)$ we can obtain a decomposition by $(^{*})$

$d\gamma=\sum_{k}w_{k}$
$(w_{k}\in W_{k,n}^{n+2})$ .

Then, since $\{dw_{k}\}$ is a linearly independent set and $dd\gamma=0$, we have
$dw_{k}=0(k\geqq 0)$ . And moreover $w_{k}$ is exact $(k\geqq 1)$ because $F(w_{k})$ is cohomologous
to $t^{n+k+2}w_{k}$ but $F^{*}=t^{*}Id$ . Thus there exists a unique element $\gamma_{k}\in V_{k+1}^{n+1}$ such
that $d\gamma_{k}=w_{k}$ . Let $\gamma_{0}=\gamma-\sum_{k\geqq 1}\gamma_{k}$ . Then $\gamma_{0}\in V_{1}^{n+1}$ and $\gamma$ can be written uniquely
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as $\gamma=\sum_{k\geqq 0}\gamma_{k}(\gamma_{k}\in V_{k+1}^{n+1})$ . Thus we have a direct sum decomposition $N_{n+1}=$

$\bigoplus_{k\geq 1}V_{k}^{n+1}$ . Using

$(I(\bigoplus_{m=0}^{m=n+1}N_{m}))^{n+1}=(I(\bigoplus_{m=0}^{m=n}N_{m}))^{n+1}+N_{n+1}=\sum_{k\geqq 1}W_{k,n}^{n+1}+\sum_{k\geqq 1}V_{k}^{n+1}$ ,

if we put $W_{k,n+1}^{n+1}=V_{k}^{n+1}+W_{k,n}^{n+1}(k\geqq 0)$ , we get a decomposition

$m^{n+1}(K)(n+1)=\bigoplus_{k\geqq 0}W_{k,n+1}^{n+1}$ .

Finally we show that $F(v_{k})-t^{n+k+1}v_{k}$ is exact for any $v_{k}\in V_{k}^{n+1}$ . As
$dF(v_{k})=F(dv_{k}),$ $F(v_{k})\in W_{k,n+1}$ , put $F(v_{k})=v_{0}+w$ , where $v_{0}\in V_{k}^{n+I},$ $w\in W_{k,n}^{n+1}$ . By
hypothesis,

$d(F(v_{k})-t^{n+k+1}v_{k})=F(dv_{k})-t^{n+k+1}dv_{k}=0$ .

Thus $F(v_{k})-t^{n+k+1}v_{k}$ is closed. Therefore two elements, $v_{0}-t^{n+k+1}v_{k}(\in V_{k}^{n+1})$

and $w(\in W_{k.n}^{n+1})$ , are both closed and from the assumption that $d$ is injective
on $V_{k}^{n+1}$ and $F^{*}=t^{*}Id$, we can obtain that $v_{0}=t^{i+k+1}v_{k}$ and that $w$ is exact.
Thus $F(w^{i})-t^{i+k}w^{i}$ is exact for any $w^{i}\in W_{k.n+1}^{i}$ and the proof is completed.

$q$ . $e$ . $d$ .
By Theorem I in [2], there exists a bijection between the set of homotopy

classes of maps of localized spaces at $0$ and the set of homotopy classes of
D. G. A. maps of minimal models, and corresponding maps induce the same
homomorphism on cohomology. We use the same notations for corresponding
maps. Let $K$ be a $f$ . $c$ . Then for any rational number $r$, there exists a map
$F_{r}$ : $K_{(0)}\rightarrow K_{(0)}$ such that $F_{r}^{*}=r^{*}Id$ uniquely up to homotopy. Especially, since
the i-skeleton of $K$ is a $f$ . $c.$ , there exists a map $F_{r}^{i}$ : $K_{(0)}^{i}\rightarrow K_{(0)}^{i}$ such that
$F_{r}^{*}=r^{*}Id$ uniquely up to homotopy.

LEMMA 3.4. The following diagram is homotopically commutative.

$j\uparrow K_{(0)}K_{(0)}^{i}\rightarrow K_{(0)}^{i}\rightarrow K_{(0)}F_{r}^{i}F_{r}j|$

where $j$ is the inclusion.
PROOF. Applying Theorem $S_{2}$ to the diagram:

$m^{*}(K)-m^{*}(K^{i})$
$j\circ F_{r}$

$ m^{*}(K^{i})F_{r}^{\ell}\uparrow$

then we have a map $\nu;K_{(0)}^{i}\rightarrow K_{(0)}$ such that $F_{r}^{i}\circ\nu\sim j\circ F_{r}$ uniquely up to homo-
topy. By considering $r^{*}\circ\nu^{*}=r^{*}\circ j^{*}$ on cohomology we have $\nu^{*}=j^{*}$ . Hence,
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from the uniqueness of Corollary $S_{2}$ , we obtain that $\nu$ is homotopic to $j$ .
$q$ . $e$ . $d$ .

\S 4. A proof of Theorem.

Now we give a proof of the theorem. (2) $\Rightarrow(3)$ is trivial, and (1) $\Rightarrow(3)$ is
immediate from Corollary $S_{2}$ . In the proof of Lemma 3.3 we showed that any
closed element in $I(\oplus N_{m})$ is exact if (3) is assumed. Hence by Theorem $S_{1}$ ,
(3) $\Rightarrow(1)$ is proved.

We prove (1) $\Rightarrow(2)$ by using induction on the dimension of $K$. Let $K$ be
a $f$ . $c$ . of dimension $n+1$ . Assume that for any integer $r$, there exists a
multiple $s$ of $r$ and a map $f_{s}^{n}$ : $K^{n}\rightarrow K^{n}$ such that $f_{s}^{n*}=s^{*}Id$ . From the equiv-
alence (3) $\Leftrightarrow(1)$ , there exists $F_{s}$ : $K_{(0)}\rightarrow K_{c_{0)}}$ such that $F_{s}^{*}=s^{*}Id$, and then $j\circ F_{s}$

and $f_{s(0)}^{n}\circ j$ are homotopic by Lemma 3.4. Consider the following diagram:

$\pi_{n+1}(K_{(0)}^{n})\rightarrow\pi_{n+1}(K_{(0)})\rightarrow\pi_{n+1}(K_{(0)}, K_{(0)}^{n})\rightarrow\pi_{n}(K_{(0)}^{n})\rightarrow$

$\downarrow$ $\downarrow H$ $\downarrow H$ $\downarrow H$

$ 0\rightarrow H_{n+1}(K_{(0)})\rightarrow H_{n+1}(K_{(0)}, K_{(0)}^{n})\rightarrow H_{n}(K_{(0)}^{n})\rightarrow$

where the vertical homomorphisms are Hurewicz homomorphism.
Let $V=\{x\in H_{n+1}(K_{(0)}, K_{(0)}^{n})|(F_{s})_{*}(x)=s^{n}x\}$ . For any $z$ of $H_{n+1}(K_{(0)}, K_{(0)}^{n})$ we

have
$\partial_{*}((F_{s})_{*}(z)-s^{n}z)=(F_{s})_{*}(\partial_{*}z)-s^{n}\partial_{*}z=0$ (by Lemma 3.4).

Then, since $H_{n+1}(K_{(0)})$ is a Q-vector space, we have

$(F_{s})_{*}(z)-s^{n}z=s^{n}(s-1)y$ $(y\in{\rm Im}\sigma)$ .

Since we have that

$(F_{s})_{*}(z-y)-s^{n}(z-y)=(F_{s})_{*}z-s^{n}z-s^{n}(s-1)y=0$

and since ${\rm Im}\sigma\cap V=0$ is trivial, the following decomposition is obtained.

(1) $H_{n+1}(K_{(0)}, K_{(0)}^{n})={\rm Im}\sigma\oplus V$ .
Let $A_{(0)}=H^{-1}(V)$ and $B_{(0)}=H^{-1}({\rm Im}\sigma)$ . Since Hurewicz homomorphism is

natural for maps, Lemma 3.4 shows

(2) $(F_{s})_{*}|\partial_{*}A_{(0)}=s^{n}Id$ , $(F_{s})_{*}|\partial_{*}B_{(0)}=s^{n+1}Id$ .
Let 1: $K\rightarrow K_{(0)}$ be a localization map and let

$A=\{a\in\pi_{n+1}(K, K^{n})|l_{*}(a)\in A_{(0)}\}$

$B=\{b\in\pi_{n+1}(K, K^{n})|l_{*}(b)\in B_{(0)}\}$ ,

then we have from (1) that
$\pi_{n+1}(K, K^{n})=A\oplus B$ .
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Let $\{a_{\ovalbox{\tt\small REJECT}}\}$ and $\{b_{j}\}$ be basis of $A$ and $B$ respectively. Let $\overline{K}$ be the complex
which is obtained from $K^{n}$ by attaching $(n+1)$-cells with $\{\partial_{*}a_{k}\}$ and $\{\partial_{*}b_{k}\}$ .

Now we assert
$\overline{K}$ is homotopically equivalent to $K$.

In fact, define an isomorphism $\theta;\pi_{n+1}(K, K^{n})\rightarrow\pi_{n+1}(\overline{K}, K^{n})$ by $\theta(a_{k})=\overline{a}_{k}$ ,
$\theta(b_{j})=\overline{b}_{j}$ , where $\overline{a}_{k},\overline{b}_{j}$ denote characteristic maps for cells of $\overline{K}$ attached by
$\partial_{*}a_{k},$ $\partial_{*}b_{j}$ respectively. Then the following diagram is commutative:

$\pi_{n+1}(K, K^{n})\rightarrow\pi_{n+1}(\overline{K}\partial_{*\backslash _{\pi_{n}(K^{n})}1^{\partial_{*}}}\theta K^{n})$

Let $K=K^{n}\cup\{e_{k}^{n+1}\}$ and let $g_{k}$ be the attaching map for the cell $e_{k}^{n+1}$ and
$f_{k}^{\prime}$ : $(D^{n+1}, S^{n})\rightarrow(\overline{K}, K^{n})$ the characteristic map, such that $f_{k}^{\prime}|S^{n}=g_{k}|S^{n}$ . If
we define a map $h:K\rightarrow\overline{K}$ by

$h|K^{n}=Id$ and $hg_{k}(x)=f_{k}^{\prime}(x)$ $x\in D^{n+1}$ ,

clearly $h$ is a homotopy equivalence.
Thus we may regard $K$ as $\overline{K}$. Let $\partial_{*}a_{k}=\varphi_{k}$ and $\partial_{*}b_{j}=\psi_{j}(\in\pi_{n}(K^{n}))$ , then

we have
$f_{s}^{n}\circ\varphi_{k}=s^{n}\varphi_{k}+torsion$ , $f_{s}^{n}\circ\psi_{j}=s^{n}\psi_{j}+torsion$ .

By assumption for complexes of dimension $n$ , there exist an integer $t$ and
a map $f_{t}^{n}$ : $K^{n}\rightarrow K^{n}$ such that $f_{t(0)}^{n}=F_{t}^{n}$ , where $t$ is a multiple of $s$ and the order
of torsion of $\pi_{n}(K^{n})$ . An infinite telescope

$ K^{n}\rightarrow K^{n}\rightarrow K^{n}\rightarrow$

$- f_{t}^{n}$
$f_{t}^{n}$

gives a localization of $K^{n}$ at primes which is prime to $t$ . Therefore there
exists an integer $m$ such that

$(f_{t}^{n})^{m}\circ\varphi_{k}=t^{nm}\varphi_{k}$ , $(f_{t}^{n})^{m}\circ\psi_{j}=t^{m(n+1)}\psi_{j}$ .

Thus we have an extension of $(f_{t}^{n})^{m},$ $f_{t^{m}}$ : $K\rightarrow K$ such that

$(f_{c^{m}})^{*}=(t^{m})^{*}Id:H_{*}(K;Z)\rightarrow H_{*}(K;Z)$ .
Since (1) $\Rightarrow(2)$ is trivial in the case of dim K$=1$ the proof of (1) $\Rightarrow(2)$ is

completed.
Next we prove corollaries. Corollary 1 is obtained from the fact that the

condition (b) of Theorem 2-1 in [4] is satisfied by (2) of Theorem. From [2]

and Lemma 2-6 in [5], the minimal model of $H^{*}(K;Q)$ with $d=0$ is realized
by a simply connected finite CW-complex $\tilde{K}$. Then $\tilde{K}$ is O-universal by Corol-
lary 1. This shows Corollary 2.
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The following corollary is easily obtained from (3) of Theorem.
COROLLARY 3. (1) V $K_{i}$ is a $f$. $c.\Leftrightarrow Each$ $K_{i}$ is a $f$. $c.$ .

(2) $\Pi K_{l}$ is a $f$. $c.\epsilon\Rightarrow EachK_{i}$ is a $f.c.$ .
(3) $K_{i}$ is a $f$. $c$ . $(i=1,2)\Rightarrow K_{1}\wedge K_{2}$ is a $f$. $c.$ .
(4) Let $K_{i}$ be a Poincar\’e complex of $dimension\geqq 3$ and a $f$. $c$ . $(i=1,2)$ . Then
connected sum $K_{1}\# K_{2}$ is a $f$. $c.$ . (See [7])

Some remarks.

(1) The converse of Corollary 1 is false. For example, a complex $L=$

$S^{3}\vee S^{3}\bigcup_{\varphi}e^{8},$
$\varphi=[l_{3}, [l_{3}, l_{3}]]$ is O-universal from Theorem 3-2 in [3], but is not

$f$ . $c.$ , because $L$ has no self map $f$ inducing $f^{*}=r^{*}Id$ on the cohomology.
(2) In the theorem, (3) $\Leftrightarrow(1)$ holds for infinite complexes. But (1) $\Rightarrow(2)$

does not hold in such generality. For example, $QP^{\infty}$ is a $f$ . $c.$ , but there is no
map which multiples elements of a 4-dimensional cohomology an even number
of times.

(3) Let $K$ be a simply connected finite complex, then the following con-
ditions are equivalent.

(i) $K$ is a $f$ . $c$ .
(ii) For any ring homomorphism $\rho$ : $H^{*}(K;Q)\rightarrow H^{*}(K;Q)$ , there exists an

integer $r$ and a map $f:K\rightarrow K$ such that $ f^{*}=r^{*}\rho$ .
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