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§1. Introduction.

A space is said to be a subsequential space if it can be embedded as a
subspace of a sequential space. The closed image of a metric space is shortly
said to be a Lasnev space (cf. [4], [5).

Professor K. Nagami posed the following two problems.

1. Can each Lasnev space be embedded in a countably compact sequential
regular space ?

2. Is finite (or countable) product of Lasnev spaces subsequential ?

This paper gives a negative answer to the first problem and a partial
answer to the second as follows:

1. Any Lagnev space, which is not metrizable, cannot be embedded in
any countably compact regular space with countable tightness.

2. Assuming the continuum hypothesis (CH), there exist regular Fréchet
spaces X and Y such that XX Y is not subsequential.

Each Fréchet space is subsequential. Therefore the second result shows
that even a finite product of subsequential spaces is not subsequential (cf. [8,
p. 1797]).

In this paper spaces are assumed to be 7, and maps to be continuous
onto.

The author thanks to Professor K. Nagami for his valuable suggestions.

§2. Theorems.

DerINITION 1 ([1, p. 954]). A space X has countable tightness if it has
the following property: If ACX and x=Cly A, then x=ClxB for some count-
able BCA.

Let R={0}\U{l/n; n=w,} be a convergent sequence. Let S be the disjoint
union of a sequence {R(n);n<w,} of copies of R, let A={0(n)e R(n); 0(n)=0,
nEw,}, and let T=S/A, the quotient space obtained from S by identifying 4
to a point gq.
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THEOREM 1. T cannot be embedded in any countably compact regular space
with countable tightness.

PROOF. Suppose there exists a countably compact regular space X with
countable tightness such that X=CIxT. Let U be an arbitrary open neighbor-
hood of ¢ in X. Let V be an open set in X such that

geVCCliyVCU.
Pick s(n)e VN\(R(n)—0(n)) for each n. Then, since X is countably compact,
Clx{s(n); n€w} —{s(n); n€w} #0,
Cly{s(n); n€ewy} —{s(n); new, CClxy VN X-T)CU.

This shows qeCix(X—T). Since X has countable tightness, there exists a
sequence {x(n);new,} CX—T such that

qeCly{x(n); new,} .
Let {U(n); n=w,} be a sequence of open neighborhoods of ¢ in X such that
ClyUn+1LHCU(n),

x(n)e€ClyU(n).
Put
A(n)=Um)N(R(n)—{0(n)}) .

Then \V{A(n); new,}\J{q} is an open neighborhood of ¢ in 7. Let W be an
open neighborhood of ¢ in X such that

WNT=Y{A(n); new}\J{q} .

We will show that {x(n); n€w, "\W=0, which will contradict the fact that
geCly{x(n); new,}. By construction of W,

WNT=U{A(n); n€w}\V{g}
=T ae-um v wmn.

Here A(i)\Y{g} is a convergent sequence and g U(n). Therefore AG)—U(n) is
a finite set for each i=n—1. Since x(n)&ClyUn), x(n)&Clxy(WNT). This
shows {x(n);n€w "W=0 since T is dense in X.  Now our proof is com-
pleted.

THEOREM 2. Let X be a proper Lasnev space, i.e. a Lasnev space which is
not metrizable. Then X contains a closed set which is a copy of T.

PrOOF. Let f: M—X be a closed map where M is a metric space. By
Morita-Hanai-Stone’s theorem there exists a point p=X such that af~(p)
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is not compact. Let {g(n);ncw,} be a discrete set of points in af *(p) and
{U(n); new,} a discrete open collection of M with ¢(n)e U(n) for each n<w,.
Let Q(n)={q(n, m); mew,} be a convergent sequence of points in U(n)—f~(p)
whose limit point is ¢g(n). The sequence {f(Q(n));n<=w,} has the following
property: For each k=w, there exists n (>k) such that

AQ)~— U Q) s infinite,
Assume contrary, i.e. there exists some k=w, such that
AQu)— U fQG) s finite for each n>k.
Then
£ AQENNQM) s infinite for each n>k.

Therefore there exists ¢(n, m(n))e f‘l(ig QONNQ®) such that flg(n, m(n)))

# flq(j, m(7))) for n#j. The set {q(n,m(n));n<cw,} is closed in M but pe
Cly {f(g(n, m(n))) ; n€w,}, which is a contradiction.

Put
L(ny=FQ(m)—~"J AQG).
Put
n,=min{n>1; (Q(n))—AQ(L)) is infinite}.
Then

L(n)= Q) — QW) — U 1/QUN— QM)
Sincet:k:_)Z1 {AQE)—AQ)} is finite, L(n,) is infinite. Put

ny=min {n>n, ; f<c)(n))—i©1 AQG) is infinite}.

Continuing in this manner, we obtain a sequence {L(n,);k<w,} such that
L(n,) is an infinite set for each k=w, and such that

Lny)NL(np)=0 for k+j.
Put
L=\U{L(ne); kEwo}\J {p}.

Note that every point of L(n,) is isolated in L for each k=w, Now it is
easy to show that the set L is closed and homeomorphic to 7. The proof is
completed. :

COROLLARY 1. Let X be a proper Lasnev space. Then X cannot be em-
bedded in a countably compact regular spaces with countable tightness.
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PROOF. Suppose X can be embedded in a countably compact regular space
Y with countable tightness. Let L be a copy of T contained in X. Then
ClyL is a countably compact regular space with countable tightness which
contradicts The proof is completed.

Let N denote the natural numbers. A countable space with one non-
isolated point will be denoted by NU {®&}. Here {®} is the non-isolated point,
and its filter of neighborhoods restricted to N is the elements of &. We
denote by BN the Stone-Cech compactification of N. For a filter 8={G,;
ac A}, we denote G=N\{ClgyG,; ac A} and say G is the realization of S.
For each MCN, we denote M*=ClgyM—M.

We recall some information on BN.

LeMMA 1 ([9, p. 414]). A set U is open-closed in N* if and only if there
exists MC N for which U=M*,

LEMMA 2 ([9, p. 414]). G*CH* if and only if G—H s a finite set, where
G and H are subsets of N.

DEFINITION 2. Let X be a space. A point x=X is said to be a P-point
of X, if the intersection of each sequence of neighborhoods of x contains a
neighborhood of x.

LEMMA 3 ([9, p. 415], CH). There exist P-points in N*.

DerINITION 3 ([2, p. 376]). A space X is said to be an F-space if each
disjoint two cozero sets of X are completely separated in X.

LEMMA 4 ([2, p. 376]). N* is an F-space.

Lemmas 5, 6 and 7 below are well-known and easy to prove, so we omit
the proofs.

LEMMA 5. Let G be a closed subset of N* Then there exists a filter &
on N whose realization is G.

LEMMA 6. Let 8={G,;a= A} be a free filter whose realization is G. Then
{G.*; ac A} is a neighborhood base of G in N*.

Let @ be a filter. Then we say that & determines an ultrafilter if the
realization of & is a singleton in N*.

LEMMA 7. Let ® be a filter on N. Then the following are equivalent:

i) © determines an ultrafilter.

ii) There exists an ultrafilter © such that for each HE9 there exists GES
such that G—H 1is finite.

DEFINITION 4 ([3]). A space X is said to be Fréchet if, whenever x=Cly A
for some ACJX, there exists a sequence {x(n); n€w,} CA such that lim x(n)=x.

N —00

LEMMA 8 ([6, Theorem 11). Let & be a free filter on N and let & be the
realization of @. Then N\J{®} is a Fréchet space if and only if G=Clsy(Inty*G).

LEMMA 9 (CH). Let p be a P-point of N*. Then there exists a filter
{V.;a=w} on N such that
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) Vo*&Vg* for azf,
i) {V.*; acw,} is a neighborhood base of p in N*.
PROOF. Let U={U,; a=w,} be the filter on N such that the realization
of U is p.
Put
Vo=U,.

Assume {Vjz; f<a} is already constructed as follows:
VASVs* for any d<r<a,

VACU* for any r<a.
Since p is a P-point,
pentyx(N{Vg*; B<ah)NU*

Take V,CN such that
peE Va*%Ua*ﬂIntN*(ﬂ {Vﬂ ; ‘B <a} )

It is easy to show that {V,; acw,} satisfies the conditions i) and ii). The
proof is completed.

LEMMA 10 (CH). There exist two filters & and & such that

i) NU{F} and NI{®} are Fréchet spaces.

i) 9={FN\G;F=%, GG} determines the ultrafilter.

PROOF. Let p be a P-point of N* and let {V,; a=w,} be the filter in

For any a=w,, we choose W,, and W,,, subsets of N, such that

War*#0, Was*#0,
Wal*m Waz*:(ay
War I W oo * TV *— Viarr™,

Wt a=sw,} and {W,,*; a=w,} have the following properties:

(1) Clon(J {Wpr*; p<a})NV*=0, acw,

(2) Clan(V {Weo* 5 f<a})NVa*=0, aco,

(3) pECLN I {War*; aco)NClan(\J {Wa*; awi}).
Put

(4) F=Cloy(V{Wu*; acwy}),

(5) G=Clogn(\V {Wo.*; acwi}).

Let §={F:; < A} and 8={G,; =B} be two filters whose realizations are F
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and G, respectively. Then NU{gF} and NU {®} are both Fréchet by Lemma 8.
We will show that $={F:N\G,; €A, n= B} determines an ultrafilter. Let
Dep be any element of the ultrafilter p. Then we will show that there
exist F:=% and G, such that

FenG,—D is finite,

PEFFNG,* .
Since D* is open in N* containing p, then there exists V,CN such that
(6) peV,*CD*

U{Wa*; 8<r} and U {Wg*; B<r} are cozero sets in N* Therefore, by
Lemma 4
Clan(\M {Wg* 5 B<TrDNClen(V {Wa* ; B<1})=0.

By Lemmas 1 and 6, there exist K and L such that

(7) Clen(\N {Wpr* ; B<THCEXCN*—V/A,
(8) Clon(\J {Wg* 5 B<7})CL*CN*—-V,*,
(9) K*ﬂL*:@.

By (1), (4) and (7),

F=Clgy(\J {Wg*; B<rH\IClen(\J {We*; BZrHTEXUV X,
Similarly
GCL¥JUV*,

By Lemma 6, there exist F;€% and G,=@ such that
FCFHXCK*UV*,

GCG*CL*UV*,
Then, by (9),
PEFNGCFANG TV *CD*.

Therefore F;N\G,—D is finite by Lemma 2. The proof is completed.
DEFINITION 5 ([3, p. 109]). Let X be a space. A subset U of X is said
to be sequentially open if each sequence in X converging to a point in U is
eventually in U. X is said to be a sequential space if each sequentially open
subset of X is open.
LEMMA 11. Let & be an ultrafilter on N. Then NUG is not subsequential.
PrROOF. Let X be a sequential space such that

NU{B} X, NU{@®} is dense in X.
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{8} eClx(X—(NU {®})) implies that there exists a sequence {x(n); n€w,} such
that lim x(n)={®}. Let {U(n); n=w,} be a sequence of open sets in X such

that
Un)NU(m)=0 for n#m, x(n)eU(n) for each ncw,.
Put

B=V{U@n+1)N\N; n=0,1,-}.

Then A=® and Be<®, which is impossible since AnB=§. The proof is

completed.
THEOREM 3 (CH). There exist Fréchet spaces X and Y such that XXY is

not subsequential.
Proor. Let p be a P-point of N* Let X=NU{F} and Y=NU{B} be
Fréchet spaces in We define f: NU{p} >XXY such that

f(n)=(n,n),
A(p)={T} X {S}.

Then f is an embedding since

JHEFACIND)=FNG,

where 4=1{(n, n); neN}.
Each subspace of subsequential space is subsequential. Therefore Lemma
11 implies that XX Y is not subsequential. The proof is completed.
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