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\S 1. Introduction.

A space is said to be a subsequential sPace if it can be embedded as a
subspace of a sequential space. The closed image of a metric space is shortly
said to be a La\v{s}nev $s$pace (cf. [4], [5]).

Professor K. Nagami posed the following two problems.
1. Can each La\v{s}nev space be embedded in a countably compact sequential

regular space ?
2. Is finite (or countable) product of La\v{s}nev spaces subsequential ?
This paper gives a negative answer to the first problem and a partial

answer to the second as follows:
1. Any La\v{s}nev space, which is not metrizable, cannot be embedded in

any countably compact regular space with countable tightness.
2. Assuming the continuum hypothesis (CH), there exist regular Fr\’echet

spaces $X$ and $Y$ such that $X\times Y$ is not subsequential.
Each Fr\’echet space is subsequential. Therefore the second result shows

that even a finite product of subsequential spaces is not subsequential (cf. [8,

P. 179]).

In this paper spaces are assumed to be $T_{1}$ and maps to be continuous
onto.

The author thanks to Professor K. Nagami for his valuable suggestions.

\S 2. Theorems.

DEFINITION 1 ([1, p. 954]). A space $X$ has countable tightness if it has
the following property: If $A\subset X$ and $x\in Cl_{X}A$ , then $x\in Cl_{X}B$ for some count-
able $B\subset A$ .

Let $R=\{0\}\cup\{1/n;n\in\omega_{0}\}$ be a convergent sequence. Let $S$ be the disjoint
union of a sequence $\{R(n);n\in\omega_{0}\}$ of copies of $R$ , let $A=\{0(n)\in R(n);O(n)=0$ ,
$n\in\omega_{0}\}$ , and let $T=S/A$ , the quotient space obtained from $S$ by identifying $-4$

to a point $q$ .
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THEOREM 1. $T$ cannot be embedded in any countably compact regular sPace
with countable tightness.

PROOF. Suppose there exists a countably compact regular space $X$ with
countable tightness such that $X=Cl_{X}T$. Let $U$ be an arbitrary open neighbor-
hood of $q$ in $X$. Let $V$ be an open set in $X$ such that

$q\in V\subset Cl_{X}V\subset U$ .
Pick $s(n)\in V\cap(R(n)-O(n))$ for each $n$ . Then, since $X$ is countably compact,

$ Cl_{X}\{s(n);n\in\omega_{0}\}-\{s(n);n\in\omega_{0}\}\neq\emptyset$ ,

$Cl_{X}\{s(n);n\in\omega_{0}\}-\{s(n);n\in\omega_{0}\}\subset Cl_{X}V\cap(X-T)\subset U$ .
This shows $q\in Cl_{X}(X-T)$ . Since $X$ has countable tightness, there exists a
sequence $\{x(n);n\in\omega_{0}\}\subset X-T$ such that

$q\in Cl_{X}\{x(n);n\in\omega_{0}\}$ .

Let $\{U(n);n\in\omega_{0}\}$ be a sequence of open neighborhoods of $q$ in $X$ such that

$Cl_{X}U(n+1)\subset U(n)$ ,

$x(n)\not\in Cl_{X}U(n)$ .
Put

$A(n)=U(n)\cap(R(n)-\{O(n)\})$ .
Then $\cup\{A(n);n\in\omega_{0}\}\cup\{q\}$ is an open neighborhood of $q$ in $T$. Let $W$ be an
open neighborhood of $q$ in $X$ such that

$W\cap T=\cup\{A(n);n\in\omega_{c}\}\cup\{q\}$ .

We will show that $\{x(n);n\in\omega_{0}\}\cap W=\emptyset$, which will contradict the fact that
$q\in Cl_{X}\{x(n);n\in\omega_{0}\}$ . By construction of $W$,

$W\cap T=U\{A(n);n\in\omega_{0}\}\cup\{q\}$

$=\bigcup_{i\Rightarrow 1}^{n-1}\{A(i)-U(n)\}\cup(U(n)\cap T)$ .

Here $A(i)\cup\{q\}$ is a convergent sequence and $q\in U(n)$ . Therefore $A(i)-U(n)$ is
a finite set for each $i\leqq n-1$ . Since $x(n)\not\in Cl_{X}U(n),$ $x(n)\not\in Cl_{X}(W\cap T)$ . This
shows $\{x(n);n\in\omega_{0}\}\cap W=\emptyset$ since $T$ is dense in $X$. Now our proof is com-
pleted.

THEOREM 2. Let $X$ be a Proper La\v{s}nev space, i.e. a La\v{s}nev space which is
not metrizable. Then $X$ contains a closed set which is a copy of $T$.

PROOF. Let $f:M\rightarrow X$ be a closed map where $M$ is a metric space. By
Morita-Hanai-Stone’s theorem [7] there exists a point $p\in X$ such that $\partial f^{-1}(p)$
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is not compact. Let $\{q(n);n\in\omega_{0}\}$ be a discrete set of points in $\partial f^{-1}(p)$ and
$\{U(n);n\in\omega_{0}\}$ a discrete open collection of $M$ with $q(n)\in U(n)$ for each $n\in\omega_{0}$ .
Let $Q(n)=\{q(n, m);m\in\omega_{0}\}$ be a convergent sequence of points in $U(n)-f^{-1}(p)$

whose limit point is $q(n)$ . The sequence $\{f(Q(n));n\in\omega_{0}\}$ has the following
property: For each $k\in\omega_{0}$ there exists $n(>k)$ such that

$f(Q(n))-\bigcup_{i=1}^{k}f(Q(i))$ is infinite.

Assume contrary, $i.e$ . there exists some $k\in\omega_{0}$ such that

$f(Q(n))-\bigcup_{i=1}^{k}f(Q(i))$ is finite for each $n>k$ .
Then

$f^{-1}(\bigcup_{t=1}^{k}f(Q(i)))\cap Q(n)$ is infinite for each $n>k$ .

Therefore there exists $q(n, m(n))\in f^{-1}(\bigcup_{i\Rightarrow 1}^{k}f(Q(i)))\cap Q(n)$ such that $f(q(n, m(n)))$

$\neq f(q(j, m(j)))$ for $n\neq j$ . The set $\{q(n, m(n));n\in\omega_{0}\}$ is closed in $M$ but $ p\in$

$Cl_{X}\{f(q(n, m(n)));n\in\omega_{0}\}$ , which is a contradiction.
Put

$L(n)=f(Q(n))-\overline{\bigcup_{t=1}^{n1}}f(Q(i))$ .
Put

$ n_{1}=\min$ {$n>1;f(Q(n))-f(Q(1))$ is infinite}.
Then

$L(n_{1})=\{f(Q(n_{1}))-f(Q(1))\}-U\{f(Q(k))-f(Q(1))\}n_{1}-1k=2$

$n_{1}-1$

Since $k=2U\{f(Q(k))-f(Q(1))\}$ is finite, $L(n_{1})$ is infinite. Put

$ n_{2}=\min$ { $n>n_{1}$ ; $f(Q(n))-\bigcup_{i=1}^{n_{1}}f(Q(\iota))$ is infinite}.

Continuing in this manner, we obtain a sequence $\{L(n_{k});k\in\omega_{0}\}$ such that
$L(n_{k})$ is an infinite set for each $k\in\omega_{0}$ and such that

$ L(n_{k})\cap L(n_{j})=\emptyset$ for $k\neq j$ .
Put

$L=\cup\{L(n_{k});k\in\omega_{0}\}\cup\{p\}$ .
Note that every point of $L(n_{k})$ is isolated in $L$ for each $k\in\omega_{0}$ . Now it is
easy to show that the set $L$ is closed and homeomorphic to $T$ . The proof is
completed.

COROLLARY 1. Let $X$ be a prOper La\v{s}nev space. Then $X$ cannot be em-
bedded in a countably comPact regular spaces with countable tightness.
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PROOF. Suppose $X$ can be embedded in a countably compact regular space
$Y$ with countable tightness. Let $L$ be a copy of $T$ contained in $X$. Then
$Cl_{Y}L$ is a countably compact regular space with countable tightness which
contradicts Theorem 1. The proof is completed.

Let $N$ denote the natural numbers. A countable space with one non-
isolated point will be denoted by $N\cup\{\mathfrak{G}\}$ . Here $\{\mathfrak{G}\}$ is the non-isolated point,
and its filter of neighborhoods restricted to $N$ is the elements of $\mathfrak{G}$ . We
denote by $\beta N$ the Stone-\v{C}ech compactification of $N$. For a filter $\mathfrak{G}=\{G_{a}$ ;
$\alpha\in A\}$ , we denote $G=\cap\{Cl_{\beta N}G_{\alpha} ; \alpha\in A\}$ and say $G$ is the realization of G.
For each $M\subset N$, we denote $M^{*}=Cl_{\beta N}M-M$.

We recall some information on $\beta N$.
LEMMA 1 ([9, p. 414]). A set $U$ is $oPen$-closed in $N^{*}$ if and only if there

exists $M\subset N$ for which $U=M^{*}$ .
LEMMA 2 ([9, p. 414]). $G^{*}\subset H^{*}$ if and only if $G-H$ is a finite set, where

$G$ and $H$ are subsets of $N$.
DEFINITION 2. Let $X$ be a space. A point $x\in X$ is said to be a $P_{-}point$

of $X$, if the intersection of each sequence of neighborhoods of $x$ contains a
neighborhood of $x$ .

LEMMA 3 ([9, p. 415], CH). There exist $P_{-}points$ in $N^{*}$ .
DEFINITION 3 ([2, p. 376]). A space $X$ is said to be an $F$-space if each

disjoint two cozero sets of $X$ are completely separated in $X$.
LEMMA 4 ([2, p. 376]). $N^{*}$ is an F-sPace.
Lemmas 5, 6 and 7 below are well-known and easy to prove, so we omit

the proofs.
LEMMA 5. Let $G$ be a closed subset of $N^{*}$ Then there exists a filter $\mathfrak{G}$

on $N$ whose realization is $G$ .
LEMMA 6. Let $\mathfrak{G}=\{G_{\alpha};\alpha\in A\}$ be a free filter whose realization is G. Then

$\{G_{\alpha}^{*} ; \alpha\in A\}$ is a neighborhood base of $G$ in $N^{*}$ .
Let $\mathfrak{G}$ be a filter. Then we say that $\mathfrak{G}$ determines an ultrafilter if the

realization of $\mathfrak{G}$ is a singleton in $N^{*}$ .
LEMMA 7. Let $\mathfrak{G}$ be a filter on N. Then the following are equivalent:
i) $\mathfrak{G}$ determines an ultrafilter.

ii) There exists an ultrafilter $\mathfrak{H}$ such that for each $H\in \mathfrak{H}$ there exists $G\in \mathfrak{G}$

such that $G-H$ is finite.
DEFINITION 4 ([3]). A space $X$ is said to be Fr\’echet if, whenever $x\in Cl_{X}A$

for some $A\subset X$, there exists a sequence $\{x(n);n\in\omega_{0}\}\subset A$ such that $\lim_{n\rightarrow\infty}x(n)=x$.
LEMMA 8 ([6, Theorem 1]). Let $\mathfrak{G}$ be a free filter on $N$ and let $\mathfrak{G}$ be the

realization of $\mathfrak{G}$ . Then $N\cup\{\mathfrak{G}\}$ is a Fr\’echet space if and only if $G=Cl_{\beta N}(Int_{N}^{*}G)$ .
LEMMA 9 (CH). Let $p$ be a $P$-point of $N^{*}$ . Then there exists a filter

$\{V_{\alpha} ; \alpha\in\omega_{1}\}$ on $N$ such that
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i) $V_{a}^{*}\subsetneqq V_{\beta^{*}}$ for $\alpha><\beta$ ,
ii) $\{V_{\alpha}^{*} ; \alpha\in\omega_{1}\}$ is a neighborhood base of $P$ in $N^{*}$ .
PROOF. Let $\mathfrak{U}=\{U_{\alpha} ; \alpha\in\omega_{1}\}$ be the filter on $N$ such that the realization

of $\mathfrak{U}$ is $p$ .
Put

$V_{0}=U_{0}$ .
Assume $\{V_{\beta} ; \beta<\alpha\}$ is already constructed as follows:

$V_{\gamma^{*}}\subsetneqq V_{\delta}^{*}$ for any $\delta<\gamma<\alpha$ ,

$V_{\gamma^{*}}\subset U_{\gamma^{*}}$ for any $\gamma<\alpha$ .
Since $P$ is a P-point,

$P\in Int_{N}*(\cap\{V_{\beta^{*}} ; \beta<\alpha\})\cap U_{a}^{*}$ .
Take $V_{a}\subset N$ such that

$p\in V_{a}^{*}\subsetneqq U_{\alpha}^{*}\cap Int_{N}*(\cap\{V_{\beta} ; \beta<\alpha\})$ .
It is easy to show that $\{V_{a} ; \alpha\in\omega_{1}\}$ satisfies the conditions i) and ii). The
proof is completed.

LEMMA 10 (CH). There exist two filters $\mathfrak{F}$ and $\mathfrak{G}$ such that
i) $N\cup t\mathfrak{F}$} and $N\cup\{\mathfrak{G}\}$ are Fr\’echet spaces.

ii) $\mathfrak{H}=\{F\cap G;F\in \mathfrak{F}, G\in \mathfrak{G}\}$ determines the ultrafilter.
PROOF. Let $p$ be a P-point of $N^{*}$ and let $\{V_{\alpha} ; \alpha\in\omega_{1}\}$ be the filter in

Lemma 9.
For any $\alpha\in\omega_{1}$ , we choose $W_{a1}$ and $W_{a2}$ , subsets of $N$, such that

$W_{\alpha 1}^{*}\neq\emptyset,$ $ W_{a2^{*}}\neq\emptyset$ ,

$ W_{\alpha 1^{*}}\cap W_{a2^{*}}=\emptyset$ ,

$W_{\alpha 1}^{*}\cup W_{a2^{*}}\subset V_{\alpha}^{*}-V_{\alpha+1^{*}}$ .
$\{W_{\alpha 1^{*}} ; \alpha\in\omega_{1}\}$ and $\{W_{a2}^{*} ; \alpha\in\omega_{1}\}$ have the following properties:

(1) $ Cl_{\beta N}(\cup\{W_{\beta 1}^{*} ; \beta<\alpha\})\cap V_{\alpha}^{*}=\emptyset$ , $\alpha\in\omega_{1}$ ,

(2) $ Cl_{\beta N}(\cup\{W_{\beta 2^{*}} ; \beta<\alpha\})\cap V_{\alpha}^{*}=\emptyset$ , $\alpha\in\omega_{1}$ ,

(3) $p\in Cl_{\beta N}(\cup\{W_{\alpha 1^{*}} ; \alpha\in\omega_{1}\})\cap Cl_{\beta N}(\cup\{W_{\alpha 2^{*}} ; \alpha\in\omega_{1}\})$ .
Put

(4) $F=Cl_{\beta N}(\cup\{W_{\alpha 1}^{*} ; \alpha\in\omega_{1}\})$ ,

(5) $G=Cl_{\beta N}(\cup\{W_{\alpha 2^{*}} ; \alpha\in\omega_{1}\})$ .

Let $\mathfrak{F}=\{F_{\xi} ; \xi\in A\}$ and $\mathfrak{G}=\{G_{\eta} ; \eta\in B\}$ be two filters whose realizations are $F$
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and $G$ , respectively. Then $N\cup\{\mathfrak{F}\}$ and $N\cup\{\mathfrak{G}\}$ are both Fr\’echet by Lemma 8.
We will show that $\mathfrak{H}=\{F_{\xi}\cap G_{\eta} ; \xi\in A, \eta\in B\}$ determines an ultrafilter. Let
$D\in p$ be any element of the ultrafilter $p$ . Then we will show that there
exist $F_{\xi}\in \mathfrak{F}$ and $G_{\eta}\in \mathfrak{G}$ such that

$F_{\xi\cap}G_{\eta}-D$ is finite,

$p\in F_{\xi}^{*}\cap G_{\eta^{*}}$ .

Since $D^{*}$ is open in $N^{*}$ containing $p$ , then there exists $V_{\gamma}\subset N$ such that

(6) $p\in V_{\gamma^{*}}\subset D^{*}$ .
$\cup\{W_{\beta 1}^{*} ; \beta<\gamma\}$ and $\cup\{W_{\beta 2}^{*} ; \beta<\gamma\}$ are cozero sets in $N^{*}$ . Therefore, by
Lemma 4,

$ Cl_{\beta N}(\cup\{W_{\beta 1}^{*} ; \beta<\gamma\})\cap Cl_{\beta N}(\cup\{W_{\beta 2}^{*} ; \beta<\gamma\})=\emptyset$ .

By Lemmas 1 and 6, there exist $K$ and $L$ such that

(7) $Cl_{\beta N}(\cup\{W_{\beta 1}^{*} ; \beta<\gamma\})\subset K^{*}\subset N^{*}-V_{\gamma^{*}}$ ,

(8) $Cl_{\beta N}(\cup\{W_{\rho_{2}}^{*} ; \beta<\gamma\})\subset L^{*}\subset N^{*}-V_{\backslash }^{*}$ ,

(9) $ K^{*}\cap L^{*}=\emptyset$ .
By (1), (4) and (7),

$F=Cl_{\beta N}(\cup\{W_{\beta 1^{*}} ; \beta<\gamma\})\cup Cl_{\beta N}(\cup\{W_{\beta 1}^{*} ; \beta\geqq\gamma\})\subset K^{*}\cup V^{*},$ .
Similarly

$G\subset L^{*}\cup V_{\gamma}^{*}$ .
By Lemma 6, there exist $F_{\xi}\in \mathfrak{F}$ and $G_{\eta}\in \mathfrak{G}$ such that

$F\subset F_{\xi}^{*}\subset K^{*}\cup V_{\gamma^{*}}$ ,

$G\subset G_{\eta}^{*}\subset L^{*}\cup V_{\gamma^{*}}$ .
Then, by (9),

$p\in F\cap G\subset F_{\xi}^{*}\cap G_{\eta}^{*}\subset V_{\gamma^{*}}\subset D^{*}$ .
Therefore $F_{\xi}\cap G_{\eta}-D$ is finite by Lemma 2. The proof is completed.

DEFINITION 5 ([3, p. 109]). Let $X$ be a space. A subset $U$ of $X$ is said
to be sequentially open if each sequence in $X$ converging to a point in $U$ is
eventually in U. $X$ is said to be a sequential space if each sequentially open
subset of $X$ is open.

LEMMA 11. Let $\mathfrak{G}$ be an ultrafilter on N. Then $N\cup \mathfrak{G}$ is not subsequential.
PROOF. Let $X$ be a sequential space such that

$N\cup\{\mathfrak{G}\}\subset X,$ $N\cup\{\mathfrak{G}\}$ is dense in $X$.
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$\{\mathfrak{G}\}\in Cl_{X}(X-(N\cup\{\mathfrak{G}\}))$ implies that there exists a sequence $\{x(n);n\in\omega_{0}\}$ such
that $\lim_{n\rightarrow\infty}x(n)=\{\mathfrak{G}\}$ . Let $\{U(n);n\in\omega_{0}\}$ be a sequence of open sets in $X$ such

that
$ U(n)\cap U(m)=\emptyset$ for $n\neq m,$ $x(n)\in U(n)$ for each $n\in\omega_{0}$ .

Put
$A=\cup\{U(2n)\cap N;n=1,2, \cdots\}$ ,

$B=\cup\{U(2n+1)\cap N;n=0,1, \cdots\}$ .

Then $A\in \mathfrak{G}$ and $B\in \mathfrak{G}$, which is impossible since $ A\cap B=\emptyset$ . The proof is
completed.

THEOREM 3 (CH). There exist Fr\’echet sPaces $X$ and $Y$ such that $x\times Y$ is
not subsequential.

PROOF. Let $P$ be a P-point of $N^{*}$ . Let $X=N\cup t\mathfrak{F}$} and $Y=N\cup\{\mathfrak{G}\}$ be
Fr\’echet spaces in Lemma 10. We define $f:N\cup\{p\}\rightarrow X\times Y$ such that

$f(n)=(n, n)$ ,

$f(p)=\{\mathfrak{F}\}\times\{\mathfrak{G}\}$ .
Then $f$ is an embedding since

$f^{-1}((F_{\xi}\times G_{\eta})\cap\Delta)=F_{\xi\cap}G_{\eta}$ ,

where $\Delta=\{(n, n);n\in N\}$ .
Each subspace of subsequential space is subsequential. Therefore Lemma

11 implies that $X\times Y$ is not subsequential. The proof is completed.
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